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 Abstract  
 

Hemp fibres compete very well with glass fibres in terms of their specific strength 

and stiffness and so can replace glass fibres as reinforcement in composites. 

Combining them with thermoplastics results in potentially cheap recyclable 

composite materials. The adhesion between the hemp fibre and thermoplastics 

such as polypropylene is a major factor in the mechanical properties of the 

composite. Interfacial bonding can be improved by modifications to the fibres, the 

matrix or both the fibres and the matrix. The aim of this thesis was to investigate 

low cost and efficient fibre treatment methods with low environmental impact 

such as bag retting and white rot fungi, and chelator/enzyme treatments which 

could be applied to hemp fibre in order to create better bonding fibre for 

potentially recyclable composite materials.  

  

Bag retting was carried out by keeping fresh green hemp fibres in a sealed plastic 

bag for 1 to 2 weeks to allow natural retting to occur under sealed conditions. For 

white rot fungi treatments, the dried non-retted hemp fibres were gamma 

irradiated, and then inoculated with white rot fungi for 2 weeks. Chelator/enzyme 

treatment was achieved by immersing the fresh green non-retted hemp fibres in 

solutions consisting of either EDTMP.Na5 (ethylene diamine tetra (methylene 

phosphonic acid pentasodium salt) or pectinase (P2401) and laccase (53739) for 6 

hours. 

 

Several characterization techniques, namely wet chemical analysis, Fourier-

transform infrared (FT-IR), scanning electron microscopy (SEM), fibre density 

testing, X-ray diffraction (XRD), differential thermal analysis (DTA) and 

thermogravimetric analysis (TGA), zeta potential and single fibre tensile testing 

were used to assess the effect of treatment on hemp fibres. Wet chemical analysis 

and FT-IR, were used to measure the chemical compounds present in untreated 

and treated hemp fibres and showed all treatments removed non-cellulosic 
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compounds from hemp fibre. The separation of untreated and treated fibres was 

investigated by visual inspection. An examination of surface morphology of hemp 

fibres carried out using SEM revealed that all treated fibres had cleaner hemp 

surfaces than untreated ones. The fibre density testing showed that the treated 

fibre had higher density than untreated fibre. XRD was carried out to assess 

modification of the crystallinity of fibres and the results showed hemp fibre 

crystallinity index increased in all treated fibres. Differential thermal analysis 

(DTA) and thermogravimetric analysis (TGA) were used to obtain the activation 

energies and relative thermal stability of fibres, and indicated that all treatments 

improved fibre thermal stability. Zeta potential indicated that all treated fibres 

were more hydrophilic than untreated fibre. Single fibre tensile testing was used 

to obtain the tensile strength of untreated and treated fibres and it was found that 

the tensile strength of all treated fibres was reduced. 

 

Short fibre composites were produced by extrusion and injection moulding. Fibres, 

polypropylene (PP) and a maleated polypropylene (MAPP) coupling agent were 

compounded using a twin-screw extruder, and then injection moulded into 

composite tensile test specimens. It was found that all fibre treatments increased 

the tensile strength of composites. White rot fungi Schizophyllum commune 

(S.com) treated fibre gave the highest tensile strength of 45 MPa, an increase of 

28% compared to composites using untreated fibre. Both the single fibre pull-out 

test and the Bowyer and Bader model were used to determine the interfacial shear 

strength (IFSS) of untreated fibre and S.com treated fibre composites. The results 

obtained from both methods showed that IFSS of the treated fibre composites was 

higher than that for untreated fibre composites. This supports that the hemp fibre 

interfacial bonding with PP was improved by white rot fungi treatment. The 

Bowyer and Bader model was also used to calculate the tensile strength of 

untreated and S.com treated short fibre composites and results closely match the 

experimentally values. 
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Long hemp fibre composite sheets were fabricated by film stacking and hot-press 

forming. Layers of PP film, PP/MAPP powder and hemp fibre were stacked 

alternately and the stack then was compressed in a hot press. The long fibre 

composites containing white rot fungi Schizophyllum commune (S.com) treated 

fibre had the highest tensile strength of 73 MPa, an increase of 44% compared to 

composites using untreated fibre. The simple “rule of mixtures” was modified by 

taking account of voids, and then was used to calculate the tensile strength of the 

composites. The modified modeling gave the same trend for strength as observed 

experimentally, which showed that tensile strength of the treated fibre composites, 

was higher than that for untreated fibre composites. This supports that the hemp 

fibre interfacial bonding with PP is improved by treatment. 
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Chapter 1: 
Introduction 

 
1.1 Background to the Study  

The use of natural fibre composites is increasing world-wide. Natural fibre 

composite materials have been utilized in sports products such as surf boards and 

snowboards as well as in the furniture industry as structural material because of 

their good strength and stiffness in combination with low density. In addition, 

natural fibre composites have been adopted by the automotive industry where 

lower weight can increase transport capacity and decrease fuel consumption. In 

fact, all of the European automotive manufacturers are aiming to largely replace 

glass fibre composites with recyclable or biodegradable natural fibre composites. 

The total application of natural fibres in the European automotive sector is 

expected to rise to 100,000 ton by 2010 [1] [2].  

 

Industrial hemp fibre is one of the strongest, stiffest, and lightweight natural fibres 

and therefore has the potential to replace glass fibre in composites to give similar 

specific properties. Moreover, hemp fibre has other advantages compared to 

synthetic materials in being biologically degradable and CO
2
-neutral [3] [4][14]. 

Thus, hemp fibre could be considered as one of the most suitable fibres for 

reinforcement in composites. 

  

Thermoplastic matrices are increasingly being used in preference to thermosets 

for industrially fabricated natural fibre composites mainly because their 

composites are easier to recycle and faster to process than thermosets composites. 

Hemp fibre reinforced thermoplastic composites can be produced by combining 

hemp fibre with a thermoplastic matrix such as polypropylene and polyethylene. 
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Strength and stiffness are mainly obtained from the hemp fibre; the thermoplastic 

matrix is meant to thoroughly surround and bind the fibres to enable load transfer 

into the fibres and protect them against environmental influence. The interfacial 

bonding between hemp fibre and the thermoplastic matrix is very important for 

the properties of the composite. Inherently, common thermoplastic matrices 

including polypropylene, do not bond well with hemp fibre. Modifications can be 

made to the matrix in order to improve interfacial bonding. The most successful 

approach for improving interfacial bonding has been to add a small quantity of 

maleated polypropylene to polypropylene to increase its hydrophillicity, and thus 

make it more compatible with natural fibre and enable covalent and hydroxyl 

bonding [5][6]. 

 

In addition to improving interfacial bonding, treatments can be used to separate 

hemp fibres from their bundles, remove non-cellulosic compounds and modify the 

fibre surface.  Traditionally, dew retting, tank retting and chemical methods have 

been used successfully to separate hemp fibre bundles and remove non-cellulosic 

material to increase the access to cellulose hydroxyl groups which can take part in 

bonding [4][7]. However, dew retting is labour intensive, takes several weeks and 

the retted fibres are usually inconsistent in quality. Tank retting causes high 

environmental pollution due to unacceptable wastewaters from the organic 

fermentation. Chemical methods such as alkali treatment are, now losing 

popularity mainly based on environmental grounds. Thus, there is the potential for 

more sustainable potentially economically viable fibre treatments including bag 

retting, white rot fungi treatment and chelator/enzyme treatment to be developed 

to enable hemp fibres to be used as reinforcement in composites. 

 

It is reported that bag retting could be used as pre-treatment of separating green 

hemp fibre bundles [8]. An advantage of bag retting is that the fibres are protected 

from other environmental factors that may lead to unwanted degradation of the 
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fibre. A further benefit of bag retting is that it causes significantly less water 

pollution compared to tank retting. Therefore, bag retting could be used to 

improve fibre/matrix interfacial bonding by separating fibre bundles.  

 

White rot fungi can selectively degrade non-cellulosic compounds, particularly 

lignin at a faster rate than they degrade wood cellulose. It has also been reported 

that fungi produce an extensive system of hyphae, which can make fine holes on 

the fibre surface and may roughen the surface of the hemp fibres [9]. Some 

researchers have used High-resolution Cryo-Field Emission Scanning Electron 

Microscopy (HR-Cryo-FE-SEM) to reveal fungal hyphae attacking fibre walls 

producing fine holes on the fibre surfaces. Therefore, white rot fungi could 

potentially be used to remove non-cellulosic components and modify hemp fibre 

surfaces in order to improve fibre/matrix interfacial bonding. 

 

Some published reports have described the effect of enzymatic degradation of 

non-cellulosic compounds on hemp fibres [10][11]. Pectinases degrade pectin and 

laccases modify lignin. However, waxes and other non-cellulosic compounds can 

be a barrier to these enzymes. In order to achieve good results, these enzyme 

treatments have been preceded by pre-treatments such as chelator treatments with 

EDTA (Ethylene Diamine Tetra-acetic Acid) [12].  

 

1.2 Objectives 

The first objective of this study was to investigate bag retting and white rot fungi 

treatments, which could be applied to hemp fibre for removing non-cellulosic 

compounds, separating hemp fibre from its bundles, as well as increasing the 

roughness of hemp fibre surfaces, thus improving interfacial bonding with 

polypropylene. 
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The second objective of this study was to use EDTMP.Na5 and combined 

EDTMP.Na5 and enzyme treatments, which are also environmentally friendly 

methods to separate hemp fibre from its bundles, remove non-cellulosic 

compounds as much as possible, and therefore, increase the access to cellulose 

hydroxyl groups which can take part in bonding. 

 

The third objective was to assess the effect of treatment on interfacial shear 

strength (IFSS) for injection moulded short fibre composites using the single fibre 

pull-out test and mathematical modeling using the Bowyer and Bader model and 

predict the tensile strength of short fibre composite using the Bowyer and Bader 

model. 

 

The fourth objective was to use film-stacking and hot pressing to fabricate long 

aligned fibre reinforced thermoplastic composites and assess the effect of 

treatments on tensile strength and compare the results with those calculated using 

a modified model based on the simple “rule of the mixtures” which takes into 

account void content.  

 

1.3 Outline 

The thesis consists of 6 chapters. Chapter 1 (introduction) gives a general 

background and the objectives of this study and the outline of the thesis.  

 

Chapter 2 (literature review) addresses the relevant background of the performed 

work. It is intended to provide the necessary detailed insight into issues directly 

related to the experimental work. The purpose of this chapter is also to provide a 

broad understanding of hemp fibres, matrix, fibre and matrix treatments, and 

analytical techniques for hemp fibre, composite fabrication, and composites 

interfacial shear strength, and composite tensile strength predictions.  
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Chapter 3 (material and methods) presents materials, and experimental work 

carried out in the course of the project.   

 

Chapter 4 (results and discussion) gives the obtained experimental results and 

discusses in relation to background knowledge presented in Chapter 2. This 

chapter forms the central part of the thesis and consists of 4 sections: 

• The effects of bag retting and white rot fungi treatment on hemp fibre are 

presented in Section 4.1. The methods used to measure the effects of bag 

retting and white rot fungi treatments on hemp fibre include wet chemical 

analysis, FTIR, visual inspection, fibre density test, X-ray diffraction 

(XRD), SEM, zeta potential, fibre density, thermal analysis, single fibre 

tensile testing.  

• The effects of EDTMP.Na5 and combined EDTMP.Na5 and enzyme 

treatments on hemp fibre are presented in Section 4.2. 

• The assessment of treatment effect on the tensile strength of short fibre 

composites and long aligned fibre composites is given in Section 4.3 

• The prediction of the tensile strength of short fibre composite and long 

aligned fibre composites is shown in Section 4.4 

 

Chapter 5 presents the main conclusions of the investigations. 

 

Chapter 6 proposes future work based on the results and considerations of this 

study. 
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Chapter 2: 
Literature Review 

 
This literature review is in eight sections, which give extensive discussion relating 

to the background of natural fibre composites. These sections are: 

• Natural fibres 

• Matrices 

• Interfacial bonding 

• Treatments for natural fibres and matrices 

• Analytical techniques for natural fibres  

• Processing of fibre thermoplastic composites 

• Composite interfacial shear strength 

• Composite strength prediction 

 

2.1 Natural Fibres 
This section addresses the relevant background of natural fibres. It includes 

natural fibre classifications, comparison of natural fibres, plant anatomy of 

industrial hemp, as well as cell wall organization and chemical composition of 

hemp fibre 
 

2.1.1 Natural Fibre Classifications 

Natural organic fibres can be derived from either plant or animal sources. The 

main chemical structures are based on cellulose for plant fibres and proteins for 

animal fibres (Table 2.1). Cellulose-based fibres from plants are of most interest 

for composite materials because they tend to be stronger and stiffer then their 

animal counterparts. Cellulose fibres can be classified into five categories 

depending on the origin of the fibre, namely: 
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1. Bast fibres. These fibres come from the inner bark (phloem or bast) of the 

stems of dicotyledonous plants. Strong bast fibres include jute, flax, hemp, and 

kenaf. 

2. Grasses and reeds. These fibres come from the stems of monocotyledonous 

plants such as bamboo and sugar cane.  

3. Leaf fibres. Leaf fibres are fibres that run lengthwise through the leaves of 

most monocotyledonous plants such as sisal, henequen, abaca and esparto.  

4. Seed and fruit hairs. These are fibres that come from seed-hairs and flosses, 

including cotton and coconut. 

5. Wood fibres. These fibres come from the xylem of angiosperm (hardwood) 

and gymnosperm (softwood) trees. Examples include pine, maple, yellow 

poplar and spruce. 

 

Table 2.1: Chemical classification of natural fibres [15] 
Chemical type  Categories Examples 

Bast fibres Jute, flax, hemp and kenaf 

Grasses and reeds Bamboo and sugar cane 

Leaf fibres Sisal, henequen, abaca and esparto 

Seed and fruit 

hairs 

Cotton and coconut 

Cellulose 

based 

Wood fibres Pine, maple, yellow poplar and 

spruce 

Protein based Silk, wool and hair 

 

 

2.1.2 Comparison of Natural Fibres  

Properties of natural fibres such as fibre variability, crystallinity, mechanical 

properties, and bonding to the matrix should be considered when selecting 

suitable cellulose fibres for use in composites. Mechanical properties are most 
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important when selecting a cellulose fibre to give the best reinforcement in a 

composite material. Table 2.2 shows the chemical composition and properties of 

plant fibres. It can be seen that the strongest cellulose fibre are hemp, sisal and 

flax, with hemp and flax having the highest Young’s modulus values. Therefore, 

the most suitable cellulose fibres for use in composite materials are hemp and flax. 

Flax is more widely accessible and slightly cheaper than hemp. Hemp, however, 

has the advantages of being extremely disease and pest resistant, and can be 

planted at higher densities to prevent weeds from growing between the plants. 

Pesticides and herbicides are therefore not required for growing hemp.  

 

Table 2.2: Chemical composition and properties of plant fibres [15] [13] 

Fibre 
Cellulose 

(wt%) 

Lignin 

(wt%) 

Hemicellulose 

(wt%) 

Pectin 

(wt%) 

Tensile 

strength 

(MPa) 

Young’s 

modulus 

(GPa) 

Flax 65-85 1-4 18-20 5-12 500-900 50-70 

Hemp 60-77 3-10 18-22 5-15 350-800 30-60 

Jute 45-63 12-25 13-20 4-10 200-450 20-55 

Kenaf 45-57 8-13 21 3-5 - - 

Sisal 50-64 - 10-14 - 100-850 9-22 

Abaca 60 12-13  1 - - 

Coir 30 40-45 0.15-0.25 - - - 

Cotton 80-90 - 5.7 0-1 - - 

Soft 

wood 
40-45 26-34 - 0-1 98-170 10-50 

Hard 

wood 
40-50 20-30 - 0-1 - - 

 

 

 

2.1.3 Industrial Hemp  
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Hemp is an herbaceous plant of the species cannabis sativa. Hemp grows 

successfully at a density of at least 150 plants per square metre, and reaches a 

height of two to five metres in a three month growing season. Due to its 

relationship with marijuana, industrial hemp has been banned in many countries. 

In New Zealand, it was illegal to grow hemp between the 1930’s and 2001. In 

October 2001, nine growers were issued licenses to trial a crop of hemp for 

industrial purposes. 

 

The essential difference between industrial hemp and marijuana is the amount of 

THC (Tetrahydrocannabinols) component within the plant. THC is a psychoactive 

chemical thought to have a range of detrimental effects on human beings, 

including low blood pressure, euphoria and long term degeneration of brain 

activity. There is ongoing debate as to whether the narcotic hemp plant is actually 

a different variety of plant, or actually the industrial variety bred to produce high 

levels of THC. Some say there is only one variety, whilst others say that there are 

three distinct varieties of cannabis, namely: Cannabis ruderalis, a small spindly 

plant; Cannabis Indica, a large bushy many branched variety supposedly the high 

THC cultivar; and Cannabis sativa L, the tall industrial hemp variety (see Figure 

2.1). Industrial hemp in its natural state is a low THC plant. Scientific analysis of 

“wild” hemp in the USA, Vietnam and Australia shows an average THC content 

of 0.6wt%. It is only through intensive selection that high THC cultivars are 

maintained and the genetic expression of THC can be fixed at a low THC level. It 

is generally accepted that a content of 2wt% is required to have noticeable effect 

on the human body [16]. 
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Figure 2.1: Three distinct varieties of cannabis 

 

 

2.1.4 Hemp Plant Anatomy 

Industrial hemp has separate male and female plants with different growth 

characteristics (see Figure 2.2). The male plants tend to be taller and more slender 

with only a few leaves surrounding the flowers, while female plants are shorter 

and stocky with many leaves. The male plant bears the pollen and the female 

produces the seeds. Throughout history, it has been known that male plants have 

superior, finer and stronger fibres than the female plants. Fibre quality reduces 

significantly once the reproductive process starts. Unfortunately the male plant 

usually starts the process before the female and once the male’s flowering is 

complete the plant dies [16]. 
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.   

a. Male hemp                                    b. Female hemp                         

Figure 2.2: Male and female plants of industrial hemp fibre 

 

A cross section of the hemp stem can be seen in Figure 2.3, which shows different 

layers [17]. The hemp stem consists of a wood layer, surrounded by an outer layer 

of bark consisting of cambium, bast fibre, and epidermis. 

 

Figure 2.3: Cross section of a hemp stem showing (from exterior to interior) 

layers of epidermis, bast fibre, cambium, xylem and core [17] 
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• Epidermis: The epidermis (outer layer) mainly contains pectin. The 

outside of the epidermis, consists of waxy substances and its function is to 

protect the plant from drying [17]. 

• Primary and secondary fibre cells: Bast fibres are present in bundles and 

can be categorised as being either primary or secondary bast fibres; the 

primary bast fibres are long and are mostly found nearer the outer surface, 

whilst the secondary fibres are of medium length and dominate the inner 

regions of the bark. Primary bast fibres are the most valuable part of the 

stalk; they are generally considered to be amongst the strongest known 

natural fibres [16]. A comparison between primary and secondary bast 

fibres can be seen in Table 2.3.  

 

Table 2.3: Primary and secondary bast fibres [18] 
 Primary bast fibres Secondary bast fibres 

Diameter (µm) 28-38 18-22 

Length (mm) 25-40 18-25 

Tensile strength (MPa) <1000 <300 

Cellulose (%w/w) 55-85 32-50 

Density (g/cm3) 1.5 1.5 

 

• Cambium: Cambium separates the wooden and bast fibre layers from the 

epidermis and cortex wood.  

• Xylem: This consists of short, thick and strong-walled cells, which 

provide mechanical strength for the plant. The chips produced 

mechanically from the xylem layer are referred to as shive. Shive fibres 

are short, high in lignin and not very strong. In the present study the term 

“fibre” is used only for bast fibres. 

• Core: The core layer is the innermost part of the wooden layer, consisting 

of loosely packed core cells [17].  
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2.1.5 Cell Wall Organization  

At the cellular level, one of the main features distinguishing plants from the 

animal kingdom is the presence of a rigid cell wall surrounding the cells. The 

complex structure of the cell wall consists of a number of layers (see Figure 2.4), 

which include the middle lamella, primary wall and secondary wall [19].  

• Middle lamella: This is the pectin–rich intercellular material cementing 

together the primary walls of adjacent plant cells. 

• Primary wall: This is formed after the middle lamella and consists of a 

rigid skeleton of cellulose microfibrils embedded in a gel-like matrix 

composed of pectic compounds and hemicellulose.  

• Secondary wall: This is formed after cell enlargement is completed. The 

secondary wall is extremely rigid and provides compression strength. It is 

made of cellulose, hemicellulose and lignin. The secondary wall is often 

layered.  

• Structural organization of the chemical constituents: it is generally 

accepted that pectin is present in the middle lamella between cells of all 

types and the primary wall. Lignin is distributed throughout the primary 

and secondary cell walls, with the highest concentration being found in the 

middle lamella. Cellulose dominates the secondary cell walls. The 

hemicellulose is thought to be bound to the cellulose microfibrils by 

hydrogen bonds forming a layer around the fibrils, and these 

cellulose/hemicellulose units are then encapsulated by lignin (see figure 

2.4 and 2.5)[20]. 
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Figure 2.4: Cell wall of plant. a: adjacent cells, b: cell wall layers. S1, S2, S3 

secondary cell wall layers, P primary wall, ML middle lamella. c: distribution 

of lignin, hemicellulose and cellulose in the secondary wall [19] 

 

 

Figure 2.5 Model of the structural organisation of the three major 

constituents in the cell wall of wood fibres [20]. 

 

2.1.6 Chemical Composition of Hemp Fibre 

The cell wall of hemp fibre is a complex structure consisting mainly of cellulose, 

hemicellulose, lignin, pectin and minor contents of wax, and minerals.  
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Cellulose  

Cellulose consists of glucan units (see Figure 2.6) which are joined to form a 

uniform molecular chain [15]. Cellulose acts as the reinforcing material in the cell 

wall. The cellulose molecules are laid down in microfibrils in which there is 

extensive hydrogen bonding between cellulose chains producing a strong 

crystalline structure. Cellulose is usually composed of crystalline segments 

alternating with regions of amorphous cellulose (see Figure 2.7). Most plant 

derived cellulose is highly crystalline and may contain as much as 80% crystalline 

cellulose [21][22]. Crystalline cellulose is highly packed, and only the very 

strongest acids and alkalis can modify the crystalline lattice of cellulose. 

 

 

 

Figure 2.6: The molecular structure and arrangement of cellulose [15] 
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Figure 2.7: Crystalline segments alternating with regions of amorphous in 

cellulose [22] 

Hemicellulose  

Hemicellulose has a heterogeneous and branched structure consisting of a 

collection of polysaccharide polymers containing mainly the sugars D-

xylopyranose, D-glocopyranose, Dgalactopyranose, L-arabinofuranose, D-

mannopyranose, and Dglucopyranosyluronic acid with small quantities of other 

sugars (Figure 2.8), which can be extracted in 17-18% alkaline solutions. The role 

of hemicellulose is to provide linkage between cellulose and lignin. Due to its 

amorphous structure, its hydroxyl groups are much more accessible to water than 

those of cellulose [15]. 

 

Figure 2.8: The structure of hemicellulose 
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Lignin  

Lignin is considered to consist of three dimensional phenyl propane networks held 

together by ether and carbon-carbon bonds (Figure 2.9). Lignin is insoluble in 

most solvents, due to its high molecular weight and complex structure. The double 

bonds in lignin give the plant fibres a dark color. If lignin is oxidized and the 

double bonds are broken, the fibre that it is part of will become lighter [15][21]. 

Lignin is a much less hydrophilic material than hemicellulose and cellulose.  

 

 

 

Figure 2.9: Typical structure of lignin [15] 
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Pectin 

Pectins are irregular and heteropolysaccharides which accumulate in the primary 

wall and middle lamella. Pectin materials play important roles in fibre bundle 

integration since it is thought to be responsible for binding the cell wall layers 

together.  Removal of pectin material allows the separation of the fibre bundles 

from the surrounding cells of the stem [15][21]. 

 

Wax  

Most plants are covered with semi-crystalline wax consisting of mainly long-

chain alkane, ester and alcohol waxes. Esters and fatty acids are common but 

minor components, while alcohols often comprise a major portion of the wax. The 

effect of the wax layer is to prevent water loss from a plant [15][21].  

 

Minerals 

The main plant fibre minerals include calcium (Ca), potassium (K), phosphors (P) 

and magnesium (Mg) [23]. Calcium in the cell wall exists mainly in pectin, 

forming calcium pectate to stabilize the structure of the cell wall. Calcium 

chelators can extract calcium ions from pectin in plant cell walls resulting in the 

pectin becoming soluble which leads to separation of fibre bundles [12].  

 

2.2 Matrix 
Both thermoplastic and thermoset polymers are currently used as matrices for 

composites. Thermoplastic polymers are long organic chains (either linear or 

branched) produced by joining together small molecules called monomers. There 

is no covalent bonding between these long chains of molecules, however weak 

secondary bonds provide some mechanical stiffness and strength. Thermoplastic 

materials can be remelted due to the fact that the bonds between molecules can be 
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easily broken. Thermosetting polymers are composed of long, rigid cross-linked 

chains or three dimensionally networked molecules, therefore, once polymerized; 

the polymers cannot be softened by heating without degrading some linkages of 

the polymers. Usually there are some performance differences between 

thermoplastic and thermosetting matrices. The cross-linked structure of thermoset 

polymers provides potential for higher Young’s modulus and service temperatures 

than thermoplastics. On the other hand, thermoplastics often have very high 

failure strains compared to thermosets. This high failure strain capability also 

leads to high fracture toughness and high impact strength. However, in-plane 

mechanical properties of composites are generally strongly fibre-dominated, 

meaning that any difference in the mechanical properties of the matrix tends to be 

obscured. 

 

Among the many issues that influence processability are matrix viscosity, 

processing requirements such as temperature, pressure and time, and worker 

health concerns. Low viscosity facilitates reinforcement impregnation, where each 

reinforcing fibre ideally should be surrounded by matrix without any voids. Fully 

polymerized thermoplastics have much higher melt viscosities than thermosets. 

The higher viscosity of thermoplastics means that higher pressures tend to be 

required to achieve the same degree of material flow as with thermosets, but in 

many cases this difference is not dramatic. Whereas thermoplastics only need to 

be melted, shaped, and then cooled to achieve dimensional stability in a matter of 

seconds at one extreme, thermosets may take several days to fully crosslink at the 

other extreme. The very nature of thermosets makes them unpleasant to work with 

since chemical reactions involving volatile and potentially toxic substances are 

involved. In contrast, the molecular structure of fully polymerized thermoplastics 

makes them chemically inert if processed correctly, meaning that no hazardous 

substances need to be considered.  
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In addition, the infinite shelf life of thermoplastics is also an advantage because 

some thermosets such as B-staged prepregs of epoxy and carbon have a limited 

shelf life prior to processing and often require subambient storage. Table 2.4 

summarizes the advantages and disadvantages of thermosets and thermoplastic 

polymers [24], which clearly show why thermoplastic matrices are increasingly 

being used in preference to thermosets for industrially fabricated natural fibre 

composites. 

 

Table 2.4: Summary of advantages and disadvantages of thermosets and 

thermoplastic polymer 
Property Thermoset Thermoplastic 

Recyclability Limited Good 

Young’s modulus High Medium 

Service temperature High Medium 

Toughness Medium High 

Viscosity Low High 

Processing pressure Low High 

Processing temperature Low High 

Cycle time Long Short 

Health concern More Less 

Shelf life Short Long 

 

 

2.2.1 Polypropylene  

Thermoplastic polymers to be used as matrices for natural fibre composites must 

meet several requirements including having a low melting temperature and low 

density, as well as being cheap and recyclable. The processing temperatures of 

natural fibre composites are limited below 200 oC to avoid fibre degradation, and 

so the first criterion for selecting a suitable composite matrix is that it melts below 

200 oC. However, lower temperature processing also reduces processing costs and 
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is more environmentally friendly. Polypropylene (PP), high-density polyethylene 

(HDPE), low density polyethylene (LDPE) and polyvinylchloride (PVC) have 

suitably low melting temperatures. All of them are cheap and recyclable. PP and 

LDPE have the lowest densities and are therefore the most suitable in this respect 

(see Table 2.5). 

 

A matrix with a low level of moisture absorption is also desirable. PP and LDPE 

are suitable as they have the lowest levels of moisture absorption. However, PP 

has a better combination of tensile strength and stiffness than LDPE. It can 

therefore be concluded that PP is the most suitable thermoplastic for use in natural 

fibre composites as it has the lowest density, lowest price, offers the best possible 

protection against water and has good mechanical properties. Due to these 

properties, PP is used in 90% of the glass mat thermoplastic (GMT) sheet material 

for compression molding [26]. 

 

Table 2.5: Price and physical properties of various polymers [25] [26] 
Properties PP LDPE HDPE PVC 

Price($/kg) 0.62 0.90 0.86 0.82 

Density(g/cm3) 0.920-0.899 0.925-0.910 1.000-0.941 1.30-1.58 

W24h (%)* 0.02-0.01 0.015 0.2-0.01 0.40-0.04 

Tg (°C) -20 -90 -30 85 

Tm (°C) 165 120 135 am* 

Tensile 

strength((MPa) 

22-41.9 8.3-32.1 22.1-31.4 40.7-52.4 

Young’s 

modulus(GPa) 

1.15-1.57 0.17-0.70 1.08-1.10 2.44-4.19 

*W24h (%) = water absorption after 24h immersion *am = amorphous 
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2.3 Interfacial Bonding 

Using natural fibre as reinforcement in composites involves several challenges.  

The first and the most important problem is low fibre-matrix adhesion. The role of 

the matrix in a fibre reinforced composite is to transfer the load to the stiff fibres 

through shear stresses at the interface. This process requires good bonding 

between the polymeric matrix and the fibres. Poor adhesion at the interface means 

that the full capabilities of the composite cannot be exploited and leaves it 

vulnerable to environmental attack, thus reducing its life span. Natural fibres are 

hydrophilic and polar in nature, whereas common thermoplastic matrices are 

hydrophobic and non-polar. Natural fibres used in thermoplastic matrices are 

therefore dimensionally unstable and display insufficient adhesion between matrix 

and fibre, which results in poor composite mechanical properties. It is possible to 

improve bonding between the fibre and matrix by modifying the surface of the 

fibre, or by modifying the matrix with the addition of a coupling agent.  

2.3.1 Wettability 

A first condition required before the interfacial bonding can occur is that intimate 

contact between matrix and fibre can be obtained.  In other words, good wetting 

of a surface is the prerequisite physical process required for good adhesion. 

Therefore, wettability of the fibre by the matrix would be one of the most 

important factors when predicting the matrix-fibre adhesion and the wettability 

can be evaluated from the surface energy of fibre and matrix.  

 

2.3.2 Surface Energy  

Surface energy is derived from the unsatisfied bonding potential of molecules at a 

surface. This is in contrast to molecules within a material which have less energy 

because they are subject to interactions with molecules which are satisfied in all 
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directions. Molecules at the surface will try to reduce this ‘free energy’ by 

interacting with molecules in an adjacent phase. When one of the bulk phases is a 

gas, the free energy per unit area is termed the surface energy for solids, and 

surface tension in liquids. One manifestation of surface energy is a state of tension 

at the surface of a liquid, as a consequence of which work is required to increase 

the surface area of a liquid. One definition of surface energy is the work required 

to increase the surface area of a substance by unit area. However, when both 

phases are condensed, (i.e. solid-solid, solid-liquid and immiscible liquid-liquid 

interfaces) the free energy per unit area of the interface is called the 'interfacial 

energy'. 

 

Figure 2.10 shows the schematic detail of a droplet contact angle and its surface 

free energy components. When a liquid having a surface energy γLV is placed on a 

solid surface with surface energy γSV, the liquid will spontaneously form a droplet 

or spread out into a film. The surface free energy of the solid-liquid interface is 

labelled γSL and the equilibrium can be expressed as  

γSV= γSL  + γLV  cosθ                                                                                                (1) 

Where θ is a contact angle measured between the solid-liquid interface. 

 

Figure 2.10: Schematic details of a droplet contact angle and its surface free 

energy components [27] 

 

Liquids that form contact angles greater than 90o are called “nonwetting” and 

liquid that forms a contact angle less than 90o are termed “wetting”.  When the 
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contact angle is 0o, the liquid wets the solid and spreads over the surface 

spontaneously. Hence the condition for spontaneous wetting to occur is: 

γSV-γSL ≥ γLV                                                                                                                                                                (2) 

The rule holds the higher the surface energy of the solid γSV relative to the surface 

energy of the liquid γLV, the better its wettability and the smaller the contact angle. 

That is, from a composite wetting process viewpoint, the surface energy of the 

fibre must be greater than that of the matrix. 

 

Most polymers have low values of surface free energy (20 to 45 mJ/m2) [27], 

which decrease slightly with increasing temperature. Fibre surfaces that have been 

exposed to the ambient environment act to minimize their surface free energy and, 

therefore, adsorb material to lower their surface free energy. In some cases, this 

surface can have a surface free energy lower than that of the polymer matrix. In 

order to increase the fibre surface free energy, surface treatment has been 

developed to enhance the wettability of a fibre surface.  

 

2.3.3 Interfacial Bonding Mechanisms  

Once two constituents come into contact, bonds can form at the interface. 

Mechanical interlocking, electrostatic bonding, chemical bonding and 

interdiffusion bonding are the common interfacial bonding mechanisms that can 

occur. Actually, each of these mechanisms may be valid to some extent, depending 

on the system chosen. These bonding mechanisms are described more fully in the 

following sections [28]. 

 

Mechanical Interlocking 

Mechanical interlocking on the fibre/matrix interface occurs when the fibre 

surface is rough and jagged. Contraction of the matrix onto the fibre assists this 

process (see Figure 2.11). In addition, with good wetting, increased roughness 
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increases interlocking due to increasing of interfacial area. However, it should be 

noted that if insufficient wetting of the surface takes place, increased surface 

roughness may even lead to decreased adhesion due to the diminished contact area 

between matrix and fibre. 

 

 

 
Figure 2.11: Schematic of mechanical interlocking [28]. 

 

Electrostatic Bonding 

When one part is positively charged and the other is negatively charged, 

electrostatic bonding occurs (Figure 2.12). This only occurs over a short range and 

needs intimate contact, so contamination and entrapped gases will decrease the 

effectiveness of this bonding mechanism. In the case of polymer matrix-fibre 

systems, electrostatic mechanism will hardly be relevant, because contribution to 

adhesion by electrostatic forces may be noticeable only at the interface with a 

metal. 

 

Figure 2.12: Schematic of electrostatic bonding [28]. 
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Chemical Bonding  

Fibre surface chemical groups can react with chemical groups in the matrix, 

forming chemical bonds (Figure 2.13). Van der Waals attractive forces, hydrogen 

bonds can also form, depending on the system. The strength of the bond will 

depend on the number of bonds per unit area and the type of bond. The most 

common chemical bonds and relative bond strengths are as follows: 

 Covalent Bond: 200-800kJ mol -1  

 Hydrogen Bond: 10-40 kJ mol -1 

 Van der Waals: 1-20 kJ mol -1 

 

 

Figure 2.13: Schematic of chemical bonding, where R and X represent 

compatible chemical groups [28]. 

 

Reaction or Interdiffusion Bonding 

Atoms and molecules of the fibre and matrix may interact or interdiffuse at the 

interface to give reaction or interdiffusion bonding. For interfaces involving 

polymers, reaction bonding may take place when polymer chains from each 

component entangle and intertwine together (Figure 2.14). The strength of this 

bonding mechanism depends on the distance over which the chains are entwined, 

the degree of entanglement and the number of chains per unit of area. 
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Figure 2.14: Schematic of reaction bonding involving polymers [28]. 

 

2.4 Treatments of Natural Fibre and Matrix 
The natural fibre surface comprise of a complex heterogeneous arrangement of 

polymer including cellulose, hemicellulose and lignin and other non-cellulosic 

compounds. The natural fibre surface is influenced by polymer morphology, 

extractive chemicals and processing conditions. Natural fibre surface treatment 

generally involves imparting an altered surface chemistry and creates beneficial 

microtopographical features without a deliberate coating of the surface. In most 

cases, effective surface treatments not only remove native surface material and 

leave behind more active function group to promote wetting, but also roughen the 

surface to some degree, therefore increasing surface area [27], and potentially 

enhance mechanical interlocking. From a composite processing viewpoint, the use 

of a surface treatment is desirable to promote wettability and increase the 

interfacial bonding between matrix and fibre.  

 

2.4.1 Hemp Fibre Treatment 

Hemp fibre treatments are performed with the purpose of separating individual 

fibres from their fibre bundles, removing non-cellulosic compounds and 

increasing the fibre surface roughness [13][29]. Hemp fibre treatments used 

currently are described in the following sections. 

2.4.1.1 Dew and Tank Retting  
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Dew and tank retting are commonly applied retting processes. During dew retting, 

hemp stalks should remain on the field for 3 to 6 weeks until microorganisms 

have separated the fibres from their bundles. Dew retting is a weather-dependent 

and time-consuming process resulting in variable fibre. The tank retting method 

utilizes anaerobic bacteria and fungi that break down the pectin of fibre bundles 

submerged in huge water tanks. Tank retting is a quicker method of retting (1 or 2 

weeks) and produces uniform high-quality hemp fibres. However, the process 

results in waste water with a high oxygen demand and is therefore questionable 

from an ecological point of view. Both dew and tank retting are based on 

extensive manual work [29]. 

 

2.4.1.2 Bag Retting 

It has been reported that separation of green decorticated hemp fibre bundles can 

be achieved by bag retting [8], in which fresh hemp fibre bundles are maintained 

in a closed plastic bag for a period of time. Bacteria and fungi already present in 

the fresh green hemp fibre produce enzymes which remove non-cellulosic 

compounds of hemp fibre and modify the surface of hemp fibre as well. An 

advantage of bag retting is that the fibres are protected from other environmental 

factors. A further advantage in the case of bag retting is that it produces high-

quality hemp fibres. In addition, bag retting has the potential of significantly 

reduced water pollution compared to tank retting.  

 

2.4.1.3 White Rot Fungi Treatment 

Fungi can be classified into four groups, basidiomycetes, ascomycetes, zygomcetes 

and deuteromycotes based upon their reproduction structure. Only white rot fungi 

which belong to the basidiomycetes groups have the ability to selectively degrade 

lignin at a faster rate than they degrade cellulose [30]. White rot fungi produce 
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extracellular oxidases that act on the lignin molecule. This enzyme action enables 

these fungi to degrade not only lignin, but also an extensive range of other non-

lignin related aromatic and non-aromatic compounds [30]. The most important 

lignin degrading enzymes are lignin peroxidases (LiP), manganese peroxidases 

(MnP) and laccases [31][32][33]. In addition, fungi produce an extensive system 

of hyphae (Figures 2.15), which possibly roughen the surface of hemp fibres. 

Therefore, there is the potential for white rot fungi to be selected to remove non-

cellulosic components, and modify the hemp fibre wall and improve fibre/matrix 

interfacial boding.  

 

 

 

Figure 2.15: Scanning electron micrograph (SEM) of the tips of a number of 

hyphae[33]. Bar = 5µm  

 

The important factors affecting white rot fungi growth are temperature, sources of 

carbon and nitrogen, oxygen, moisture and the pH. The majority of white rot fungi 

grow between 5°C and 37°C, with an optimum temperature of 25±30°C. White rot 

fungi require a carbon source and nitrogen for their growth. Carbon serves 

primarily as an energy source for the white rot fungi. Nitrogen is needed for 

http://www.hiddenforest.co.nz/fungi/glossary.htm#Hypha
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fungal growth because it is a component of the proteins, nucleic acids, and amino 

acids; however, the majority of white rot fungi grow at low nitrogen levels. White 

rot fungi are aerobic microorganisms, and thus need the presence of sufficient 

oxygen (aerobic conditions) to grow. White rot fungi are able to use organic 

molecules which dissolve in water. If the moisture content falls below a critical 

level, microbial activity will decrease and the microbes will become dormant. On 

the other hand, too high a moisture content can cause a lack of aeration and the 

leaching of nutrients. Most studies use a moisture content of 60-70% for white rot 

fungi growing on non-wood fibre. Although white rot fungi tolerate a wide range 

of pH, they prefer an acidic environment and do not grow well above pH 7.5. 

Table 2.6 shows the optimum conditions for white rot fungi growth 

[31][34][35][36][37]. 

 

Table 2.6: Summary of factors affecting white rot fungi growth on non-wood 

fibre 
Factors Optimum conditions 

Temperature (0C) 25-30 

Carbon Sufficient 

Nitrogen Low level 

Oxygen Sufficient 

Moisture content (%) 60-70 

pH value  Wide range, but prefer acidic environment 

 

2.4.1.4 Alkali Treatments 

Alkali treatment is one the most popularity applied chemical treatments. Alkali 

treatment can selectively degrade lignin, pectin and hemicellulose in the fibre wall, 

while having little effect on the cellulose components. Furthermore, alkali 

treatment also results in a rougher fibre topography, which improves interfacial 

bonding by mechanical interlocking [38][39]. However, alkali treatment is now 
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falling out of favour mainly on environmental grounds and the high cost of 

chemical. The cost of the fibre used for composites must be relatively low, which 

makes the use of chemical methods uneconomical. 

 

2.4.1.5 Chelator/Enzyme Treatments 

Some published reports have described the effect of enzymatic degradation of 

non-cellulosic compounds on hemp fibres [10][11]. Pectinases degrade pectin and 

laccases modify lignin. However, waxes and other non-cellulosic compounds can 

be a barrier to these enzymes. In order to achieve good results, these enzyme 

treatments have been preceded by pre-treatments such as chelator treatments with 

EDTA [12].  

2.4.1.5.1 EDTA and EDTMPA 

Chelating agents are organic compounds capable of forming covalent bonds with 

metals through two or more of their atoms. It has been reported that some 

chelators such as EDTA (Ethylene Diamine Tetra-acetic Acid) can remove 

calcium ions from pectin in plant cell walls such as in hemp fibres [12], resulting 

in the pectin becoming soluble in many liquids. This allows the hemp fibres to 

separate from their bundles. However, EDTA persists in the environment and due 

to its strong metal chelating properties, enhances the mobility and bioavailability 

of contaminant heavy metals. An alternative is EDTMPA (Ethylene Diamine 

Tetra Methylene Phosphonic Acid), a phosphonated analogue of EDTA. 

EDTMPA has a very strong interaction with all mineral surfaces [40], so it is 

easily removed from technical and natural systems. Due to this strong adsorption, 

little or no remobilization of metals occurs. Therefore, compared to EDTA, 

EDTMPA has less impact on the environment. 

2.4.1.5.2 Pectinase Treatment 
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Pectinases can be broadly classified into acidic and alkaline pectinases based on 

their pH requirement for optimum enzymatic activity. Alkaline pectinases, which 

come mostly from bacterial sources, are capable of degrading pectin in the middle 

lamella of a fibre cell wall. They are widely used in the separation of bundles in 

crops such as flax, hemp and jute to obtain fibres [10]. 

 

2.4.1.5.3 Laccase Treatment 

Laccases are one of most important lignin degrading enzymes. It has been 

reported that laccase alone cannot depolymerise lignin [11], but, when HBT (1-

hydroxybenzotriazole hydrate) is used as a mediator, a degree of delignification 

up to 40% has been obtained. The mechanism of laccase-mediator systems, 

involves the oxidation of the mediator by laccase, followed by the oxidation of 

lignin by the low-molecular weight oxidized mediator, which can diffuse into the 

structure to oxidise the lignin molecule.  

 

2.4.2 Matrix Treatment 

Cellulose fibres are polar and inherently incompatible with hydrophobic polymers. 

There is the potential to increase compatibility by introducing a third material into 

the matrix that has properties intermediate between those of the other two [41]. 

Alternatives include coupling agents, compatibilizers and dispersing agents. 

Compatibilizers are chemicals that lower the surface energy of the fibre to reduce 

polarity and therefore increase compatibility with the thermoplastic matrix. 

Dispersing agents are used to improve the dispersibility of the fibres in the matrix. 

Coupling agents are used to improve the adhesion between the reinforcing fibres 

and the matrix. The most popular matrix treatments include the use of anhydrides 

and anhydride-modified copolymers and silane.  

2.4.2.1 Maleic Anhydride Grafted Polypropylene (MAPP) 
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MAPP (shown in Figure 2.16) is a popular coupling agent in natural fibre 

reinforced plastic composites. Maleic anhydride contains one carbon-carbon 

double bond (-C=C-) and two carboxylate groups (-COO-). The MA functional 

group interacts strongly with the fibre surface through covalent and hydrogen 

bonding with the reactive OH groups on the surface of the cellulose and lignin 

(see Figure 2.17). The polymer chains of MAPP form a bond with the 

polypropylene matrix by means of chain entanglement. Therefore, MAPP acts as a 

bridge between the non-polar polypropylene matrix and the polar fibres [6]. 

Figure 2.18 shows the influence of MAPP in composite. Figure 2.18a shows poor 

bonding between fibre and matrix, while Figure 2.18b shows good interfacial 

bonding due to the addition of 3% MAPP for hemp fibre reinforced polypropylene 

composites [18]. 

 

 

 

 

Figure 2.16: Maleic anhydride grafted PP 
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Figure 2.17: Reaction mechanisms of MAPP with the cellulose fibre surface  

 

 

 

a.                                                                    b. 

Figure 2.18: Fracture surfaces showing the influence of MAPP in composites 

[18] 
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2.4.2.2 Silane Treatment 

Several theories have been proposed to explain the interfacial bonding 

mechanisms of silane coupling agents. Among these, the most widely accepted is 

one based on chemical bonding. In this chemical bonding theory, the bifunctional 

silane molecules act as a link between the matrix and the cellulose by forming a 

chemical bond [7]. Silane-based coupling agents are hydrophilic compounds 

based on a silicon molecule with different organic groups attached. One group 

interacts with the hydrophilic cellulose fibres, while another group interacts with 

the hydrophobic thermoplastic matrix material. Therefore, hydrophilic and 

hydrophobic materials can be coupled together with the silane coupling agent 

acting as a bridge between them [42].  

The reaction between cellulosic materials and silanes is not simple. It has been 

reported that application of alkyl-functional silanes did not lead to chemical bonds 

between the cellulose fibres and the polypropylene. However, it appeared that the 

long hydrocarbon chains caused by the silane application influence the wettability 

of the fibres and that the chemically affinity to the polypropylene is improved [41]. 

Hydrogen bonds as well as covalent bonding mechanisms have been found in the 

flax- silane system [41] hence influencing the strength of its composites. 

 

2.5 Analytical Techniques for Natural Fibres  
Due to the structural and chemical complexity of natural fibre, a combination of 

several destructive and non-destructive techniques each providing partial but 

complementary information are desirable in order to assess fibre modification. 

Several physical techniques, such as wet chemical analysis, FT-IR, SEM, lignin 

testing, XRD, thermal analysis, and zeta potential are suitable for analyzing 

natural fibre. 
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2.5.1 Wet Chemical Analysis of Hemp Fibre  

There are several methods to measure the chemical compounds of bast fibre, 

amongst the GB 5881-86 (National Standard of China for Ramie Chemical 

Analysis) is one of most suitable methods to be used for hemp fibre chemical 

analysis. This gravimetric method involves the degradation and extraction of wax, 

water-soluble components, pectin and hemicellulose in the hemp fibres. The 

residual part is almost pure cellulose with a low content of minerals, which can be 

used as the amount of cellulose approximately. The wax is extracted in a 

benzene/ethanol (2:1) solution, water-soluble components in water, pectin in 5g/l 

ammonium oxalate solution and hemicellulose in 20g/l NaOH (sodium hydroxide) 

solution, consecutively. The loss of dry matter equals the removed content in the 

sample. The lignin analysis is carried out with sulphuric acid treatment; the 

residue after wax extraction is treated with 72% sulphuric acid for 24h, and then 

boiled in water, washed, filtered and dried. The remaining compound is assumed 

to be lignin.  

 

2.5.2 Fourier-Transform Infrared (FT-IR) Analysis of Hemp Fibre 

Fourier-transform infrared (FT-IR) can highlight changes in the main non-

cellulosic compounds in cellulose fibres by characterizing the carboxyl acids and 

esters that are present in pectin, lignin, hemicellulose and waxes, which do not 

exist in the cellulose structure [43]. The absorbance intensity of the characteristic 

peaks at around 1736 cm-1 in the FT-IR spectrum of cellulose fibre is attributable 

to the presence of the carboxylic ester in pectin and wax and the peak at 1268cm -1  

for COO stretching in lignin [43][44].  

 

2.5.3 Scanning Electron Microscopy (SEM) 

Composite properties are highly dependent on the surface state of fibres. 

Increased roughness of fibre surfaces has the potential to improve the bonding 

between the fibre and matrix. SEM is an excellent technique for the examination 
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of surface morphology of fibres and failure analysis due to its high depth of 

resolution. SEM can also indicate the presence of lignin, wax, oil and impurities 

on fibre surfaces. Removal of these from the surface that can occur with chemical 

treatments can be assessed [9]. The resolution of the conventional SEM is 

inadequate to detect fine holes caused by fungal hyphae attacking fibre walls on 

treated fibre surfaces. However, some researchers have used High-resolution 

Cryo-Field Emission Scanning Electron Microscopy (HR-Cryo-FE-SEM) to 

reveal fungal hyphae attacking fibre walls producing fine holes on the fibre 

surfaces (see Figure 2.19).  

 

 

 

Figure 2.19: HR-Cryo-FE-SEM and TEM micrograph shows fungal hyphae 

make fine holes on the fibre surface [9] 

 

2.5.4 X-ray Diffraction 

X-ray diffraction (XRD) is an extremely powerful analytical technique for both 

qualitative and quantitative studies of structural properties of engineering 

materials.  Figure 2.20 shows a typical X-ray system that is mainly comprised of 

an X-ray tube and two goniometers which are equipped with a scanning radiation 

http://www.hiddenforest.co.nz/fungi/glossary.htm#Hypha
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counter that monitors the diffracted beam intensity. Generally the material being 

analysed is converted into a powder from which the X-ray patterns or “powder 

patterns” are used for comparison against a large collection of known diffraction 

patterns (The Powder Diffraction File, including over 70,000 powder diffraction 

patterns catalogued by the International Centre for Diffraction Data-ICDD). The 

comparison of an experimental diffraction pattern with the database of known 

diffraction patterns can be done in a few seconds with “search/match” computer 

software and, through the unique relationship between such patterns and crystal 

structures, provides a chemical identification of powders. 

 

 

Figure 2.20: Typical X-ray system 

2.5.4.1 Crystalline Cellulose  
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The chemical composition of hemp consists mainly of cellulose, hemicelluloses, 

lignin and pectin. Cellulose is usually composed of crystalline segments 

alternating with regions of amorphous cellulose. Most plant-derived cellulose is 

highly crystalline and may contain as much as 80% crystalline cellulose [46]. All 

the other components such as hemicelluloses, lignin and pectin are totally 

amorphous for which, therefore, X-ray analysis is unsuitable [45]. 

 

There are four types of crystalline cellulose, namely types I, II, III and IV, type I 

being unmodified native cellulose and the others forming on exposure to different 

chemical conditions. For cellulose I, the major diffraction planes are the ( 011
−

), 

(110), and (200) planes with corresponding X-ray 2θ diffraction angles of 15.1, 

16.88 and 22.82o [47]. Treatment such as those using harsh alkali solutions can 

break down cellulose I to cellulose II (major diffraction planes at (110), ( 011
−

), 

(012) and (020) for 2θ angle of 14.8, 16.7, 20.7 and 22.5o) [48]. Cellulose III 

which can be obtained from cellulose I and II is formed after treating the cellulose 

with liquid ammonia. Cellulose IV which can be obtainable from Cellulose I, II 

and III is formed by treating stretched cellulose fibres in a hot bath [46] [49].   

 

It has been mentioned that when the cellulose content is high, as is in the case of 

alkali treated fibres, two peaks (see Figure 2.21) can be observed at 2θ angles of 

15.1 and 16.8, but when the fibres contain high amounts of amorphous materials 

such as lignin, hemicellulose, and amorphous cellulose, as for the untreated fibres, 

these two peaks are smeared, thus appearing as one broad peak [47].  
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Figure 2.21: X-ray diffractograms of untreated and alkali treated fibre [47] 

 

2.5.4.2 Crystallinity Index of Fibre 

The crystallinity index ( CrI ) of the fibres can be calculated according to the 

Segal empirical method developed in 1959 for native cellulose, defined as: 

100
002

002 ×
−

=
I

II
CrI am                                                                                          (3) 

where 002I  is the intensity for  the crystalline peak between 022 and 023 for 

cellulose I relating to the (200) plane, which is considered to represent the 

crystalline material in cellulose. amI  is the intensity between 18 and 19o for 

cellulose I (and between 13 and 15o for cellulose II) [50], which corresponds to 

the amorphous material in cellulose [51].  

 

2.5.4.3 The Effect of Crystallinity on Fibre Properties 

A number of properties are affected by fibre cellulose crystallinity. Amorphous 

cellulose is more accessible to chemicals and water than crystalline cellulose and 

so amorphous cellulose absorb more of these than crystalline cellulose [50]. The 
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mechanical properties of cellulose fibres are also related to their crystallinity. 

Tensile strength, Young’s modulus and hardness increase whilst flexibility 

decreases with increasing crystallinity [52]. 

 

2.5.5 Measurement of Fibre Density 

The density of matrix and composite samples can be readily determined because 

of their massive and solid forms, but the density of the fine and porous fibres is 

far more problematic to determine accurately. However, it has been reported that 

the Archimedes test using canola oil as an immersion fluid is a simple and 

effective method for measuring natural fibre density [53]. The published values of 

hemp fibre density are around 1.48g/cm3 [3] with the density of crystalline 

cellulose (around 1.64g/cm3) higher than the density of hemicellulose, lignin and 

amorphous cellulose (conservatively all assumed to be 1.40g/cm3)[20]. 

 

2.5.6 Thermal Analysis   
Most research into hemp fibre has been concerned with composite manufacture 

and structural characteristics, but little information is available about the 

properties of the fibre, especially its thermal stability, despite the fact that hemp 

fibres are subjected to extensive heat treatment during processing. 

 

Thermal analysis is the term applied to a group of methods and techniques in 

which a physical property of a substance is measured as a function of temperature, 

whilst the substance is subjected to a controlled temperature programme. 

 

2.5.6.1   DTA and TGA 

Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) are 

the most widely used thermal analysis techniques. DTA is a method which obtains 

information on temperature changes in a sample by heating or cooling it alongside 

an inert reference. TGA can be employed to monitor the weight loss of a material 
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as the material is heated, cooled, or held isothermally. Figure 2.22 is a schematic 

representation of the main parts of an instrument. The sample and reference are 

contained in the DTA/TGA cell. Temperature sensors and the means of heating the 

sample and reference are incorporated into the cell. A computer unit operates the 

various control functions, data capture and analysis. The term “differential” 

emphasizes an important feature of the techniques: two identical measuring 

sensors are used, one for the sample and one for the reference, and the signal from 

the instrument depends on the difference between the response of the two sensors 

in this way, the signal represents the thermal change to be studied free from 

diverse thermal effects which influence both sensors equally. 

 

 
 

Figure 2.22: Schematic representation of a DTA/TGA instrument [54] 

 

DTA finds application in the measurement of characteristic temperatures and in 

the qualitative identification of materials. This technique can be used reliably up 

to temperatures around 1600oC. The results from DTA experiments are displayed 

as a thermal analysis curve in which the instrument signal is plotted against 

temperature – usually the sample temperature. Of particular importance is the 
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“extrapolated onset temperature” which is defined as the temperature of the 

intersection between the extrapolated initial base line and the tangent or line 

through the linear section of the leading edge of the peak. This temperature, rather 

than the peak maximum temperature is frequently used to characterise peaks 

because it is much less affected by the heating rate. [54] 

 

TGA is one of the most widely used techniques to monitor the composition and 

structural dependence on the thermal degradation of natural cellulose fibre. This is 

because the different compositions and supramolecular structures of cellulose 

behave differently when undergoing thermal degradation. [48]. 

 

2.5.6.2   Activation Energy 

The Broido method can be used to calculate kinetic parameters from TGA curves. 

The equation used is given below: [55][56] 
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where T is the temperature of maximum reaction velocity, β is the rate of heating 

(K min-1), and mT  is the temperature at maximum reaction rate (temperatures all 

expressed in Kelvin). Z is the frequency factor, E the activation energy and y is 

the fraction of number of initial molecules not yet decomposed which can be 

determined from the expression 
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where 0N  and N are the initial number of molecules, and the number at any 

time t  respectively, 0W , W, and fW  are the weight initially, at any time t, and 

final weight respectively. Using the Broido equation, plots of ( y1lnln ) versus 

1/T for various stages of thermal degradation can be plotted and the activation 
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energies calculated from the slopes of these plots. 

 

2.5.6.3   Thermal Stability of Hemp Fibre 

Bast hemp fibres have been found to contain a large amount of pectin and 

hemicelluloses with only a small amount of lignin [48]. These chemicals are not 

thermally stable and tend to degrade at an early stage of heating. It has been 

reported that hemicelluloses are less thermally stable than cellulose and lignin, 

therefore, their active degradation begins at a lower temperature [57] [58]. Lignin 

degrades at a temperature around 200°C while cellulose degrades at higher 

temperatures. Therefore, exothermic peaks in natural fibre higher than 200°C, 

indicate the decomposition of cellulose in the fibres [59] [60]. Decomposition 

reactions take place primarily in the amorphous regions of the cellulose [61]. 

Consequently, lower crystallinity of fibre leads to lower initial temperatures of 

decomposition, lower thermal stabilities and lower activation energies.  

 

2.5.7 Zeta Potential 

Zeta potential is an electrokinetic parameter giving information about the charge 

associated with surfaces. It can be used to assess chemical changes such as 

increased hydrophilicity or hydrophobicity. As the zeta potential cannot be 

directly measured, it has to be calculated from other measurable variables. The 

streaming potential method for determination of zeta potential is one of the most 

common methods used to characterise the surface of cellulose fibres. In order to 

understand zeta potential, the electric double layer has to be introduced. 

 

2.5.7.1   The Electric Double Layer 

The surfaces of materials have unsymmetrical or unbalanced molecular forces and 

are thus, much more reactive than their interiors. When particles of a solid are 

sufficiently small, they remain separated, and suspended in a liquid (a suspension). 

These particles are usually electrically charged to some extent, either positively or 
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negatively. This charge arises from the ionization of molecules on any surface, 

with separated ions going into the liquid, or by the capture or adsorption of 

positive ions (cations) or negative ions (anions) from the surrounding liquid [62]. 

 

When a solid is immersed in a liquid, the ions formed on the surface of the solid 

attract oppositely charged ions called counterions from the liquid. A layer of 

highly consolidated counterions, which may include adsorbed ions, form around 

the particle, but do not completely neutralize the charge of the particle. This 

compact layer is commonly called the Stern layer (see Figure 2.23). The plane 

through the centre of the Stern layer is called the Stern plane. Further away from 

the particle, there is a more diffuse region of charge called the diffuse layer which 

finally neutralizes the charge of the particle. Together the strongly attracted initial 

layer and the diffuse layer make up the double layer. 

 

  

Figure 2.23: A schematic of the structure of the electric double layer [62] 
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2.5.7.2   Shear Plane, Zeta Potential and Isoelectric Point (IEP) 

The Stern layer is generally considered to be rigidly attached to the solid, while 

the diffuse layer is not. When there is motion of the solution relative to the solid 

surface, shear is considered to occur at a plane close to the boundary between the 

Stern and diffuse layers [62]. In actual fact, the precise position of the shear plane 

in the diffuse double layer where this occurs has not yet been identified [63]; it is 

considered to be located somewhere between the Stern plane and the inner section 

of the diffuse layer. The zeta potential is the potential at the shear plane which is 

related to the mobility of the solid [64]. The zeta potential is also related to the pH 

of the surrounding medium.  When acid is slowly added to a liquid in which a 

negatively charged solid is immersed, the outer surface of the positively charged 

layer moves nearer the surface of the solid, until the original electro-chemical 

charge is neutralized. Then the zeta potential becomes zero, and the pH is called 

the isoelectric point (IEP) [64]. 

 

The IEP, at which the zeta potential is 0, can be used to determine the surface 

chemistry by the shift in the IEP after a reaction. For example, a shift to a lower 

pH for cellulose indicates that more hydroxyl groups are available for bonding. 

Therefore, the IEP can indicate whether a material has become more hydrophilic 

or hydrophobic [64] [65]. A more negative zeta potential suggests increased 

hydrophilicity. 

 

2.5.7.3   The Cellulose Fibre Surface 

Cellulose fibres in an aqueous medium are negatively charged due to their 

characteristic hydroxyl groups. The hydroxyl groups enable the formation of 

hydrogen bonds in the interface region of composite materials; however, in order 

to get access to these hydroxyl groups, a cover of non-cellulosic compounds such 

as pectin and other waxy substances must be removed from the fibre surface.  The 

degradation and removal of specific non-cellulosic compounds which cover the 
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primary wall of the cellulose polymer changes the surface charge. A typical plot 

of zeta potential for cellulose fibre is shown in Figure 2.24 [62]. Commonly there 

is a plateau at the higher end of the pH range. Removal of non-cellulosic 

compounds is clearly shown by a plateau with increasingly negative zeta potential 

[64]. The zeta potential is found to be mainly influenced by waxes, for which 

removal largely decreases the negative zeta potential [66]. 
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Figure 2.24: A typical plot of zeta potential versus pH for cellulose fibre 

 

The characteristics of cellulose fibres, including reactivity as well as thermal and 

mechanical properties largely depend on the size of the cellulose crystallites and 

its amorphous regions, as well as surface morphology [65]. The amorphous 

cellulose regions have a lower frequency of linear-chain hydrogen bonding, thus 

exposing reactive inter-chain hydroxyl groups (OH) to bonding with water 

molecules. Crystalline cellulose on the other hand is highly packed, and very few 

accessible inter-chain OH groups are available for bonding with water and 
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therefore a higher tendency to bond with water. Amorphous cellulose can 

therefore be considered more hydrophilic than crystalline cellulose. Reduced 

degrees of crystallinity also allow increased swelling on exposure to water and 

which causes further reduction of the zeta potential [65]. Increased roughness 

associated with increased surface free energy tends to reduce the zeta potential. 

 

2.5.7.4   Fungi Treated Cellulose Fibre 

Fungi treatment can be used to remove non-cellulosic components due to the 

action of specific enzymes produced by the fungi. The degradation of waxes by 

the enzyme lipase has been seen to reduce zeta potential [64]. It has been reported 

that white rot fungi not only removes lignin but also waxes [23] which could 

cause a further reduction of zeta potential. It has also been reported that 

application of an enzyme mixture containing xylanase, pectinase, and lipase can 

lead to the most negative zeta potentials indicating the most complete removal of 

the non-cellulosic materials compound [66]. 

 

2.6 Processing of Fibre Thermoplastic Composites 
The key problem with processing of thermoplastic composites lies in the effective 

impregnation of fibre with a thermoplastic matrix. Thermoplastic composite 

manufacturing processing can be grouped into short-fibre suspension methods and 

squeeze flow methods according to dominant flow processes (see figure 

2.25)[67][68].  
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Figure 2.25: Types of flow in thermoplastic composites processing [68] 

 

In the short fibre suspension method, the short fibres in the molten deforming 

matrix can travel large distances which allows them to obtain good impregnation. 

Fast and efficient moulding techniques such as extrusion and injection moulding 

have been commonly adopted by the plastics manufacturing industry to fabricate 

short fibre thermoplastic composites. In squeeze flow methods, the long or 

aligned fibre remains generally stationary and the matrix is introduced by flow or 

is dispersed in solid form prior to flow. Fabrication methods such as film-stacking 

and hot-pressing fall into this category.  
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2.6.1 Short Natural Fibre Reinforced Composites   

Short fibre composites have lower mechanical properties, but are cheaper and 

easier to fabricate than their long fibre counterparts. The fibre length, fibre 

orientation and fibre volume fraction are important parameters that influence the 

mechanical behaviour of short cellulose fibre composites.  

 

Fibre Length 

In a composite, there is a critical fibre length required for the fibre to develop its 

fully stressed condition [69]. This length is not only determined by fibre and 

matrix properties, but also by the quality of the fibre/matrix interface. Load is 

transferred from the fibre to the matrix by shear along the interface. If the fibres 

are too short, the stress transfer area will be too small for them to offer effective 

reinforcement. However, if they are too long, they may get entangled resulting in 

clumping and reduced composite efficiency [69]. As fibre lengths are reduced 

during composite processing, the ultimate fibre lengths present in the composite 

are dependent on the type of compounding and moulding equipment used [28]. 

 

Fibre Orientation 

Although the orientation effects for short fibre composites are not generally as 

marked as continuous fibres, they are not negligible. Short-fibre composites rarely 

consist of fibres oriented in a single direction. Fibre orientation changes during 

extrusion and injection moulding processes. These changes are complex, and are 

related to the size and concentration of fibres, the viscoelastic properties of the 

melted polymer matrix, the mould cavity and the processing conditions [70]. 

Figure 2.26 shows changes in fibre orientation during fibre suspension processing.  
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             a) 

 

             b) 

               

 

             c) 

 

 

Figure 2.26: Changes in fibre orientation during processing [28] showing (a) 

Initial random distribution (b) Rotation during shear flow (c) Alignment 

during elongational flow 

 

Fibre Volume Fraction 

The fabrication and properties of fibre composites are strongly influenced by the 

proportions of the matrix and the fibre. The proportions can be expressed either 

via the weight fraction, which is relevant to fabrication, or via the volume fraction, 

which is commonly used in property calculations [28]. At low fibre fractions, a 

decrease in tensile strength compared to the matrix strength is usually observed. 

This is due to the introduction of flaws created by the fibre ends. These flaws act 

as stress concentrators, and cause the bonds between the fibre and matrix to break. 

At higher volume fractions, the matrix is sufficiently restrained and the stress is 

more evenly distributed. This results in the reinforcement effect outweighing the 

effects of the stress concentrations. As the fibre volume fraction is further 

increased, tensile properties gradually improve until they surpass those of the 

matrix [18]. Ductility falls with increasing fibre reinforcement. At very high fibre 

volume fractions, the material properties show greater variability due to fibre 

clumping [71].  
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2.6.1.1 Processing of Short Fibre Reinforced Thermoplastic Composites 

The most commonly used technique for mixing short fibres with a thermoplastic 

polymer is extrusion. Injection moulding is the most commonly used composite 

forming technique, although extrusion is used in some instances. 

 

Extrusion Compounding 

Short reinforcing fibres and thermoplastic polymers are mixed and gravity–fed 

into a screw extruder. Matrix heating and impregnation all depend on the 

geometry of the screw. The extruder creates a uniform mixture from thermoplastic 

and short reinforcing fibres. Counter-rotating screws draw the composite melt 

forward through the extruder barrel. The material then exits the barrel through a 

shaped die (see Figure 2.27).  Extrusion is a continuous process that can have high 

feed rates allowing the fast and efficient processing of materials. Extrusion using a 

twin-screw extruder is often carried out prior to injection moulding or 

compression moulding to achieve good fibre distribution within the matrix.  

 

Processing temperature is an important parameter in extrusion that can affect the 

composite strength; insufficient wetting of fibre can occur if the temperature is too 

low, but fibre degradation can occur if the temperature is too high. Both situations 

result in a weaker composite. Other studies suggest an extrusion temperature of 

165-1750C for extruding hemp fibre/PP composites [18]. 
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Figure 2.27: Schematic representation of twin screw extruder [4] 

 

 

Injection Moulding 

Injection moulding is one of the few manufacturing processes capable of 

producing net shape composite parts in high volumes. It is a high-pressure process 

with machine capital costs and tooling costs generally high compared to the 

processing routes of other composites. These costs can be recovered through 

inherent short cycle times, automation, and low labour costs. A recent forecast 

predicts that this process will be the most important technology for incorporating 

natural fibre composite materials [72]. Composite materials for injection 

moulding must be capable of flow under pressure. Therefore, short fibre 

reinforced thermoplastics with a relatively low fibre fraction (typically <50wt% or 

30vol. %) are suitable for injection moulding as it is difficult for high volume 

fractions to be injection moulded [72][73]. However, too low a fibre fraction does 

not give sufficient property improvements.  

 

Figure 2.28 shows a schematic diagram of   a screw injection moulding machine. 
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The injection machine melts the pre-formed usually extruded and pelletized 

composite pellets, delivering a uniform material to the machine nozzle, and injects 

it into the closed mould. This process is followed by cooling after which the 

composite can be removed from the mould. Unlike extrusion, injection moulding 

generally does not significantly damage cellulose-reinforcing fibres [73][74]. 

Injection temperature can affect the composite property. If the temperature is too 

high, the fibre in the composite may be burnt, which generally degrades the 

composite properties. Previous work has highlighted a temperature of 165-1750C 

for injecting hemp fibre/PP composites [18]. 

 

 

 

Figure 2.28: Schematic diagram of screw injection moulding machine [73] 
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2.6.2 Long Aligned Natural Fibre Composites   

Long aligned fibre-reinforced composites contain reinforcements having lengths 

much greater than their cross-sectional dimensions [75][76]. Each layer of a long 

fibre composite typically has a specific fibre orientation direction. Therefore long 

fibre composites have high mechanical properties in the fibre direction, but can be 

very anisotropic depending on the arrangement of individual layers [75].  

 

Fabrication of long fibre or aligned reinforced thermoplastic composites has 

proved difficult due to the lack of appropriate impregnation methods. However, 

some techniques have been adapted for processing long fibre thermoplastic 

composites. Hot-pressing is one of the best methods for manufacturing long fibre 

thermoplastic composite sheets, in which the fibre may either be completely 

impregnated with thermoplastic matrix through solvent impregnation, or just 

physically mixed with matrix through fibre commingling, and then processed by 

heat and pressure into composites. Solvent impregnation can lead to products of 

high impregnation quality. However, the main drawback of solvent impregnation 

is that most thermoplastics require expensive and toxic organic solvents which 

require removal by evaporation. Thus the process is slow, toxic and expensive. 

Fibre commingling can provide for effective impregnation, however, 

thermoplastic fibres represent an added cost [75, 76, and 77]. 

 

2.6.2.1   Film Stacking and Hot-Press Forming 

A promising alternative for the production of long fibre thermoplastic composite 

sheet is film stacking and hot–press forming where fibres are stacked in between 

layers of thermoplastic film and consolidated between heated plates. In this 

process, most of the impregnation occurs via the flow of thermoplastic through 

the thickness, so minimizing the ply thickness enhances impregnation. This 

method is quite common in the use of research and development and could be 

both cost effective and environmentally friendly for larger scale manufacture [78]. 
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The most important hot-press forming parameters are the forming temperature, 

forming pressure and heating time. High forming temperature and pressure may 

cause damage to the fibre as well as leading to matrix starvation due to a high 

degree of matrix bleed from the mechanically locked fibre. It is reported that the 

fibre/PP composite sheets can be successfully thermoformed at forming 

temperature within the range 120-150oC, and forming pressure of 5-10 Pa. The 

length of the heating time influences the wetting between matrix and fibre. Longer 

heating time improves the quality of the wetting between matrix and fibre, thus 

results in the composites having better mechanical properties. Some studies use a 

6-10 min heating time for hot pressing fibre/PP composites [77, 78 and 79].  

 

2.7 Composite Interfacial Shear Strength 
Since the interface plays a major role in transferring the stress from the matrix to 

the fibre, it is important to be able to characterise the level of interfacial adhesion 

to properly understand the performance of the composite. One common parameter 

for the description of interfacial strength is interfacial shear strength (IFSS). The 

most commonly used methods for determining IFSS are the single fibre pullout 

test and the single fibre fragmentation test.  

 

2.7.1 The Single Fibre Pull-Out Test  

The single fibre pull-out test is a commonly used technique to measure interfacial 

shear strength, in which the end of a fibre is embedded in block of matrix that is 

held as the fibre is pulled out whilst recording load versus displacement to give a 

“pullout curve”(see Figure 2.29). The single fibre pull-out test offers a number of 

important practical advantages: firstly, it is a direct measurement of interfacial 

strength, secondly, it requires only small amounts of fibre and matrix, and thirdly, 

the debonding force can be plotted as a function of displacement and information 
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about the failure process can be gained, e.g. a sudden drop in applied load 

indicates a brittle failure. However, the single fibre pull-out test is based on single 

fibre specimens and does not reflect the failure process within a composite. 

Overall though, the IFSS value from the pull-out test is considered to give a good 

indication of interfacial adhesion for natural fibre composites [80, 81 and 82]. 

 

 
 

Figure 2.29: Schematic of the single fibre pullout test [18]. 

 

A typical force-displacement curve can be seen in Figure 2.30. This can be 

considered in three parts (F< Fd , Fd < F< Fmax and F> Fmax ) corresponding to 

the different stages involved in pull-out, where F is the applied force, Fd is the 

critical force at which debonding is initiated, and Fmax is the peak load. During the 

first part (0 < F< Fd), the curve is considered to represent linear elastic behavior 

of the fibre-matrix system and the fibre-matrix interface remains intact. For the 

second stage (Fd < F< Fmax), after initiation, debonding occurs by means of crack 

propagation along the embedded fibre length. The applied force continues to 

increase due to the remaining adhesion of the intact part of the interface and the 

presence of frictional forces between the fibre and matrix. After reaching a peak 

load (Fmax), crack propagation becomes unstable and the whole embedded fibre 

length becomes fully debonded. The third part occurs after complete debonding 

has taken place, where the remaining force is due to frictional interactions 

between the fibre and the matrix (Fb). The apparent interfacial shear strength IFSS 
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(τ) can be calculated using the following equation:  

eDL
F
π

τ max=                                                                                                              (6) 

where D is the fibre diameter and Le is the embedded length [80]. 

 

 

 
 

Figure 2.30: Typical force-displacement curve for the single fibre pull-out test 

[80]. 

 

In the single fibre pull-out test, the fibre is subjected to an axial force resulting in 

a Poisson contraction in the radial direction, leading to a reduction in the fibre 

cross sectional area. This phenomenon may reduce the normal radial stress 

induced on the fibre that results from matrix shrinkage during cooling of the 

matrix after elevated temperature. As a result, a decrease in the frictional 
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component of the interfacial strength is likely. This may facilitate the initiation 

and propagation of interfacial failure and reduce the measured IFSS [82]. 

Furthermore, one basic assumption of the single fibre pull-out test is that there is a 

constant shear stress at the fibre-matrix interface. In reality, non-linear shear stress 

occurs at the regions near the fibre ends. Additionally, the load in the pull-out test 

is an axial force, while the fibres in real composites are not oriented parallel to the 

applied loads. Therefore, the results obtained from the single fibre pull-out test are 

limited in their representation for a composite where fibre loading is more 

complex. 

  

2.7.2 The Single Fibre Fragmentation Test  

Another technique commonly used to calculate the IFSS is the single fibre 

fragmentation test. This test involves the application of increasing axial stress to a 

specimen containing a single fibre embedded in a polymer matrix (see Figure 

2.31a). Load is transferred through the matrix into the fibre by means of shear 

stress at the interface, and stress transfer increases linearly from the tips of the 

fibre inwards to some maximum value (see Figure 2.31b). Fibre failure occurs 

when this transferred stress reaches the tensile strength of the fibre. This loading 

process continues until the fibre-fragment lengths are so small because the tensile 

stresses that are induced in the fibre can no longer reach the fibre tensile strength 

and the fibre fragmentation process ceases. This final fibre fragment length is 

referred to as the fibre critical length (Lc).  
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a 

 

b 
Figure 2.31: Schematic of the single fibre fragmentation test [82]. 
 
It is commonly accepted that Lc is a good indicator of the ability of the interface to 

transmit loads between the fibre and matrix. The IFSS can be estimated on the 

basis of the constant shear model proposed by Kelly and Tyson [82] 

 

                                                                                                    (7) 

 

where d is the diameter of the fiber, Lc is the critical length of the fibre and σfc is 

the fibre tensile strength at Lc. Early work by Ohsawa et al. (1978) provided the 

background for the semi-empirical analysis of the test data [84]. The critical fibre 
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length (Lc) is calculated by 

avec LL
3
4

=                                                                                                            (8) 

 
where Lave is the mean fragment length. 
 

Drzal et al. [83] recognized that the distribution of fibre fragments fits a two-

parameter Weibull distribution well and rearranged the Kelly and Tyson equation 

proposing the following modification to calculate IFSS: 

 

                                                                                              (9) 

 

where α and β are the shape and scale parameters of the Weibull distribution, 

which are commonly estimated by means of the linear regression method 

(graphical method), or the maximum likelihood method. Γ is the gamma function. 

 

In the single fibre fragmentation test, the tensile forces result in cross sectional 

area reductions for both the fibre and matrix due to the Poisson’s effect during 

stressing of the composite [83][84]. If the Poisson’s ratio of the matrix is greater 

than that of the fibre, the matrix will induce radial compressive stresses on the 

fibre, and the frictional component of the interfacial adhesion will be increased 

depending on the net cross-sectional reduction between the fibre and matrix [18]. 

Furthermore, thermal shrinkage arising in specimens during cool-down may also 

result in residual stresses that can greatly affect the fibre/matrix adhesion. 

Residual stresses may not always be evenly distributed in the composite. 

Therefore, it can be said that results obtained by the single fibre fragmentation test 

is an oversimplified representation of a uniform shear stress at the fibre-matrix 

interface. 
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2.8 Composite Strength Modeling 
The tensile strength of composites is usually measured using ASTM test standards. 

However, creating and testing new material systems in this fashion is time-

consuming and expensive. In practice, there is a desire to predict composite 

tensile strength based on properties of the individual constituent material such as 

fibre and matrix to save time and money during the development of composite 

material systems based on new fibre. 

 

A range of mathematical models to predict the strength of composites has been 

developed in the last four decades. Most of the early strength prediction models 

are based on the assumption that reinforcing fibres are continuous and are aligned 

axially to the applied load. The strength prediction models of composites with 

discontinuous and off-axis fibre is far more complex than that of composites 

reinforced with continuous axially aligned fibres. Although none of the strength 

prediction models have been rigorously verified experimentally, some models 

have been shown to predict composite strength with some degree of accuracy [85] 

[86].  

 

2.8.1 Rule of Mixtures Model (Parallel and Series Model)  

Parallel Model 

The rule of mixtures model, which was first proposed by Kelly and Tyson [87], 

can be used to predict the tensile strength of unidirectional, continuous fibre 

composites that are loaded parallel to the fibre. The parallel model is based on the 

assumptions of equal strain of the fibre and matrix in the composites, and states 

that:  

mmffc VV σσσ +=                                                                                                                (10) 
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Series Model 

The series model can be used to predict the tensile properties of unidirectional, 

continuous fibre composites that are loaded perpendicular to the fibre, based on 

the assumptions of equal stress of the fibre and matrix in the composites.  

mffm

mf
c VV σσ

σσ
σ

+
=                                                                                           (11) 

where Vf  and Vm are the volume fractions of the fibre and matrix, respectively, σc 

is the composite tensile strength, σf  is the mean fibre tensile strength of the fibre 

and σm is the matrix stress when the fibres reach their ultimate tensile stress in the 

composite. Alternatively, σm can also be taken as the matrix stress at the failure 

strain of the composite. The fibre and matrix volume fraction (Vf and Vm,) can be 

calculated from the fibre weight fraction (Wf) using the following equations [88]: 
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                                                                                     (12)                               

 fm VV −= 1                                                                                                         (13)                              

where ρf  and ρm  are density of fibre and matrix respectively. 

 

2.8.2 Hirsch Model 

This model is in fact a combination of the parallel and series models, and 

introduces a parameter (x), relating to the efficiency of the fibre-matrix interface 

[89]: 

( ) ( )
mffm

mf
ffmmc VV

xVVx
σσ
σσ

σσσ
+

−++= 1                                                    (14) 

It is assumed that x is determined mainly by fibre orientation, fibre length and 

stress amplification at the fibre ends. The efficiency factor x cannot be derived by 

mathematical means, and is instead empirically fitted to the model.  



                                      Chapter 2: Literature Review 
 

 

   64 
 

2.8.3 Modified Rule of Mixtures (Kelly-Tyson Model) 

The rule of mixtures model was further modified by Kelly and Tyson [87] to 

predict the strength of axially aligned discontinuous fibre composites, taking into 

account the strength contribution of fibres and also whether the average fibre 

length (L) is greater than the critical fibre length (L> Lε ) or less than the critical 

fibre length (L< Lε ). 

 

The critical fibre length (Lε) can be calculated using the following equation Eq (15)  

                                                                                               (15a) 

  

                                                                                                   (15b) 

 

 

where Ef  is Young’s modulus of fibres εc  is composite strain, D is the mean fibre 

diameter (D), τ is the interfacial shear strength and σf is mean fibre tensile strength. 

Fibres shorter than Lε carry an average stress EfεcL/2Lε (σf L/2Lε ) and fibres longer 

than Lε carry an average stress Efεc (1- Lε /2Lε).  ( σf (1- Lε /2Lε) ). 

 

Thus, the tensile strength (σc) of composites containing fibres shorter than Lε (L< 

Lε) is given by: 
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and the tensile strength of composites containing fibres longer than Lε (L≥ Lε) is 

given by: 

mmffc V
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The Kelly-Tyson model only accounts for composites with all fibres aligned in the 

loading direction, and the equation cannot be integrated to give a factor which 
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accounts for the complex fibre orientations in many moulded thermoplastic 

composites. 

 

2.8.4 Bowyer-Bader Model 

Bowyer and Bader proposed a model based on the Kelly-Tyson modified rule of 

mixtures where the tensile strength of a composite with discontinuous off-axis 

fibre could be determined from the sum of sub-critical and super-critical fibre 

strength contributions (taking into account a fibre orientation) and the matrix 

contribution [90], as can be seen in Equation (18). 

( ) ZYXKc ++= 1σ                                                                                           (18) 

where X is the contribution from the subcritical fibres, Y is the contribution from 

the supercritical fibres, Z is from the matrix and K1 is a fibre orientation factor. 

The individual terms can be expanded as follows: 
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where V  is the volume fraction of the fibre lengths, L, subscripts i and j refer to 

the sub-critical and super-critical lengths, respectively. Em is the Young’s modulus 

of the matrix and Vf is the total fibre volume fraction.  

 

2.8.4.1 Determination of Interfacial Strength (IFSS) and Orientation Factor 

(K1) of Short Fibre Composites Using Bowyer-Bader Model 

As well as prediction of tensile strength of short fibre composites the Bowyer and 

Bader model can be used to determine the micromechanical parameters of 

interfacial shear strength IFSS (τ) if the macromechanical tensile stress-strain 

curve and fibre length distribution are known. This model has an enormous 

attraction in that it utilizes data which are readily available from standard tensile 

testing of composites and requires only the extra determination of fibre length 

distribution. The basic premise of the Bowyer and Bader model is that at any 

value of composite strain, εc, there is a critical fibre length Lε [88, 90, 91, and 92]  

 

For a practical system, Ef, Em, and D can be readily obtained. The fibre length 

distribution can be determined from direct measurements on the extracted fibres. 

Although K1 and τ are not generally known, values for these factors can be 

obtained if the composite stress (σ1 and σ2) at two strain values (ε1 and ε2) are 

known. Values of two strains ε1 and ε2 need to be selected and the corresponding 

stresses σ1 and σ2 determined from the tensile stress-strain curve. The matrix 

contribution (Z) can be calculated from an independent matrix Young’s modulus 

determination and used to calculate the ratio R of the fibre load bearing 

contributions at the two selected strain ε1 and ε2 strains: 

                                                                                                  (22) 

 

which according to equation (13) should be equivalent to R′ as follow:   
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                                                                                               (23) 

 

An assumed value of τ is initially taken and the corresponding value of Lε1 and Lε2 

are calculated. The fibre contribution terms X and Y are evaluated using the 

assumed values of τ and the corresponding Lε1 and Lε2 for the measured fibre 

length distribution. The ratio of R′ is calculated by Eq.(23). The assumed value of 

τ is adjusted until R′=R. This value of τ is assumed to be correct and K1 is 

determined from Eq. (18).  

 

2.8.4.2 Assumptions of Bowyer-Bader Model  

Similar to all other models, the Bowyer and Bader model also involves a number 

of assumptions. These include [88]: 

• Stress transfer at the interface increases linearly from zero at the fibre ends 

to a maximum value 

• Fibre-matrix debonding does not occur 

• K1 is independent of strain and a constant for all fibre lengths 

• Interfacial shear stress is independent of loading angle 

• Porosity in the composite is negligible 

• Fibre and matrix stress versus strain curves are linear 

Strengths of this model include the consideration of an orientation factor, as well 

as the super-critical and sub-critical length distributions of fibres extracted from 

an actual composite.  

 

2.8.5 Modified of Rule of Mixtures by Taking Account of Void Content 

Prediction of composite strength requires knowledge of the content of different 

components in a composite. It is commonly based solely on the content of 

reinforcement fibre and matrix material as for the simple “rule of mixtures”. 

22
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However, a large amount of voids are commonly present in plant fibre composite 

laminates produced by commercial manufacturing processes, which should be 

expected to considerably influence tensile properties of the composites by 

introducing inhomogeneous stress concentrations in the loaded composites 

materials [93] Therefore, it would make sense to take account of void volume 

content, as well as fibre volume content and matrix volume content for predicting 

the tensile strength of composites. Based on a theoretical study adding spherical 

holes into materials, the effect of voids on an axially aligned long fibre composite 

tensile strength can be taken into account by the  term (1-Vp)n [20,94,95] and the  

simply “rule of mixtures” (Eq 10)  can be modified as follows:  

n
pmmffc VVV )1)(�i −+= σσσ                                                                           (24) 

where σf  is the mean fibre tensile strength of the fibre and σm is the matrix stress 

at the fibre failure strain. Alternatively, σm can also be taken as the matrix stress at 

the failure strain of the composite. Vf , Vm and Vp are the volume fractions of the 

fibre and matrix and void, respectively. n=0 relates to a homogeneous stress 

concentration, and n>0 is used when the inhomogeneous stress-concentration 

pattern decreases the composites strength σc.  The correction factor for hemp fibre 

composites had been investigated elsewhere such that a value n=2.1 was found, 

giving [20, 94 and 96]: 

1.2)1)(�i pmmffc VVV −+= σσσ                                                                         (25) 

Void content can be determined using ASTM Standard Test Methods for Void 

Content of Reinforced Plastics [97] using the following equation: 
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where Vp is void content of the composite (%),  ρc is measured density of the 

composite (g/cm3), wm is matrix content (weight %), ρm is resin density (g/cm3), wf  

is fibre content (wt.%) and ρf  is fibre density (g/cm3). The value of Vf, Vm are 

calculated according the following Eqs (27, 28) [98]. 
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For this method, density of fibre (ρf ), matrix (ρm) and composite (ρc), weight 

fraction of fibre (wf ) and matrix (wm) after processing are required to be 

accurately measured. The exact weight content of fibre (wf ) can be determined by 

dissolving the PP/MAPP matrix with xylene and applying gravimetric 

measurements [18]. The weight content of matrix (wm) could be calculated using 

Eq (29) based on the weight content of fibre (wf ) as follows: 

fm ww −= 100                                                                                                  (29)
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Chapter 3: 
Materials and Methods 

 
3.1 Introduction  
The main objective of this research was to produce improved interfacial bonding 

between hemp fibre and polypropylene. In order to achieve this purpose, bag 

retting and white rot fungi treatments and chelator/enzyme treatments were 

performed on hemp fibre to improve fibre separation, remove noncellulosic 

compounds, and roughen the fibre surface (in the case of bag retting and white rot 

fungi treatments), therefore, improve fibre and matrix interfacial bonding and 

increase composite strength when the fibre was combined with a polypropylene 

matrix.  

 

Characterization techniques, namely wet chemical analysis, visual inspection, FT-

IR, scanning electron microscopy (SEM), X-ray diffraction (XRD), fibre density 

assessment, thermal analysis, zeta potential, and single fibre tensile testing were 

used to elucidate the effect of treatment on hemp fibres. Wet chemical analysis 

and FT-IR were used to assess the chemical compounds in the fibre and visual 

inspection was used to investigate the separation of the fibres. SEM provided a 

means of examination of the surface morphology of hemp fibres. XRD was used 

to show modification of the crystallinity of fibre. Fibre density assessment was 

used to monitor the change in density after treatments. Thermal analysis was used 

to obtain information about the thermal stability of the fibre. Zeta potential 

analysis was used to monitor the chemical surface properties of fibre. Single fibre 

tensile testing was used to obtain the tensile properties of untreated and treated 

fibres.  
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Chopped treated and untreated fibres, polypropylene and maleated polypropylene 

(MAPP) coupling agent were compounded using a twin-screw extruder, and then 

injection moulded into composite tensile test specimens. All composites were then 

tensile tested to determine their strength and stiffness. The single fibre pull-out 

test was used to assess the interfacial shear strength (IFSS) of short fibre 

composites. Fibre length distribution and fibre diameters after processing were 

measured in order to calculate IFSS of short fibre composite using the Bowyer 

and Bader model. 

 

An improved composite manufacturing technique was investigated for fabricating 

long hemp fibre composite laminate specimens. Film stacking and hot-press 

forming was used, in which hemp fibres were layered on a PP film and PP and 

MAPP powder was spread over the hemp fibre layer. Layers of PP film, 

PP/MAPP powder and hemp fibre were stacked alternately, and then this stack 

was compressed in a hot-press. All composites sheets were analysed to evaluate 

their tensile strength and Young’s modulus. Composite density and the exact fibre 

weight content after processing were measured in order to predict the tensile 

strength of long fibre composite sheets using a model taking account of void 

content. 

 

3.2 Materials 
Industrial hemp (Cannabis sativa L.) grown in Hamilton New Zealand was used 

in this investigation.  The hemp had been initially planted at a density of 65 plants 

per square metre. After harvesting in 2007, green non-retted hemp bast fibres 

strips were separated from the stalk by hand and dried on shelves and prepared for 

fibre treatments.  
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White rot fungi Phanerochaete sordida (D2B), Pycnoporus species (Pyc) and 

Schizophyllum commune (S.com), which were used for fungal treatments, were 

kindly supplied by the Biology Department at the University of Waikato. For the 

chelator/enzyme treatments, EDTMP.Na5 (Ethylene Diamine Tetra (Methylene 

Phosphonic Acid Pentasodium salt), a sodium salt of EDTMP was kindly supplied 

by Taian Waste Water Treatment Factory in China. Pectinase (P2401) from 

Rhizopus, and laccase (53739) from Trametes versicolor, were purchased from 

Sigma. HBT (1-hydroxybenzotriazole hydrate), a mediator, was also purchased 

from Sigma. 

 

Polypropylene (Icorene® PP CO14RM) with a density of 0.9g/cm3, supplied by 

Aldrich Chemical was used as the composite matrix. The polypropylene film, 

which was used to fabricate long fibre composites sheets, kindly made by Sealed 

Air Company in Hamilton, New Zealand with the same polypropylene powder. A-

C 950P, a high molecular weight maleated polypropylene (MAPP), supplied by 

Honeywell International Inc, USA, was used as the coupling agent. 

 

3.3 Experimental Methods 
3.3.1 Bag Retting and Fungal Treatments 

For bag retting, the fresh green non retted hemp fibres were kept in a sealed 

plastic bag for one to two weeks to allow natural retting to occur under sealed 

conditions. For white rot fungi treatments, the dried non-retted hemp fibres were 

sterilised using gamma radiation of 26.0 kGy (kilogray) in sealed sterilisation 

bags. Irradiated hemp fibres were then inoculated with white rot fungi (D2B, Pyc 

and S.com) for two weeks, with fungi: hemp ratio of approximately 10mg fungi: 

12g irradiated hemp. Water was added for all fungal treatments and bag retting to 

give a moisture content of 60wt%. Details of bag retting and fungal treatments are 

presented in Table 3.1. After bag retting and fungal treatments, treated fibres were 
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washed for 10 minutes in water and dried in an oven at 80oC until equilibrium 

moisture content was achieved. 

 

Table 3.1: Description of bag retting and white-rot fungi treatments 
Treatment (Ab.) Description  

Raw Green non-retted hemp fibres separated by hand after 

harvesting and shelf drying 

1 week  ret Fresh green non-retted hemp fibres with 60% moisture 

sealed in plastic bag for 1 week at room temperature 

2 weeks  ret Fresh green non-retted hemp fibres with 60% moisture 

sealed in plastic bag for 2 weeks at room temperature  

D2B  Irradiated hemp fibres with 60% moisture incubated with 

D2B for 2 weeks at 27oC 

Pyc Irradiated hemp fibres with 60% moisture incubated with 

Pyc for 2 weeks at 27oC  

S.com Irradiated hemp fibres with 60% moisture incubated with 

S.com for 2 weeks at 27oC  

 

 

3.3.2 Chelator and Enzyme Treatments 

Treatment of the green non-retted fibres was achieved by immersing the fibres in 

solutions (fibre: solution = 10g: 200ml) consisting of either EDTMP.Na5 or 

enzyme (see table 3.2).  Fibres were then washed for 10 minutes in water and 

dried in an oven at 80oC until an equilibrium moisture content was achieved. 
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Table 3.2: Description of chelator/enzyme treatments 
Treatment(Ab.) Description 

Raw The green non-retted hemp fibres are separated by hand after 

harvesting and dried on the shelf 

P Pectinase (100 units) adjusted to a pH of 8 with NaOH at 50 oC  

for 6h at shake rate of 50 U/min 

L Laccase (100 units) with mediator HBT (300uM) adjusted to a 

pH of 4.5 with acetic acid at 50oC for 6h at shake rate of 50 

U/min 

E EDTMP.Na5 (5g/l)  adjusted to a pH of 11 with NaOH at 60 oC 

for 6h 

E2 EDTMP.Na5 (10g/l) adjusted to a pH of 11 with NaOH at 60 oC  

for 6h 

E+P Treatment E, washed, air-dried and then treatment P 

E+L Treatment E, washed, air-dried and then treatment L 

 

 

3.3.3 Analytical Techniques for Natural Fibres 

Several methods, such as wet chemical analysis, visual inspection, FT-IR, SEM,  

XRD, fibre density test, zeta potential, thermal analysis and single fibre tensile 

testing are suitable for analyzing natural fibre. 

 

Wet Chemical Analysis of Fibre 

The chemical analysis of the untreated and treated hemp fibres was carried out 

according to GB 5881-86 (National Standard of China for Ramie Chemical 

Analysis). This gravimetric method involved the degradation and extraction of 

wax, water-soluble components, pectin and hemicellulose in the hemp fibres. 

Following is the detailed explanation for chemical analysis.  
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1. Method for determination of wax content 

The raw hemp sample of 5 g was weighed out and corrected for dry matter. Then 

the sample was extracted with 150ml benzene/ethanol (2:1) solution for 3 h in a 

soxhlet apparatus to remove waxes. After extraction the sample was dried 

overnight at 105oC and was weighed out again. Wax was determined by weight 

loss: 

 

%100(%)
0

10
1 G

GG
W

−
=                                                                                      (30) 

 

W1: wax content (%)  

G0: raw material (g)  

G1: residue after wax extraction (g)  

 

2. Method for determination of water soluble material 

The residue after wax extraction was placed in a beaker and boiled for an hour in 

150ml distilled water, after which the distilled water was replaced with fresh 

distilled water and boiled for another 2 hours. The sample was washed using a 

filter and dried overnight at 105oC before final weighing. The water soluble 

material determined by weight loss: 

 

%100(%)
0

21
2 G

GGW −
=                                                                                     (31) 

 

W2: water soluble material content (%) 

G2: residue after water soluble material extraction 
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3. Method for determination of pectin  

The residue after water soluble material extraction was placed in a beaker and 

boiled for 3 h in 150ml, 5g/l ammonium oxalate solution, and then the sample was 

washed using a filter and dried overnight at 105oC before final weighting. The 

pectin determined by weight loss: 

 

%100(%)
0

32
3 G

GG
W

−
=                                                                                    (32) 

 

W3: pectin content (%) 

G3: residue after pectin extraction 

 

4. Method for determination of hemicellulose 

The residue after pectin extraction was placed in a beaker and boiled for 3 h in 

150ml, 20g/l NaOH (sodium hydroxide) solution, and then the sample was 

washed using a filter and dried overnight at 105oC before final weighing. The 

hemicellulose determined by weight loss: 

 

%100(%)
0

43
4 G
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−
=                                                                                    (33) 

 

W4: hemicellulose content (%) 

G4: residue after hemicellulose extraction 

 

5. Method for determination of lignin 

The residue after wax extraction was cut into 1.5mm lengths. 1 g of sample was 

weighed and placed in a beaker. The sample was then treated with 72% sulphuric 

acid for 24h to destroy the cellulose, leaving a fraction comprised of lignin and 

ash. After sulphuric acid treatment, the sample was boiled for 1 h in 300ml 
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distilled water, and then the sample was washed using a filter and dried overnight 

at 105oC before final weighing. The lignin was determined by weight loss: 

 

%100(%)
0

5
5 G

G
W =                                                                                             (34) 

 

W5: lignin content (%) 

G5: residue after 72% sulphuric acid treatment 

G0: residue after wax extraction (1g) 

 

FT-IR Spectra 

Prior to FT-IR testing, sample discs were prepared by first mixing 2 mg of dried 

sample with 150 mg of KBr in an agate mortar and then pressing the resulting 

mixture successively at 8 tonnes /cm2 for 5 min. FT-IR spectra for the untreated 

and treated fibres were then recorded between 4000 and 400 cm -1 using a BIO-

RAD FTS-40 FTIR instrument. 

 

Scanning Electron Microscopy (SEM) 

Prior to SEM evaluation, the sample was coated with using plasma sputtering to 

avoid the sample becoming charged under the electron beam. SEM micrographs 

of treated and untreated fibre surfaces and fracture surface of composite tensile 

test specimens were then taken using a Hitachi S-4100 field emission scanning 

electron microscope, operated at 5 kV.  

 

X-Ray Diffraction 

Fibre was cut finely to produce a powder, pressed into a disk and analysed using a 

Phillips X'Pert-MPD system over a range of 2θ values from 10 to 50o at a 

scanning speed of 0.03 o/s. 
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Fibre Density Test 

Hemp fibre density was measured in accordance with the ASTM Standard Test 

Method for Density of High-Modulus Fibers [99]. The Archimedes test using 

canola oil as an immersion fluid was chosen. Fibre was dried at 60oC for 72 hours 

and a minimum of 0.5g of fibre sample was placed in a vacuum desiccator for 5 

minutes to remove trapped air from between fibre cells. After determination of 

density of canola oil, the fibre was completely immersed in canola oil and a 

reading of mass was taken (see Figure 3.1). The difference in weight of the fibre 

sample in air and in canola oil is the buoyancy force. This force was converted to 

fibre sample volume by dividing it by canola oil density. The fibre sample weight 

in air divided by the sample volume equals the fibre sample density. The average 

fibre density was obtained based on 5 specimens for each fibre. 

 

Figure 3.1: Density apparatus  
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Thermal Analysis 

Untreated and treated fibre samples weighing between 6 and 13 mg were analysed 

using an Instruments SDT 2960 thermal analyzer (see Figure 3.2) operated in a 

dynamic mode, heating from ambient temperature to 773K at 10K/min in air 

purged at 150 ml/min with an empty pan used as a reference.  Differential thermal 

analysis (DTA) curves and thermal gravimetric analysis (TGA) curves were 

obtained. 

 
Figure 3.2: SDT 2960 Simultaneous DTA-TGA analyser 

 

Zeta Potential 

The SZP 06 streaming potential system was used to measure the zeta potential of 

hemp fibres. 5 g of fibre was added to 500 ml 0.001 mol/L KCl solution. The pH 

was varied by adding HCl or KOH to the fibre solution. The solution was placed 

in the electrophoresis cell and a voltage applied via the electrodes. Five readings 

were obtained at each pH value. 
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Single Fibre Tensile Testing 

Single hemp fibres from each treatment were tensile tested in accordance with the 

ASTM Standard Test Method for Tensile Strength and Young’s Modulus for 

High-Modulus Single Filament Materials [100]. Fibres were separated by hand 

and mounted on cardboard mounting–cards with 10mm holes. A small amount of 

PVA glue was applied to the two edges on either side of the hole to hold the fibres 

in place and allowed to dry for a few hours (see Figure 3.3). 

 

 

 

Figure 3.3: Single fibre mounting [18]. 

 

Fibre diameters were then measured (average of 6 reading equally spaced along 

fibre) using an optical microscope at 200x magnification. The mounted single 

fibres were then individually placed in the grips of an Instron-4204 tensile testing 

machine (see Figure 3.4) and the supporting sides of the mounting card cut using 

a hotwire cutter. The fibres were then tensile tested to failure at a rate of 

0.5mm/min using a 10N-load cell. Average strength values were obtained using 

results from twenty specimens. The determination of Young’s modulus of hemp 

fibres was obtained as described by Beckerman G [18], using a correction factor 

to determine the true displacement of the fibre, which, in turn, involves the 

calculation of the testing system compliance (Cs).  



                                   Chapter 3: Materials and Methods 
 

 

   81 
 

 

Figure 3.4: Instron-4204 tensile testing machine 

 

The Single Fibre Pull-Out Test 

A silicone rubber mould was made for preparing single fibre pull-out specimens. 

The mould was 12mm long, 10mm wide, and 3mm deep with a 6mm hole 

punched in the centre of the top face of the mould, with a slot cut to a depth of 

2mm connecting from the centre of the outer length to the punched hole. White 

rot fungi treated and untreated fibres were separated from their fibre bundles by 

hand and then a single fibre was carefully placed in the slot of the mould (Figure 

3.5). The single fibre diameter and the length inside the hole were measured by 

placing the silicone rubber mould under an optical microscope with a calibrated 

eyepiece. After measurement, the silicone rubber mould was place on a TeflonTM 
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coated steel plate with PP powder and 3% MAPP added into the hole. The steel 

plate and mould was placed in an oven at 180oC for 10 minutes to ensure melting 

of the matrix. After cooling, the free end of the fibre was placed on a 2mm thick 

cardboard mounting card, and attached using PVA adhesive. The single fibre pull-

out specimen was placed in the grips of an Instron-4204 tensile machine. The 

fibres were then loaded at a rate of 0.5 mm/min using a 10N-load cell. Average 

pull out forces were obtained based on twenty specimens.  

 

 
 
Figure 3.5: The single fibre pull-out specimen 
 

3.3.4 Composite Fabrication 

3.3.4.1 Extrusion and Injection Moulding of Short Fibre Composite  

Fibre was guillotined into 10mm lengths. Fibre, polypropylene and maleated 

polypropylene (MAPP) coupling agent were dried at 70oC for 48 hours, and then 

compounded to give a content of 3wt% MAPP and 40wt% fibre using a 

ThermoPrism TSE-16-TC twin-screw extruder (Figure 3.6). The extruder barrel 

consisted of 5 heating zones, which were set at 80oC (barrel entrance), 110oC, 

Hemp Fibre 

PP/MAPP 
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155oC, 180oC, and 175oC (barrel exit). The twin co-rotating screws were operated 

at 160 revolutions per minute (rpm). After air-cooling, the extruded composite 

material was pelletised to give dimension ranging from 1mm to 5mm, dried at 

70oC for a further 48 hours and then injection moulded using a BOY 15-S 

injection moulder (Figure 3.7) into Type 1 tensile test specimens (as specified by 

the ASTM D638-91 standard).  

 

Figure 3.6: ThermoPrism TSE-16-TC twin-screw extruder 

 

 Figure 3.7: BOY15-S injection-moulding machine 

 

3.3.4.2 Film Stacking and Hot Press of Long Fibre Composite Sheet 
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Chelator EDTMP.Na5 (E2) and white rot fungi (S.com) treatments were applied 

to hemp fibre to separate its bundles and remove non-cellulosic compounds. After 

treatment, long untreated and treated hemp fibre composite laminate specimens, in 

which hand carded fibre ran through the entire test specimen length, were 

fabricated by film stacking and hot-press forming. Hemp fibres were oriented in 

the axial direction (0o) on a PP film, and PP and MAPP powder was spread over 

the hemp fibre layer. Each stack consisted of four layers of PP film and three 

layers of hemp fibre with PP/MAPP powder distributed amongst the fibre as 

shown in Figure 1. Hemp and PP/MAPP layers were weighed using a precision 

balance to give a composition of 57wt% PP, 3wt% MAPP and 40wt% fibre. The 

stack was sandwiched between two aluminium plates, which were then 

compressed in a hot-press. A pressure of 10 Pa was applied for 10 minutes at a 

temperature of 170oC. The resulting composite sheets were cut into tensile test 

specimens.  

 

Figure 3.8: Layers of thermoplastic sheet, PP/MAPP powder and hemp fibre  
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3.3.5 Assessment of Composite  

3.3.5.1 Composites Tensile Strength Testing  

Short fibre and long fibre composite specimens were conditioned at 20oC and 

50% relative humidity for 48 hours prior to tensile testing. The composite 

specimens were then tested according to the ASTM Standard Test Method for 

Tensile Properties of Plastics [101] using an Instron-4204 tensile testing machine 

with a 5kN load cell, operated at a rate of 5mm/minute. An Instron 2630-112 

extensometer was used to measure the strain for 12 specimens of each composite 

type. 

 

3.3.5.2 Fibre Length Distribution and Fibre Diameter 

To assess the fibre length distribution and fibre diameters after injection moulding, 

fibres were extracted from composites using boiling in xylene dissolve the matrix. 

Approximately 5g of composite was boiled in 150ml of xylene (135oC) for 20 

minutes to enable the extraction of the fibres from the composite. The extracted 

hemp fibres were separated by filtration, washed using 100ml of xylene, and dried 

in an oven. Dried fibres were dispersed on a glass slide for observation under an 

optical microscope. About 1000 fibres for each composite sample were examined 

and their measurements were statistically analyzed. 

 

3.3.5.3 Composite Density 

Composite density was measured in accordance with ASTM Standard Test 

Methods for Density and Specific Gravity (Relative Density) of Plastics by 

Displacement [102]. Distilled water was chosen as an immersion fluid and was 

rendered air-free by boiling and cooling. 2 g of long fibre composites specimen 

completely immerse in water and any bubbles adhering to the specimen, sample 

holder, or sinker were removed by rubbing them with a wire, and then a specimen 

mass reading was taken. The sample volume was calculated from the ratio of 

masses in air and in water. Composite density was then calculated from the 
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sample weight in air divided by the sample volume. Average composite density 

was obtained based on 5 specimens for each long fibre composite. 

 

3.3.5.4 Fibre Weight Content 

To assess the exact fibre content after hot-pressing, composites were extracted by 

boiling in xylene to dissolve the matrix. 5g of composite (w1) was boiled in 150ml 

of xylene (135oC) for 20 minutes to enable the extraction of the fibres from the 

composite. The extracted hemp fibres were separated by filtration, washed using 

100ml of clean xylene, and dried in an oven. Dried fibres were applied 

gravimetric measurements (w2) and the fibre weight fraction (wf) was calculated 

by following equation: 

100
1

2 ×=
w
ww f                                                                                                    (35) 

The average fibre content was obtained based on 3 specimens for each fibre 

composite. 
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Results and Discussion 
4.1 Bag Retting and White-Rot Fungi Treatments  
Bag retting and white-rot fungi treatments were used to achieve the following 

objectives: 

• Separation of hemp fibres from their fibre bundles 

• Removal of non-cellulosic compounds in hemp fibres 

• Roughening of the hemp fibre surface 

 

4.1.1 Separation of Bag Retted and White Rot Fungi Treated Fibre 

Figure 4.1.1 is the digital picture for untreated and bag retted and white rot fungi 

treated fibres, which shows that the untreated fibre exists in fibre bundles and the 

treated fibres show good fibre separation. This supported the removal of non-

cellulosic compounds like pectin, which is responsible for bundling fibre together, 

leads to separate the fibres from their bundles. It should be noted that the treated 

fibre retained parallel orientation during the fungal treatment and bag retting and 

are thereby useful for composites with long and aligned fibres.  
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Figure 4.1.1: Digital pictures for untreated, bag retted (1 week and 2 weeks) 

and white-rot fungi treated fibre 

 

4.1.2 Wet Chemical Analysis of Bag Retted and White Rot Fungi Treated    

Fibre 

Table 4.1.1 shows the results of wet chemical analysis carried out on untreated 

and treated hemp fibres. All treatments reduced the amount of wax, pectin, 

hemicellulose and lignin in the fibre compared to the amounts in the untreated 

fibre. All the white rot fungi treatments appeared generally to remove more lignin 

than the bag retting treatments, which supported the ability of white rot fungi to 

selectively degrade lignin. All treated fibres were lighter in colour than the 

untreated fibre further supporting the removal of lignin as discussed in Section 

2.1.6.  

Raw 

Pyc 

1 week 

S.com 

2 weeks 

D2B 
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Table 4.1.1: Result of wet chemical analysis for untreated, bag retted and 

white-rot fungi treated fibre 

Treatment(Ab.) Wax 
(%) 

Pectin (%) Hemicellulose 
(%) 

Lignin 
(%) 

Colour of 
fibre 

Raw  2.3 6.2 18.4 6.8 green

1 week   0.4 4.8 17.2 6.0 light

2 weeks   0.2 3.2 16.5 4.2 lighter

D2B 0.3 2.7 15.0 3.5 lighter

Pyc 0.4 3.4 13.8 3.5 lighter

S.com 0.3 1.8 13.5 4.1 lighter

 

4.1.3 FT-IR Spectra of Bag Retted and White Rot Fungi Treated Fibre 

Figure 4.1.2 shows FT-IR spectra for untreated and treated fibres. The peak 

around 1736 cm -1, which can be attributed to the presence of the carboxylic ester 

in pectin and wax, shows a significant reduction for the two week bag retting 

treatment and the white rot fungi treated fibres supporting removal of pectin and 

wax. Fibres from the one week bag retting treatment did not show significant 

reduction at the 1736 cm -1 peak, probably because the retting time was too short 

to allow bacteria and fungi to modify pectin effectively. The range from 3000cm-1 

to 3600cm-1 corresponds to OH stretching vibrations, mainly attributed to 

cellulose and lignin; after treatment, the relative intensities at 3600-3000cm-

1decreased, which suggests the treatments have removed lignin. The peak around 

1268 cm-1, which represents the COO stretching in lignin, had disappeared in the 

2 week bag retted and the white rot fungi treated fibres. This disappearance is 

likely to be due to the degradation of lignin. Thus, the change in the composition 

of treated fibre can be appreciated in the infrared spectra, which further supports 

the chemical analysis results. 
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Figure 4.1.2: FT-IR spectra of untreated, bag retted and white-rot fungi 

treated fibre  

4.1.4 Morphology of Bag Retted and White Rot Fungi Treated Fibre  

The change in the surface morphology of the treated fibre was studied by 

scanning electron microscopy (SEM). Figure 4.1.3-4.1.8 present SEM 

micrographs of untreated and treated fibres. Examination of the untreated fibres 

(Figure 4.1.3) shows that they are coated with non-cellulosic material. Treatments 

with white rot fungi and bag retting led to relatively clean surfaces (see Figures 

4.1.4-4.1.8) which supports the removal of wax, pectin, lignin and hemicelluloses 

as supported by FT-IR and chemical analysis. Unfortunately, the resolution of the 

available SEM was inadequate to detect fine holes caused by fungal hyphae 

attacking fibre walls on treated fibre surfaces, as seen with High-resolution Cryo-

Field Emission Scanning Electron Microscopy (HR-Cryo-FE -SEM) elsewhere 

(see section 2.5.3).  
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Figure 4.1.3: SEM of untreated hemp fibre 

 

Figure 4.1.4: SEM of 1 week bag retted hemp fibre 



                                   Chapter 4: Results and Discussion 
 

 

   92 
 

 

Figure 4.1.5: SEM of 2 weeks bag retted hemp fibre 

 

Figure 4.1.6: SEM of D2B treated hemp fibre 
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Figure 4.1.7: SEM of Pyc treated hemp fibre 

 

Figure 4.1.8: SEM of S.com treated hemp fibre 
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4.1.5 X-Ray Diffraction of Bag Retted and White Rot Fungi Treated Fibre 

The X-ray diffraction patterns of green untreated and treated hemp fibre are given 

in Figure 4.1.9. The major peaks observed for all fibre samples are at 2θ 

diffraction angles of 15.1, 16.88 and 22.82o representing ( 011
−

), (110) (merged in 

some cases) and (200) planes indicating the presence of Type I cellulose. Table 

4.1.2 presents the crystallinity index calculated according to the Segal empirical 

method (Eq.3 in Section 2.5.4.2).The crystallinity index was found to increase for 

all fibre treatments, particularly for white rot fungi treatments. This increase could 

be related to the removal of non-cellulosic compounds, as supported by FT-IR and 

chemical analysis, which would allow better packing of the cellulose chains. 
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Figure 4.1.9: X-ray diffraction traces for untreated and bag retted and white 

rot fungi treated fibre 
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Table 4.1.2: Crystallinity index of untreated, bag retted and white-rot fungi 

treated fibre  

Treatment(Ab.) Crystallinity index (%) 

Raw  66.56 

1 week  84.34 

2 weeks  85.27 

D2B 88.45 

Pyc 87.36 

S.com 88.53 

 

 

4.1.6 Density of Bag Retted and White Rot Fungi Treated Fibre 

Densities of untreated and treated fibre were measured and the results are shown 

in Table 4.1.3. The density of untreated fibre was (1.525g/cm3) lower than that of 

treated fibre, which is expected for untreated fibre contained less crystalline 

cellulose and more noncellulosic compounds than treated fibres as discussed in 

Section 2.5.5 and as supported by wet chemical analysis and FT-IR. However, it 

should be noted that the differences are not statistically significant. 
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Table 4.1.3: Density of untreated, bag retted and white-rot fungi treated fibre  

Treatment(Ab.) Fibre density (g/cm3)  

Raw  1.525±0.0156 

1 week  1.530±0.0173 

2 weeks  1.536±0.0148 

D2B 1.529±0.0211 

Pyc 1.534±0.0183 

S.com 1.535±0.0103 

 

4.1.7 Thermal Analysis of Bag Retted and White Rot Fungi Treated Fibre 

The thermal properties of the treated and untreated hemp fibres were studied by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DTA). 

DTA curves were found to have three exothermic peaks coinciding with regions 

of weight loss observed using TGA as shown in Figures 4.1.10 and 4.1.11 for 

untreated and treated fibres. The initial temperature of decomposition and 

activation energy for different treatments are summarised in Table 4.1.4. The 

initial temperature of decomposition was obtained from the first exothermic peak, 

where the fibres begin to decompose. The activation energy was calculated for the 

first exothermic reaction, relating to the main fibre degradation step, by the 

Broido equation (Eq.4 and 5 in Section 2.5.6.2). The untreated hemp fibre started 

to degrade at about 523K, however, this value increased for all the treated fibres. 

The activation energy of untreated fibres was 106 kJ/mol, which increased for 

treated fibres to between from 111 to 127 kJ/mol, with D2B treated fibres having 

the highest activation energies (127 kJ/mol). The results suggested an increase in 

thermal stability for the treated fibres likely to be due to the reduced amount of 

non-cellulosic material and increased crystallinity. 



                                   Chapter 4: Results and Discussion 
 

 

   97 
 

-5

0

5

10

15

20

25

300 350 400 450 500 550 600 650 700 750 800

Temperature (K)

T
em

pe
ra

tu
re

 D
iff

er
en

ce
 (%

)

Raw

1 week

2 weeks
S.com

Pyc
D2B

 

Figure 4.1.10: DTA curve of untreated, bag retted and white-rot fungi 

treated fibre showing exothermic peaks 
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Figure 4.1.11: TGA curve of untreated, bag retted and white-rot fungi 

treated fibre showing three major weight loss regions 
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Table 4.1.4: Summary of thermal analysis for untreated, bag retted and 

white-rot fungi treated fibre 

Treatment   Initial temperature of 

decomposition (K) 

Activation  

energy(kJ/mol) 

Raw 523 106 

1 week 540 111 

2 weeks 543 124 

D2B 546 127 

Pyc 542 125 

S.com 547 125 

 

4.1.8 Zeta Potential of Bag Retted and White Rot Fungi Treated Fibre 

Zeta potential versus pH curves for untreated and treated fibres are shown in 

Figure 4.1.12. More negative values of zeta potential were generally obtained for 

treated fibres compared to the untreated fibre, suggesting they are more 

hydrophilic. Treatment of hemp fibre could affect the zeta potential through a 

number of competing processes which are discussed in Section 2.5.7. Removal of 

non-cellulosic material leading to exposure of more reactive hydroxyl sites would 

explain this increase of hydrophilicity. The action of fungal hyphae, which can 

produce fine holes in hemp fibre cell walls, would also be expected to make the 

fibre more susceptible to water absorption. On the other hand, an increase of the 

crystallinity index would be expected to reduce hydrophillicity and cause the zeta 

potential to become less negative. The fact that more negative values of zeta 

potential are obtained with fungal and bag rot treatments indicates that the 

influence of non-cellulosic compound removal and possible increased surface 

roughness is greater than the influence of higher crystallinity.  
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Figure 4.1.12: Zeta potential of untreated, bag retted and white-rot fungi 

treated fibre  

 

4.1.9 Tensile Strength and Young’s Modulus of Untreated, Bag Retted and 

White Rot Fungi treated Fibre 

The tensile properties of white rot fungi and bag retted treated fibres decreased 

compared to untreated fibre as shown in Table 4.1.5 and Figure 4.1.13, in which 

the tensile strength from the two week retting treatment, was reduced the most 

(about 50%) to 342 MPa, followed by 402 MPa for the one week retting treatment, 

410 MPa for S.com, 498 MPa for D2B and 512 MPa for Pyc. Hemp fibres can 

basically be considered as having rigid, crystalline cellulose microfibrils 

reinforcing an amorphous lignin and hemicellulose matrix; the tensile strength of 

hemp fibre is mainly influenced by its cellulose morphology. Removal of non-

cellulosic compounds by fungal enzymes, which increases the fibre cellulose 

crystallinity as shown in XRD, has been reported to increase tensile strength (see 

Section 2.5.4.3). However, fungal hyphae can also break into the plant fibres, and 
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make fine holes as they pass through the cell wall to bring about structural 

degradation of cellulose, although this effect was not observed with the available 

SEM as previously discussed. The reduction of tensile strength of the treated fibre 

indicates that the influence of degradation is greater than that of the increase in 

crystallinity for cellulose.  

 

Although, the Young’s modulus of treated and untreated fibres is invariant within 

experimental uncertainty, the trend suggests a slight decrease in fibre Young’s 

modulus for treated fibres (Table 4.1.5 and Figure 4.1.14). Highly cross-linking or 

branched lignin, pectin and hemicellulose provide a degree of structural integrity 

and rigidity, the removal of which could cause some reduction in fibre stiffness. 

 

Table 4.1.5: Tensile strength and Young’s modulus of untreated, bag retted 

and white-rot fungi treated fibre 

Treatment(Ab) Fibre tensile strength (MPa) Young’s modulus (MPa) 

Raw  666±84 24000±9300 

1 week  402±103 18200±9200 

2 weeks  342±122 17900±7800 

D2B 498±132 21600±8700 

Pyc 512±97 20300±9400 

S.com 410±110 22000±8500 
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Figure 4.1.13: Single fibre tensile strength of untreated, bag retted and white-

rot fungi treated fibre  
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Figure 4.1.14: Young’s modulus of untreated, bag retted and white-rot fungi 

treated fibre 
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4.2 Chelator/enzyme Treatments  

Chelator/enzyme treatments were carried with the following purposes: 

• Separation of hemp fibres from their fibre bundles 

• Removal of non-cellulosic compounds in hemp fibres 

 

4.2.1 Separation of Chelator/enzyme Treated Fibre 

Visual inspection highlighted that the untreated fibre existed in fibre bundles. The 

enzyme-only treated fibres (P and L) remained in their bundles, whereas E, E2, 

E+L and E+P treated fibres showed good fibre separation (see Figure 4.2.1). The 

lack of significant separation for the enzyme-only treatments indicates that the 

enzymes are too specific in their activity. It appears that neither the pectinase nor 

the laccase can break down the waxy layer to remove pectin in the middle lamella 

and lignin in the secondary wall. Therefore the current project did not investigate 

the enzyme-only treatments further. Good separation with EDTMP.Na5 

treatments and the combined EDTMP.Na5 and enzyme treatments was believed to 

be likely to have occurred due to the removal of calcium ions in the pectin as 

discussed in Section 2.1.6 and Section 2.4.1.5.1. Aligned fibres were easily 

produced by EDTMP.Na5 treatments and the combined EDTMP.Na5 and enzyme 

treatments and such fibres are considered useful for composites with long and 

aligned fibres.  
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Figure 4.2.1: Digital pictures for untreated and chelator/enzyme treated 

fibres 

 

4.2.2 Wet Chemical Analysis of Chelator/enzyme Treated Fibre 

Table 4.2.1 shows the results of wet chemical analysis carried out on untreated 

and treated hemp fibres. Treatments with E and E2 were found to reduce the 

amount of wax, pectin hemicellulose and lignin in the fibre compared to the 

amounts in the untreated fibre. It was noted that E2 with higher EDTMP.Na5 

concentration removed more pectin than E. The combined EDTMP.Na5 and 

enzyme treatments (E+P and E+L) reduced a little more of the non-cellulosic 

compounds than the EDTMP.Na5 treatment only (E, E2). Evidence of lignin 

removal was also obtained by a change in fibre colour; fibres with E, E2, E+P and 

E+L treatments were lighter in colour than the untreated fibre (see Table 4.2.1).   

Raw P L 

E E2 E+P E+L 
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Table 4.2.1: Wet chemical analysis of untreated and chelator/enzyme treated 

fibres 
Treatment  Wax 

(%) 

Pectin 

(%) 

Hemicellulose

 (%) 

Lignin 

(%) 

Colour 

of fibre 

Separate  

Raw 2.30 6.17 18.42 6.77 green no 

E 0.27 4.37 14.56 4.13 light yes 

E2 0.22 1.87 14.12 3.57 lighter yes 

E+P 0.22 3.52 13.95 4.01 lighter yes 

E+L 0.23 4.05 14.10 3.36 lighter yes 

 

 

4.2.3 FT-IR Spectra of Chelator/enzyme Treated Fibre 

FT-IR spectra revealing the classical peaks for all samples are presented in Figure 

4.2.2. Qualitatively, they appear similar; however, the peaks with distinct 

differences are around 1736 cm-1 and 1268 cm-1. The peak around 1736 cm-1 can 

be attributed to the presence of the carboxylic ester in the pectin and wax, and the 

peak at 1268 cm-1 to the COO stretching in lignin. The peak around 1736 cm-1 

shows a significant reduction for treated fibres indicating removal of pectin and 

wax. The range from 3000cm-1 to 3600cm-1 corresponds to OH stretching 

vibrations, mainly attributed to cellulose and lignin; after treatment, the relative 

intensities at 3600-3000cm-1decreased, which suggests the treatments have 

removed lignin. The peak around 1268 cm-1 seen in untreated fibres, no longer 

exists in the treated fibres, which is considered to be due to the degradation of 

lignin. 
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Figure 4.2.2: FT-IR spectra of untreated fibre and chelator/enzyme treated 

fibres 

 

4.2.4 Morphology of Chelator/enzyme Treated Fibre 

SEM micrographs of the surfaces of chelator/enzyme treated fibre are shown in 

Figures 4.2.3-4.2.6. Compared to untreated fibre, treated fibres show relatively 

clean surface which supports the removal of wax, pectin, lignin and 

hemicelluloses as supported by FT-IR and chemical analysis.  
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Figure 4.2.3: SEM of E treated hemp fibre 

 

Figure 4.2.4: SEM of E2 treated hemp fibre 
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Figure 4.2.5: SEM of E+P treated hemp fibre 

 

 

 

Figure 4.2.6: SEM of E+L treated hemp fibre 

 

 



                                   Chapter 4: Results and Discussion 
 

 

   108 
 

4.2.5 X-Ray Diffraction of Chelator/enzyme Treated Fibre 

The crystallinity of chelator/enzyme treated hemp fibres increased as shown in 

Figure 4.2.7. The crystallinity index of the chelator/enzyme treated fibres (see 

Table 4.2.2) gives more evidence to support increased crystallinity of their fibre, 

for the crystallinity index of the treated fibre was around 86, a lot higher than the 

untreated fibre index which was 66.3. This increase could be due to the removal 

of amorphous non-cellulosic or amorphous cellulose compounds, as seen by 

chemical analysis and FT-IR, which would allow better packing of the cellulose 

chains; the trend of crystallinity was generally found to match the degree of non-

cellulosic material removal.   
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Figure 4.2.7: X-ray diffraction traces for untreated and chelator/enzyme 

treated fibres 
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Table 4.2.2: Crystallinity index of untreated and chelator/enzyme treated 

fibres 
Treatment Crystallinity index (%) 

Raw 66.32 

E 85.86 

E2 86.35 

E+P 86.14 

E+L 85.82 

 

4.2.6 Density of Chelator/enzyme Treated Fibre 

The densities of treated fibre were higher than that of untreated fibre as shown in 

Table 4.2.3, which supports for treated fibre containing more crystalline cellulose 

and less noncellulosic compounds than untreated fibre. However, it should be 

noted that the differences are not statistically significant.  

Table 4.2.3: Density of untreated, chelator/enzyme treated fibre  

Treatment Fibre density (g/cm3)  

Raw 1.525±0.0156 

E 1.528±0.0106 

E2 1.530±0.0129 

E+P 1.532±0.0140 

E+L 1.531±0.0178 

 

4.2.7 Thermal Analysis of Chelator/enzyme Treated Fibre 

Figures 4.2.8 and 4.2.9 show the DTA and TGA curves of untreated and treated 

fibres. A summary of the initial decomposition temperature for treated fibres is 

given in Table 4.2.4. The activation energies calculated from the slopes of TGA 

curves (see Section 2.7.4.2) are also tabulated in Table 4.2.4. The higher initial 
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temperature and higher activation energy values of the treated fibres support that 

highly crystalline cellulose leads to increased thermal stability.  
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Figure 4.2.8: DTA curve of chelator/enzyme treated fibre 
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Figure 4.2.9: TGA curve of chelator/enzyme treated fibre 
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Table 4.2.4: Summary of thermal analysis of chelator/enzyme treated fibre 
Treatment   Initial temperature of 

decomposition (K) 

Activation  

energy(kJ/mol) 

Raw 523 106 

E 543 137 

E2 571 162 

E+P 578 164 

E+L 581 153 

 

4.2.8 Zeta Potential of Chelator/enzyme Treated Fibre 

Zeta potential versus pH curves for untreated and treated fibres are shown in 

Figure 4.2.10, in which treated fibres gave more negative values of zeta potential 

then untreated fibre. Removal of non-cellulosic material leading to exposure of 

more reactive hydroxyl sites would tend to increase hydrophilicity which would 

result in a larger negative zeta potential. On the other hand, an increase of the 

crystallinity index would reduce hydrophillicity and cause the zeta potential to 

become less negative. From the results shown in Figure 4.2.10, the larger negative 

zeta potential values obtained all the other treatments indicates that removal non-

cellulosic compounds have more influence than increased crystallinity.  
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Figure 4.2.10: Zeta potential of chelator/enzyme treated fibre 

 

4.2.9 Tensile Strength and Young’s Modulus of Chelator/enzyme Treated 

Fibre 

The tensile strengths and stiffness of fibres were slightly reduced for all 

treatments compared to untreated fibre as shown in Figure 4.2.11-12 and Table 

4.2.5. As relatively weaker compared to cellulose coupled with the resulting of 

increased crystallinity, lignin, pectin and hemicelluloses removal would be 

expected to result in increased fibre tensile strength. However, cellulose 

degradation could occur (supported by SEM of treated fibre, in which striations 

become visible along the fibre length) during the treatments which would be 

expected to decrease the fibre tensile strength. The slight reduction of tensile 

strength of treated fibre indicates that the influence of cellulose degradation is 

larger than the influence of the higher crystallinity index. Although, the Young’s 

modulus of treated and untreated fibres is invariant within experimental 

uncertainty, slight decreases in Young’s modulus for treated fibres could be 
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caused by removal of highly cross-linking or branched lignin, pectin and 

hemicellulose. 
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Figure 4.2.11: Single fibre tensile strength of untreated and chelator/enzyme 

treated fibres 
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Figure 4.2.12: Young’s modulus of untreated and chelator/enzyme treated 

fibres 



                                   Chapter 4: Results and Discussion 
 

 

   114 
 

Table 4.2.5: Tensile strength and Young’s modulus of chelator/enzyme 

treated and untreated fibres 
Treatment (Ab.) Tensile strength(MPa) Young’s modulus (MPa) 

Raw 667±84 24000±9300 

E 600±61 23500±8700 

E2 520±40 22400±8900 

E+P 594±60 22100±6200 

E+L 530±37 22600±8500 

 

4.3 Composites Results  

Short fibre composites were produced by extrusion and injection moulding. Fibres, 

polypropylene (PP) and a maleated polypropylene (MAPP) coupling agent were 

compounded using a twin-screw extruder, and then injection moulded into 

composite tensile test specimens. Long hemp fibre composite sheets were 

fabricated by film stacking and hot-press forming. Layers of PP film, PP/MAPP 

powder and hemp fibre were stacked alternately and the stack then was 

compressed in a hot press. The assessment of treatment effect on the tensile 

strength of short fibre composites and long aligned fibre composites is shown in 

the following section 

 

4.3.1 Tensile Strength and Young’s Modulus of Untreated, Bag Retted and 

White Rot Fungi Treated Short Fibre Composite 

All white rot fungi treatments and bag retting treatments improved the tensile 

strength of composites (see Table 4.3.1 and Figure 4.3.1), despite treatment 

reducing single fibre strength.  This suggested that improved strength for treated 
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fibre composites was achieved through improved interfacial bonding. Removal of 

non-cellulosic compounds (supported by chemical analysis, FT-IR and XRD 

results) and increased surface roughness (see fibre morphology section) would be 

expected to improve interfacial bonding between the fibre and matrix by exposing 

more effective contact area, increasing mechanical interlocking and increasing the 

potential for interaction between the hydroxyl sites and the MAPP coupling agent 

(see zeta potential results).  

The stiffness of all treated fibre composites increase when compared with 

untreated fibre composites( see Table 4.3.1 and Figure 4.3.2), which could be 

assumed to be due to improved interfacial bonding giving good transfer of fibre 

stiffness into the composites, leading to higher composite stiffness than for 

untreated fibre, despite untreated fibre resulting in higher stiffness fibres. 

 

Table 4.3.1: Tensile strength and Young’s modulus of untreated, bag retted 

and white-rot fungi treated short fibre composites 

Treatment(Ab) Tensile strength (MPa) Young’s modulus (MPa) 

PP 23.00±0.10 1260±30 

Raw  35.46±0.70 4300±416 

1 week  37.54±0.76 4860±623 

2 weeks  43.69±1.18 6554±516 

D2B 42.42±1.19 6236±627 

Pyc 43.98±2.16 6450±421 

S.com 45.33±3.01 6969±537 
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Figure 4.3.1: Tensile strength of untreated, bag retted and white-rot fungi 

treated short fibre composites 
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Figure 4.3.2: Young’s modulus of untreated, bag retted and white-rot fungi 

treated short fibre composites 
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Evidence of improved interfacial bonding for treated fibres was obtained from 

examining composite fracture surfaces. Fracture surfaces of weaker untreated 

fibre composites (see Figure 4.3.3) generally showed debonding between fibre 

and the matrix. The stronger composites shown in Figure 4.3.4 for S.com treated 

fibre were observed to have better interfacial bonding between the fibre and 

matrix. 

 

 

                  

 

                   

 

 

Figure 4.3.3: SEM of untreated short fibre composite fracture surface 

 

Figure 4.3.4: SEM of S.com treated short fibre composite fracture surface 

Fibre 

Fibre 

Fibre 



                                   Chapter 4: Results and Discussion 
 

 

   118 
 

4.3.2 Tensile Strength and Young’s Modulus of Chelator/enzyme Treated 

Short Fibre Composites  

Composite tensile strength and Young’s modulus can be seen graphically in 

Figure 4.3.5-6 and is tabulated in Table 4.3.2. All treatments produced an 

improvement in composite strength and stiffness. The untreated hemp fibres were 

bundled together which would limit the effective surface area and fibre surfaces 

were covered non-cellulosic compounds such as wax, pectin and lignin, which 

would hinder chemical fibre-matrix bonding. Removal of these during treatment 

would separate fibre bundles and expose hydroxyl groups on the fibre surface. 

This would increase the interfacial bonding between the matrix and fibre with the 

MAPP coupling agent, resulting in improved composite strength despite the 

slightly lower single fibre strength for treated fibres. Improved interfacial bonding 

gave good transfer of fibre stiffness into the composites, leading to higher 

composite stiffness than for untreated fibre. 

 

Table 4.3.2: Tensile strength and Young’s modulus of chelator/enzyme 

treated short fibre composites 
Treatment  Tensile strength(MPa) Young’s modulus (MPa) 

PP 23±0.10 1260±30 

Raw 35.46±0.70 4300±416 

E 41.55±1.21 5230±404 

E2 42.30±1.02 6270±476 

E+P 41.73±0.92 6120±746 

E+L 41.41±1.26 5900±369 
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Figure 4.3.5: Tensile strength of chelator /enzyme treated short fibre 

composites 
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Figure 4.3.6: Young’s modulus of chelator /enzyme treated short fibre 

composites 
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SEM photographs of untreated and treated fibre composite fracture surfaces are 

shown in Figure 4.3.3 and 4.3.7. Fracture surfaces for untreated fibre (see Figure 

4.3.3) generally showed debonding between fibre and matrix, whereas, it was 

difficult to discern the actual interface between the fibre and matrix for the 

stronger composites as shown in Figure 4.3.7 for E2 treatment. This supports that 

higher tensile strength of composites is obtained through improved interfacial 

bonding between the fibre and the matrix. 

 

 
Figure 4.3.7: SEM of E2 treated short fibre composite fracture surface 

 

4.3.3 Environmental and Economic Consideration of Chelator/enzyme 

Treatment 

Environmental as well as economic factors must be considered when hemp fibre 

treatments are used on an industrial scale. Table 4.2.7 gives a relative assessment 

of environmental and economic factors with composite strength for each treatment. 

From an environmental perspective, EDTMP.Na5 (E) and the combined 

EDTMP.Na5 and enzymes treatments (E+P, E+L) have relatively low 

environmental impact. From an economic point of view (see Table 7), E would be 

the cheapest treatment, followed by E2.  E+P and E+L were the least cost 
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effective, with no justification for use in terms of performance. Overall E and E2 

treatments would achieve a good balance between economics, environmental and 

composite strength.  

 

Table 4.3.3: Relative environmental, economic and composite strength 

summary for each chelator/enzyme treatment 

Treatment costs Treat

ment  

Environmental 

impact Chemical  Energy  Equipment 

 

Processing  

Composite 

strength(MPa) 

E Low  lowest lowest lowest lowest 41.55 

E2 Low  low lowest lowest lowest 42.30 

E+P Low  higher higher higher higher 41.73 

E+L Low  higher higher higher higher 41.41 

 

4.3.4 Assessment of Chelator and White Rot Fungi Treatment Effect on the 

Tensile Strength of Long Aligned Fibre Composite  

The tensile strength of the long aligned fibre composites, which were fabricated 

using film-stacking and hot-pressing, was measured in order to assess the 

treatment effect. Chelator (E2) and white rot fungi (S.com) treatments improved 

the tensile strength of the composites as seen in Table 4.3.4. Both white rot fungi 

(S.com) as well as chelator (E2) treatments have been shown to remove non-

cellulosic compounds, leading to fibre separation from its bundles. Separation 

would increase the effective surface, area of fibre allowing it to intermingle with 

the matrix. Removal of non-cellulosic compounds would also expose the hydroxyl 

groups on the fibre, and increase the potential for interaction between the 

hydroxyl sites and the MAPP coupling agent. In addition, the rougher surface of 
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the white rot fungi (S.com) treated fibre and the presence of holes in the cell walls 

may have improved the mechanical interlocking. This could explain the observed 

higher tensile strength of the fungi treated fibre composites.  

SEM photographs of untreated and treated fibre composite fracture surfaces are 

shown in Figures 4.3.8 and 4.3.9. Fracture surfaces for untreated fibre (see Figure 

4.3.8) generally showed fibre bonded together with a high degree of pull-out. 

Fracture surfaces for the strongest composite (Figure 4.3.9 for S.com treated fibre 

composite) showed more fibre separation and short length of pulled out fibre 

indicating better interfacial bonding. This further indicated that high tensile 

strength of composites can be obtained through improved interfacial bonding 

between fibre and matrix. 

The tensile strength of long aligned fibre composites was generally higher than 

those of short fibre reinforced composite fabricating through injection moulding 

(Table 4.3.4), supporting that film-stacking and hot-pressing could be a suitable 

method to fabricate long fibre thermoplastic composites. 

  Table 4.3.4: Tensile strength of short and long aligned fibre composites 

Treatment Fibre tensile 

strength (MPa)  

Short fibre composite 

tensile strength (MPa)  

Long fibre composite 

tensile strength (MPa) 

Raw  666±83.37 35.46±0.70 50.88±8.73 

E2 520±45.26 42.30±1.02 67.45±10.39 

S.com 410±68.78 45.33±3.01 73.12±10.23 
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Figure 4.3.8: SEM of untreated long aligned fibre composite fracture surface 
 

 
 
Figure 4.3.9: SEM of S.com treated long aligned fibre composite fracture 
surface 
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4.4 Composite Tensile Strength Modelling  

4.4.1 Modelling for Short Fibre Composite 

The Bowyer-Bader model was selected for this study as it takes into consideration 

the super-critical and sub-critical length distributions of fibres extracted from an 

actual composite (see section 2). In the case of Bowyer and Bader model, the 

tensile strength of a composite with short off-axis fibre could be determined from 

the sum of sub-critical and super-critical fibre strength contributions (taking into 

account fibre orientation) and the matrix contribution.  

 

4.4.1.1 Fibre Contribution to Composite Strength   

To obtain the tensile strength of a fibre-reinforced composite, it is necessary to 

investigate fibre and matrix properties, as well as the stress transfer that takes 

place at the interface between the fibre and matrix, which is usually characterised 

by the interfacial shear strength (IFSS). Therefore, in order to assess the fibre 

contribution to strength of short fibre composites, it is necessary to obtain the 

IFSS value of this composite. Single fibre pull-out testing and the Bowyer and 

Bader model were used in this study to assess the IFSS of short fibre composites 

and results from both methods have been compared. 

 

4.4.1.1.1 Determination of IFSS Using the Single Fibre Pull-Out Test  

Typical force-displacement curves for white rot fungi (S.com) treated and 

untreated hemp fibre PP specimens are shown in Figure 4.4.1. During the pull-out 

process, the force increased approximately linearly until failure of the interface, 

after which the load decreased while the fibre was extracted in a controlled way. 

The pull-out force for white rot fungi treated fibre PP specimens is higher than 
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that of untreated fibre PP specimen. The average IFSS (τ) of untreated and treated 

fibre PP specimens was calculated using Eq.6 and the results are presented in 

Table 4.4.1. The IFSS of white rot fungi treated fibre in PP was found to be 40% 

higher than untreated fibre in PP. It is likely that this can be credited to the 

removal of non-cellulosic compounds and increased surface roughness leading to 

increased exposure of more surface area, increasing potential for interaction 

between hydroxyl sites and the MAPP coupling agent, as well as increased 

mechanical interlocking providing better interfacial bonding. 
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Figure 4.4.1: Single fibre pull-out test force –displacement curve for 

untreated and S.com treated fibre specimens 

Table 4.4.1: IFSS from single fibre pull-out test for untreated and S.com 

treated fibre specimens 

 Untreated fibre White rot fungi(S.com) treated 

fibre 

IFSS (τ) pull-out (MPa) 3.26 5.84 
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4.4.1.1.2 Determination of IFSS and Orientation Factor (K1) Using the 

Bowyer and Bader Model 

Factors required to calculate IFSS and orientation factor (K1) using the Bowyer 

and Bader model include the tensile strength and Young’s modulus of the fibre, 

matrix and composite, fibre volume fraction, fibre length distribution, sub-critical 

and super-critical fibre lengths and the volume fraction of sub-critical and super-

critical fibre lengths. The tensile properties of fibre, matrix and composites were 

used from the previously described tensile tests (Table 4.1.5, and 4.3.1). The 

methods for obtaining the remaining factors are described in following sections. 

 

Fibre Volume Fraction 

The fibre volume fraction (Vf) can be calculated from the fibre weight fraction (Wf) 

using the Eq.12. Using a value of untreated fibre density (1.525g/cm3 ) and white 

rot fungi treated fibre density (1.535g/cm3), the fibre volume fraction obtained for 

the hemp fibre PP composites containing 40wt% hemp fibre was 0.282 for 

untreated fibre composite and 0.281 for white rot fungi (S.com) treated fibre 

composite. It is noted that this value has assumed an absence of voids; however, 

given the high pressure involved in extrusion and injection moulding processing, 

this is assumed sufficient in the current work. Where lower pressures are involved 

accurate calculation of Vf  based on the void contents of composites, composite 

density, matrix weight content and fibre weight content would be recommended.   

 

Fibre Length Distribution and Fibre Diameter 

It is widely known that the compounding and moulding of composites leads to 

large reductions in the fibre length. Therefore, it was necessary to obtain the 

length distributions and average diameter of the fibres inside the composites after 

processing. Table 4.4.2 shows the average fibre length for treated fibre composites. 

It indicates that fibres, originally chopped to 10mm, were significantly shorter as a 
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result of processing. Figure 4.4.2 and 4.4.3 shows the fibre length distribution in 

untreated and treated fibre composites. It can be seen that both the treated and 

untreated fibre composites appeared to have very similar fibre length distributions.  

 

Table 4.4.2: Average length and diameter of fibre in composites 

 Untreated fibre White rot fungi treated fibre 

Average fibre length (mm) after 

processing 

0.515 0.512 

Average fibre diameter (μm) after 

processing  

30 29 
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Figure 4.4.2: Fibre length distribution in untreated short fibre composite 
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Figure 4.4.3: Fibre length distribution in white rot fungi (S.com) treated 

short fibre composite 

 

Critical Fibre Length at ε1 and ε2 (Lε1 and Lε2) 

A typical tensile stress-strain curve for treated fibre composites is shown in Figure 

4.4.4. All untreated and treated fibre composites failed at a strain of more than 

0.03. For this reason, strains of 0.01 and 0.02 were selected for ε1 and ε2 

respectively, and then the composite stress (σc1 and σc2) at these two strain values 

was obtained according to the stress-strain curve. An assumed value of τ was 

taken and the corresponding critical fibre lengths Lε1 and Lε2 at the two levels of 

strain were calculated from Eq.15a.  
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Figure 4.4.4: A typical tensile stress-strain curves of white rot fungi treated 

hemp fibre composites  

Sub-critical and Super-critical Fibre length Volume Fraction 

The volume fraction of the sub-critical fibre lengths (Vi) and the volume fraction 

of super-critical fibre lengths (Vj) were obtained according to the follow steps: 

• The volume of each individual fibre was calculated by multiplying 

the fibre cross-sectional area by the fibre length. 

• Summation of all the fibre volumes. 

• Determination of volume fraction of each fibre in the fibre 

distribution, by dividing the volume of each fibre by the sum of all 

the fibre volume. 

• Determination of the volume fraction of each fibre in the 

composites (Vi, Vj ) by multiplying the fibre volume fraction in the 

sample by Vf 
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Interfacial Shear Strength (IFSS) and Orientation Factor (K1 ) 

Taking into account Ef , Em,  Vf , εc1 ,εc2, σc1, σc2, D and combining all the fibre 

length distributions obtained via direct measurements from each composite, 

IFSS(τ) and K1 were obtained according the Bowyer and Bader method (using 

Eq.15a,18,19a,20a,21a,22,23) and the results are shown in Table 4.4.3. It can be 

seen that IFSS for white rot fungi treated fibre composites was higher than that for 

untreated fibre composites, supporting improved interfacial bonding between the 

matrix and fibre. 

Table 4.4.3: IFSS of untreated and white rot fungi (S.com) treated fibre 

composites obtained according the Bowyer and Bader model  

 Untreated fibre 

composite 

S.com treated fibre 

composite 

Young’s  modulus of fibre: Ef (MPa) 24,000 22,000 

Young’s modulus of matrix: Em (MPa) 1,260 1,260 

Volume fraction of fibre: Vf (%) 28.2 28.1 

Strain in composites at point 1: εc1(%) 1 1 

Strain in composites at point 2: εc2(%) 2 2 

Stress in the composites at εc1: σc1(MPa) 25.5 28.9 

Stress in the composites at εc2 :σc2(MPa) 34.7 44.5 

Fibre diameter: D (μm) 30 29 

Interfacial shear strength:  τ (MPa) 6.68 8.92 

Fibre orientation factor : K1 0.43 0.46 

 

Although, results from both the single fibre pull-out test and the Bowyer and 

Bader model indicate that the white rot fungi treatment increased IFSS, results 
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from the pull-out test are lower than those from the Bowyer and Bader model. 

This raises the need to consider the assumptions made for these two methods, 

which had been discussed in Section 2.7.1 and 2.8.4.2. Overall it could be 

considered that, in particular, due to Poisson contraction and axial loading in the 

pull-out test, the IFSS would be expected to be lower for this test than for the 

Bowyer and Bader model as observed experimentally. Therefore, in a composite 

material, the Bowyer and Bader model can be considered to give a more relevant 

value for IFSS.  

 

4.4.1.1.3 Determination of Critical Fibre Length for Short Fibre Composites 

The critical fibre length (Lε) can be calculated using the mean fibre strength (σf), 

the mean fibre diameter (D) and the interfacial shear strength (IFSS) (τ). Taking 

into account IFSS (τ) obtained according to the Bowyer and Bader model, critical 

fibre length (Lε) for untreated and S.com treated fibre composites were calculated 

using Eq (15b). The critical fibre length (Lε) of untreated short fibre composites 

was found to be 1.49 mm , while the critical fibre length (Lε) of  S.com treated 

short fibre composites was  0.67 mm (Table 4.4.4).  

In untreated short fibre composites, based on the Bowyer-Bader model (Eq 19b, 

20b), fibres shorter than Lε make up 97% of the total fibre volume, and yet 

account for only 88.5% of the fibre contribution to composite strength; fibres 

longer than Lε make up 3% of the total fibre volume and account for 11.5% of the 

fibre contribution to composite strength. For S.com treated short fibre composite, 

fibres shorter than Lε make up 43% of the total fibre volume, and yet account for 

28% of the fibre contribution to composite strength; fibres longer than Lε make up 

57% of the total fibre volume and account for 72% of the fibre contribution to 

composite strength. It can be seen that the super-critical length fibres are more 
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effective in contributing to the overall composite strength compared to sub-critical 

length fibres. 

 

4.4.1.1.4 Fibre Orientation of Injection Moulded Composites  

In the case of the Bowyer and Bader model, good agreement between the 

theoretical and experimental values have been observed for axially aligned fibre 

composites when K1=1, and for randomly oriented fibre composites when K1=0.2 

[18]. Assuming all the fibres are perfectly aligned in the axial direction (K1=1), in 

the case of untreated short fibre composites, fibre contribution to the composite 

strength would have a theoretical tensile strength of 48.83 MPa, while S.com 

treated short fibre composite would have a theoretical tensile strength of 62.12 

MPa. 

The value of K1=0.43 for untreated short fibre composite and K1=0.46 for S.com 

treated short fibre composite suggest that the fibre orientation in those composites 

is slightly better than a typical random fibre orientation. Taking into account of K1, 

fibre contribution to the tensile strength of untreated short fibre composite is 21 

MPa, while fibre contribution to the tensile strength of S.com treated short fibre 

composite is 28.58 MPa(Table 4.4.4), which indicates that only a small fraction of 

the fibre effectively contribute to the strength of the composites. 

4.4.1.2 Matrix Contribution to Composite Strength   

Matrix contribution to composite strength was determined according Eq(21b), in 

which σm is the matrix stress at the failure strain of composites, which is 22 MPa 

for untreated short fibre composite and 22.2 MPa for S.com treated short fibre 

composite, respectively; the matrix contribution to the tensile strength of 

untreated fibre composite is therefore 15.8MPa, and the matrix contribution to the 

tensile strength of S.com treated fibre composite is 15.9MPa. 
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Table 4.4.4: Tensile strength of untreated and white rot fungi (S.com) treated 

short fibre composites obtained according to the Bowyer and Bader model 

 
 Untreated 

fibre 

composite 

S.com treated 

fibre 

composite 

Fibre tensile strength :σf (MPa) 666 410 

Fibre diameter: D (μm) 30 29 

Interfacial shear strength:  τ (MPa) 6.68 8.92 

Critical fibre length: Lε (mm) 1.49 0.67 

The total fibre volume of fibres shorter than Lε  97% 43% 

The total fibre volume of fibres longer than Lε  3% 57% 

Fibre contribution to composite strength  (fibre 

shorter than Lε )   

89% 28% 

Fibre contribution to composite strength  (fibre 

longer than Lε )   

12% 72% 

Theoretical fibre contribution to tensile strength 

of composites when assuming all the fibres are 

perfectly aligned in the axial direction (K1 = 1) 

48.8 62.1 

Fibre orientation factor : K1 0.43 0.46 

Theoretical fibre contribution to tensile strength 

of composites when taking into account of K1 

21 29 

The matrix stress at the failure of composites 

(MPa)  

22 22 

The strength contribution of the matrix (MPa)  15.8 15.9 

Tensile strength of short fibre composite 

according to the Bowyer-Bader model (MPa) 

36.8 44.5 

Experimental tensile strength of short fibre  

composite (MPa) 

35.5 45.3 

 

4.4.1.3 Total Predicted Composite Strength 
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Summed the fibre contribution and matrix contribution to the tensile strength of a 

composites, the tensile strength of untreated short fibre composite was found to be 

36.8MPa, and the tensile strength of S.com treated short fibre composite was 

44.5MPa (Table 4.4.4), which closely match the experimentally values (35.5MPa 

for untreated short fibre composite and 45.3 MPa for S.com treated short fibre 

composite).   

It can thus be concluded that in order to produce a strong composite material, as 

well as the need to use strong fibre, the good fibre-matrix interfacial adhesion is 

essential as great a proportion of the fibres as possible need to be longer than the 

critical fibre length (Lε), fibres need to be oriented as well as possible in the 

loading direction and matrix strength is also important. 

 

4.4.2 Modelling for the Tensile Strength of Long Aligned Fibre Composite 

The modified model based on the simple “rule of mixture” by taking account of 

void content was used to predict the tensile strength of composites, and the results 

obtained experimentally and mathematically were compared.   

 

4.4.2.1 Composite Density (ρc) 

Density of untreated, white rot fungi (S.com) treated and E2 treated fibre were 

used from the previously described density tests (Table 4.1.3 and 4.2.3) and 

density of composites were measured and the results are shown in Table 4.4.5. For 

composites, the density with untreated fibre was the lowest (0.918g/cm3), which 

suggests that its void content was high. The density of white rot fungi (S.com) 

treated fibre composites was the highest (1.074g/cm3) suggesting a lower void 

content. 

 

Table 4.4.5: Density of fibre and composite 
Treatment Fibre density (g/cm3)  Composite density (g/cm3) 
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Raw  1.525±0.0156 0.918±0.0188 

E2 1.530±0.0129 0.998±0.0234 

S.com 1.535±0.0103 1.074±0.0304 

 

4.4.2.2 Fibre Weight Content, Void Volume Content (Vp), Fibre Volume 

Content (Vf ) and Matrix Volume Content (Vm) of Composite 

The fibre content (wf) obtained via direct measurement from each composite and 

the matrix content (wm) calculated according to Eq (29) is shown in Table 4.4.6. 

Taking into account  ρf, ρm, ρc, and wf , wm, void (Vp), fibre (Vf), and matrix (Vm) 

contents of composites were determined using Eq (26,27,28) and the results are 

shown in Table 4.4.6. A higher void content in untreated fibre composites could 

be explained by the existence of much larger fibre bundles with more wax and 

other non-cellulosic compounds on the fibre bundle surfaces, which could be 

expected to reduce impregnation, resulting in a higher void content than for 

treated fibre composites. Conversely, for composites with chelator (E2) treated 

fibre, where the fibre bundles had been separated and non-cellulosic compounds 

removed, better impregnation appears to have resulted in a lower void content. 

Based on void content, composites with white rot fungi (S.com) treated fibre 

appeared to have the best impregnation. 

 

Table 4.4.6: The weight content of fibre and matrix, the volume content of 

void, fibre and matrix 
Treatment wf  (%) wm (%) Vp (%) Vf (%) Vm (%) 

Raw 43 57 16 26 58 

E2 43 57 9 28 63 

S.com 44 56 2 31 67 

 

4.4.2.3 Comparison of Composite Strength with Models  
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The matrix stress at the failure strain of the composite was determined from a 

stress-strain curve for polypropylene (see Figure 4.4.5) and the results are 

presented in Table 4.4.7. The tensile strength of composites was calculated 

according to the simple “rule of mixtures” using Equations 10, 12, and 13 and the 

results are shown in Table 4.4.8. Unfortunately, the simple “rule of mixtures”, 

which neglects the void content, predicts that the tensile strength of untreated 

fibre composites should be higher than those of treated fibre composites, an 

opposite trend to that obtained experimentally.  

 

Alternatively, the modified model based on the simple “rule of mixtures” taking 

account of voids was used to calculate composite tensile strength. The results 

calculated according to the modified model (Eq.25) are given in Table 4.4.5 and it 

can be seen that tensile strength calculated for treated fibre composites is higher 

than that for untreated fibre composites, and the trend (125.17MPa for untreated, 

128.12MPa for E2 treated and 130.16MPa for S.com treated) matches the 

experimental trend (58.88, 67.45 and 73.12). However, results from the modified 

model are higher than those from the experiments. This is not surprising when the 

assumptions of the modified model are considered. The modified model used to 

predict the theoretical tensile strength of composites has assumed that the 

reinforcing fibres in the composites are perfectly aligned in the axial direction. In 

reality, however, the actual fibres were not all aligned in the axial direction 

perfectly; off-axis fibre would be expected dramatically to reduce the composite 

tensile strength dramatically. In addition, fibre can be damaged during composite 

processing, which can account for deviations in composite experimental 

properties from the theoretical prediction. Moreover, the failure criterion of the 

composite was the failure of the fibre. A mean fibre tensile strength was taken as 

the failure strength of the fibre. However, plant fibres are naturally in a curly form, 

even after carding. Therefore, under load, each fibre may carry a different stress 

and would not break at the same time. Possibly, the fibres may break in a form of 
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one by one during composite failure; this seriously reduced the load carrying 

capacity of the plant fibre composite. This was one of the main reasons that the 

tested strength was far smaller than the value predicted by the modified model. 

Therefore, for further works, an effectiveness factor is suggested to be taken into 

account to describe the fibre failure strength in the composite. Although, 

mentioned above, it appears that taking account of voids in the modified model 

could be a simple way to effectively model the influence of interfacial bonding. 
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Figure 4.4.5: Stress-strain curve for polypropylene used to obtain the matrix 

stress at the failure strain of each long aligned fibre composite 

 

Table 4.4.7: The matrix stress at the failure strain of the composite 
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Treatment Failure strain of the 

composite (%)  

Matrix stress at the failure strain 

(MPa) 

Raw  0.75 13.79 

E2 0.87 14.89 

S.com 0.97 15.44 

 

Table 4.4.8: Experimental composite tensile strength compared to calculated 

values using mathematical model 
Treatment  Tensile strength of 

composite (MPa) 

according to “rule 

of mixtures” 

Tensile strength of 

composite (MPa) 

according to 

modified model 

Experimental 

tensile strength of 

composite (MPa)  

Raw 214.7 125.2 50.9 

E2 170.1 128.1 67.5 

S.com 140.2 130.2 73.1 
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Chapter 5: 
Conclusions 

 

5.1 Bag Retting and White Rot Fungal Treatments 
The study found that white rot fungi and bag retting treatments removed non-

cellulosic compounds such as wax, pectin, hemicellulose and lignin (see wet 

chemical analysis and FT-IR). The removal of non-cellulosic compounds, 

especially pectin, leads to separate hemp fibres from their bundles. This reduction 

of non-cellulosic compounds is also believed to be responsible for the observed 

increase in both crystallinity and thermal stability of the fibre evidenced by XRD 

and thermal analysis. In addition, white rot fungi and bag retted treatments 

supposed to increase surface roughness of fibre by fungal hyphae.  

 

5.2 Chelator/enzyme Treatments  
All chelator/enzyme treatments removed wax, pectin, lignin and other non-

cellulosic compounds from hemp fibre, as well as separated hemp fibres from 

their bundles. As a consequence, the crystallinity and thermal stabilities of the 

treated fibres increased.  

 

5.3 Composite Results  
For white rot fungi and bag retted treatments, the removal of non-cellulosic 

compounds along with increased surface roughness associated with increased 

effective surface are believed to increase exposure of OH groups (as supported by 

zeta potential), and increase mechanical interlocking, giving increased interfacial 

bonding resulting in increased composite strength for bag retting and white rot 

fungi treatments despite the reduction in fibre strength.  
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For chelator\enzyme treatment, removal of non-cellulosic compounds is suspected 

to have increased the amount of OH groups exposed on the fibre surface, which 

could assist in bonding with the matrix in the presence of MAPP, as evidenced by 

the increase in composite tensile strength, despite the reduction in fibre strength.  

It should be noted that treatment with EDTMP.Na5 alone gave the best 

performance and would be the cheapest and most environmentally friendly to 

perform. 

 

Long aligned fibre composites, which were fabricated by film-stacking and hot-

pressing, generally presented higher tensile strength than short fibre reinforced 

composite fabricating through injection moulding, supporting that film-stacking 

and hot-pressing could be a suitable method to fabricate long fibre thermoplastic 

composites. 

 

5.4 Composite Tensile Strength Modelling  
Both the single fibre pull-out test and the Bowyer and Bader model were used to 

determine the interfacial shear strength (IFSS) of injection moulded untreated and 

S.com treated fibre composites. The single fibre pull-out test and the Bowyer and 

Bader method yielded different results; IFSS was found to be lower for the single 

fibre pull-out test compared to the Bowyer and Bader model, which is not 

surprising considering the different conditions and assumptions of these tests. 

However, both the single fibre pull-out test and the Bowyer-Bader model give 

higher IFSS for white rot fungi treated fibre composites than that for untreated 

fibre composites. This further demonstrates that white rot fungi (S.com) treatment 

increases the interfacial bonding between fibre and matrix, which is likely to be 

due to removal of non-cellulosic compounds such as wax, pectin, and lignin as 

well as the increased roughness of the fibre surfaces. The tensile strength of short 

fibre composites was predicted using the Bowyer-Bader model, which indicated 
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that in order to produce a strong composite, as well as the need to use strong fibre, 

the following are required: 

• good fibre-matrix interfacial adhesion  

• as great a proportion of the fibres as possible need to be longer than the 

critical fibre length (Lε), fibres need to be oriented as well as possible in 

the loading direction  

• good matrix strength  

 

Long aligned fibre composites were fabricated by film-stacking and hot-pressing. 

The tensile strength of untreated and treated fibre composites measured and 

compared with results obtained by modelling taking account of voids.  Although, 

the results obtained from experimental and mathematical modeling were different, 

both experimental and mathematical showed that tensile strength of the E2 and 

S.com treated fibre composites were higher than for untreated fibre composites, 

which is likely to be as result of improved hemp fibre interfacial bonding with PP 

by treatment. Therefore, taking account of voids in composites strength modeling 

could give good prediction reasonably. 
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Chapter 6  
Recommendations 

 
The results obtained from this study have proved that bag retting and white rot 

fungi treatment and chelator/enzyme treatment are effective and environmentally 

friendly methods to improve the interfacial bonding between PP and hemp fibre. 

Some recommendations for future work have been proposed as follow: 

 

• During storage required for the industrial production of hemp fibre 

composites, hemp fibre would decay due to standard bacterial and fungal 

processes. Assessing the decay that occurs during storage such that it could 

be taken account of for further processing, is recommended for future 

research. 

 

• The application of natural fibre composites is limited mainly to low-

strength non-structural components. Therefore, future work should be 

conducted to improve the mechanical properties of the composites so that 

they can be used for structural components. It might be possible, based on 

the results of this current thesis, that long aligned fibre composites could 

be fabricated with high-volume fibre content to obtain high mechanical 

properties. 

 

• Natural fibre reinforced thermoplastic composites are recyclable, but not 

biodegradable. It is therefore suggested that bio-derived and/or 

biodegradable polymer matrices reinforced with hemp fibre to produce 

novel biocomposites to replace and substitute for hemp fibre–reinforced 

petroleum based plastic composite, thus offering agriculture, 

environmental, manufacturing, and consumer benefits. 
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