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The integration of non-continuous processes such as a milk powder plant present a 

challenge for existing process integration techniques.  Current techniques are generally 

based on steady and continuous operation which for some industries is not the case.  

Milk production varies considerably during the year as dairy cows in New Zealand are 

grazed on pasture, which affects the scheduling and operation of plants on site.  The 

frequency and duration of cleaning cycles and non-productive operating states can have 

a major affect on energy demand and the availability of heat sources and heat sinks. In 

this paper the potential for indirect heat transfer between the several plants using a heat 

recovery loop and stratified tank at a typical New Zealand dairy factory is investigated.  

The maximum amount of heat recovery is calculated for a range of recirculation loop 

temperatures.  The maximum amount of heat recovery can be increased considerably if 

the temperature of the hot fluid in the recirculation loop is varied depending on which 

condition the site is operating under. 

Introduction 

The integration of semi and non-continuous processes using pinch analysis techniques 

has not received the same amount of attention as continuous and batch processes and as 

a consequence methods to examine non-continuous processes are not well developed.  

The integration of batch processes have typically employed the Time Slice Model 

(TSM) approach developed by Kemp & MacDonald (1987, 1988) and later expanded by 

Kemp & Deacon (1989).  Various programming techniques such as Mixed Integer 

Linear Programming (MILP) have also been applied to improve the integration of batch 

processes by attempting to optimize the scheduling and Heat Exchanger Network 

(HEN) design (Vaselenak et al., 1986; Lee & Reklaitis, 1995a; Foo et al., 2008).  The 

basis for integrating batch processes is that the process is operated in a cyclic fashion 

and the scheduling of the operations are interdependent and constrained.  Rescheduling 

of the operations may be permitted depending on the constraints of the process and final 

product.  In the case of non-continuous operations, such as dairy factory producing 

multiple products, several semi-continuous plants operate independently.  Unlike a 

batch process the scheduling of when each plant operates is a less regular depending on 

milk production and product demand.  As there is usually a certain amount of intra-plant 

integration the next step to realise energy savings is to focus on inter-plant integration, 



however the issue of integrating between plants that operate non-regularly needs to be 

addressed.  This paper will use a typical New Zealand dairy factory to examine and 

offer some possible solutions to the challenges of integrating non-continuous processes.  

The use of indirect heat transfer between plants utilising a recirculating heat recovery 

loop and thermal storage will be discussed as a practical solution for increase energy 

efficiency.   

New Zealand Dairy Industry 

The dairy industry is by far the largest industry in New Zealand.  It generates a 

significant portion of New Zealand’s export earnings and approximately 95% of the 

total milk produced is exported with around 90% of this as milk powder.  Several other 

dairy products such as butter and cheese are produced although the production of milk 

powder is the most energy intensive process.  From June 2006 – June 2007 there was 

15,600,000 metric tons of milk processed and 996,040 tons of milk powder produced 

nationally.  Dairy cows in New Zealand are grazed on pasture and therefore the quantity 

of milk produced varies during the year with peak milk production typically occurring 

in late spring.  Fig. 1 illustrates the milk production capacity of a typical dairy factory 

considered in this paper as a percentage of the maximum processing capacity. 

Typical NZ Milk Powder Plant 

For this study a typical New Zealand milk powder plant is considered.  The factory 

processes around 8 million litres of milk at peak production and produces about 250,000 

tons of milk powder and 85,000 tons of cream products annually.  There are five 

separate plants on site: three milk powder plants, Anhydrous Milk Fat (AMF)/butter, 

and cream products.  A schematic of the factory is shown in Fig. 2.  The raw milk is 

separated into skimmed milk, which is used to feed the powder plants, and cream used 

to make AMF, butter and other cream products. 
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Figure 1. Milk production during the 

year. 

Figure 2. Schematic of the dairy 

factory with the five separate plants. 



Under normal production conditions each plant is operated in a semi-continuous manner 

because the process equipment must be cleaned regularly to ensure that product is fit for 

consumption and of an acceptable quality.  For example, the spray dryers that produce 

milk powder can be either on product, offline, cleaning cycle (CIP), warm running (hot 

air is feed to the dryer but no feed is added), or water running (water is sprayed into the 

dryer instead of milk concentrate).   Typical operating states for a two week period for 

Dryer B are shown on the left in Fig. 3 and illustrate that the dryer is frequently shifting 

between several operational states depending on the availability of raw milk and 

condition of the equipment.  Superimposed on the semi-continuous operation of the 

several plants is the scheduling of the operation of the separate plants themselves.  Due 

to the variation in the milk production, as discussed previously, not all of the plants may 

necessarily be operating at the same time.  A representative production schedule for the 

entire factory is shown on the right in Fig. 3 with the four operating conditions 

indicated.  During peak milk production all five plants operate as denoted by condition 

D in Fig. 3.  The schedule presented here is a representative one and depending on 

annual milk production and consumer demand this schedule may differ somewhat to the 

one presented here.  It should also be noted that there is the capability to vary the 

production rate of each plant to some extent depending on availability of milk. 
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Figure 3. Semi-continuous operation of Dryer B (left) and a representative operating 

schedule (right) indicating the four operating conditions of the factory. 

Heat Recovery Loop with Thermal Storage 

By reason of the fact that each plant is operated under semi-continuous conditions and 

the total site is non-continuous in nature, direct integration between plants is difficult.  

One method to overcome this obstacle is to use indirect heat transfer via a recirculating 

system or Heat Recovery Loop (HRL) (Kemp, 2007).  A thermally stratified tank (ST) 

can also be used as a thermal storage medium and a buffer to smooth any disturbances 

from plants going into different operational states like a cleaning cycle for example.  

The ST exploits a density difference of the fluid due to a difference in temperature thus 

creating natural stratification within the tank.  The temperature in the tank will therefore 



vary along the height of the tank creating three regions, a region of higher temperature 

fluid Thot, a region of lower temperature fluid Tcold, and a thermocline region where the 

temperature varies between Thot and Tcold.  HRL and ST systems such as these have been 

utilised at some dairy factories in NZ with significant energy savings being realised.  A 

schematic of a HRL and ST is shown in Fig. 4 where the hot temperature fluid is 

pumped around the hot side of the loop (left side) and is used to heat cold streams or 

sinks.  This fluid is then returned to the bottom of the ST at Tcold.  At the same time cold 

fluid is also pumped around the cooling side of the loop and used to cool hot streams or 

sources with the fluid returning to the top of the ST at Thot.  It is important over the long 

term that the total heating and cooling loads are balanced otherwise the ST will 

eventually fill with hot or cold fluid.  To control the level of the thermocline and size of 

the hot and cold regions the individual heat exchangers can be operated at a reduced 

duty or disconnected from the loop with any deficit being made up with utility.  

Overtime the thermocline will grow and so there needs to be strategies in place to 

control the growth of the thermocline (Atkins et al., 2008). 

 

There are several important issues to consider when evaluating the viability of a HRL 

and ST.  One of the most important is determining how much heat can be recovered and 

reused elsewhere.  Directly related to this is determining what temperature levels the 

HRL and ST operate at.  Composite curves can be used to quickly determine the amount 

of maximum heat recovery (MHR) for a given Thot.  However, for the correct MHR to 

be calculated from the composite curves, only those streams that satisfy the following 

criteria can be included in the composite curves, where Tin and Tout are the inlet and 

outlet temperatures of the process streams of the heat exchanger: 

 

Hot streams (sources): Ts ≥ Thot + ΔTmin and Tin ≥ Thot + ΔTmin and Tout ≥ Tcold + ΔTmin 

Cold streams (sources): Ts ≤ Tcold - ΔTmin and Tin ≤ Tcold  - ΔTmin and Tout ≤ Thot - ΔTmin 
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Figure 4. Schematic of the heat 

recovery loop including a stratified 

tank. 

Figure 5. Composite curves showing 

indirect heat transfer between plants 

using HRL for condition D. 



Table 1. Stream data for potential streams for inclusion in the heat recovery loop. 

Stream Name Plant 
Stream 

Type 

Ts 

(°C) 

Tt 

(°C) 

mCp 

(kW/°C) 

Operating 

Conditions 

Cow Water Dryer A Hot 52 10 19.2 A,B,C,D 

Cow Water Dryer B Hot 50 10 96.0 B,C,D 

Cow Water Dryer C Hot 55 10 223.8 C,D 

AMF 1 AMF Hot 60 12 18.6 A,B,D 

Site Hot Water Site Cold 10 65 167.2 A,B,C,D 

Product Heating Cream Cold 10 50 27.2 C,D 

 

The stream data for potential streams to be include in the HRL is given in Table 1.  

Fig. 5 shows the composite curves with fluid from the HRL at a Thot=50°C and 

Tcold=20°C.  If Thot is lowered to 45°C the MHR will reduce even though more sources 

become available and meet the criteria because MHR in this case is constrained by the 

number of sinks.  The MHR at different Thot is given in Fig. 6 for the four operating 

conditions and Tcold=20°C.  Conditions C and D have the same MHR but it varies 

substantially for condition B. 

 

The average heat recovery weighted for the number of weeks spent operating at each 

condition for a range of Thot is shown by the solid line in Fig. 7.  A maximum of 

4,649 kW occurs if Thot of the ST is at 45°C.  The assumption is that the plants run 

continuously when they are on, however this is not correct as each plant will be 

operating in a semi-continuous manner.  The actual time a single heat exchanger might 

be operating in the HRL will depend on the operating cycle of the plant, and therefore 

the source or sink may only occur 85% of the time for example.  The actual value will 

be somewhat less than what is shown here however the relative values are what are 

important. 
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Figure 6. Effect of Thot on maximum 

heat recovery for the several operating 

conditions. 

Figure 7. Weighted average heat 

recovery for all conditions with split 

HRL operating scenarios.  



There is also the option to alter Thot of the ST depending on the operating condition and 

increase the amount of heat recovery.  The solid data points shown in Fig. 7 specify the 

heat recovery potential of operating at one Thot for conditions A and B and then a higher 

Thot for conditions C and D.  If for conditions A and B Thot is 40 or 45°C and for 

conditions C and D the Thot is 50°C then a significant increase in the amount of heat 

recovery occurs.  This occurs because at the first two conditions the MHR is limited by 

the number of sources and therefore by lowering Thot more streams become feasible.  In 

the case of a 40/50 split between operating conditions the average heat recovery 

increases by 13.4%. 

 

There are still many other aspects of the HRL and ST that need to considered, for 

example the economic trade off between heat exchanger area and heat recovery.  Other 

important factors such as the correct sizing and design of the ST and recirculation loop 

also need to be considered, however these will be discussed in the future. 

Conclusions 

Integrating non-continuous processes such as a dairy factory is a challenge due to the 

irregular operation of the several plants on site.  Direct heat transfer between plants is 

often impractical and therefore indirect heat transfer using a recirculating heat recovery 

loop is an alternative.  Heat storage using a stratified tank is also an option to act as a 

buffer for when plants go onto a non-productive operating state.  Traditional composite 

curves can be used to estimate the maximum heat recovery and to determine the optimal 

temperatures of the stratified tank.  The maximum amount of heat recovery can be 

increased considerably if the temperature of the hot fluid in the recirculation loop is 

varied depending on which condition the site is operating under. 
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