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Abstract 

For the Tuvalu Island group in the western Pacific, a simple graphical method is 

proposed as a means of forecasting whether rainfall totals for the next 1, 2 ...6 

months will be below average. The method is based on scatter plots where the 

points are color-coded as above- or below average rainfall, with the plot axes 

being lag-1 and lag-2 NINO4 sea surface temperatures. Within the scatter plots 

there are reasonably clear data fields with higher frequencies of below-average 

rainfalls associated with cooler precursor NINO4 temperatures. These data fields 

are defined by subjectively-emplaced separation lines which bifurcate the scatter 

plots into “predictable” and “unpredictable” fields. If two precursor NINO4 

temperature values define a point located in a predictable field then a warning 

would be issued for below-average rainfall over the next n-month period, 

depending on the time scale of the scatter plot. A long rainfall record at Funafuti 

in Tuvalu indicates that success in predictable-field forecasting of below-average 

rainfalls would range between 68% for 1-month rainfall totals and 89% for 6-

month totals. The forecasting success derives from persistence of cooler NINO4 

sea surface temperatures which are associated with lower rainfalls in Tuvalu. 

However, many dry periods are also located in the unpredictable field and cannot 

be forecast by this method.  

 

INTRODUCTION 

The scattered low-lying atolls of the small island nation of Tuvalu are located in 

the region 5oS to 11oS and 176oE to 180oE in the western Pacific Ocean (Fig. 1). 

The islands’ climate reflects the alternating influences of the Intertropical 

Convergence Zone and the South Pacific Convergence Zone (Thompson, 1987; 

Wyrtki and Meyers, 1976). This gives rise to annual precipitation variation with a 

dry season from April through November and a wet season from December 

through March (Fig. 2).  Easterly trade winds prevail except in the wet season 

when winds blow from the west or north. 
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Figure 1. Tuvalu Islands location and rain gauge site on Funafuti Atoll, Tuvalu. 

 

 

 

Figure 2. Mean monthly rainfall at Funafuti, Tuvalu. Solid points denote means, boxes are ±2 

standard errors, and line range is ±1 standard deviation. 
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The Tuvalu atolls experience extended droughts which have a significant social 

impact because rain is the only source of fresh water to the local population.  

Developing some ability to forecast future below-average rainfall periods is seen 

as advantageous to encourage early conservation of tank water supplies. The 

Southern Oscillation Index (SOI) has provided some basis for attempting rainfall 

forecasting in Tuvalu (Thompson, 1987). However, we found that sea surface 

temperatures in the NINO4 region1 were the most useful for anticipating dry 

periods. We report here a simple graphical forecasting approach which uses 

precursor NINO4 temperatures for the specific aim of forecasting extended 

periods of below-average rainfall in Tuvalu. Other more sophisticated methods 

are in current use eg SCOPIC (http://www.bom.gov.au/climate/pi-

cpp/scopic.shtml) but the non-statistical graphical approach here, while not 

necessarily more accurate, has the advantage of ease of understanding and 

visualisation for the general population. 

 

FORECASTING TECHNIQUE 

Model-based forecasting methods have been used for anticipating long-range 

precipitation characteristics in various localities. For example, a neural network 

model was used to forecast droughts in the Kansabati River Basin in West 

Bengal in India (Misra and Desai, 2006) and logistic regression models were 

used to forecast above or below-average winter precipitation in the southern and 

central United States (Kurtzman and Scanlon, 2007). However, we found that 

both linear regression and neural networks were unable to anticipate Tuvalu dry 

periods from a range of independent variables which included lagged values of 

the SOI, sea surface temperatures, and previous mean rainfalls. In seeking an 

alternative approach, we inspected a large number of scatter plots of Tuvalu 

rainfall against the various independent variables. The NINO4 plots in particular 

indicated that they could be employed in a simple graphical approach to 

anticipate many dry periods. This method was investigated with respect to the 

long rain gauge record (1945-2007) from Funafuti Atoll, the main population 

centre of Tuvalu (Fig. 2).  

The derivation of the method is illustrated here for the 1-month time scale where 

the aim is to forecast whether the coming month will have below-average rainfall. 

The monthly rainfall totals were first expressed as positive or negative deviations 

from their respective long-term means as obtained from the entire record. Next, a  

                                            
1
 http://gcmd.nasa.gov/records/GCMD_NOAA_NWS_CPC_NINO4.html 
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Figure 3 (a-f). Scatter plots showing above or below average rainfall at Funafuti as a function of 

lag-1 (y axis) and lag-2 (x axis) NINO4 sea surface temperature values for various averaging 

times. The “predictable” subset of below-average rainfall is defined as the field below the 

emplaced partition line (equation shown). See text for further description. 
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NINO4 time series was constructed as monthly mean temperature values derived 

from averaging daily NINO4 values. The monthly rainfall deviations are shown in 

Fig. 3a as a two-color scatter plot of blue (positive) and red (negative) points, 

with each point’s y and x coordinates being NINO4 monthly temperature 

averages lagged by 1 and 2 months, respectively.  

There is evidently a zone of color clustering in Fig. 3 with a greater proportion of 

red points when both lag-1 and lag-2 NINO4 values plot in the lower portion of 

their ranges.  This zonation allows emplacement of a subjective linear partition 

which bifurcates the data scatter and defines a predominantly red zone in the 

lower portion of the scatter plot.  

For example, the value of s = 68% in Fig.3a gives the percentage of below-

average rainfall months (red points) relative to all the points in the data field 

below the partition. In a forecasting context, this means that if the lag-1 and lag-2 

values of NINO4 plot below the linear partition then a warning of below-average 

rainfall for the month ahead will be correct with probability 0.68.  

The p value denotes the significance level of s, obtained from a randomization 

procedure. This comprises repeated random placement of the colored points 

over the original point locations, with p being the proportion of times the original s 

value is exceeded.  The value q denotes the proportion of all months on record 

which fall below the partition line. That is, low rainfall warnings can be issued for 

the coming month for 38% of the time only, but the warnings when given have an 

0.68 probability of being correct. 

A limitation of the method is evident in that despite the high conditional success 

rate, below-average rainfall months plotting above the partition line cannot be 

forecast. There is a trade-off here in the subjective choice of location of the 

partitioning line. Locating the lines at lower positions give a higher value of s at 

the expense of a low value of q, which would mean that below-average rainfall 

forecasts could only be made rarely. 

The same approach can be applied to longer averaging times to make forecasts 

of above or below average Funafuti rainfall totals for coming 2,3,…6 month 

periods (Fig.3b-f). That is, both the rainfalls and lag NINO4 values have a 

common n-month time scale and the temperatures are averaged over the n-

month period concerned. For averaging times longer than four months the lag-2 

value of NINO4 appears too far back in time to contribute to forecasting 

accuracy. The linear partition is then simply a subjective horizontal line 

corresponding to a specific lag-1 NINO4 temperature value. However, the scatter 
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plot format is maintained for consistency in these cases (Fig.3e, f). The 

conditional forecast accuracies are surprisingly high over the various averaging 

times, reaching a maximum of 89% when forecasting below-average rainfall for 

the next 6-month period. 

A below-average rainfall forecast for a given n-month period need not imply that 

all months within that period will be drier. However, there does appear to be a 

bias toward individual months’ rainfalls in these instances being less than their 

respective long-term averages (Fig. 4).  

 

 

 

 

The thermal inertia effect of sea surface temperatures creates serial correlation 

between the lag-1 and lag-2 NINO4 temperatures for smaller averaging times 

(Fig. 3). This correlation does not contribute directly to forecasting but an 

implication here is that there is serial correlation of correct forecasts which 

means the randomization test is compromised to some degree because serial 

correlation in the original data will give rise to low p values when random 

reordering is applied. It is nonetheless encouraging that low p values are 

maintained when the NINO4 serial correlations decrease with longer averaging 

times. 

Figure 4 (a,b). Histograms of 

percent frequency distributions of 

individual monthly rainfalls from 

within all 2-month and 3-month 

periods forecast to have below-

average rainfall. 
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Figure 5 (a-d). Monthly time series (1945-2007) of NINO4 sea surface 

temperatures and Funafuti rainfall deviations from respective long-term monthly 

means. Green points denote times of correct forecasts of 2-month periods 

having less than average rainfall, plotted in two rows to avoid overlap. 
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The success of the conditional forecasting method derives mostly from 

persistence of cooler NINO4 ocean temperatures, which tend to be associated 

with lower rainfalls at Funafuti. This is illustrated in Fig. 5 for the 2-month time 

scale where there is strong clustering of correct forecasts of below-average 

rainfalls. Persistence of cooler ocean temperatures at the 1-month time scale is 

illustrated by the runs histogram in Fig.6, where 70% of NINO4 runs below 26 ºC 

are of at least three months in duration.  

 

Figure 6.  Frequency histogram of run durations of sequential months of NINO4 sea surface 

temperatures below 26
o
C, (1945-2007). 

 

DISCUSSION 

The forecasting method presented here was developed with reference to 

hindcasts rather than actual forecasts as such, so true validation will be 

determined by future application. However, the simplicity of the method and its 

success in hindcast data application give some confidence that the method will 

be useful for practical forecasting applications in the future. 

We evaluated the graphical approach with other combinations of potential 

predictor variables also, including lagged values of SOI. However, we did not find 
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any rainfall predictability fields as well defined as for NINO4. This is presumably 

due to the dominating effect of the proximity of the NINO4 temperature region to 

the north of Tuvalu. 

Our earlier lack of success of regression and neural networks appears to have 

been a consequence of inconsistent causality in the independent variables. That 

is, for higher NINO4 temperatures there is a breakdown in the correlation 

between the sign of rainfall deviations and the precursor ocean temperatures. 

Even within the prediction subset we were unable to establish any quantitative 

linkage between the magnitude of the NINO4 lower temperatures and the 

magnitude of negative rainfall deviations. More sophisticated approaches to 

modeling might incorporate Markov chain models with “predictability” and 

“unpredictability” as two possible states of the system.  

While the forecasting approach adopted is empirical, we recognize that Tuvalau 

below-average rainfalls are caused by various physical oceanographic factors 

such as association of precipitation with migration of atmospheric convergence 

zones, the current strength of the Southern Oscillation, and ocean heat content 

(Flohn, 1967; Wyrtki and Meyers, 1976; Alory and Delcroix, 1999; Thompson, 

1987; Ueyama and Deser, 2008; Amador and others, 2006; Folland and others, 

2002, Basher and Zheng, 1998;  Ruiz and others, 2006). Further developments 

in forecasting Tuvalu dry periods might therefore derive from global climate 

models. However, the graphical approach given here has the advantage of being 

visual and easily understandable to the local population, as well as giving a 

visual indication of forecast error. It would be useful to check whether the method 

might also be extended to other island nations in the Equatorial Pacific, with 

reference to lagged values of their respective local ocean temperatures. 

 

CONCLUSION AND FURTHER STUDY 

Cooler ocean temperatures in the NINO4 region are associated with below- 

average rainfall in Tuvalu. Persistence of these cooler temperatures allows quite 

accurate forecasting of less than average rainfall using a simple graphical 

technique, although the rainfall magnitude cannot be forecast. The ability to 

make a forecast of below-average rainfall is conditional on cooler precursor 

NINO4 ocean temperatures and those dry periods associated with warmer ocean 

temperatures cannot be predicted.  

Further work might focus on the warm-ocean dry periods to forecast a higher 

proportion of dry periods at Tuvalu. In this regard it might prove possible to move 
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the forecasting threshold away from the simple long-term average and identify 

instead a higher threshold value between two populations of greater and lesser 

rainfall.  A breakdown of forecast accuracy via season could also be investigated 

because below-average rainfall in the drier portion of the year is likely to have 

more social impact. 

It would be interesting to compare the accuracy of the graphical method with the 

more sophisticated methods such as SCOPIC, perhaps leading to blending the 

graphical and statistical approaches in some way so that the inherent simplicity 

and visualisation of the graphical method is preserved. A hybrid model of this 

nature might be of value in forecasting shorter time periods than the monthly 

units considered here. 
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