Correspondence to:

Associate Professor W. Henderson,

Department of Chemistry,

University of Waikato,

Private Bag 3105,

Hamilton,

New Zealand

e-mail: w.henderson@waikato.ac.nz

FAX: 0064-7-838-4219

New ferrocene-derived hydroxymethylphosphines: $FcP(CH_2OH)_2$ [Fc = $(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4)$] and the dppf analogue 1,1'-Fc'[P(CH_2OH)_2] [Fc'

 $= \operatorname{Fe}(\eta^5 - \operatorname{C}_5 \operatorname{H}_4)_2]$

Steven R. Alley and William Henderson*

Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Received

Abstract

Reactions of the ferrocene-phosphines $FcPH_2$ and $1,1'-Fc'(PH_2)_2$ with excess formaldehyde gives the new hydroxymethylphosphines $FcP(CH_2OH)_2$ **1** and $1,1'-Fc'[P(CH_2OH)_2]_2$ respectively. Phosphine **1** is an air-stable crystalline solid, whereas **2** is isolated as an oil. Reaction of **1** with H_2O_2 , S_8 or Se gives the chalcogenide derivatives $FcP(E)(CH_2OH)_2$ (E = O, S or Se), whilst reaction of **2** with S_8 gives 1,1'-Fc'[P(S)(CH_2OH)_2]_2, which were fully characterized. Phosphine **1** was also characterised by an X-ray crystal structure determination.

Keywords: Ferrocene compounds; Hydroxymethylphosphines; Crystal structure; Phosphine chalcogenides

1. Introduction

Hydroxymethylphosphines, containing PCH₂OH groups, have been known for many years [1] but are attracting recent interest for their versatile reactivity [2] and ability to render metal complexes water-soluble, with uses ranging from catalysis,[2,3] metal complex immobilisation [4] and biomedical applications. [2,5] We have reported the first example of a ferrocene-derived hydroxymethylphosphine, FcCH₂P(CH₂OH)₂, and some derivatives thereof. [6] In separate recent reports, cyclophosphazene derivatives of the phosphine sulfide FcCH₂P(S)(CH₂OH)₂ [7] and the methyl-substituted derivative FcCH(Me)P(CH₂OH)₂ [8] have been studied. In this Communication we report the synthesis of two new ferrocenyl hydroxymethylphosphines, FcP(CH₂OH)₂ and 1,1'-Fc'[P(CH₂OH)₂]₂. The latter is the hydroxymethyl analogue of dppf, 1,1'-Fc'(PPh₂)₂, which has been very extensively investigated. [9]

2. Results and discussion

A general synthesis for the synthesis of hydroxymethylphosphines utilises the ready reactivity of primary phosphines towards formaldehyde. [1,2] Reaction of the known primary phosphines FcPH₂ [10] and 1,1'-Fc'(PH₂)₂ [11] with excess aqueous formaldehyde gave the hydroxymethylphosphines FcP(CH₂OH)₂ **1** and 1,1'-Fc'[P(CH₂OH)₂]₂ **2** respectively. Several products were initially obtained in each case, and are presumably the formaldehyde adducts, containing P-(CH₂O)_nH groups [12]; excess formaldehyde was removed by exposure of the crude products to a dynamic vacuum (*ca*. 1 mmHg) for 24 h. Phosphine **1** (δ^{31} P -24.7) is an orange crystalline solid, soluble in polar organic solvents, and indefinitely stable in air. The ¹H NMR spectrum shows that the CH₂ protons are in unique environments, with a geminal coupling of 13 Hz. This effect was not observed in the related compounds FcCH₂P(CH₂OH)₂ or FcCH₂P(S)(CH₂OH)₂ suggesting that the closer proximity of the bulky Fc group may be causing restricted rotation in the P-CH₂ and/or CH₂-O groups. The positive ion electrospray (ES) mass spectrum of **1** in methanol at a cone voltage of 20 V with added AgNO₃ [13] gave a single ion at *m/z* 663 due to the [2M + Ag]⁺ ion.

The X-ray structure determination of 1^{\ddagger} was carried out to unambiguously confirm the formulation of the compound as the bis(hydroxymethyl)phosphine, and the molecular structure is shown in Fig. 1. The network of hydrogen bonding involving the OH groups is very similar to that of FcCH₂P(CH₂OH)₂ [6] with the molecules arranged into chains, crosslinked by hydrogen bonds, resulting in each molecule being involved in hydrogen bonding interactions with four other molecules. There are two distinct types of hydrogen bonds, H(4)---O(1), which link two chains together, and H(3)---O(2), which link adjacent molecules in the same chain together, resulting in the formation of linked ten-membered hydrogen bonded rings, Figure 2.

Reaction of **1** with hydrogen peroxide, sulfur or grey selenium under sonication gives the phosphine oxide **3** ($\delta^{31}P$ 47.6), sulfide **4** ($\delta^{31}P$ 38.2) and selenide **5** ($\delta^{31}P$ 39.1, ¹J(PSe) 701 Hz) respectively; all are crystalline orange solids. X-ray crystal structure analyses have also been performed on these derivatives, and a detailed comparison of the hydrogen bonding trends will be described elsewhere.

Phosphine 2 was unable to be obtained as a crystalline solid, and unlike 1, this phosphine is slightly air-sensitive, and a satisfactory elemental analysis was not obtained. The ES mass spectrum of 2 with added AgNO₃ showed the $[2M + Ag]^+$ ion (m/z 847) at low cone voltages (*ca.* 20V) and $[M + Ag]^+$ (m/z 477) at higher cone voltages (e.g. 60 V). Further characterisation was by means of the formation of the disulfide derivative 6, for which satisfactory microanalytical data were obtained. Like the parent phosphine 1, the sulfide and selenide derivatives 4 - 6 also show inequivalent CH₂ protons, with geminal ²J(HH) coupling of *ca.* 13 Hz.

In conclusion, we have synthesised mono- and bis-substituted ferrocenylhydroxymethylphosphines, where one or both cyclopentadienyl rings are substituted with water-solubilising and reactive $P(CH_2OH)_2$ groups. Given the importance of dppf as a ligand [9], more detailed studies on the coordination chemistry of the related phosphine **2** are clearly warranted.

3. Experimental

General experimental details have been described elsewhere [6] and the atom numbering scheme is given in ref. [14]. The compounds $FcPH_2$ [10] and $1,1'-Fc'(PH_2)_2$ [11] were prepared by modifications of the literature methods.

3.1 Preparation of FcP(CH₂OH)₂ 1

Aqueous formaldehyde (0.25 mL, 40% w/v) was added to a solution of FcPH₂ (0.26 g, 1.2 mmol) in thf (5 mL) under nitrogen, and the solution stirred for 18 h. The volatiles were removed under vacuum, and the crude product held under vacuum for *ca*. 72 h to remove excess formaldehyde, giving an orange microcrystalline solid (0.33 g, 96%). M.p. 100-106 °C. Found: C, 51.8; H, 5.5. C₁₂H₁₅FeO₂P requires C, 51.8; H, 5.4%. ³¹P-{¹H} NMR (CDCl₃), δ -24.7. ¹H NMR (CDCl₃), δ 2.56 (2H, br s, OH), 4.24 (5H, s, C₅H₅), 4.30 [2H, dd, ²J(HH) 13, ³J(HH) 5, CH₂], 4.40 (2H, s, C₅H₄), 4.45 [2H, br d, ²J(HH) 13, CH₂], 4.50 (2H, s, C₅H₄). ¹³C-{¹H} NMR (CDCl₃), δ 62.90 [d, J(PC) 17, PCH₂OH], 69.08 s), 70.24 [d, J(PC) 3.8], 73.22 [d, J(PC) 14)].

3.2 Preparation of 1, 1'-Fc'[P(CH₂OH)₂]₂ 2

Following the method for **1**, 40% formaldehyde (0.41 mL) was added to a solution of 1,1'-Fc'(PH₂)₂ (0.24 g, 0.97 mol) in thf (5 mL) under nitrogen, and the mixture stirred for 24 h. Workup gave 0.348 g (98%) of **2** as a viscous orange-brown oil. ³¹P-{¹H} NMR

 $(d^{6}$ -DMSO), δ -31.0. ¹H NMR $(d^{6}$ -DMSO), δ 4.02 (8H, m, CH₂), 4.34 (4H, br s, C₅H₄), 4.39 [4H, d, ³J(PH) 1.7, C₅H₄], 4.89 (3.6H, br s, OH). ¹³C-{¹H} NMR (d⁶-DMSO), δ 61.02 [d, J(PC) 6.6, PCH₂OH], 72.45 (s, br), 74.56 [d, J(PC) 13], 91.18 [d, J(PC) 9].

3.3 Preparation of phosphine oxide, sulfide and selenide derivatives 3 - 6

The appropriate phosphine was treated with H_2O_2 , S_8 or grey Se respectively, followed by standard workup procedures.

3; Yield 97%, m.p. 171-176 °C. Found C, 49.0; H, 5.3. C₁₂H₁₅FeO₃P requires C, 49.0; H, 5.1%. ¹H NMR (d⁶-DMSO), δ 3.97 (4H, br s, PCH₂OH), 4.39 (5H, s, H4), 4.54 (4H, br s, H2/H3), 5.39 (2H, br s, PCH₂O<u>H</u>). ¹³C-{¹H} NMR (d⁶-DMSO), δ 59.52 [d, ¹J(PC) 84, PCH₂OH], 70.88 (s), 72.61 [d, J(PC) 10], 72.75 [d, J(PC) 11], C1 not observed.

4; Yield 99%, m.p. 122-126 °C. Found C, 46.3; H, 4.9. C₁₂H₁₅FeO₂PS requires C, 46.5; H, 4.9%. ¹H NMR (CDCl₃), δ 2.76 [2H, dd, ³J(HH) 6, ³J(PH) 6, CH₂O<u>H</u>], 4.05 [2H, ddd, ²J(HH) 13, ³J(HH) 4.2, ²J(PH) 1.6, CH₂], 4.15 [2H, ddd, ²J(HH) 13, ³J(HH) 6.3, ²J(PH) 1.6 CH₂], 4.36 (5H, s, H4), 4.52 [2H, dt, ³J(HH) 3.6, ⁴J(PH) 1.7, H3), 4.56 [2H, dt, ³J(HH) 3.5, ³J(PH) 1.7, H2]. ¹³C-{¹H} NMR (CDCl₃), δ 61.04 [d, J(PC) 59, PCH₂OH], 70.03 (s), 71.55 [d, J(PC) 12], 72.13 [d, J(PC) 9].

5; Yield 95%, m.p. 116-118 °C. Found C, 40.8; H, 4.5. C₁₂H₁₅FeO₂PSe requires C, 40.4; H, 4.2%. ¹H NMR (CDCl₃), δ 3.1 (2H, br s, CH₂O<u>H</u>), 4.08 [2H, d, ²J(HH) 12, CH₂], 4.20 [2H, d, ²J(HH) 12, CH₂], 4.36 (5H, s, H4), 4.53 (2H, br s, H2), 4.60 (2H, br s, H3). ¹³C- {¹H} NMR (CDCl₃), δ 60.92 [d, J(PC) 51, PCH₂OH], 70.14 (s), 72.16 [d, J(PC) 9], 72.28 [d, J(PC) 8.5], C1 not observed.

6; Yield 83%, m.p. 138-143 °C. Found C, 38.8; H, 4.7. C₁₄H₂₀FeO₄P₂S₂ requires C, 38.7; H, 4.6%. ¹H NMR (d⁶-DMSO), δ 4.05 [4H, dd, ²J(HH) 13.4, ³J(HH) 5.9, CH₂], 4.12 [4H, dd ²J(HH) 13.4, ³J(HH) 4.2, CH₂], 4.72 (4H, m, H3), 4.76, (4H, m, H2), 5.69 (4H, br m, PCH₂O<u>H</u>). ¹³C-{¹H} NMR (d⁶-DMSO), δ 62.65 [d, ¹J(PC) 65, PCH₂OH], 73.58 [d, J(PC) 78, C1], 74.80 [d, J(PC) 10], 74.92 [d, J(PC) 9].

4. Supplementary material

Crystallographic data (excluding structure factors) for the structure described in this paper have been deposited with the Cambridge Crystallographic Data Centre (publication number CCDC #######). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CD2 1EZ, UK, e-mail deposit@ccdc.cam.ac.uk.

Acknowledgements

We thank the University of Waikato for financial support, including a scholarship (to SRA), Assoc. Prof. Cliff Rickard (University of Auckland) for providing the X-ray data set, and Professor Brian Nicholson for assistance with crystallography.

References

- [1] A. W. Frank, D. J. Daigle and S. L. Vail, Textile Res. J. (1982) 738.
- K. V. Katti, H. Gali, C. J. Smith and D. E. Berning, Acc. Chem. Res. 32 (1999) 9;
 K. V. Katti, Curr. Sci. 70 (1996) 219; D. E. Berning, K. V. Katti, C. L. Barnes and
 W. A. Volkert, J. Am. Chem. Soc. 121 (1999) 1658.
- [3] B. Dreiβen-Hölscher and J. Heinen, J. Organomet. Chem. 570 (1998) 141; A. Fukuoka, W. Kosugi, F. Morishita, M. Hirano, L. McCaffrey, W. Henderson and S. Komiya, Chem. Commun. (1999) 489; A. Salvini, P. Frediani, M. Bianchi, F. Piacenti, L. Pistolesi and L. Rosi, J. Organomet. Chem. 582 (1999) 218.
- [4] T. Shido, T. Okazaki and M. Ichikawa, J. Mol. Catal. 120 (1997) 33.
- [5] See e.g. C. J. Smith, N. Li, K. V. Katti, C. Higginbotham and W. A. Volkert, Nucl. Med. Biol. 24 (1997) 685; D. E. Berning, K. V. Katti, W. A. Volkert, C. J. Higginbotham, and A. R. Ketring, Nucl. Med. Biol. 25 (1998) 577; R. Schibli, S. R. Karra, H. Gali, K. V. Katti, C. Higginbotham and W. A. Volkert, Radiochim. Acta 83 (1998) 211.
- [6] N. J. Goodwin, W. Henderson, B. K. Nicholson, J. K. Sarfo, J. Fawcett and D. R. Russell, J. Chem. Soc., Dalton Trans. (1997) 4377.
- [7] N. D. Reddy, A. J. Elias and A. Vij, Inorg. Chem. Commun. 3 (2000) 29; K.
 Muralidharan, N. D. Reddy and A. J. Elias, Inorg. Chem. 39 (2000) 3988.
- [8] T. V. V. Ramakrishna, A. J. Elias and A. Vij, J. Organomet. Chem. 602 (2000) 125.
- [9] K.-S. Gan and T. S. A. Hor in Ferrocenes, Eds. A. Togni and T. Hayashi, VCH, Weinheim, 1995, Ch. 1.

- [10] C. Spang, F. T. Edelmann, M. Noltemeyer and H. W. Roesky, Chem. Ber. 122 (1989) 1247.
- [11] M. J. Burk and M. F. Gross, Tetrahedron Lett. 35 (1994) 9363.
- [12] P. A. T. Hoye, P. G. Pringle, M. B. Smith and K. Worboys, J. Chem. Soc., Dalton Trans. (1993) 269.
- [13] W. Henderson and G. M. Olsen, Polyhedron 15 (1996) 2105.
- [14] S. R. Alley and W. Henderson, J. Organomet. Chem., in press.
- [15] R. H. Blessing, Acta Crystallogr. A51 (1995) 33.
- [16] G. M. Sheldrick, SHELX-97 programs for solution and refinement of crystal structures, University of Göttingen, 1997.

Footnotes

[‡] Crystals were obtained by diffusion of pentane vapour into a CH₂Cl₂-MeOH (10:1) solution at -20 °C. Crystal data for 1: C₁₂H₁₄FeO₂P, *M* = 278.06, Monoclinic, space group P2₁/c, *a* = 12.2386(1), *b* = 6.1101(1), *c* = 16.3344(2) Å, β = 110.941(1) °, *V* = 1140.79(3) Å³, *Z* = 4, D_{calc} = 1.619 g cm⁻³, F(000) = 576, Mo-Kα radiation, λ = 0.71073 Å, μ (Mo-Kα) = 1.44 mm⁻¹. Data [10314 reflections, 2357 unique, with R_{int} 0.0327] were collected at 150(2) K on a Siemens SMART CCD diffractometer in the range 1.8 < θ < 26.5°, and corrected for absorption using SADABS [15]. The structure was solved using the direct methods option of SHELXL-97 [16] and developed routinely using full-matrix least-squares refinement based on F_o². All non-hydrogen atoms were refined with isotropic temperature factors and hydrogen atoms were found from peaks of residual electron density in the penultimate electron density map and were refined with isotropic temperature factors. Refinement converged at R₁ [I > 2σ(I)] 0.254, wR₂ 0.0659, with the weighting scheme w = [σ²(F_o)² + (0.0422P)² + 0.29P]⁻¹ and P = (F_o² + 2F_c²)/3 used in latter stages of refinement. The largest residuals in the final density map were +0.431 and - 0.463 e Å⁻³.

Captions for Figures

Fig. 1 Molecular structure of FcCH₂P(CH₂OH)₂ **1**, with ellipsoids at the 50% probability level. Selected bond lengths (Å) and angles (°); C(11)-P(1) 1.809(2), P(1)-C(1) 1.849(2), P(1)-C(2) 1.850(2), C(1)-O(1) 1.425(2), C(2)-O(2) 1.423(2), C(11)-P(1)-C(1) 99.18(8), C(11)-P(1)-C(2) 103.07(9), P(1)-C(1)-O(1) 110.82(13), P(1)-C(2)-O(2) 115.83(13).

Fig. 2. Hydrogen bonding in $FcP(CH_2OH)_2$, showing the formation of linked tenmembered rings.