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Abstract

This thesis examines global warming and the possible contribution that ozone

depletion provides to this warming. An examination is performed to deter-

mine the extent of any warming/cooling events within the Earth–atmosphere

system. The change in energy corresponding to this warning of the Earth–

atmosphere system is estimated as being equivilent to an increase of mean

solar input of 0.22 W/m2. This is compared to the predicted changes of solar

input for the two most common global warming scenarios: greenhouse gases

and solar irradiance variance; and for a less well explored scenario, snow-ice

albedo change. Examination of ozone depletion data shows that an absence of

ozone in the stratosphere produces an increase in UV-B radiation at the surface

of the Earth. This increase in UV-B light has not previously been thourougly

examined in any of the global warming scenarios. This is presented as a fourth

scenario for global warming.

An analytical three layer model of the Earth–atmosphere, based on an ear-

lier two layer model, is developed. Using this model it is determined that

greenhouse gases, solar irradiance, snow-ice albedo feedback and ozone de-

pletion can cause warming of the Earth’s atmosphere. After comparison with

other models, a snow-ice albedo mechanism is incorporated into the three layer

model. This produces an amplification effect of any warming that occurs.

Compared to the observed increase of surface temperature between 1975–2000

of 0.55 K, the model using a snow-ice albedo feedback, produced an increase

of temperature of 1.4 K for greenhouse gases, 0.294 K for a solar irradiance in-

crease and 0.119 K caused by a decrease in the ozone layer. Of the greenhouse

gas, solar irradiance and ozone depletion scenarios, ozone depletion demon-

strates the most realistic relative changes with a cooling of the stratosphere

and a warming of the troposphere and Earth’s surface as has been observed.

It is concluded that ozone depletion is likely for a reasonable part of observed

global warming.
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Chapter 1

Introduction

1.1 Overview of Global Warming and Ozone

Depletion

Global Warming has become an issue of some concern over the last couple of

decades. The question of how increased temperature will affect the world habi-

tats and agricultural land is considered by some, the greatest current threat to

humanity. There is much debate about whether this increase in temperature

is human induced or whether it is normal natural variation. If the warming

is induced, at least in part, by human activity then the belief amongst some

politicians is that the event can be reversed.

Another issue that has recently become a concern is ozone depletion. A

decrease of ozone concentration in the ozone layer causes an increase in the

amount of ultraviolet light that reaches the surface of the Earth. Biologists

argue that this increase in ‘burning’ radiation may cause problems as it has

the potential to harm or kill various biological organisms, especially bacteria.

This may have significant implications, usually assumed to be negative, to the

whole ecosystem.

Previous study of global warming and ozone depletion has treated these as

two totally separate and unrelated issues. Yet, the combination of these two

mechanisms could potentially have a severe effect on the weather system and

consequently ecosystems. It would seem intuitive that the increase of UV-B

radiation at the surface of the Earth due to the decrease of the ozone layer

would have effects besides biological. An increase in energy at the surface

implies an increase of temperature. If this increase in temperature actually

occurs, then it is not currently accounted for in mainstream global warming

1



2 Introduction

theories. It is therefore of use to determine if UV-B is a plausible cause of at

least part of known global warming.

1.2 Thesis Overview

1.2.1 Aims

The goal of this thesis is to determine whether the observed changes in strato-

spheric ozone could plausibly have a marked effect on the Earth’s climate.

Because ozone depletion and global warming have occurred at the same time

it is plausible, but far from clear, whether they are related. Ideally, simulation

with a Global Circulation Model (GCM) would be used to answer this ques-

tion, however modifying a GCM requires work far beyond that of a Masters

thesis. Anyway there are questions about the validity of GCMs.

For the purposes of this thesis it was decided to use a much simpler ana-

lytical model of the Earth and its atmosphere, that incorporates the essential

components of energy flow required to answer the question. It is not a require-

ment to simulate localised (whether temporal, or spatial) weather systems of

the Earth. Rather, the model is required to demonstrate the long term trends

of the whole Earth. This is achieved by modelling the gross energy flows in

a steady state system and then perturbing that system. A simple such model

is the Knox Two layer model, as hinted at by Arrhenius (1896) and Kittel

and Kroemer (1980), but developed in full by Knox (1999). In this thesis, we

extend the Knox two layer morel by creating an extra layer to create a three

layer model. This additional layer provides finer resolution when modelling

the observed effects of the atmosphere. In particular, it allows modelling sep-

arately the behavior of the troposphere and the stratosphere. This model is

then used to test the veracity of various global warming scenarios including

ozone depletion. This model is further extended to allow for an ice-snow albedo

feedback mechanism.

1.2.2 Thesis Structure

The structure of the thesis is as follows.

In chapter 2, Global Warming, the known evidence for global warming is

summarised. We attempt to show that some warming, particularly over the

last two decades, has occurred but do not attribute the warming to any single

cause. Calculations are performed to determine the amount of energy that has
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been absorbed by the Earth due to the warming effects. The greenhouse gas

and solar irradiance theories are then explored in relationship to the observed

energy changes. The Snow-Ice Albedo Feed Mechanism is also explored and

the magnitude of this feedback is compared to observed results.

Ozone depletion is not a currently recognised cause of global warming. In

chapter 3 we summarise the known data that supports that ozone depletion has

been occurring and that it is predominantly caused by human activity. The

locations and times of ozone depletion – the so called ‘hole’ – are documented,

and it is observed that where ozone depletion is greatest that there is also an

increase in UV-B radiation.

Chapter 4 is devoted to developing the mathematical model that we use

to test various scenarios for the causes of global warming. We begin with the

Knox two layer model of the Earth to simulate the Earth–atmosphere system.

This model is then extended to include a third layer. This allows for the

modelling of the stratosphere, the troposphere and the surface temperatures.

The three layer model is calibrated against observed values.

In chapter 5 the results of running the three layer model on a number of

scenarios are presented. First, each individual parameter of the three layer

model is varied in turn to establish the effects of the parameter on the model

as we move from the calibrated state. Four scenarios of global warming are

also run and compared with the observed data on global warming.

A number of other models of the Earth’s climate have been used by other

researchers. Chapter 6 is devoted to comparing their results to those obtained

with the three layer model. The iterative models first appearing in the late

1960s are examined as well as the modern GCMs. Output from these models,

where it is possible to simulate the scenarios under examination, are compared

to the three layer model results.

A limitation of the three layer model is that it cannot simulate directly the

Snow-Ice Albedo Feedback Mechanism. In chapter 7, the model is extended

by adding two such feedback mechanisms. The first is a simple mechanism

that models for the mean Earth Temperature. The second is a mechanism

to determine the feedback effects for a simple two-dimensional model of the

Earth that includes latitudes. Some preliminary output from the extended

three layer model is presented.

The evidence for this thesis, namely that ozone depletion is a likely con-

tributing factor to global warming is summarised in chapter 8.



4 Introduction

1.2.3 Original Work

While the concepts of ozone depletion and global warming are common know-

ledge in the non-scientific community, the idea that they are related is not held

by the scientific community. The Thesis developed herein, namely, there exists

a link between ozone depletion and global warming is therefore original work.

Chapters 2 and 3 are summaries of well known observed data, nevertheless the

initial energy budget calculation and the quantification of the ice-snow albedo

feedback and the comparison of the conventionally held theories against the

energy budget are original contributions. The two layer model and the initial

values presented for that model in chapter 4 are due primarily to Knox (1999)

and to a lesser extent earlier researchers. The results presented in this thesis

using the two layer model are original as we use the two layer model for sce-

narios that Knox did not consider. The extension of the two layer model to

include an extra layer, to give the three layer model, as it is called herein, is

original work. The atmosphere model that the three layer model used to sim-

ulate is due to Kiehl and Trenberth (1997). The results obtained in chapters

5 and 7 are original. The models used in Chapter 6 are attributed to their

authors there. The results obtained using the Budyko Model and the Sellers’

Model are the work of those respective authors, while the results of the GISS

II GCM are original work.



Chapter 2

Global Warming

2.1 Overview

A reasonable estimate of global surface temperature change between the late

nineteenth century and the present is 0.8 K. It is of interest to note that over

half of that change has occurred since 1975. During this time the air temper-

ature has warmed more in the northern hemisphere more than the southern

hemisphere. While the ocean has warmed less than the continents, it has ab-

sorbed significantly more energy than the land masses. The troposphere has

warmed while the stratosphere has cooled. There has also been a noticeable

amount of melting of the glaciers, sea-ice, ice shelves, winter snow coverage

and the Arctic Polar ice cap. This corresponds to an increase of energy at the

surface of 0.22 W/m2.

There is still major disagreement over the two major theories of global

warming. The greenhouse proponents claim an increase of carbon dioxide

and other greenhouse gases are the cause of warming, yet they have difficulty

demonstrating that the increase of naturally occurring greenhouse gases is not

caused by the increase of temperature. The solar variability proponents show

that there is a link between the amount of sunlight reaching the upper atmo-

sphere and the surface temperature of the Earth, yet they concede that there

is not enough energy increase to account for all of the temperature increase.

5



6 Global Warming

2.2 Observed Climate Change

2.2.1 Average Global Temperature

During the 1960s and 1970s many climatologists studied the changing weather

patterns. Using data such as shown in figure 2.1, climatologists such as Budyko

(1969) and Sellers (1969) predicted not only a continued cooling of the Earth’s

atmosphere, but indeed the possibility of a runaway ice age. During the early

seventies the predominant theme was that the Earth had entered a cooling

cycle and was returning to a ‘normal’ temperature as seen during the ice ages.

Figure 2.1: Global Annual Mean Surface Air Temperature Change 1856–1970,
[Adapted from: Goddard Institute of Space Studies (2006)]

In recent years climatologists have become interested in the opposite trend;

the warming of the atmosphere. The Intergovernmental Panel on Climate

Change (IPCC) is the foremost proponent of the current climate change being

caused by global warming. Using the Goddard Institute of Space Studies

(GISS) data presented in fig 2.1 and adding the data collected since 1970 gives

fig 2.2. In this figure the mean surface air temperature for any particular year

is shown, with the extreme fluctuations smoothed out by plotting the five year

mean temperature centered on any particular year.

On closer inspection of figure 2.2 it appears there has been a slight cooling
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Figure 2.2: Global Annual Mean Surface Air Temperature Change
[Source: Goddard Institute of Space Studies (2006)]

phase between 1880 and 1910, a warming phase between 1910 and 1945, an-

other cooling phase between 1945 and 1975 and a dramatic rise in temperature

between 1975 and 2005. These data show a rise in the mean global surface

air temperature of approximately 0.9 K between 1910 and 2005, most of which

occurred between 1975 and 2005. Of note is that the mid 1970s seems to be

the start of a new warming cycle. As seen in fig 2.3 the temperatures observed

by the Climatic Research Unit show similar trends.

The results from the four major studies, the Goddard Institute of Space

Studies, Climatic Research Unit (CRU), National Climate Data Center (NCDC)

and the State Hydrological Institute (SHI) all show similar trends and magni-

tudes (Houghton, 2001).

There is difficulty in assessing the reliability of the data. Earliest reliable

data dates to the 1890s where measurements were made directly with ther-

mometers, however coverage of the Earth was limited mainly to the Northern

Hemisphere. Since 1979 we have satellite observations that cover most (but

not all) of the globe on a regular basis. There is also suspicion of the ef-

fect described as the ‘Urban Heat Island’ (Houghton, 2001). This holds that

most temperature measurements are taken in or near cities and most cities are

warmer than the surrounding areas because of heat production, heat retention

caused by roads, and by smog. The urban heat island effect is a real climate
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Figure 2.3: Global Annual Mean Surface Air Temperature Change,
[Source: Climatic Research Unit (2006)]

change in urban areas, but is not representative of larger areas. This produces

an uncertainty in modern measurements of ±0.06 K (Houghton, 2001).

Other methods of determining surface temperature have been used. Anal-

yses of underground temperature measurements from 358 boreholes in eastern

North America, southern Africa and Australia indicate, in the twentieth cen-

tury that the average surface temperature of the Earth has increased by about

0.5K and that the twentieth century has been the warmest of the past five

centuries. The subsurface temperatures also indicate that the Earth’s mean

temperature has increased by about 1.0 K over the past five centuries. The

geothermal data offer an independent confirmation of the unusual character

of the twentieth century climate that has emerged from recent multi-proxy

studies (Pollack et al., 1998)

The Earth is not totally homogeneous and the hemispheres show differ-

ent characteristics. The Southern Hemisphere has been called the ‘Water

Hemisphere’. Therefore it would be reasonable if the globe exhibited different

warming characteristics in the different hemispheres. In figure 2.4 the Earth

is divided into three regions, everything North of the Tropic of Cancer, every-

thing between the Tropics of Cancer and Capricorn and all of the Earth south



2.2 Observed Climate Change 9

of the Tropic of Capricorn. As can be seen the most dramatic temperature

rises have occurred in the Northern hemisphere with the smallest changes in

the Southern Hemisphere.

Figure 2.4: Annual Mean Surface Air Temperature Change by Latitude Bands,
[Source: Goddard Institute of Space Studies (2006)]

A major cause for this is due to the different specific heats of water and

land. While very difficult to quantify the value for land, it can be shown that

145×1021 J of warming has increased the ocean temperature by 0.3 K (Levitus

et al., 2000), while 9.1×1021 J of energy has warmed the land surfaces by

0.3 K (Beltrami et al., 2002). The northern hemisphere is 60.7% sea and 39.3%

land, whilst the southern hemisphere is 80.9% sea and 19.1% land (Garrison,

1999). The land content of the northern hemisphere is twice the area of the

southern hemisphere. As land warms more easily than water, it is reasonable

to expect the northern hemisphere surface air temperature will warm faster

than the southern hemisphere surface air temperature.
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For the northern hemisphere there was a cooling trend between the 1930s

and 1970, and a warming phase, from the 1970s onwards. For the low latitudes

the start of the warming phase occurred at the mid 1970s, early 1980s. For the

southern latitudes there was a rapid warming from the mid 1960s to the early

1970s. From this time onwards there has been a lesser but consistent warming

trend.

Even though the Southern Hemisphere has less heating than the Northern

Hemisphere, the most extreme heating has been occurring in Antarctica. Anal-

ysis of 50 meteorological records have since revealed warming on the Antarctic

Peninsular and that a number of ice shelves have retreated. From times-series

observations of the areal extant of nine ice shelves on the Antarctic Penin-

sula, it is seen that the five northerly ones have retreated dramatically in the

last 50 years, while the ones further south have no clear trend. Comparison

with air-temperature data shows that the pattern and magnitude of ice-shelf

retreat is consistent with the existence of an abrupt thermal limit on ice-shelf

viability, the isotherm associated with this limit having been driven south by

atmospheric warming. The only climate parameter that is well mapped on

the Antarctic Peninsula is the mean annual air temperature. Meteorological

records along the west coast of the Antarctic Peninsula show a spatially con-

sistent warming of ∼ 0.056 K/yr has been measured since 1946, giving a total

rise between 1946–1996 of ∼ 2.5 K (Vaughan and Doake, 1996).

2.2.2 Ocean Warming

An accurate measurement system for ocean temperatures has only recently

occurred. Reports of the water temperatures went from less than 100 000

reports per year in 1860 to over 2.0 million a year in 1980. Antarctic sea

surface temperature observations went from virtually none in 1860 to the tens

of thousands per annum in the late seventies (Woodruff et al., 1987).

Sea water temperature measurement coverage became widespread in much

of the Atlantic and Indian Oceans during the nineteenth century. Much of the

Pacific Ocean had sparse coverage until the 1930s. Many areas had a marked

decrease in the availability of data of or around the two world wars. The

opening of the Suez (1869) and Panama (1914) canals caused major changes

in predominant shipping routes. In particular, after about 1914 far fewer

ships circumnavigated Cape Horn, so that the measurement coverage decreased

dramatically in the midlatitude southeast Pacific (Park et al., 1995)

Observations since World War Two show that between 1948 and 1998 there
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was a net warming of 0.06◦ C of the oceans’ waters from the surface to a depth

3000 m. This is approximately 2×1023 J or a warming rate averaged over the

entire planet of 0.3 Wm−2 downward radiative forcing. The temperature rise

from the surface to 300m was 0.31◦C or 1×1023J of equivalent energy (Levitus

et al., 2000). This shows that even though most warming is occurring in the

shallow 0–300m band, there is some warming occurring in the deep oceans.

This is further supported by the thermal expansion of the oceans. Ther-

mosteric sea level rises for the world ocean between 1955–2003, for the 0 to

700m layer has averaged 0.3 mm/year and between 1993–2003 has increased

to an average height increase of 1.23 mm/year (Antonov et al., 2005). This

supports the idea of a sudden increase of ocean temperature in recent times.

2.2.3 Continental Warming

Until recently the heat gain by the land surfaces of the world had not been ad-

dressed. Land represents 29% of the Earth’s surface and can therefore make a

significant contribution to the total warming of the planet. Using temperature

readings from 616 water boreholes in six continents, Beltrami et al. (2002) was

able to determine that the continental lithosphere has been rising in temper-

ature for the past 500 years, with the largest rises occurring between 1950–

2000 and 1900–1950. Between 1950–2000 the continental lithosphere gained

9.1×1021 J in heat.

2.2.4 Troposphere Warming

The air at the surface of the Earth tends to be the same temperature as

the surface of the Earth to maintain thermal equilibrium. However the air

bands above the surface of the Earth may behave in an independent manner.

Defining the Troposphere as the atmosphere with a pressure of 850–300 mbar

of pressure, (85.9–30.3 kPa), then for the whole Earth between 1958 and 1998

the surface of the Earth warmed 0.14 ± 0.13 K/decade and the troposphere

warmed by 0.10± 0.09 K/decade (Angell, 1999).

Yet again, the northern hemisphere and the southern hemispheres act dif-

ferently. In the northern hemisphere, the surface warms considerably more

than the troposphere. The Earth’s surface experienced a temperature rise of

0.19±0.14 K/decade, while the troposphere experienced 0.07±0.09 K/decade.

In the southern hemisphere it is the troposphere that warms faster than the

surface. Surface warming of 0.09±0.12 K/decade and troposphere warming of
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0.13 ± 0.12 K/decade are observed (Angell, 1999). Again this behaviour can

be explained by the different specific heats of the Earth’s crust and water.

2.2.5 Stratospheric Cooling

For the atmosphere above approximately 10km a different trend has been ob-

served. Lidar and rocket data available from specific sites show a cooling over

most of the middle and upper stratosphere (∼ 30–50 km) of 1–2 K/decade since

about 1970, with the amount of cooling increasing with altitude (Ramaswamy

et al., 2001).

Using northern midlatitudes, between 1979–1994, the cooling data are ro-

bust. For the low-stratosphere (∼ 16–21 km)the cooling is ∼ 0.6 K/decade.

For the mid-stratosphere (∼ 20–35 km)the cooling is ∼ 0.75 K/decade and for

the uppermost stratosphere there is an even greater cooling, for example at

50km the rate of cooling is ∼ 2.5 K/decade (Ramaswamy et al., 2001). Sub-

stantial cooling (∼ 3–4 K/decade) is observed in the polar lower stratosphere

during late winter/spring time in both hemispheres (Ramaswamy et al., 2001).

Simulations based on the known changes in the species’ concentrations

indicate that the depletion of lower stratospheric ozone is the major radia-

tive factor in accounting for the 1979–1990 cooling trend in the lower strato-

sphere (∼ 0.5–0.6 K/decade), with a substantially lesser contribution by the

well mixed greenhouse gases. Ozone loss is also an important causal factor

in the latitude-month pattern of the lower stratospheric cooling trend. In the

middle and upper stratosphere, both well mixed greenhouse gases and ozone

changes contribute in an important manner to the cooling (Ramaswamy et al.,

2001).

2.2.6 The Cryosphere

Glaciers

Over the years there has been a decline in the total amount of glaciation in the

world (National Snow Ice Data Center, 2005) While there are some glaciers

that have increased in size, the net glacier loss is shown in figure 2.5.

This shows that even though in some years there has been a gain in the

volume of glaciers, that between 1961 and 2004 there has been a net loss of

6 000 km3 of ice. With the density of ice as 917 kg/ m3 it follows that some

5.5×1015 kg of ice has been lost (Halliday et al., 1997).
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Figure 2.5: Net decrease in Glaciers [Source: National Snow Ice Data Center
(2005)]
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Land Snow and Sea-Ice

Of great concern to many climatologists is the decrease in sea-ice. Since Budyko

(1969) and Sellers (1969), there has been an awareness that sea-ice, land-

ice, glaciers and the polar ice caps can directly influence climate through the

Snow-Ice Albedo Feedback mechanism. It is of interest then to determine the

behaviour of sea-ice.

In the Northern Hemisphere a thirty year satellite study showed that the

Artic Sea Ice extent decreased by (0.30 ± 0.03)×106 km2/decade from 1972

to 2002, but between 1979 to 2002 its loss rate had increased 20% to (0.36 ±
0.05)×106 km2/decade (Cavalieri and Parkinson, 2003).

More recently, the National Snow Ice Data Center (2005) for the fourth

year in a row have tracked a stunning reduction in sea ice at the end of the

northern summer as demonstrated in figure 2.6. Not only does the graph in

Figure 2.6: Arctic, September Sea Ice extent trend, 1978–2005 [Source: Na-
tional Snow Ice Data Center (2005)]

figure 2.6 show the loss of over 1 000 000 km2 of sea-ice, but it shows that

there may be an acceleration in that loss. According to Johannessen et al.

(1999) there has been a 3% per decade reduction in the areal extent of the

Arctic sea ice cover since 1978. Also there has been a 14% reduction in the

multi-year ice cover between 1978–1998 (Johannessen et al., 1999). The largest

decreases have occurred in the Kara and Barrents Seas, followed by the seas

of Okhotsk and Japan, the Artic Ocean, Greenland Sea, Hudson Bay, and

Canadian Archipelago. Regions showing an increasing yearly ice extent are
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Baffin Bay/Labrador Sea, the Gulf of St. Lawrence and the Bering Sea, with

only the increases in the Gulf of St. Lawrence being statistically significant at

the 99% level (Parkinson et al., 1999).

Not only is the area of Arctic sea-ice on the decline, but so is the thickness of

the remaining sea ice. Comparison of sea-ice draft data acquired on submarine

cruises between 1993 and 1997 with similar data acquired between 1958 and

1976 indicates that the mean ice draft at the end of the melt season has

decreased by 1.3m in most of the deep water portion of the Arctic Ocean from

3.1 m to 1.8 m. Preliminary evidence is that the ice cover has continued to get

thinner in some regions during the 1990s (Rothrock et al., 1999).

In the Antarctic the behaviour has been different. There was a dra-

matic decline in sea ice from 1973–1977 then it gradually increased. Total

sea ice decline for the thirty year period is (0.15 ± 0.08)×106 km2/decade.

This includes a period of sea-ice increasing from 1979–1998 at the rate of

(0.0112 ± 0.042)×106 km2/decade (Cavalieri and Parkinson, 2003). Unfortu-

nately there is little or no data from before 1973 so it is difficult to determine

if the 1973–1977 sea-ice decrease was a one off event or part of a longer event.

Antarctic sea-ice decline is not uniform across of Antarctica. Satellite de-

rived data shows an increase in Antarctic sea ice of 4–10% per decade in the

Pacific sector and −4–10% in the Bellinghausen/western Weddell sector (Liu

et al., 2004). There are two classic views on Antarctic Sea Ice Changes: (1) sea

ice cover decreases with warmer weather, and (2) sea ice cover increases with

warmer weather. The later view assumes increased precipitation with warmer

atmosphere results in more snowfall on sea ice and lower salinity in the surface

ocean layer (Liu et al., 2004)

In terms of spatial extent, seasonal snow cover is the largest single compo-

nent of the cryosphere with a mean winter maximum area of 47 000 000 km2, of

which 98% is located in the Northern Hemisphere. Preliminary analysis of the

24 year trend in snow extent derived from visible and passive microwave satel-

lite data indicates a decrease of approximately 3% to 5% per decade during

spring and summer (National Snow Ice Data Center, 2005). This represents a

loss of snow cover on the order of 4 500 000 km2

Ice Shelves

Much has been made recently of the break up of Antarctic ice shelves. Not only

do they represent a demonstration of the warming of the Antarctic (Vaughan

and Doake, 1996), but also contribute to the Snow-Ice Albedo Feedback.
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Since 1974, seven Antarctic ice shelves have retreated by a total of 13 500

km2. The most pronounced ice shelf retreat has occurred on the Larson Ice

Shelf located on the eastern side of the Antarctic Peninsula’s northern tip (Na-

tional Snow Ice Data Center, 2005).

It is less widely known that ice shelves occur in the high Arctic and that

these are also undergoing substantial contraction. The Ward Hunt Iceshelf,

Nunavut, Canada contracted 90% during the period 1906–1982 by calving from

its northern edge. Since then it has remained relatively stable, until recently

when it collapsed and has been destroyed (Mueller and Vincent, 2003).

2.3 Energy Budget

In order to understand the magnitude of global warning, a summary of the

individual components are compiled. This allows us to calculate how much

extra energy must be placed into the Earth system to account for all the

observed effects.

Atmospheric Warming

We divide the atmosphere into three bands of interest. From 1013mb to 850mb

is defined as surface air. Between 850mb to 350mb defined as troposphere and

the atmosphere with a pressure of less than 136mb is taken as the stratosphere.

There is an unaccounted for region between 350mb and 136mb. This is the

area between the warming of the troposphere and the warming of the strato-

sphere. Because of insufficient data it will be presumed that the cooling effects

active in the upper levels cancel out any warming from the lower levels.

The total mass of the atmosphere is 5.136×1018 kg (Lide, 2003) and using

the pressures to define the various layers, the layers can be divided so that

the surface air has a mass of 8.264×1017 kg, the troposphere 2.535×1018 kg

and the stratosphere 6.895×1017 kg. Taking the specific heat of air as 1 000

J/kg/K (Kirkpatrick and Wheeler, 1995), it is now possible to work out how

much energy the warming of each layer represents.

The surface air temperature has increased 0.62 K between 1965 and 2003,

therefore the change in energy is 5.124×1020 J. This is an increase of energy

of 1.35×1019 J/year.

The troposphere has been warming 0.10±0.09 K/decade between 1958 and

1998. This is an increase of energy of 1.014×1021 J or 2.535×1019 J/year.
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The stratosphere has been cooling at the dramatic rate of 0.6 K/decade

and at much greater rates in the upper atmosphere. This produces a net

cooling of −1.8 K or the equivalent of−1.24×1021 J between 1970 and 2000, or

−4.137×1019 J/year.

Surface warming

According to Levitus et al. (2000) the warming of the oceans is equivalent to

2×1023 J. His latest assessment (Levitus et al., 2006) states that between 1955

and 1998 the world ocean heat content (0 – 3 000m) increased by 1.45×1023 J.

This equates to an annual change of 3.37×1020 J/year.

During 1950–2000 the continental lithosphere absorbed 9.1×1021 J which

equates to 1.8×1020unJ/year (Beltrami et al., 2002)

With regard to the cryosphere, not only does ice require energy to be raised

in temperature, but the phase change from solid to liquid requires a large

input of energy. The latent heat of fusion for ice requires is 333 000 Joules/kg

(Halliday et al., 1997) and the density of ice is nominally 917 kg/m3 (Halliday

et al., 1997).

For the purposes of the energy budget calculations we divide the cryosphere

into glaciers, ice shelves and sea ice. The net retreat of glaciers between 1961

and 2004 and the net loss of 6 000 km3, requires a total energy input of 1.7×1021

J or 3.9×1019 J/year National Snow Ice Data Center (2005). The loss of

13 500 km2 of ice shelves (National Snow Ice Data Center, 2005) represents a

net energy gain of (0.412–2.47)×1021 J and a warming rate of (1.37–8.24)×1019

J/year.

The Arctic sea-ice has reduced both in area and in thickness. Its area has

reduced by ∼ 2 000 000 km2 between 1979 and 2005. Arctic sea-ice had an

average thickness of 3.1m so this represents a gain in energy of 2×1021 J at

a rate of 7×1019 J/year. The reduction in thickness of the remaining Arctic

sea ice represents a net energy gain of 2.2×1021 J at a rate of 8.4×1019 J/year.

The reduction of Antarctic sea ice represents a represents a net energy gain of

4.3×1020 J at the rate of 1.4×1019 J/year.

The above is a first order approximation of the energy increase of the Earth

between the 1970s and the early 2000s and is summarised in table 2.1.

As can be seen from the calculation, the largest single component of warm-

ing is the amount of energy that is absorbed by the world’s oceans. It is at

least two orders of magnitude larger than any other single factor. The rate of

change of energy in the Earth system is of the order of 3.6×1021 J/yr. This
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Table 2.1: A first order energy budget of the Earth for the period 1970 to the
early 2000s. The total, is for the total of known warming during this period.

Energy Input ∆Energy (J) Rate of Change (J/year)
Ocean (1955–1998) 1 450×1020 337×1019

Continental (1950–2000) 91×1020 1.8×1019

Surface Atmosphere( 1965–2003) 4.8×1020 1.3×1019

Troposphere (1958–1998) 10×1020 2.5×1019

Stratosphere (1970–2000) −12×1020 −4.1×1019

Glaciers (1961–2004) 17×1020 3.9×1019

Ice Shelves 14×1020 4.8×1019

Arctic Sea Ice (1979–2005) 20×1020 7×1019

Antarctic Sea Ice 13×1020 4×1019

Thinning Arctic Sea Ice 22×1020 8.4×1019

Total 1 600×1020 360×1019

corresponds to an instantaneous increase of heating of the whole Earth’s sur-

face of 0.22 W/m2. This represents an increase of the mean solar constant of

0.06%.

This is the budget for the static components of warming. There are other

components due to the dynamic nature of the Earth, for example, the increased

kinetic energy associated with a higher wind speed. Unfortunately there are

no data available on the increase in the mean air speed increase of the Earth’s

atmosphere. Estimates of the change in kinetic energy of the Earth’s atmo-

sphere, from a mean speed of 10 m/s to 20 m/s, show the amount of kinetic

energy would increase by 8×1020 J. This is two orders of magnitude less than

the results from thermal effects and henceforth will be ignored as insignificant.

2.4 Greenhouse Gases

To account for the observed rising in the Earth’s temperature two main theo-

ries have been proposed. The politically acceptable theory is that of ‘Global

Warming caused by Greenhouse Gases.’ The theory proposes that the atmo-

sphere acts as a ‘blanket’ around the Earth. Visible and Ultraviolet light are

absorbed by the Earth surface and are reemitted in the infra-red range due to

black body radiation. Components of the atmosphere absorb the IR light at

various frequencies. IR radiation from the atmosphere is considered isotropic.

Some light is emitted to space, with the remainder transmitted back to the

surface of the Earth. This acts as an additional heat input to the Earth and

provides additional input in the atmosphere.
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The first scientist to note the warming effect of greenhouse gases in the

atmosphere was the French mathematician Jean-Baptiste Fourier in 1827. He

first pointed out the similarity between what happens with the glass in a

greenhouse and the Earth’s atmosphere. Around 1860 the British scientist

John Tyndell measured the absorption of infrared by carbon dioxide and wa-

ter vapour. Further, he proposed that the ice ages may have been caused by

a decline in the greenhouse effect of carbon dioxide gas (Houghton, 2004). In

Arrhenius (1896) published an article about the influence of carbon dioxide in

the atmosphere upon the effect on surface temperatures. He states “a simple

calculation shows that the temperature in the Arctic regions would rise 8◦ C

to 9◦ C, if the carbonic acid increased to 2.5 to 3 times its present value.” He

also noted “The geographical annual and diurnal ranges of temperature would

be partly smoothed away, if the quantity of carbonic acid were augmented.”

Arrhenius used this concept to explain why it was warmer during prehistoric

periods (Arrhenius, 1896). In the year 1957, Roger Revelle and Hans Suess

of the Scripps Institute of Oceanography, published a paper that stated that

the buildup of carbon dioxide in the atmosphere was a large-scale geophys-

ical experiment carried out by human beings. This was the first expression

of concern that an increase of greenhouse gases could be causing a climate

change (Houghton, 2004).

The most important greenhouse gases are water vapour and carbon dioxide.

Water vapour makes up 1% of the Earth’s atmosphere by volume (Allen, 1997)

and is strongly absorbing in the 0.8, 0.9, 1.1, 1.3, 1.8, 2.3–3.3, 5.0–8.0 and 15-

100 µm bands (Peixoto, 1992). These correspond very strongly to the infrared

portion of the solar input and to the blackbody radiation of the Earth. Carbon

dioxide composes 0.003% of the Earth’s atmosphere by volume (Allen, 1997)

and is strongly absorbing in the 3.0, 4.0 and 13.0–18.0 µm bands (Peixoto,

1992). Of these the 13.0–18.0 µm band corresponds to the Earth’s black body

radiation.

Other greenhouse gases include methane, nitrous oxide, CFC-12, CFC-11

and carbon tetrachloride. These and the other lesser gases are measured in

parts per trillion in the atmosphere (Houghton, 2001) and are, in total, seven

orders of magnitude less in volume than water and five orders of magnitude

less than carbon dioxide.

The greenhouse gases absorb infrared radiation and re-radiate the infrared

radiation. There is a clear sky downward radiative forcing to the Earth due

to the greenhouse effect of 125 W/m2. Of this 60% is from water vapour and
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26% is from carbon dioxide, 8% is from ozone and the remaining 6% is from

all other effects (Kiehl and Trenberth, 1997).

While water vapour is the most important greenhouse gas, it is also the

least recorded. There are no historical records for the Earth’s mean water

vapour content. While there is a satellite record from 1979 onwards, it is in-

complete. There are no commonly used proxy methods to determine historical

water vapour pressure. While water vapour feedback is considered important

in modelling, there is little or no historical data to base the models’ water

vapour feedback mechanisms upon. Therefore most models model the change

in carbon dioxide and methane content in the absence of any historical data.

Recent modelling shows an increase of radiative forcing by the increase of

industrial gases of +2.42 W/m2 but does not ascribe any value to radiative

forcing by water vapour (Houghton, 2001).

The IPCC reports also considers stratospheric ozone a greenhouse gas.

According to (Houghton, 2001), the cooling of the stratosphere is caused be

the loss of greenhouse effect caused by the decrease in stratospheric ozone.

The report ascribes a change of radiative forcing of −0.15± 0.1 Wm−2 for the

period 1979 to 1997. With a negative forcing effect due to ozone loss, one

would expect the greatest surface cooling due to this effect to occur where

the ozone loss is the greatest, namely at high latitudes and over the South

Pole during the ozone hole. These cooling effects have not been reported. We

conjecture, this is related to the sensitivity issues associated with GCMs as

detailed in section 6.4.4.

Figure 2.7: Carbon dioxide mixing ratio and temperature for the last 160 000
years. [Source: Barker and Ross (1999)]
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Figure 2.7, shows a historical record of the mean temperature of the Earth

from 160 000 years ago until 1991. The graph shows that there is an apparent

relationship between carbon dioxide and temperature between 150 000 and

10 000 years ago. The resolution is not fine enough to distinguish which event is

the cause and which is the effect. Extending the Vostok ice core records back to

450,000 years ago shows a similar relationship with a similar conclusion (Petit

et al., 1999). This does not resolve whether the increase in carbon dioxide

caused an increase in temperature, or the increase in temperature caused an

increase in carbon dioxide. Between the period of 1881–1991 there appears to

be no direct relationship between temperature and carbon dioxide.

The theory of Arrhenius shows that an increase in carbon dioxide in the

atmosphere results in an increase in the atmospheric temperature. Scientists

such as Soon et al. (1999) conclude that ”There is no clear evidence, nor

unique attribution, of global effects of anthrogenic CO2 on climate.” Indeed,

a careful statistical study of the correlation between ocean temperatures and

carbon dioxide in the atmosphere carried out over a thirty year period (1958–

1988) by Kuo et al. (1990) of the Bell Telephone Laboratories indicates that

during this time that the temperature and atmospheric carbon dioxide are

strongly significantly correlated and a rise in carbon dioxide follows a rise in

temperature by five months.

The main proponents of the greenhouse gas theory of global warming, the

Intergovernmental Panel on Climate Change ascribe a radiative forcing value

of 2.42 W/m2 to the increase of well mixed greenhouse gases Houghton (2001,

P. 351). Compared to the energy budget determined earlier in this chapter,

this is an increase of a magnitude larger than has been observed.

2.5 Solar Irradiance

An alternate theory has been proposed that links variations in Earth’s temper-

ature to variation in solar output. If there is a higher solar input into the Earth

system, then the temperature should increase. A decline in solar input implies

a corresponding decline in the Earth’s temperature. A reconstruction of tem-

perature versus solar irradiance perpendicular to the top of the atmosphere is

given in figure 2.8.

As can be seen while there is a good relationship solar radiation and tem-

perature except around 1830 and 1890. These correspond with the eruptions

of Mount Tambora in 1815 and Karkatoa in 1883.
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Figure 2.8: Solar Irradiance versus Temperature. The light solid line represents
the global mean temperature as reconstructed using proxies. The light dashed
line represents temperatures directly recorded and the dark line represents the
solar radiation. [Source: University of Leeds (2005)]

For 20◦ South to 60◦ North a depth weight average temperature was pro-

duced (DVT). Basin and global averages of these DVT changes reveal decadal

and interdecadal variability in phase across the Indian, Pacific, Atlantic and

global oceans, each significantly correlated with changing solar radiative forc-

ing at a lag of 0± 2 years. Decadal and interdecadal changes in global average

DVT are 0.06± 0.01K and 0.04± 0.01K respectively. The same as those ex-

pected in response to 0.1% changes in the solar radiative forcing of 0.2 W/m2

and 0.15 W/m2 suggesting that natural modes of Earth’s variability are phase

locked to the solar irradiance cycle (White et al., 1998)

If the increase of solar activity is a cause of the increasing temperature

on Earth then by the nature of the sun being the primary energy source for

the Earth, it seems reasonable that other bodies where the sun is the primary

energy source may also be experiencing global warming. Global warming may

also have been observed on Mars (Bougher et al., 2006), (Savijarviand et al.,

2005), on Neptune’s moon Triton (Buratti et al., 1999), (Elliot et al., 1998)

and Pluto (Hunter, 2002).

A climate sensitivity of 2 K per 1% change in solar forcing can be identified

for the period 1700–1800. Using this sensitivity over the last 140 years would
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lead to an increase in surface temperature of 0.26K. Over the last 25 years the

climate sensitivity deduced for the period 1700–1800 can explain less than one-

third of the observed temperature increase (University of Leeds, 2005). The

total increase of radiative forcing due to solar variations from 1750 to 2000

is 0.3 W/m2 (Houghton, 2001). The energy budget determined earlier this

is shows that for the period 1950 to 2005 there is required an instantaneous

increase of energy of 0.3 W/m2. This shows that these two figures are in the

same magnitude of rise and within a factor.

2.6 Snow-Ice Albedo Feedback

The loss of 1 950 000 square kilometres of sea ice and 4 500 000 square kilome-

tres of snow cover could make an enormous contribution to the Earth’s energy

budget. According to Kiehl and Trenberth (1997) 58% of sunlight reaches the

surface of the Earth. Of that reaching the some is reflected back into space,

that amount being determined by the reflectivity, or albedo, of the Earth.

Albedo for new snow can be as high as 98% and for older snow down to 52%.

The Albedo of ice can be as low as 2%–20%, but is more normally between

50%–95% (Kondratyev et al., 1981).

For this study we will conservatively use an albedo of 60% or 0.6 for snow

and ice albedo. We will also conservatively estimate that the snow and ice

are melting at 60◦longitude. The average albedo of water at 60◦N and 60◦S is

0.134 (Kondratyev et al., 1981). Using spherical trigonometry, from Peixoto

(1992), it can be determine at 60◦the mean annual solar constant is 237 W/m2,

of which 58% or 137 W/m2 reaches the surface. For sea ice there is a change

in albedo from 0.60 to 0.13 for a change of 0.47. This represents a change of

0.47× 137 W/m2 = 65 W/m2 being absorbed by the oceans of the Earth. The

total amount of additional energy entering the system will be equal to the area

of missing sea-ice multiplied by the average increase per square metre times

the time. The total extra energy in for one year with a reduction of 1 950 000

square kilometres of sea ice is therefore 4.00×1021 J/year or 0.25 W/m2 for the

entire planet. The first order energy budget shows that an average increase of

0.22 W/m2 is required to account for the increase of observed temperature.
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2.7 Conclusions

We conclude that warming of the mean Earth surface atmosphere tempera-

ture has occurred over the last five hundred years. This warming has been

most noticeable since the 1970s. The causes of the warming are controversial.

Greenhouse proponents suggest that increase in carbon dioxide is responsible,

however there is little independent data to support this. Solar variation pro-

ponents advocate that solar activity increases the temperature, yet is not the

complete solution.

Since the mid 1970s there has been warming of the surface air temperature

in both the northern hemisphere and the equatorial region. The southern

hemisphere has exhibited similar warming trends since the mid 1960s. Arctic

sea ice has been of the decline since the 1970s. In the Antarctic there was a

large sea ice melting phase that ended in the late 1970s. Glacier loss increased

from the 1970s onward. Cooling of the stratosphere has been observed since

the 1970s. Where there is data of high enough resolution there appears to be

a major warming occurring since the late 1960s, early 1970s.

Using a budget of the energy absorbed in recent years it can be seen that

the total energy absorbed (not counting kinetic events) is 1.6×1023 J. This

is at the rate of 3.6×1021 J/year or at an average instantaneous rate of 0.22

W/m2. Two major theories have been proposed for this increase. By modelling

the greenhouse gas theory shows that additional greenhouse gases produce an

average instantaneous increase of energy at the rate of 2.42 W/m2. The solar

irradiance theory has measured an increase in average instantaneous energy

of 0.30 W/m2. Snow-Ice albedo feedback by itself can be contributing and

increase of average instantaneous increase of 0.25 W/m2. The observed increase

in average instantaneous energy input is 0.22 W/m2. The total increase due

to global warming theories is 2.97 W/m2. There is obviously an inconsistency

between these results. One possible reason for this inconsistency is that the

quantities determined for greenhouse gases and for solar irradiance change are

modelled while the figure for an albedo change is determined more directly.

However these results are not complete as there has been one other major

change in the Earth/atmosphere system that could also cause an increase of

energy absorbed at the surface.



Chapter 3

Ozone Depletion

3.1 Overview

In the upper atmosphere ozone is an important component. While present in

small quantities, it absorbs large quantities of ultraviolet radiation. In recent

years there has been a change in the atmosphere. Initially open air nuclear

weapons testing caused a reduction in the amount of stratospheric ozone and

more recently there has been a reduction caused by chlorofluorocarbons.

3.2 Ozone and its chemistry

Ozone (O3) is found in minute quantities throughout the atmosphere with the

largest concentrations in the lower stratosphere between 12 and 30 km. The

maximum concentration is at about 25 km. Approximately 90% of the ozone

is found in the stratosphere with the remaining 10% found in the troposphere.

Ozone plays an important role in the biosphere by absorbing the solar radi-

ation that would otherwise reach the Earth’s surface. The resulting heating

of the upper atmosphere leads to a temperature increase with height in the

stratosphere and a maximum value of about 270 K near the stratopause. In the

stratosphere, ozone results from the photodissociation of molecular oxygen by

solar ultraviolet radiation and the subsequent recombination reaction between

atomic and molecular oxygen in the presence of another molecule (Peixoto,

1992).

Ozone in the stratosphere can be destroyed by nitrous oxide, a hydroxyl

group, chlorine, iodine or bromine. Chlorine can attack ozone in the following

reaction sequence:
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Cl + O3 → ClO+O2 (3.1)

ClO +ClO→ Cl2O2 (3.2)

Cl2O2 + hv → Cl +ClOO (3.3)

ClOO + O→ ClO+O2 (3.4)

giving a net destruction of 2O3 → 3O2. A chlorine atom may be involved in

as many as 100 000 ozone destroying cycles before being sequestered into less

active reservoir species (de Mora et al., 2000).

One of the primary sources of chlorine in the stratosphere is through the

production and release of chlorofluorocarbons (CFCs). CFCs were first pro-

duced in the 1930s. They found a wide variety of uses such as refrigerant,

propellants in aerosol cans, cleaning compounds and blowing agents for foam

manufacturing. Since the introduction of CFCs, their concentration in the

atmosphere, in general, have shown a steady increase, with a corresponding

decrease in stratospheric ozone. Molina and Rowland first proposed the role

of CFCs in the destruction of stratospheric ozone in 1974. They shared the

1995 Nobel Prize for chemistry with Paul Cruzten (de Mora et al., 2000).

3.3 Where has all the Ozone Gone?

With chlorofluorocarbons destroying the stratospheric ozone, it became im-

portant to know where these losses occur and how much ozone is missing.

The standard unit for measuring atmospheric ozone is the Dobson Unit (DU),

named after Gordon Dobson. 100 DU are defined as being an ozone layer 1mm

thick at 0◦ C and 1 atm pressure (de Mora et al., 2000). Therefore 1 DU is

the equivalent of 2.6867×10+20 molecules per square metre, or 4.4615×10−04

mol/m2 or 2.1415×10−05 kg/m2 (Global Monitoring for Environment and Se-

curity Services, 2006). As ozone is created by the interaction between ultravi-

olet light and oxygen, one might expect to find the highest concentrations of

stratospheric ozone at low latitudes and high altitudes where solar irradiance

is the strongest. In fact ozone levels at the equator are relatively uniform at

about 260 DU whereas ozone levels above high latitudes in the southern hemi-

sphere can reach a maximum of 350DU and in the northern hemisphere can

reach a maximum of 450DU. This pattern is a result of a naturally occurring

ozone transport mechanism that redistributes high altitude ozone-rich air from
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the tropics to lower altitudes in the polar regions (de Mora et al., 2000).

In 1957, a network of ground-based instruments for continuous monitoring

of ozone using the measuring technique pioneered by Dobson was established

worldwide. This Dobson network is still operational and between 1979 and

1994 showed decreases in ozone in the equatorial region of −1.7%± 0.9%, for

the mid northern latitudes of −7.3%±1.3% and for the mid southern latitudes

of −4.8%±2.1%. All uncertainties are to 95% confidence (±2σ) (World Meteo-

rological Organisation, 1994b). Independent research using Solar Backscatter

Ultraviolet spectrometers show a decrease in ozone between 1979 and 1994

for the equatorial regions of −2.7% ± 2.2%, for the mid northern latitudes of

−7.0%± 2.7% and for the mid southern latitudes of −7.4%± 2.3%. Again all

uncertainties to 95% confidence (±2σ) (World Meteorological Organisation,

1994b).

Since then factors beside CFCs have also been at work. In the top panel

of figure 3.1, it is interesting to note the low values of O3 leading up to 1970.

These are related to the open air nuclear testing between 1962 and 1970.

For the northern polar regions the ozone cover reduces up to 9% (Rowland,

1991). Figures are not given for the southern pole in relation to nuclear testing.

The lowest values of ozone occurred following the volcanic eruption of Mount

Pinatubo in 1991 (Ennis, 1994). Even discounting this as a one off event,

by 2002 the total amount of stratospheric ozone had decreased nearly 4%

compared to the average value for 1964 to 1980. It is also shown in the lower

panel of figure 3.1 that there is virtually no change in ozone at the equatorial

regions, but ozone loss increases as one approaches the poles, with the greatest

ozone loss occurring near the south pole. In the period pre-1980 to 1997–2001,

average ozone decreased by about 3% in the northern middle latitudes (35◦N–

60◦N) and about 6% in the southern middle latitudes (35◦S–60◦S) (Ennis,

1994).

Farman et al. (1985) discovered the Antarctic Ozone Hole. The ‘Ozone

Hole’ is a region in the Antarctic where and when there is a sudden reduction

in the amount of stratospheric ozone. Since the discovery of the ozone hole, the

depletion of polar stratospheric ozone has been a major concern of atmospheric

research. Figure 3.2 shows the ozone column at the Halley Bay Research

Station (75◦35’S 26◦34’W) during the month of October between the years

1956 and 1994. This demonstrates a decrease in stratospheric ozone from

325DU for 1956 to 1966, to 125DU in 1994. This represents a total loss in

the stratospheric ozone of over 60%. Figure 3.3 graphically illustrates the
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Figure 3.1: Global total ozone changes. [Source: Ennis (1994)]
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Figure 3.2: Total measured ozone at Halley Bay Station [Source: Centre of
Atmospheric Research (2006)]
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locations of ozone during the third of October 1994, this year being of interest

as it is the year of greatest ozone loss in the observed time period. These data

were obtained from satellites using the Total Ozone Mapping Spectrometer

(TOMS). It shows low levels of ozone over the Antarctic continent as well as

the surrounding ocean. It is of interest to note the high ozone values in the

latitudes of New Zealand and Chile.

Antarctic ozone depletion is seasonal occurring in late winter and spring

(August to November). Peak depletion occurs in October. The area of the

ozone hole (Total Ozone < 220 DU) has reached 25 000 000 km2. This is nearly

twice the area of the Antarctic continent. Minimum values of ozone within the

ozone hole have fallen as low as 100DU. This compares to normal springtime

values of approximately 300DU (Ennis, 1994).

The average total ozone for the polar regions is shown in figure 3.4. Again

this clearly shows the loss of ozone between 63◦S and 90◦S. It also demon-

strates that in the Arctic region there has also been a reduction in the ozone in

most years after 1982. While this amount is not as dramatic as in the Antarc-

tic regions it is still measurable. In 1997, the year of the largest ozone loss,

there is an average reduction of ozone of 22%.

As is illustrated in figure 3.5 the major loss of ozone in the ozone hole

occurs between the altitudes of 12 to 22 km. Between 13 to 20 km there is an

almost total destruction of ozone.

3.4 Goodbye Ozone, Hello UV-B

It has been observed that the Earth now has an overall reduction in strato-

spheric ozone. But does this reduction in ozone have any effects?

UV wavelengths are divided into four categories: vacuum UV (< 200 nm),

UV-C (200–280 nm), UV-B (280–320 nm) and UV-A (320–400 nm). Vacuum

UV and UV-C are completely absorbed in the atmosphere and do not reach

the Earth’s surface. UV-A is not significantly affected by ozone. UV-B wave-

lengths are differentially absorbed by stratospheric ozone (Karentz, 1991)

For wavelengths of greater than 340 nm, an ozone reduction has no impact

upon absorption. However at a wavelength of 325 nm, a decrease in ozone from

315 to 110 DU is accompanied by a 2.2 increase in irradiance and at 305 nm

the corresponding enhancement is a factor of 14 (Frederick and Snell, 1988)

The relationship between UV-B light received at the surface of the Earth

and ozone level can clearly be seen in figure 3.6. This graph shows the solar
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Figure 3.3: The Ozone Hole 3/10/94 [Source: Centre of Atmospheric Research
(2006)]
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Figure 3.4: Average total ozone in the polar regions [Source: Ennis (1994)]

Figure 3.5: Arctic and Antarctic Ozone distribution by altitude [Source: Ennis
(1994)]
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Figure 3.6: Comparison of solar UV-B irradiance and total ozone [Source: Roy
(1990)]

noon UV-B irradiances for 285–315nm, taken over several clear sky days during

December 1987 and January 1988 in Melbourne, Australia. It illustrates the

strong relationship between ozone depletion and an increase of UV-B reaching

the surface of the Earth. Roy (1990) performed a more detailed examination

of the data from the 10th and 14th December 1988 and concluded that a

10.5% decrease in ozone concentration resulted in an 11.9% increase in UV-

B irradiance. Hence at this latitude a decrease in ozone of 1% produces an

increase of incident UV-B by 1.1%. In absolute terms, the maximum change

in ozone from 320DU to 265DU produced an increase of UV-B irradiance of

0.54 W/m2, or a change of 0.034 W/m2 per 1% decrease in stratospheric ozone.

In the Antarctic the changes in UV-B are even more dramatic due to the

larger loss of ozone. However there are no data available to compare ground-

level UV intensities from before 1988 with present day irradiances (Karentz,

1991). In 1987 the National Science Foundation UV Monitoring Network was

established and installed spectrometers in the Antarctic in 1988. As the ozone

hole was first reported in 1985 and monitoring of UV irradiance was not mea-

sured until 1988 there is no direct control data.

With a decrease of ozone there is an increase of ultraviolet light reaching the

Earth’s surface. The increase in UV radiation for a 1% decrease in stratospheric

ozone is given in figure 3.7. As can be seen the largest absolute increase in

UV is when the sun is directly overhead with a zenith angle of 90◦. The

increase in surface UV-B decreases sharply with the Zenith angle. The reason

for the large relative reduction in the UV spectrum with respect to the zenith
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Figure 3.7: Increases in UV radiation in response to a 1 percent decrease in
the total ozone column near 300 DU (1 DU = 2.69×1020molem−2). Solid
lines (right scale) give spectral irradiance changes, dotted lines (left scale) give
percent changes. Values are for overhead sun (thick lines) and for a solar zenith
angle of 70 (thin lines) [Source: World Meteorological Organisation (1994a)]

angle is twofold. Firstly there is an enhancement of scattering. Rayleigh

scattering in the atmosphere is inversely proportional to the fourth power of

the wavelength and is therefore more effective in the UV region. Due to the

longer path travelled through the atmosphere due to a lower zenith angle there

is an increased probability of scattering occurring. Scattering may redirect the

photon into space or may enhance the probability of absorption by ozone and

oxygen molecules. Secondly, there is an enhancement of absorption by ozone

and oxygen molecules, due to the longer lengths travelled (de Mora et al.,

2000). As seen in figure 3.5 much of the stratospheric ozone has been destroyed

with an almost total destruction occurring between 13 to 20 km. Therefore

much of the extra energy is absorbed by the troposphere or the surface.

Integrating under the curve of figure 3.7 shows an absolute increase of

45mW/m2 for a decrease in 1% ozone with an overhead sun and an increase

10mW/m2 when the sun is at 70◦. The losses of ozone for the Antarctic Ozone

are much higher than 1% and the change in light reaching the surface under

the 1992 and 1987 ozone holes are illustrated in figure 3.8.

The Centre for Atmospheric Science at Cambridge University has calcu-
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Figure 3.8: Change in solar intensity caused by the 1992 Ozone Hole. The
Solid line represents the change in 1992, the dashed line represents 1987.
[Source: Centre for Atmospheric Research (2006)]

lated the magnitude of the increase of solar irradiance caused by the presence

of the ozone hole. Figure 3.8 shows the increase of solar intensity under the

ozone hole in 1992 and 1987. The lines represent the difference in light inten-

sity reaching the surface under the observed ozone holes in the given years and

the light intensity that would occur if there were an unbroken ozone cover.

There is a dramatic increase in the amount of ultraviolet reaching the sur-

face of the Earth centred around 315nm. Underneath the 1992 ozone hole the

UV-B intensity is almost twice as strong as underneath the 1987 ozone hole.

Underneath the 1992 ozone hole, nearly two thirds of the whole solar UV-B

radiation is reaching the Earth’s surface (Centre for Atmospheric Research,

2006).

Using data from the National Science Foundation UV Monitoring Net-

work it is possible to determine that the maximum changes in UV-B at lo-

cal noon due to the ozone hole are 0.49 W/m2 at the South Pole (90◦00’S),

0.96 W/m2 at Palmer Station (64◦03’W,64◦46’S) and 0.96 W/m2 at McMurdo

Station (166◦40’E, 77◦51’S). This represents an increase in the total solar ra-

diation reaching the surface of the Earth of approximately 0.15% under the

ozone hole.
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3.5 Conclusions

From the above data there is a consensus that there is a reduction in the total

amount of ozone in the stratosphere. There is a very large reduction in ozone

over the Antarctic in the spring months. This reduction occurs primarily in the

stratosphere. Also there is consensus that because of the reduction in ozone

there is an increase of UVB light reaching the surface of the Earth.

Currently many scientists are concerned about the biological impact of in-

creased UVB on organisms, for example. ( World Meteorological Organisation

(1994a), Karentz (1991), de Mora et al. (2000)). Nobody has extensively stud-

ied the warming and climate effects caused by the increase in UVB reaching

the surface of the Earth and being absorbed by the troposphere.

Globally there was an ozone depletion event in the 1960s caused by nuclear

weapons. There has also been a strong global ozone depletion trend from the

1980 onwards, however at the Antarctic there is evidence of ozone depletion

since the late 1960s.

Comparing global warming data with ozone depletion data it can be seen

that there was a raising in the surface air temperature from the late 1970s

onwards. Since the late 1970s there has also been a rapid decrease in the

world ozone. Global warming may be happening faster in the polar regions

than anywhere else in the world. Ozone depletion is happening to the greatest

degree in the polar regions. While there is a belief that these two events are

not related,this should not deter researchers from determining conclusively if

there is a causal relationship.



Chapter 4

The Three Layer Model

4.1 Overview

The two approaches to determining the energy fluxes produced in a system

are to measure them experimentally or to model them. Models can be ac-

tual physical constructions, simple analytical mathematical constructions or

numerical constructions. It is apparent that the Earth’s weather system is

not a steady state system but is in fact a chaotic dynamic system. With im-

proving technology, especially with the use of satellites, it is now possible to

accurately measure data from much more of the Earth’s surface, however data

coverage is still incomplete. Because of the size, complexity and chaos inherent

in the climate systems of the Earth, a direct measurement of the heat fluxes

is impractical, if not impossible.

The most common approach to determine heat fluxes, and thus the Earth’s

climate, is to use mathematical models. As the Earth is a large chaotic system

that cannot be modelled in its entirety, we should note the observation of the

medieval English philosopher and Franciscan monk William of Ockham (circa

1285–1349),“Pluralitas non est ponenda sine neccesitate” or “plurality should

not be posited without necessity” (Carroll, 2006). In the use of models the

aim should always be to find the simplest model that produces an accurate

simulation of what is observed and produces observable predictions from the

given data.

In this chapter, we develop mathematical models to test global warming

theories. The four theories to be tested are greenhouse gas emissions, solar

irradiance, the rise in temperature due to ozone depletion and snow-ice albedo

feedback. While the last theory cannot of itself be the cause of global warming

it is of interest to see the effect of a decrease in planetary albedo.
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4.2 A One Layer Model

The simplest model of the Earth energy system is to model the system as a

blackbody radiator. In this model it is assumed that all of the energy output

from the Earth is radiated into space. The equation that describes the amount

of radiation from a blackbody was discovered empirically in 1879 by Joseph

Stefan and derived theoretically in 1884 by Ludwig Boltzmann (Tipler, 1991).

This is the Stefan-Boltzmann law that states

P = εσAT 4 (4.1)

where P is the power radiated, ε is the emissivity of the object, σ = 5.6705×10−8

Wm−2K−4 is the Stefan-Boltzmann constant, A is the surface area and T is

the absolute temperature.

In steady state the power Pin into a blackbody radiator equals the power

out,Pout. Modelling the Earth as a perfect blackbody radiator with ε = 1,

A = 1 m2 and P = 342 Wm−2 being the mean solar energy received at the top

of the Earth’s atmosphere, and solving equation 4.1 for temperature gives the

temperature of the Earth as 279K. A best estimate of the absolute global mean

surface temperature of the Earth during the period 1961–1990 is 287.15 K ±
0.12 K(2σ) (Lide, 2003). The simple blackbody model using the actual solar

input gives a temperature within 3% of the accepted value.

There are problems with the above grossly simplistic model. The first is

that the Earth is not a perfect absorber of energy. Approximately 35% of all

the energy the Earth receives is reflected directly back into space. So we must

modify the incoming power to the system to be Pin(1 − α), where α is the

albedo of the Earth. At steady state, the Stephan-Boltzmann law becomes

Pin(1− α) = εσAT 4 (4.2)

This adjusted formula yields a mean surface temperature of 251 K. This rep-

resents a model error of 15%. One partial solution to this is that the Earth is

also not a perfect emitter of radiation and has an emissivity of approximately

0.95 at the surface. Applying this to the temperature equation produces a

result of 253 K. This is an insufficient improvement to call this the simplest

reasonable model.

The factor that limits the applicability of this model to the Earth is the

Earth’s atmosphere. The trouble is that it is the upper atmosphere that radi-

ates to space, therefore the one layer model gives the temperature of the upper
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atmosphere rather than at the surface of the Earth. It is at the surface of the

Earth that the most useful and easily obtained data exists, thus predicting the

temperature at the surface of the Earth is of importance.

4.3 A Two Layer Model

Constructing a two layer model of the Earth allows for the difference in temper-

ature at the top of the atmosphere and the Earth’s surface. The first person to

use a two layer model for the Earth–atmosphere system was Arrhenius (1896),

who makes use of the fact that the radiation involved can be divided into two

separate spectral regions, the visible-ultraviolet(UV) and the infrared(IR). Kit-

tel and Kroemer (1980) makes reference to the two layer model but leaves it as

a problem to solve. In Knox (1999) a full two temperature two layer model is

presented and explained. We note that the primary source of all energy is the

sun. A significant simplification used in the model is achieved by considering

the nature of the radiation emitted from the sun and the Earth. Modelling

the sun and the Earth as blackbody radiators, it can be determined that the

wavelengths and amount of light emitted from these bodies are as shown in

figure 4.1.

Figure 4.1: The blackbody spectrum of the Sun and the Earth. The blackbody
spectrum of the Sun is assumed to be 5 800K and the Earth 288K. This plot
expresses the distributions in terms of flux density per bandwidth, with the
sun’s distribution scaled to unity. The 288K curve has been multiplied by a
factor of 7 000 [Source: Knox (1999)]

The sun itself is modelled as blackbody radiator with a surface temperature

of 5 800K. It can be seen in figure 4.1 that the energy transmitted with the
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greatest power output is centred at a wavelength of 889 nm. The Earth’s black

body radiation is centred around 10 µm. Choosing 3.1 µm as the boundary

between UV and IR, then 2% of the 5 800K radiation lies in the infrared and

0.008% of the 288K radiation lies in the visible-UV region (Knox, 1999). Be-

cause of the very strong division at this point, we assume that all the incoming

radiation is UV/visible light and all outgoing radiation emitted by the Earth is

IR light and the UV radiation can be treated separately from the IR radiation.

The two layers are the Earth’s surface and the atmosphere (Knox, 1999). To

these are assigned parameters that describe the interaction of the UV/Visible

light and infrared light with the layer. The model uses only six independent

variables, as listed in Table 4.1.

Table 4.1: Parameters in Knox’s two layer model.

Symbol Definition
ra reflectivity of the atmosphere
rs reflectivity of the Earth’s surface,
f absorptivity of UV radiation by the atmosphere,
g absorptivity of IR radiation by the atmosphere,
h a non-radiative heat transfer from the surface to the atmosphere,
So the solar input.

The upper layer of the model represents the atmosphere. This has the

properties of reflecting a portion of incident sunlight, ra directly back into

space and of absorbing the fraction (1 − ra)f of the entering UV radiation.

The absorption of the radiation occurs only after the portion of the incoming

radiation ra is reflected, hence the term (1 − ra) in the absorption fraction.

The atmosphere also absorbs a fraction g of IR light radiated from the lower

layer. The lower level of the system is the Earth’s surface. This has an albedo

given by its reflectivity, rs. The solar input, So is the amount of radiation

incident on the Earth/atmosphere system from the sun.

4.3.1 The UV entering the system

The solar input So can be determined using basic geometry. Measurements for

the incident sunlight perpendicular to the top of the atmosphere have varied

in satellite missions from about 1 365 to 1 373 Wm−2. We will assume a solar

constant of 1 367 Wm−2 (Kiehl and Trenberth, 1997). Dividing by the cross-

sectional area the Earth presents to the solar radiation gives the mean solar

radiation for the globe as 342 Wm−2. Solar energy enters the upper layer
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of the model. A proportion ra of the energy is reflected directly back into

space. Of that proportion that is not reflected, (1 − ra)f , is absorbed. The

remainder, (1− f)(1− ra), is transmitted to the Earth. A fraction of the UV

light arriving at the Earth’s surface is reflected upwards from the surface of

the Earth, whilst the remainder, (1−rs), is directly absorbed by the earth. Of

the light reflected by the Earth a portion is then absorbed by the atmosphere,

a portion is transmitted and a portion is reflected downwards, back to the

Earth, and so on.

The proportion of light reaching the surface is (1 − ra)(1 − f). Hence a

fraction (1−ra)(1−f)rs of the incident sunlight is reflected by the surface and

(1− ra)(1− f)(1− re) is absorbed. Of the light that reflected off the Earth’s

surface a total proportion,(1− ra)(1−f)rsra is reflected back downwards from

the atmosphere to the Earth giving another portion (1−ra)(1−f)(1−rs)rsra,

absorbed at the Earth. There may be many reflections between the atmosphere

and the Earth and the total amount of energy absorbed is the summation of

this infinite series.

The light absorbed by the Earth’s surface, can therefore be written as

UE = So(1− f)(1− ra)(1− rs)[1 + rsra + (rsra)
2 + . . . ]

= So(1− f)(1− ra)(1− rs)
∞∑
0

(rsra)
m

= So(1− f)(1− ra)(1− rs)

(
1

1− rars

)
(4.3)

= So(1− f)(1− ra)(1− rs)km (4.4)

where

km =
1

1− rars

(4.5)

is the sum of the geometrical series. This factor appears in subsequent formu-

lae.

We require also the amount of radiation absorbed by the atmosphere. We

have already noted above a fraction (1 − ra)f of sunlight is absorbed. Also

absorbed is that portion that is reflected by the surface then interacts with

the atmosphere. A portion is then reflected downwards, (1− f)(1− ra)rsra, a

portion, f(1 − f)(1 − ra)
2rs is absorbed, the remainder radiates to space. In

this case too, the reflections form an infinite series and the radiation absorbed
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by the atmosphere is given by

U ′
A = So(1− ra)

2(1− f)rsf [1 + (rars) + (rars)
2 + ...] (4.6)

= So(1− ra)
2(1− f)rsfkm (4.7)

with km as given above. Including the initially absorbed radiation results in

the total radiation absorbed by the atmosphere as

UA = [f + f(1− ra)kmrs(1− f)](1− ra)So (4.8)

The remaining UV is returned to space.

4.3.2 The IR leaving the system

IR radiation is emitted by both the atmosphere and the surface. In the Knox

model the emissivity of the Earth is assumed to be the same as the absorptivity.

The surface emits all IR towards the atmosphere. Some is absorbed by the

atmosphere and the rest is transmitted into space. Because the system is in

equilibrium, the net energy gain at each surface is zero, hence the IR radiated

out from the Earth, for example, is balanced by the UV and the IR received

from the atmosphere, less any energy lost by the Earth by means other than

radiation. The Earth is considered to be a perfect blackbody radiator with an

emissivity of one. Therefore the IR energy radiated from the surface of the

Earth, SE, can be written as

SE = km(1− rs)(1− f)(1− ra)So + gSA − SNR (4.9)

where SA is IR energy radiated from the atmosphere towards the Earth and

SNR is the non radiated energy transfer, which is convenient to express as

SNR = hSo.

The amount of radiation emitted by the atmosphere is equal to the amount

of UV light that is absorbed by the atmosphere plus the component of infrared

light emitted by the Earth that is absorbed by the atmosphere plus any energy

that transfers upwards from the surface of the Earth through non-radiative

means. In this model the parameter g is used both for the absorptivity and

the emissivity of the atmosphere. The equation for the IR energy emitted by

the atmosphere is therefore

2gSA = [f + f(1− ra)kmrs(1− f)](1− ra)So + gSE + SNR (4.10)
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The value 2g is used as the atmosphere has both an upper and a lower surface

and thus emits radiation from both of these surfaces.

4.3.3 The complete model

The two coupled equations of the Knox Two Layer model can be solved by

arranging them into matrix form.(
2g −g

−g 1

)(
SA

SE

)
=

(
ASo + SNR

BSo − SNR

)
(4.11)

where Knox defines

A = f(1− ra) + fkmrs(1− f)(1− ra)
2 (4.12)

as the proportion of incoming UV absorbed by the atmosphere, and

B = km(1− rs)(1− f)(1− ra) (4.13)

as the proportion of the UV light absorbed by the Earth’s surface. By express-

ing SNR as a fraction of So, i.e., SNR = hSo, we can take out a common factor

of So. Solving for SA and SE gives(
SA

SE

)
=

(
σT 4

A

σT 4
E

)
=

(
2g −g

−g 1

)−1(
A + h

B − h

)
So (4.14)

Solving for temperature of the atmosphere, TA, and the Earth, TE, gives the

general solution as

(
TA

TE

)
=

[
So

σg(2− g)

(
A + h + g(B − h)

g(A + h) + 2g(B − h)

)] 1
4

(4.15)

4.3.4 Using the two layer model

To use the model suitable values for the parameters must be determined. The

model is calibrated using pre-existing data. By a converging process of trial

and error Knox decided upon the parameter set, So = 342 W/m2, f = 0.080,

g = 0.890, ra = 0.255, rs = 0.160 and h = 0. This yields a surface temperature

of 288.0K and an upper-atmosphere temperature of 246.1K. For the purpose of

our research we treat these values as baseline values to which various scenarios
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can be applied. Now that the model has been calibrated it can be used to

simulate proposed situations.

Greenhouse gases work in the IR portion of the model. The various green-

house gases in the atmosphere absorb the IR emitted from the Earth and then

re-emit it. Some of this radiation is then reabsorbed by the Earth and eventu-

ally emitted. This produces the warming effect. This is emulated by altering

the value of g which describes the IR absorptivity of the atmosphere. The at-

mosphere produces an IR back radiation of 324 W/m2 (Kiehl and Trenberth,

1997). The increase in back radiation due to well mixed greenhouses between

the years 1750 to 1998 is +2.43 W/m2 (Houghton, 2001). This represents an

increase of back radiation of 0.75%. Increasing the value of g by 1.07% pro-

duces the required increase in back radiation. This change produces a surface

temperature of 288.7K and an atmospheric temperature of 246.5K. These are

a change in temperature of 0.7K and 0.4K, respectively, from the baseline

values given above.

Temperature change is also caused by a change in the amount of sunlight

incident on the top of the atmosphere. This is simulated by increasing So. An

increase of solar input of 1% produces temperatures of 288.8K and 246.7K for

the surface and the atmosphere. This is an increase of temperatures by 0.8K

and 0.6K over baseline.

Ozone depletion causes a decrease in the amount of UV absorbed by the

atmosphere. This is simulated by reducing f . The overall measured ozone loss

between November 1978 and March 1991 is on the order of −3.5% (Stolarski

et al., 1992). A 3.5% reduction to f produces a surface temperature of 288.1K

and in atmospheric temperature of 246.0K. This is a change of +0.1K and

−0.1K respectively over baseline.

Table 4.2: Global warming scenarios using Knox’s two layer model

Surface Atmosphere
Scenario T (K) ∆T K T (K) ∆T K
Nominal 288.0 — 246.1 —
Greenhouse (+1.5%) 288.7 +0.7 246.5 +0.4
Solar Variation (+1%) 288.8 +0.8 246.4 +0.3
Ozone (−3.5%) 288.2 +0.1 246.0 −0.1
Observed Changes — 0.7 — −1.8

The various scenarios are summarised in table 4.2. Actual observations

show a warming of the surface and a cooling of the stratosphere (Houghton,

2001). The greenhouse scenario predicts accurately the observed surface tem-
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perature, but fails to predict the temperature change of the atmosphere. The

solar variation model also produces a reasonable increase of surface tempera-

ture but again fails to predict the decrease in the temperature of the atmo-

sphere. Of the three scenarios presented, only the Ozone Depletion scenario

describes an increase of the surface temperature and a decrease in the tem-

perature of the surface of the atmosphere. The temperature changes for the

ozone depletion theory are the smallest of the three scenarios tested.

4.4 A three layer model

While the two layer model is a useful model to demonstrate some of the ef-

fects of atmospheric change upon the Earth, however there are other areas

that would merit a closer examination. It would be better to divide the at-

mosphere into two regions to take account of the fact that the atmosphere

behaves differently at different heights. The troposphere contains over 70%

of the mass of the atmosphere and is where most of the weather occurs. It

also contains most of the greenhouse gases, especially water vapour. It is also

characterised by non-conductive heat transfer. In contrast, the stratosphere

has less water vapour and contains the ozone layer which is a strong absorber

of UV-B radiation. Beyond the stratosphere there are further layers such as

the Thermosphere and the Ionosphere. These are important for the survival

of life on the Earth, nevertheless they comprise less than 0.2% of the total

mass of the atmosphere, therefore to model the behaviour of the atmosphere

for climate variation, only two layers need be considered: The troposphere and

the stratosphere.

We also note a further failing of the two layer model in that the IR ab-

sorptivity of the atmosphere is set equal to the emissivity of that layer and

that the Earth is represented as a perfect blackbody radiator with an emissiv-

ity of one. It would be better to model the emissivities independently of the

absorptivities.

4.4.1 The three layers

The three layer model, as its name suggests, models the Earth’s climate sys-

tem with three layers. The top layer is the Stratosphere; this represents the

Earth’s atmosphere at an altitude of 10 000 m and above. This layer has the

independent variables: rS the reflectivity of the stratosphere; fS the UV ab-

sorptivity of the stratosphere ; gS the IR absorptivity of the stratosphere and



46 The Three Layer Model

εS the emissivity of the stratosphere. Again, the parameter fs applies only to

that portion of light, (1− rs), that is not reflected by the stratosphere.

The middle layer, the troposphere, is the atmosphere from sea level up to

10 000 m. This layer is modelled by the independent variables: rT , the reflec-

tivity of the troposphere; fT , the UV absorptivity of the troposphere; gT the

IR absorptivity of the troposphere and εT , the emissivity of the troposphere.

Once again ft only applies to that part (1 − rt) that is not reflected by the

troposphere.

The bottom layer is the surface of the Earth and has a reflectivity rE, and

an emissivity εE. It is assumed that all light not reflected by the Earth is

absorbed, therefore there are no absorptivity parameters for the Earth.

As before So is the solar radiation incident upon the top of the atmo-

sphere, and h is the heat transmitted from the surface into the troposphere,

via transport phenomena other than radiation. This enables heat transport by

convection due to mixing of troposphere gases to be included, in some part, in

the model.

The complete set of independent variables is listed in Table 4.3.

Table 4.3: Parameters in the three layer model

Symbol Definition
rS the reflectivity of the Stratosphere
rT the reflectivity of the Troposphere
rE the reflectivity of the Earth’s surface,
fS the absorptivity of UV radiation by the Stratosphere,
fT the absorptivity of UV radiation by the Troposphere,
gS the absorptivity of IR radiation by the Stratosphere,
gT the absorptivity of IR radiation by the Troposphere,
εS Emissivity of the Stratosphere
εT Emissivity of the Troposphere
εS Emissivity of the Earth’s Surface
h a non radiative heat transfer from the surface and
So the solar input incident on the top of the Stratosphere.

4.4.2 UV entering the system

The modelling of the UV entering the system is more complicated with the

introduction of the third layer. In the Knox Two Layer model the UV input

is modelled as shown in Figure 4.2. This we call a Two Layer Node. Here ru

is the light reflected from the upper layer and rl is the light reflected from the

lower layer. As usual So is the amount of sunlight entering the system. This
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light follows one of three courses. A proportion R is reflected back towards

the source (the sun), a portion, A absorbed by the layer, and a portion T is

transmitted through the layer. We note that So = (R + A + T ). The amount

of light reflected back into space is

R = ruSo + k(1− f)2rl(1− ru)
2So (4.16)

Note that in this equation, the first term ruSo is that sunlight directly reflected

off the top layer. The second term is that amount of sunlight that passes

through the top layer, (1 − ru)(1 − f), is reflected off the bottom layer, rl,

and passes through the upper layer again out into space, (1 − ru)(1 − f).

Any number of reflections may occur between the top and bottom layer before

the light escapes to space. This is represented by the series of zigzag lines

between the two layers in figure 4.17. The factor displayed in equation 4.5 is

the summation of the geometrical series that results.

The quantity absorbed by the upper layer is given by

A = [f + fkrl(1− f)](1− ru)So. (4.17)

As the light passes through the layer the amount (1− ru)f is absorbed. (The

first term of equation 4.17). Of the remaining light, (1−f)(1−ru), a proportion

rl is reflected from the lower layer towards the upper layer. Again any number

of reflections may occur between the top and bottom layer before the light is

absorbed. The same factor k results from the summation of the geometrical

series.

Finally any radiation that is not reflected or absorbed by the upper layer

and is not reflected by the lower layer is called the transmitted component. It

is

T = (1− rl)(1− f)(1− ru)So. (4.18)

This is the amount remaining of So after a proportion of the entering radiation

passes through the top layer, (1 − ru), (1 − f) and the proportion remaining

is absorbed by the lower layer, (1− rl).

Note that the equations for A and T are the same as in equations 4.8 and

4.9 of the two layer model. In the two layer model R was not calculated. All

light has been accounted for and as expected R + A + T = SO.

The UV component of the three layer model is illustrated in figure 4.3.

In this case we assign nodes to represent the interactions between two layers

only: The layer the node is named after and the layer below. The first entry
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Figure 4.2: UV input in a two layer node

of light into the system acts according to the original two layer model in

the first “Strat” node of figure 4.3. This node describes interactions between

the stratosphere and the troposphere. The light entering the node is either

reflected back into space, RS, absorbed by the node at the stratosphere, AS,

or transmitted to a lower level, TS. It is assumed that space is a perfect

absorber and does not re-emit any energy back into the system.

Figure 4.3: UV input in to a three layer model

The transmitted UV from the “Strat” node enters the Troposphere–Earth

system, that is, the “Tropo” node of figure 4.3. This node is not the same

as the original two layer model as that portion of the light initially reflected

off the troposphere has already been taken account of in the “Strat” node.

Light entering the “Tropo” node is either absorbed by the troposphere, AT ,

absorbed by the Earth, TT , or reflected back into the stratosphere after one or

many reflections off the Earth, RT . It is assumed that all light reaching the

Earth’s surface that is not reflected is absorbed by the Earth.

The proportion of light reflected upward from the “Tropo” node into the

“Strat” node must be dealt with in a different manner than the initial “Strat”

node. The entry of sunlight into the original “Strat” node was from above the

uppermost layer. In the case of the second “Strat” node the UV enters the
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stratosphere from below. The second “Strat” node is identical to an inverted

copy of the “Tropo” node. Light entering the new second “Strat” node can

be transmitted into space, TS, absorbed by stratosphere, AS, or reflected into

the troposphere node, RS. Any number of reflections may occur between

the second “Strat” node and the “Tropo” node before the light is lost to

space, absorbed by the Earth, absorbed by the stratosphere or absorbed by the

troposphere. The geometrical series that results from these multiple reflections

from the stratosphere, RS, and the troposphere, Rt, can be summed to give a

multiple reflection parameter of

M =
1

(1−RSRT )
(4.19)

With the insights above the UV component of the three layer model is redrawn

in figure 4.4. The arrow for Rt entering the stratosphere node and the arrow Rs

entering the troposphere demonstrate the multiple reflections between these

two nodes.

Figure 4.4: UV input in to a three layer model

4.4.3 The nodes

The initial node

This is the node where the UV radiation is first incident upon the model and

is the same as the first “Strat” node of figure 4.3. We rename the outputs as

RI , AI and TI . The derivation given at the start of section 4.4.2 is applicable
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here, and so we can state the outputs as

RI = rs + (1− fs)
2ksrt(1− rs)

2 (4.20)

AI = [fs + fsksrt(1− fs)(1− rs)](1− rs) (4.21)

TI = ks(1− rt)(1− fs)(1− rs) (4.22)

where ks is given by

ks =
1

(1− rsrt)
(4.23)

The troposphere node

The Troposphere node is almost mathematically identical to the Stratosphere

node except that the input to this node is from the output of the initial node,

TI and therefore there is no reflection from the upper surface of the troposphere

node as this reflection has already been accounted for in the Initial node. All

light transmitted through this node is absorbed by the Earth’s Surface. We

can therefore modify equation for RI to remove the initial rs and change the

subscripts to ‘t’ and ‘e’. The equations of the Troposphere node are

RT = (1− ft)
2ktre(1− rt) (4.24)

AT = ft + ftktre(1− ft)(1− rt) (4.25)

TT = kt(1− re)(1− ft) (4.26)

Here kt is given by

kt =
1

(1− rtre)
(4.27)

The stratosphere node

As the light enters this node from the troposphere node, it is treated differently

than the initial node. The input into this node is the light reflected upwards

from the troposphere node, RT , therefore there is no initial reflection upon the

initial entry into this node as this reflection has already been accounted for

in the troposphere node. All light transmitted through this node is absorbed

by space. This node functions as an upside-down version of the Troposphere

node and thus the stratosphere acts as the lower layer of the two layer node

and the troposphere acts as the upper layer. The proportions of light reflected,
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absorbed and transmitted are therefore given by

RS = kSrS(1− rT ) (4.28)

AS = fSkS(1− rS) (4.29)

TS = ks(1− fS)(1− rS) (4.30)

where ks is given in equation 4.23.

4.4.4 UV Energy Absorbed by the Layers

The total UV energy lost to space ESpace is the proportion of light that is

reflected by the initial node, RI plus the proportion that is transmitted by the

initial node, reflected from the troposphere node and is then transmitted to

space, TIRT TS. As it is possible for light to reflect between the troposphere

and the stratosphere many times it is required to use the multiple reflection

parameter M . Hence the light absorbed by space is

ESpace = RISO + TIRT TS

∞∑
i=0

(RSRT )i SO (4.31)

= RISO + TIRT TSMSO (4.32)

The energy absorbed by the stratosphere EStratosphere is the proportion

of light that is absorbed by the initial node, AI plus the proportion that is

transmitted by the initial node, reflects from the troposphere node and is then

absorbed by the stratosphere, TIRT AS. Including multiple reflection, the light

absorbed by the stratosphere is

EStratosphere = AISO + TIRT AS

∞∑
i=0

(RSRT )i SO (4.33)

= AISO + TIRT ASMSO (4.34)

The energy absorbed by the troposphere Etroposphere is the proportion of

light that is transmitted by the initial node, TI , and is then absorbed by the

troposphere mode, AT , plus the portion that is transmitted by the initial node,

reflects from the troposphere node and is then reflected by the stratosphere,

TIRT RS before being absorbed by the troposphere node, TIRT RSAT . Includ-

ing multiple reflections the light absorbed by the troposphere is
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ETroposphere = TIAT

∞∑
i=0

(RSRT )i SO (4.35)

= TIAT MSO (4.36)

The energy absorbed by the Earth EEarth is the proportion of light that is

transmitted by the initial node, TI , and is then transmitted by the troposphere

mode, TT , plus the portion that is transmitted by the initial node, reflects from

the troposphere node and is then reflected by the stratosphere, TIRT RS. The

light absorbed by the Earth, including multiple reflections, is

EEarth = TITT

∞∑
i=0

(RSRT )i SO (4.37)

= TITT MSO (4.38)

In equations 4.32, 4.34, 4.36, 4.38, M is a magnification factor given by the

summation of the geometrical series

M ≡
∞∑
i=0

(RSRT )i =
1

1−RSRT

. (4.39)

.

With these four equations all the radiation entering the three layer model

is accounted for, hence ESpace + EStratosphere + ETroposphere + EEarth = So.

4.4.5 IR out of the system

The infrared component is emitted by the Earth and the atmospheric layers. It

is assumed that there is no IR input from the sun. The amount of IR emitted

by each layer can be determined using the Stefan–Boltzmann Law for black-

body radiators. Assuming equilibrium then for each layer the amount of IR

emitted equals the amount of UV absorbed by that layer plus the amount of IR

absorbed by that layer from other layers (ignoring non-radiative heat transfer

at this stage). Each of the atmosphere layers has an infrared absorptivity (gs

and gt) and it is assumed that space and the Earth are perfect absorbers of

IR. The emission and absorption of IR is illustrated in figure 4.5

Each layer has an IR energy flux density, namely the stratosphere, SS, the

troposphere, ST and the Earth, SE. The other parameters for the model are
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Figure 4.5: Infrared emissions and absorptions by the layers

summarised in table 4.3.

The infrared emitted by the stratosphere is given by 2εSSS, where εS is

the emissivity of the layer. The factor arises because the stratosphere should

be treated as two radiating surfaces, one pointing up and one pointing down.

This term is balanced by energy inputs at equilibrium, hence

2εSSS = AISO + TIRT ASMSO + gsεtST + gs(1− gt)εESE (4.40)

. where the first two terms are the UV input (equation 4.34) and the last two

terms are the absorption of IR radiated by the other two layers (see figure 4.5.

The infrared emitted by the troposphere is given by 2εT ST , where εT is

the emissivity of the layer. As in the case of the stratosphere the troposphere

should be treated as two radiating surfaces, one pointing up and one pointing

down. This term is balanced by energy inputs at equilibrium, hence

2εT ST = TIAT MSO + gT εSSS + gT εESE + SNR (4.41)

where the first term is the UV input (equation 4.36), the next two terms are

the absorption of IR radiated by the other two layers and the final term is

non-radiative heat transfer.



54 The Three Layer Model

The infrared emitted by the Earth’s is given by varepsilonESE, where εE

is the emissivity of the Earth. This term is balanced by energy inputs at

equilibrium, hence

εESE = TITT MSO + (1− gT )εSSS + εT ST − SNR (4.42)

where the first term is the UV input (equation 4.38), the next two terms are

the absorption of IR radiated by the other two layers and the final term is

non-radiative heat transfer.

4.4.6 The complete model

To find the temperatures of the layers we simultaneously solve the three equa-

tions 4.40, 4.41 and 4.42. Rearranging in matrices notation

 2εS −gSεT −(1− gT )gSεE

−gT εS 2εT −gT εE

−(1− gT )εS −εT εE


 SS

ST

SE



=

 AISO + TIRT ASMSO

TIAT MSO + SNR

TITT MSO − SNR

 (4.43)

which can be more simply written as (once again using SNR = hSo) 2εS −gSεT −(1− gT )gSεE

−gT εS 2εT −gT εE

−(1− gT )εS −εT εE


 SS

ST

SE

 =

 A

B + h

C − h

SO

(4.44)

where

A = AI + TIRT ASM (4.45)

B = TIAT M (4.46)

and

C = TITT M (4.47)

Applying the Stephan-Boltzmann Law and rearranging we arrive at the
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finished model

 TS

TT

TE

 =


 2εS −gSεT −(1− gT )gSεE

−gT εS 2εT −gT εE

−(1− gT )εS −εT εE


−1 A

B + h

C − h

 SO

σ


1
4

(4.48)

4.4.7 Calibrating the model

An implementation of the three layer model will be considered reasonable if (1)

it predicts the mean temperatures of the surface of the Earth, the troposphere

and the middle of the stratosphere and (2) if it models the known energy fluxes

with some precision. We choose to use the temperature for the middle of the

stratosphere because of the heat rise at the top of the stratosphere is caused by

mechanisms other than those we are studying. The effect of these mechanisms

is too small to affect the results of the three layer or meaningfully affect the

Earth system, but it is enough to have an effect on the rarefied gases of the

extreme stratosphere.

The measured and estimated energy fluxes of the Earth are shown graphi-

cally in figure 4.6

Note that the infrared out going radiation, as reported by Kiehl and Tren-

berth (1997), is modelled and therefore has a higher degree of uncertainty than

the measured UV radiation. The analogues between the Kiehl and Trenberth

energy budgets and the three layer model are given in table 4.4

Table 4.4: Energy flows and their analogues in a three layer model

Keihl/Trenberth model Three layer model
Incoming Solar Radiation SO

Reflected Solar Radiation ESpace

Reflected by Atmosphere (rS + TSTUM)SO

Absorbed by Atmosphere EStratosphere + ETroposphere

Reflected by Surface ESpace − (rS + TSTUM)SO

Absorbed by Surface EEarth

Thermals and Evapotranspiration hSo

Surface Radiation εESE

Atmospheric Window (1− gs)(1− gT )εESE

Emitted by Atmosphere εSSS + (1− gS)εT ST

Back Radiation (1− gT )εSSS + εT ST

Outgoing Longwave εSSS + (1− gS)(εT ST + (1− gT )εESE)

The initial values of the eleven independent variables will determine directly
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Figure 4.6: The Earth’s annual global mean energy budget. All units are
Wm−2. [Source: Kiehl and Trenberth (1997).

the output of the model. It is therefore important to decide what initial

values the independent variables should have. Initial attempts should produce

outputs for the Stratosphere at 30 000m of 226 K, the troposphere at 5 000m

of 255 K from the Standard atmosphere (Lide, 2003) and the Earth’s surface

as 287K from observed global warming studies (Lide, 2003).

Further the UV absorption of the atmosphere should be 0.2251, the surface

reflection should be 0.1515, and the direct surface reflection to space should

be 0.0877 and a total of 107W should be reflected to space. There should

be 67W absorbed by the atmosphere, 23W in the stratosphere, 44W in the

Troposphere and the remaining 168W should be absorbed by the surface. In

the IR range the difference between heat emitted upwards and that emitted

downwards by the atmosphere should be 59W. All values taken from Kiehl

and Trenberth (1997).

Using a process of trial and error the parameters in table 4.5 were deter-

mined as suitable. Using these figures in the three layer model gives the results

in table 4.6.

The most precise results are for those given by h and SO. This is because

these are the values as they are defined. Most other measurements are within
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Table 4.5: Initial values of independent variables

Variable Value Source
εS 0.9 experimentally determined
εT 1.0 experimentally determined
εE 0.95 Peixoto (1992)
fS 0.06 experimentally determined
fT 0.16 experimentally determined
gS 0.685 experimentally determined
gT 0.725 experimentally determined
rS 0.085 experimentally determined
rT 0.19 experimentally determined
h 0.298 Knox (1999)
SO 342Wm−2 Kiehl and Trenberth (1997)

Table 4.6: Comparison of model results against the Kiehl/Trenberth observa-
tions

Keihl/Trenberth Three layer model
Result W/m2 W/m2

Incoming Solar Radiation 342 342
Reflected Solar Radiation 107 99
Reflected by Atmosphere 77 80
UV Absorbed by Atmosphere 67 66
Reflected by Surface 30 19
Absorbed by Surface 168 178
Thermals and Evapotranspiration 102 102
IR Surface Radiation 390 365
Atmospheric Window 40 32
IR Emitted by Atmosphere 195 212
Back Radiation 324 289
Outgoing Longwave 235 244
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10% of the Kiehl/Trenberth model. The results furthest from the standard

model are those for light reflected by the surface and back radiation. The model

can be optimised for these variables, however the above data set gives the best

general results. This three layer model produces good results without resorting

to sensitivity factors or other parameters. These figures indicate that the three

layer model will produce qualitative results if not absolute quantitative results

for a steady state Earth.

4.5 Conclusion

Starting with the original Knox two layer model of the Earth/Atmosphere

system, it is possible to extend the model by adding another layer. This allows

the representation of an atmosphere with a troposphere and a stratosphere as

well as retaining the layer representing the Earth’s surface. While this adds

a some complexity to the original model it is still capable of being solved

analytically. The model is kept as simple a possible and such techniques as

sensitivity factors have not been included. The results from the three layer

model should be sufficient to demonstrate trends in all three layers relative to

each other. This model will be the minimum required to test the four theories

proposed.
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Using a Three Layer Model

5.1 Overview

As the three layer model is for a steady state system, results obtained are only

valid for a system for which transients have decayed sufficiently. They are also

for the mean state of the entire system. In the last chapter a reasonable set

of initial parameters for the three layer model were obtained. We now vary

each individual parameter, the effect of the parameter on the Earth system

can hopefully be observed or extrapolated. In this chapter four scenarios are

given special attention. They are : Greenhouse Gases, Solar Variation, Ozone

Depletion and Albedo Reduction.

5.2 Varying individual components

In the model there are twelve independent parameters (see table 4.3). It is

of interest to examine how the model behaves as each of these is varied. The

physical phenomena linked to the variables can then be explained in turn. The

reflection of UV light as it enters the stratosphere, rs, is primarily caused by

cirrus clouds, ice crystals and particularly for shorter wavelengths, by Rayleigh

scattering. The reflection of light in the troposphere, rt, is primarily effected

by clouds, aerosols and Rayleigh scattering. The reflection from the surface of

the Earth, re, is determined by proportion of ice, water and land. The most

reflective parts of the Earth are covered in snow and ice and the least reflective

is the open sea with an overhead sun. The parameter re is for the whole planet.

The UV absorptivity of the stratosphere, fs, is due to the absorption of UV

light by various atmospheric gases. This includes the absorption of UV-B light

by the ozone layer. The UV absorptivity of the troposphere, ft, is primarily
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due to clouds and aerosols. The IR absorptivity of the stratosphere, gs, is due

to atmospheric greenhouse gases at this level. These include ozone and carbon

dioxide and some water vapour. The IR absorptivity of the troposphere, gt,

represents the lower level greenhouse gases of water vapour and carbon diox-

ide. The emissivity of the stratosphere,εs, is due to the gaseous makeup of

the stratosphere. The emissivity of the troposphere,εt, is due to the gaseous

makeup of the troposphere. One important component of the tropospheric at-

mosphere is the water vapour content. The emissivity of the Earth’s Surface,εe,

is determined by emissivities of each component of the Earth’s surface. Land

has an emissivity of approximately 0.92 while snow and ice has an emissivity

of 0.98. Non-radiative transfer of energy, h , occurs between the Earth’s sur-

face and the troposphere. The primary components of this are energy transfer

caused by evaporation of water from the oceans and also convection effects in

the atmosphere such as thermals and low pressure weather systems. The solar

input at the top of the atmosphere, So is a naturally variable parameter, due

to solar activity.

By running the three layer model repeatedly, each time changing the sin-

gle parameter that governs the reflectivity of layer, the results as shown in

figures 5.2– 5.5 are obtained.

This three layer model shows that if the reflectivity of any layer increases

(see figure 5.2) then the temperature at all levels decrease. Note that as rs and

rt approach unity the surface temperature becomes complex. This is because

the variable hSo has been set at 102 W/m2. When the amount of sunlight

reaching the surface decreases below 102 W/m2, the amount of energy radiated

from the Earth’s surface becomes negative. This is unphysical and leads to

complex numbers when calculating the temperature of the surface. It only

occurs for very high values of reflectivity for the troposphere and stratosphere,

that are much higher than ever will occur in practice. The change in the surface

albedo is simulated by varying re. Figure 5.2(c) shows that as the albedo of the

surface decreases, the temperatures of all three layers of the model increase.

The greatest increase is in the surface temperature. A plausible cause for a

decrease in albedo is the melting of highly reflective snow and ice and the

appearance of less reflective land and water.

The change in atmospheric albedo is modelled by varying rs and rt. A

major cause of atmospheric albedo increase is the increase of cloud cover. For

both the stratosphere and the troposphere, as albedo increases the temperature

of all three levels decrease. Other possible causes for an increase of atmospheric
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(a) (b)

(c)

Figure 5.1: The temperature variation of the layers as a function of the three
reflectivities. In all cases the solid line represents the temperature of the sur-
face, the dashed line represents the tropospheric temperature and the dotted
line represents the stratospheric temperature.

reflectivity are an increase of aerosols or particulate matter ejected in volcanic

eruptions.

When the emissivity of a level is changed, the only temperature that

changes is for that level where emissivity is changed (see figure 5.2). As emis-

sivity increases, so the temperature of that layer increases.

The case of ozone depletion is partially modelled by varying the amount

of UV absorbed by the stratosphere, that is, by varying fs. As shown in

figure 5.3, even a small decrease in the value of fs produces a large decrease in

the stratospheric temperature with increases in both surface and tropospheric

temperatures. A decrease in ft causes a decrease in both stratospheric and

tropospheric temperatures and an increase in surface temperature. An increase

in either produces an increase in atmospheric temperatures and a decrease in

the surface temperature.

The parameters gs and gt , are primarily effected by the greenhouse gases.

As figure 5.4 demonstrates, an increase in gs produces an increase in the tem-
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(a) (b)

(c)

Figure 5.2: The temperature variation as a function of changing each of the
three emissivities. In all cases the solid line represents the temperature of
the surface, the dashed line represents the tropospheric temperature and the
dotted line represents the stratospheric temperature.

(a) (b)

Figure 5.3: The temperature variation as a function of varying atmosphere
UV absorptivities. In all cases the solid line represents the temperature of
the surface, the dashed line represents the tropospheric temperature and the
dotted line represents the stratospheric temperature.
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(a) (b)

Figure 5.4: The temperature variation as a function of varying atmosphere
IR absorptivities. In all cases the solid line represents the temperature of
the surface, the dashed line represents the tropospheric temperature and the
dotted line represents the stratospheric temperature.

(a) (b)

Figure 5.5: For non-radiative heat transfer and the solar input, the temper-
ature changes by altitude are graphed for the varying of that parameter. In
all cases the solid line represents the temperature of the surface, the dashed
line represents the tropospheric temperature and the dotted line represents the
stratospheric temperature.

peratures of all three layers, the largest rate of increase being that of the

stratosphere. An increase in gt produces increases in temperature in both the

troposphere and the surface but produces no change in the temperature of the

stratosphere.

The non-radiative heat transfer between the Earth’s surface and the tro-

posphere is represented by the parameter h. This is the heat transferred by

evaporation and convection from the surface to the troposphere. It has no

effect on the temperature of the stratosphere. An increase in h produces an

increase in the tropospheric temperature and a decrease in the surface tem-

perature(see figure 5.5).
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The primary driver of the Earth thermal system is the solar input from

the sun. By varying the solar input all three temperatures modelled increase

[figure 5.5(b)]. The only reason for So to change in this model would be for a

change in the power output of the sun.

If we are only allowed to change a single variable then the result that yields

temperatures that are the most consistent with climate observations is that

achieved by changing fs. This model shows a decrease in the temperature of

the stratosphere, an increase in the troposphere temperature and an increase

in the surface temperature of the Earth. This is consistent with observations

outlined in section 2.2.

5.3 Testing scenarios

With the three layer model it is now possible to perform preliminary tests of

proposed theories of global warming and compare them with the data reported

in the literature. As the three layer model delivers three temperatures as

output, we compare those temperatures against that observed.

Observations of the Earth show that the mean surface air temperature has

increased by +0.55 K between 1970 and 2003, the tropospheric temperature has

increased by +0.40 K between 1958 and 1998 and the middle stratosphere has

changed by −1.13 K between 1979 and 1994. For a scenario to be considered

plausible it is not required to precisely replicate these values, rather predicting

a fixed ratio of these values should be considered sufficient.

We explore four scenarios. Any one of these may be sufficient in itself to

explain global warming. It is also possible that a complete explanation of

global warming will require a combination of two or more of these scenarios.

Greenhouse gases

As reported in the IPCC report, the carbon dioxide level in the Earth’s at-

mosphere has increased 31% between 1750 and 2001. The amount of methane

and nitrous oxide has also increased during this period. Change in water

vapour between 1750 and the present is not recorded in the literature. Car-

bon dioxide, methane, nitrous oxide and other more recent greenhouse gases

are considered well mixed, which means that they will occur in their observed

proportions through the troposphere and the stratosphere. This will result in

an increase of both gs and gt. According to the IPCC report there is also a

decrease in stratospheric greenhouse gases with the loss of stratospheric ozone.
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To simulate the ratio we raise, gs by 0.5% and gt by 1.0%. Using these figures

produces increases of 0.39K, 0.75K and 0.44K for the stratosphere, the tro-

posphere and the surface respectively. The most dramatic rise in temperature

is in the troposphere.

Solar Variability

By increasing So, an increase of solar output can be simulated. A 1% increase

in light entering the model results in an increase of 0.56K for the stratosphere,

0.58K for the troposphere and 0.87K for the surface. Both layers of the at-

mosphere warm a similar amount while the surface warms much more rapidly.

Ozone Depletion

By decreasing fs we can model the reduction in the absorption of UV-B by

ozone. We can do better than this though, as ozone is also a greenhouse gas

and absorbs IR in the 10 µm range (Peixoto, 1992). In the stratosphere it is a

trace gas at ∼ 8 parts per million by volume (de Mora et al., 2000). To model

this greenhouse effect, gs must be modified. While there is a decrease in ozone,

there is, never the less, an increase in other greenhouse gases. These include

water vapour, carbon dioxide, methane, nitrous oxide as well as the fluorocar-

bons that are destroying the ozone layer. Authorities such as Houghton (2001),

appear ascribe all cooling of the stratosphere to the decrease of ozone and the

greenhouse effect of that gas. No account seems to made of the decrease in the

initial absorption of UV-B radiation caused by a decrease in ozone. A 5% re-

duction in ozone represents a decrease of ozone of 0.4 ppmv. This compares to

an increase in carbon dioxide of 87ppmv and of methane of 1 ppmv (Houghton,

2001). From the data available it is uncertain whether gs should be increased

or decreased. For a simple reduction of fs only by 5%, the temperature of

the stratosphere decreases by 0.21K, the troposphere warms by 0.02K and the

surface warms by 0.10K.

Albedo decrease

A reduction in ice and snow covering the Earth causes a reduction of the

Earth’s albedo. A 1% reduction in rs produces temperature increases in the

stratosphere of 0.04K, in the troposphere of 0.05K and on the surface of the

Earth of 0.09K.
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Table 5.1: Temperature increase by altitude for the four Global Warming
scenarios

Stratosphere Troposphere Surface
Scenario ∆T (K) ∆T (K) ∆T (K)

Greenhouse Gases (+1%) 0.39 0.75 0.44
Solar Variability (+1%) 0.56 0.58 0.87
Ozone Depletion (+5%) −0.21 0.02 0.10
Albedo Decrease (−1%) 0.04 0.05 0.09
Observed −1.13 0.40 0.55

Table 5.2: Relative magnitudes of temperature increase by altitude for four
Global Warming scenarios. The number of plus + or − signs indicates the
magnitude of change in temperature. All magnitudes are only in relation to
the temperatures of the remaining layers in the chosen scenario.

Stratosphere Troposphere Surface
Scenario ∆ T ∆T ∆T

Greenhouse Gases (+1%) + ++ +
Solar Variability (+1%) + + ++
Ozone Depletion (+5%) −− + +
Albedo Decrease (−1%) + + ++
Observed −− + +

Summary of the four scenarios

The results from the four scenarios are summarised in tables 5.1 and 5.2. Com-

paring the relative magnitudes of temperature changes of the layers for each of

the four scenarios, the only scenario that closely follows that actually observed

is the ozone depletion scenario. In absolute terms however these numerical

values obtained are smaller than has actually been observed, particularly for

the troposphere.

One significant cause for this is that the model has been optimised to

show relative temperature changes in the layers of the model, rather than

the absolute changes. Most modern models have sensitivity parameters than

can be varied to produce the magnitude of the changes desired. Further, it

is probable that all four scenarios contribute to the actual observed values.

Nevertheless, of the four models tested, it is to be noted that only ozone

depletion causes a reduction in the stratospheric temperature.
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5.4 Testing the scenarios using real values

While the above tests are indicative of what is expected, it will be of interest

to model the real values as observed.

For the case of greenhouse gases, other models have been used to show an

increase of radiative forcing of 2.4 W/m2 representing the increase in infrared

radiation being emitted towards the surface by the atmosphere. The amount of

downward radiation is determined by the amount emitted downwards by the

troposphere and also the amount emitted downwards from the stratosphere

that is not absorbed by the troposphere. By a process of trial and error it can

be determined the required changes to create a change of 2.4 W/m2. Changing

the variable gt from 0.725 to 0.738 produces the desired results.

For solar irradiance to cause an increase in of radiative forcing 0.3 W/m2

it is required to increase the variable So by 0.384 W. To increase the effect

of albedo it is required to change the amount absorbed by the Earth by 0.25

W/m2. This quantity simulates the observed loss of sea ice, but not snow

cover. This entails a change in re from 0.1515 to 0.150039.

The amount of change for ozone depletion is very speculative. To simulate

the reduction of 4% it is proposed to reduce the value of fs by 2% from 0.06

to 0.0588.

The results of these four changes are summarised in table 5.3. While the

largest increase is due to greenhouse gases, there is a warming produced by all

four scenarios. A combined run was performed which used all the value changes

from the individual scenarios. This produces results in all three layers that are

larger than observed, with the largest discrepancy being in the troposphere.

Table 5.3: Temperature increase by altitude for four Global Warming scenarios
with observed data

Stratosphere Troposphere Surface
Scenario ∆T (K) ∆T (K) ∆T (K)

Greenhouse Gases (+2.4 W/m2) 0.0 1.045 0.469
Solar Variability (0.3 W/m2) 0.063 0.066 0.098
Ozone Depletion (-2%) -0.084 0.007 0.039
Albedo Decrease (0.25 W/m2) 0.040 0.044 0.087
Combined Change 0.020 1.165 0.695
Observed -1.13 0.40 0.55
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5.5 Conclusion

The effects of altering a single parameter in the model were explored. Only

the variation of fs produced results that are consistent with observed data. A

reduction in stratospheric UV absorption produces a decrease in stratospheric

temperature and increases in the troposphere and Earth. Modelling a 5%

decrease in stratospheric UV absorption produced relative effects similar to

those actually observed, but of a smaller magnitude.

Quantitively, modelling actual observed value changes show that the largest

single contributor is greenhouse gases, however qualitively, greenhouse gases

give the least desirable fit to the observed data. Ozone depletion was the only

scenario that showed cooling of the stratosphere. While individual scenarios

have been modelled, it does not preclude the possibility that multiple scenarios

contribute to the final solution.



Chapter 6

A Comparison of Results With

Other Models

6.1 Overview

The Two Layer Model is not the only model that has been used to simulate the

Earth climate system to determine the effects of global warming. In the late

1960s and early 1970s Budyko and Sellers both produced models for demon-

strating the risks of an ice age. In recent years the most popular models are

General Circulation Models (G.C.M.s). These are the most common models

used in modern research. It is therefore useful to explore how the Three Layer

Model compares with these other models.

6.2 The Budyko Model

One of the first published theoretical models dealing with the ice-snow albedo

feedback is that due to Budyko (1969). The model was published with mixed

units and many of the constants in the model were reported without the ap-

propriate units specified. This unfortunately means that the original model is

difficult to reproduce.

One of the aims of the model was to determine the temperature at various

latitudes. As can be seen from figure 6.1 there is a good correspondence

between Budyko’s model and observed data.

Budyko then explored the relationship between the amount of solar radia-

tion received by the Earth and the surface temperature. His model included a

mechanism for snow ice albedo feedback. As predicted in figure 6.2, Budyko’s

model predicted that a 1% decrease in solar radiation would produce a 5◦ C
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Figure 6.1: Average latitudinal temperature distribution [Source: Budyko
(1969) with modifications by Watkins (2006)

reduction in temperature and a 1.5% reduction in radiation would produce a

9◦ C reduction. Further, the model predicted that in the northern hemisphere

that the boundary of glaciation would move 10–18◦ south from the present

limits. One of Budyko’s conjectures was that volcanic activity could cause

such a reduction in irradiance (Budyko, 1969).

Budyko then explored the relationship between temperature and the re-

moval of polar glaciations. His model predicted the largest increase of temper-

ature at the poles themselves, with an increase of 8◦ C at the poles and 2-3◦ C

at the equator. This shows that removal of the ice caps will alter the entire

planets temperature. This model is of extreme importance; we have already

noted that the northern polar ice cover has reduced greatly in recent years and

it appears that it will reduce further in coming years.

The results obtained from the three layer model for the scenarios of decrease

of solar irradiation by 1% and 1.5% are summarised in table 6.1. Both the

three layer and the Budyko model show the cooling associated with a loss of

solar irradiance. The Budyko model shows a much larger effect, this is partly

due to the snow-ice albedo feedback mechanism included in the model. The

snow-ice feedback increases the reflectivity, re, of the surface of the Earth, re,

as ice and snow cover the oceans. As shown in figure 5.1c even small amounts

of decrease in solar irradiance can produce large temperature decreases. The

three layer model, as it stands, is not capable of reproducing results varying
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Figure 6.2: The dependence of temperature distribution on radiation amount
(Source: Budyko (1969) with modifications by Watkins (2006)

with latitude

Table 6.1: Comparison of results between the Three Layer Model and the
Budyko Model

Scenario Surface(K) ∆Surface(K) ∆T Budyko(K)
Irradiance 100.0% 286.56 — —
Irradiance 99.0% 285.68 −0.88 −5
Irradiance 98.5% 285.24 −1.32 −9

6.3 Seller’s Model

In the same year that Budyko published his model another model of the Earth-

atmosphere system was also published by Sellers (1969). The Sellers model

calculated the sea-level temperature in 10◦ latitude belts. This temperature

is a function of the solar input, the planetary albedo, the transparency of the

atmosphere to infrared radiation and the turbulent exchange co-efficients of the

atmosphere and the oceans. The model involved ten simultaneous equations

that were solved using an iterative process. The Seller’s model accounts for

heat flux between the various latitudes. Sellers concluded that an increase in

solar input of ∼ 3% would probably be sufficient to melt the ice sheets and
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that removing the ice caps would increase the local temperature by no more

than 7◦ C.

6.4 Using a Global Climate Model

One of the primary tools in modern climate research is the computer driven

Global Climate Model (GCM). Until recently theses GCMs required supercom-

puting facilities and skilled programmers to operate. A GCM is traditionally

initialised and controlled through a combination of computer programmes and

UNIX shell scripts. The model is of a computational nature, uses large amounts

of computer memory and can take hours or even days to run. Once the output

has been processed it must then been analysed. Variables of interest must

first be extracted from the binary files that are the normal GCM’s raw out-

put. The data are then averaged over meaningful time periods or geographical

areas, and scaled into useful units.

The model used for this thesis is the GISS GCM Model II developed by

Hansen et al of the NASA/Goddard Space Flight Center, Institute for Space

Studies. The model was published as Hansen et al. (1983) and has been

in continual development ever since. The GISS GCM Model II is a three-

dimensional model that solves numerically the physical conservation equations

for energy, mass, momentum and moisture, and the equation of state. The

GISS Model II has a horizontal resolution of 8◦ latitude by 10◦ longitude.

The atmosphere is modelled with nine layers that extend to 10mbar. The

ground has two ground hydrology layers. Other factors included in the model

are cloud cover, precipitation, snowfall and sea surface temperatures. The

University of Columbia has recently added a Graphical User Interface (GUI)

to the GISS Model II. This enables non–programmers to use the GISS Model

II. This package, EdGCM, is used in this project as a representative GCM.

6.4.1 EdGCM and Greenhouse Gases

Many of the current group of Global Climate Models were designed to test the

effects of increasing carbon dioxide and other greenhouse gases. Using EdGCM

a simulation run was undertaken to determine the changes in temperature

caused by changing greenhouse gases from their preindustrial values to their

2001 values. The regions with increased and decreased temperatures are shown

in figure 6.3.
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(a)

(b)

Figure 6.3: The changes in the Earth surface temperature between preindus-
trial and 2001 greenhouse gas levels, (a) shows areas of temperature increase,
(b) shows areas of temperature decrease
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Using this model the World shows warming over most of the surface; the

greatest warming, with rises of over 10K, occurs in and around Canada and

Greenland. The mean temperature rise over the globe is 1.8K. While this shows

that the northern hemisphere experiences more warming than the southern

hemisphere, it does not exhibit the extreme warming around the Antarctic

Peninsula that has been observed.

In figure 6.4 the change in snow and ice cover is recorded. A reduction in

snow in ice should result in a reduction in surface albedo with a corresponding

increase in energy absorption. In the northern hemisphere there is a strong

relationship between reduction in snow ice and the increase in temperature.

The relationship in the southern hemisphere is not as obvious.

6.4.2 EdGCM and Solar Variability

The effect of solar variability is modelled on the EdGCM by increasing the

variable Solar Luminosity from 1366.619 W/m2 to 1366.819 W/m2 over a pe-

riod of ten years. This is a total increase of 0.2 W/m2 or 0.015%. The system

was allowed to run for ten simulated years before the change took place to give

baseline data. After the change occurred, the model was left to run another

24 years to reach a new equilibrium temperature.

The change of surface temperature is recorded in figure 6.5. All parts of

the surface recorded warming, the smallest being an increase of 1.6K and the

largest increase being 16.4K in the southern oceans. The whole of the South-

ern Hemisphere demonstrates a greater degree of warming than the Northern

Hemisphere. This is at odds with the observed evidence presented in Chap-

ter 2. The current data shows warming of the southern hemisphere and a

larger warming of the northern hemisphere. This is not observed in the GCM

output. The magnitude of the changes indicate a sensitivity issue with this

model in this case. A major cause for this response is that the GISS:Model

II does not model ocean temperature. Because of the very high specific heat

of water compared to land, a much larger amount of energy is required to

produce the same amount of warming in water. As the southern hemisphere

has a larger amount of water than the northern hemisphere the temperature

response will be different in the different hemispheres. Because the ocean tem-

peratures are not modelled the temperatures in the southern hemisphere have

an amplification factor. The reason for the large increase in temperatures is

illustrated in figure 6.6. The first panel shows the areas of the world where

the snow and ice increases. For this model, the only location that snow and
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(a)

(b)

Figure 6.4: The changes in the Earth surface snow and ice cover between
preindustrial and 2001 greenhouse gas levels, (a) shows areas of increase in
snow/ice cover, (b) shows areas of decrease in snow/ice cover.
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Figure 6.5: Change in The Annual Mean Surface Air Temperature for a 0.02%
increase in irradiance.

ice increases is in northern India and the Himalayas. The second panel shows

that the greatest loss of snow, ice and sea-ice occurs in the southern oceans

with large areas of 50–100% loss.

This loss of ice in produces a decrease of surface albedo, hence an effective

increase in heating due to sunlight. The change in planetary albedo by this

model is illustrated in figure 6.7. The first figure shows an increase of albedo

over much of the northern hemisphere. With the decrease in ice and snow in

these areas this increase in albedo is caused by an increase in cloud cover. With

the loss of sea ice in the southern oceans there is a corresponding decrease in

albedo.

Figure 6.8 illustrates the change in radiation reaching the surface of the

Earth due to albedo changes and changing cloud cover. Most of the planet has

a reduction of sunlight at the surface. This correlates well with the increased

cloud cover. However the equatorial zone as well as the southern oceans show

an increase in the sunlight penetrating to the surface.

This model shows that even small increases in solar irradiance can have

large effects on the Earth/Atmosphere system. The modelled results do not

show a strong temperature rise in the northern hemisphere, yet they show the

effects of snow-ice albedo feedback.
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(a)

(b)

Figure 6.6: The change in snow, ice and sea-ice for a 0.02% increase in solar
irradiance, (a) shows areas of increase in snow/ice cover, (b) shows areas of
decrease in snow/ice cover.
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(a)

(b)

Figure 6.7: The change in albedo for a 0.02% increase in solar irradiance,
(a) shows areas of increase in albedo, (b) shows areas of decrease in albedo.
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(a)

(b)

Figure 6.8: The change in net radiation received at the Earth’s Surface for
a 0.02% increase in solar irradiance, (a) shows areas of increase in radiation,
(b) shows areas of decrease in radiation.



80 A Comparison of Results With Other Models

6.4.3 EdGCM and Ozone Depletion

To directly model the effects of ozone depletion is beyond the input capacities

of the EdGCM model. While this model has a factor for light absorption by

ozone, this is not adjustable by the user, let alone adjustable by latitude. It

is intuitively felt that an increase in UVB penetrating to the Earth’s surface

would have a similar effect as an increase in solar irradiance. It is beyond the

scope of this work or this model to verify this is true for a GCM model.

6.4.4 GCMs and sensitivity

For calibration purposes the EdGCM was run with no industrial gases in the

atmosphere. The levels of carbon dioxide, methane, nitrous oxide and chlo-

rofluorocarbons was set to zero. This scenario provided an average mean tem-

perature of the surface of the Earth of −15◦ C after which point the model

failed. If the atmosphere contained nitrogen and oxygen only then the at-

mosphere would have a temperature of −6◦ C or 267K (Houghton, 2004). It

would be expected the decrease in temperature predicted by the GCM would

be even greater if the major greenhouse gas, water vapour, had been removed

from the atmosphere as well. For this scenario the agreement between the

GCM and independent calculations do not show agreement. Research into

GCMs has shown that the models have different sensitivities to different sce-

narios. Sensitivity is defined as the average temperature change for a unit

increase in radiative forcing. carbon dioxide warming is defined as the stan-

dard scenario by which other sensitivities are measures. Upper stratosphere

ozone has a lower sensitivity while lower stratosphere ozone has higher sen-

sitivity (Joshi et al., 2003). For a constant increase for radiative forcing the

range of temperature change for altering ozone by altitude was on the order

of a factor of three. This demonstrates that the climate sensitivity parameter

is highly variable (Stuber et al., 2005). GCMs therefore seem to show more

reliable results for certain scenarios over others.

6.4.5 GCMs and the Three Layer Model

It is difficult to directly compare the Three Layer Model with the other models

reported here. The Budyko model, whilst simple and important, was primarily

used to discover glaciation limits. It shows strongly the link between temper-

ature and ice-snow albedo feedbacks. The Sellers model is more complete in

that it also models heat fluxes and includes models in the oceans. Again it
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shows the strong link between snow, ice and the temperature. The GCM model

produces almost too much information. Primary information output from the

three layer model is the temperature of the layers. While it is possible to

extract this information from a GCM, it takes specialist knowledge.

For the greenhouse gas increase scenario, both the GCM and the three

layer model show an increase of average surface temperature. The Budyko and

Sellers model are not designed to account for differences caused by greenhouse

gases.

For the scenario of an increase in solar irradiance both the GCM and three

layer model show an increase in the mean annual surface temperature of the

Earth. The GCM produces a result significantly larger than the three layer

model or what has actually been observed. Both the Budyko and Sellers model

show a decrease in temperature with a decrease in solar irradiance. They were

not tested for a solar increase as global warming was not a concern at the time

of their publication.

6.5 Conclusion

Of the models examined, only the three layer model can easily be utilised to

demonstrate the effects of ozone depletion. One can argue that by analogy

the GCM model can be used with an increased solar irradiance to simulate

the decrease in stratospheric ozone. This is a week analogy and should be

tested more rigorously. It should be noted for this and all other scenarios that

sensitivity issues associated with Global Circulation Models.

Of the four models examined, only the three layer model does not have an

albedo feedback mechanism. Both the Budyko and Sellers demonstrate the

importance of this effect. In most cases the GCM shows a link between snow

and depletion and warming. There is at least one scenario where this link

seems ambiguous.

It would be useful to include the snow-ice albedo factor and to model

individual latitude bands in the three layer model. These improvements are

the subject of the next chapter.





Chapter 7

Extending the Three Layer

Model

7.1 Overview

While the three layer model produces useful results for the level of complexity

it possesses, it is deficient in several areas. The first and most important of

these is that the model contains no feedback mechanisms. It is, fact that, lack

of feedback that allows the model to be solved simply and analytically. Adding

feedback mechanisms will force us to use iterative schemes for a solution. The

ice-snow albedo feedback mechanism, while understood conceptually has not

been numerically evaluated by the scientific community as it is not a problem

worthy of research in its own right. While feedback mechanisms in current

climate models, there are no observed data on the quantity of this effect.

The first described and simplest approach to include a snow-ice albedo

feedback mechanism is due to Sellers (1969), whereby a single amplification

factor is used. A more complex approach described by Budyko (1969), in which

the Earth is divided into latitudes and the temperature and albedo for each

latitude is determined. Even so, this only allows only for a qualitative result

as the heat flux through each latitude is not taken into account.

Another reason to divide the Earth into latitudinal lines is to examine

the effects of ozone depletion at various latitudes. The composition of the

atmosphere is fairly uniform over the surface of the globe. Water vapour is

the only major constituent that naturally varies somewhat over the globe.

since industrial times there is a variable aerosol component, these aerosols

being generated by human activity and being of greatest concentration in the

temperate band of the northern hemisphere and over China. The ozone layer
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is also not the same from hemisphere to hemisphere and with human activity

there is a large ozone loss as one approaches the poles. As the three layer

model shows that there is an increase of surface temperature with ozone loss,

and because ozone loss varies with latitude, it seems prudent to model the

variation of ozone over latitude. The effects of ozone variation can then be

studied.

The final and most complete approach is to model each latitude taking into

account factors such as heat flux through each latitude as well as the ratio of

land to water. Also modeling the change in ozone and albedo. However at this

point the increasing complexity of the model and the number of fundamental

assumptions that made may render the model problematic.

7.2 Adding a simple albedo feedback mecha-

nism

The simplest approach to adding a snow ice albedo feedback mechanism to

the three layer model is the one due to Sellers (1969). This approach directly

relates the reflectivity of the Earth to the mean temperature of the planet. In

the three layer model this is simply achieved by altering the value of re. Sellers

determined from data of the time that a 1K drop in temperature increases the

surface albedo by 0.009. This can be incorporated into the model by changing

the value of re in the model from 0.1515 to

re = 0.1515− 0.009(TE − 287) (7.1)

Thus as the temperature increases the surface albedo decreases and as the

temperature decreases the surface albedo increases. At extreme temperatures

this approximation yields unphysical values of greater than one or less than

zero. Nevertheless it provides an approximation of snow-ice albedo feedback

that is accurate within a few degrees of the base temperature.

To implement this into the three layer it is required to iterate the model

until it reaches a new steady state. This has been done and test runs have

shown that the model reaches a steady state in 30 iterations or less.

The adjusted three layer model was rerun for each of the scenarios with

results listed in table 7.1. In all three scenarios the temperature increase is

magnified by more than a factor of 3.

Again if we use the figures for radiative forcing as determined by other au-
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Table 7.1: Surface Temperature increase for three scenarios

∆T Surface ∆T Surface
Scenario (Normal Model) (K) (Model with Albedo)
Greenhouse Gases (+1%) 0.4415 1.3156
Solar Variability (+1%) 0.8704 2.5658
Ozone Depletion (−5%) 0.0989 0.2979

thors and described in chapter 2, the final amount of warming can be modelled

as in table 7.2. In all three cases the amount of warming of the troposphere and

the stratosphere has increased over that of no albedo feedback. The greenhouse

values are notably much larger than observed. This could be due to sensitivity

issues with the three layer model, or that there are negative feedback mecha-

nisms that have to be further modelled, or there are sensitivity issues with the

greenhouse gas model. Of note is the increase of stratospheric temperature

with the greenhouse gases model. This occurs even though there is no increase

in the amount of greenhouse gases modelled in this layer.

Table 7.2: Temperature increase by altitude for three Global Warming scenar-
ios with as predicted by the three layer model including simple albedo feedback

Stratosphere Troposphere Surface
Scenario ∆T (K) ∆T (K) ∆T (K)

Greenhouse Gases (+2.4 W/m2) 0.449 1.543 1.402
Solar Variability (0.3 W/m2) 0.158 0.169 0.294
Ozone Depletion (−2%) -0.046 0.049 0.119
Combined Change 0.562 1.764 1.815
Observed -1.13 0.40 0.55

Table 7.2 show that both solar variability and ozone depletion can make

significant contributions to global warming. The effect of albedo change can

magnify the effect of smaller changes. Together solar variability and ozone

depletion with albedo feedback can account for approximately 75% of observed

warming effects.

7.3 Albedo Feedback by latitude

While it is useful to note the total warming global trend, it is also of use to note

where the warming is occurring. Without trying to make a complete GCM it

is possible to simulate a world that is divided into discrete latitudes. The crux

of this model is to divide the world into slices, where each slice is modelled as
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a three layer model. While heat fluxes are important in forming a complete

model, Budyko (1969) showed that indicative results can be obtained without

inclusion of this mechanism. We therefore do not include heat fluxes in the

model described here.

In forming the model, each fifth of a degree of latitude is modelled as a sep-

arate, independent three layer model. The parameters that need modification

per latitude are the solar input So and the reflectivity of the Earth’s surface

re. Other parameters can also be easily modified by latitude as required. This

allows the modification of the stratospheric UV absorption parameter f .

The mean solar input is now a function of latitude. Using spherical trigonom-

etry, the sunlight incident per unit area at the top of the atmosphere over a

day is determined by (Peixoto, 1992)

So(φ, t) =
86 400

π
S(dm/d)2 sinφ sinδ(H − tanH) (7.2)

where S is the solar input (1 362 W/m2), dm is the mean distance of the

Earth to the sun,d is the distance to the sun at a particular time, φ is the

latitude, δ is the solar declination, and H is the length of the day. Note that

parameters such as d and δ are functions of the season. Integrating equa-

tion 7.2 over the year gives the mean solar irradiance per unit area per unit

time at a particular latitude. It should be noted that this function does not

give a symmetrical result about φ. This is caused by the Earth being closer

to the sun during the southern hemisphere summer. Thus the southern hemi-

sphere receives on average slightly more sunlight annually than the northern

hemisphere.

Determining the value for re is more difficult as it is made up of many

individual components such as the amount of land, water, ice and snow on

the Earth’s surface. Indeed, land can be sand, or dark loamy soil, or have

vegetation, for example, each of which have different albedo values. For this

simple model it is assumed that land and sea cover is uniform by latitude and

has no dependence upon latitude. For each band of latitude, if the surface

temperature is above 273 K then re is determined to be 0.1175. If the surface

temperature is below 273 K, then re is determined to be 0.3500. Using the

nominal set of values for the three layer model as determined in chapter 4

and allowing So and re to be dependant on latitude and surface temperature

respectively, the model was run and the results depicted in figure 7.1.

As expected the equatorial temperature is higher than that observed and

the polar temperatures are lower than has been observed. This is because
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Figure 7.1: Surface temperature by latitude using a three layer model with a
simple albedo by temperature function

heat transport by the atmosphere or the oceans has not been included in this

model. What is in the graph is a high temperature at the equator and low

temperatures at the poles. There is a marked drop in temperature, at latitudes

50◦N and 50◦S, that demarcates the beginning of deglaciation, i.e. the albedo

boundary. This change is sharp as we have modelled an all or nothing scenario

for glaciation, Using these figures as a norm, it is possible to retest the three

scenarios.

The changes in temperature caused by an increase in greenhouse gases of

1% for the troposphere and 0.5% for the stratosphere are given in figure 7.2.

At all latitudes the temperature has increased with a maximum change of

' 0.45 K at the equator to ' 0.45 K at the poles. Also of note is that the

line of glaciation has in both hemispheres has retreated towards the poles. On

the right panel is the plot of change in temperature by latitude. From this it

is seen that the warming at the equator is greater than the warming at the

poles. The two prominent features are the sudden increases in temperature at

around 50◦ of latitude in both the northern and southern hemisphere. This is

the change in temperature caused by the change in albedo from an ice regime
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to an ocean/land regime.

Figure 7.2: Surface temperature by latitude and change in temperature by
latitude caused by a 1% increase in greenhouse gases. Left panel, the solid line
is the original temperature, the dashed line is the final temperature. The right
panel shows the change in temperature by latitude. Maximum values ∼19K

For a 1% increase of solar irradiance, as shown in figure 7.3, there is a

warming at all latitudes with a maximum warming of ' 0.75 K at the equator

and a minimum of ' 0.55 K occurring at the poles. Also there is the shift

in glaciation producing dramatic changes in temperature where they occur.

Again the general warming trend is that the equator warms more than the

poles as this is the location largest solar input.

Modelling the decrease in ozone is more difficult as this decrease is not

consistent across the whole planet. Ozone concentrations are traditionally

highest in the polar regions; these regions also have the highest relative change

in ozone. The Antarctic Ozone hole is much larger than the Arctic hole both

in size and relative loss of ozone. To model this the parameter fs of the three

layer model was made to vary as a function of latitude, according to

fs =

0.06
(
1− 0.01

(
φ
4

))
45◦S < φ < 90◦N

0.45 otherwise
(7.3)
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Figure 7.3: Surface temperature by latitude and change in temperature by
latitude caused by a 1% increase in solar radiation. Left panel, the solid line is
the original temperature, the dashed line is the final temperature. The right
panel shows the change in temperature by latitude. Maximum values ∼19K

This gives 0.0465 at the North Pole ranging to 0.6 at the equator. For all

regions south of 45◦S fs is set to 0.45, to represent the mean effect of the ozone

hole. The results of simulation with the inclusion of equation 7.3 are shown in

figure 7.4.

Again the ozone depletion scenario shows an increase in temperature at all

latitudes and the glaciation line shifts towards the poles, nevertheless there are

differences compared to the other two scenarios that are significant. In the case

of ozone depletion the least warming is at the equator with 0◦K increase. The

warming increases as one travels towards the poles with a maximum increase

of ' 0.25 K at 50◦S. With a decrease of warming over the glaciated areas.

The northern polar region continues this warming trend towards the pole. In

the southern hemisphere the change in ozone was fixed from 45◦S, and in the

graph the warming remains uniform with φ.

In all three scenarios the line of glaciation retreats to the poles thus pro-

ducing a marked increase in temperature. In the case of greenhouse gases and

solar irradiance the greatest warming occurred at the equator and the least
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Figure 7.4: Surface temperature by latitude and change in temperature by
latitude caused by a 1% increase in solar radiation. Left panel, the solid line is
the original temperature, the dashed line is the final temperature. The right
panel shows the change in temperature by latitude. Maximum values ∼19K

warming occurred in the polar regions. In the case of ozone depletion this

trend was noticeably reversed.

7.4 Further extensions to the three layer model

The original purpose of developing a three layer model is to create a simple

analytical model for determining the effects of atmospheric changes upon the

Earth. With the development of feedback mechanisms it is necessary to use

iterative schemes of relaxation to steady state. While it is possible to factor

extra factors such as land cover by latitude and vegetation cover, this is at

the cost of increased complexity. When dealing with this amount of detail it

is a question as to whether to extend the model to this level of complexity or

whether to transfer to a full global circulation model and modify it to include

the effect of ozone depletion.
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7.5 Conclusion

With the addition of a simple albedo feedback mechanism, the warming of

the atmosphere was dramatically amplified. With this feedback both solar

variation and ozone depletion produced larger effects than that observed in

chapter 5. Indeed. the effects become much more likely to explain observed

warming of the atmosphere. This implies that special consideration should

be given to these factors and that they are worthy of further study by the

scientific community.

Extending the model further shows that the temperature increase varies

with latitude, the largest increase being caused by a decrease in the area of

the ice. This supports the view that the decreases in observed Northern and

Southern hemisphere sea ice should be having an effect on the amount of energy

in the Earth climate system.

As large amounts of sea-ice and glaciers have melted and there is a reduc-

tion in snow cover in many parts of the world, the snow-ice reduction should

produce a feedback effect which is yet to be quantified. In the actual world

this melt off takes time to happen and thus the world is currently not in steady

state. As the snow cover can be considered to have been in a quasi-stable state

in the past, then some external event must have caused the snow-ice reduction.

This event seems likely to have occurred in the late 1960s and early 1970s. An

ozone depletion model of global warming shows that ozone depletion may be

a significant contributory factor.





Chapter 8

Conclusion

8.1 Summary of the Main Results from this

Thesis

The goal of this thesis is to determine if the ozone depletion in the stratosphere

is a plausible explanation of all or part of any observed changes in climate.

Chapter 2 presented the known evidence that there has been an increase in

the surface temperature of the Earth, a warming of the troposphere, a cooling

of the stratosphere and a net melting of the Earth’s cryosphere, since the late

1960s/early 1970s.

As increase of temperature in a system is related to energy in the system,

a first order energy budget was carried out to determine the total increase in

energy the Earth energy system had experienced due to the observed thermal

effects. The total increase in energy was estimated to be of the order of 2×1020

J. This is the equivalent of an increase of solar input by 0.2 W/m2 or an

increase of sunlight by 0.06% over the period of heating. This amount of

extra energy incident upon the Earth is within one factor of the increase of

solar input required for the solar variation theory to be valid and is an order

of magnitude smaller than that required for the greenhouse gases theory of

global warming.

It was noted that the extent of the Earth’s cryosphere has reduced in

surface area. The Earth’s cryosphere is a highly reflective surface, consequently

sunlight incident on the cryosphere is predominantly reflected into space. With

the melting of the snow and ice the exposed surface of the Earth absorbs a

much larger proportion of the incident sunlight. When averaged over the

surface of the Earth was estimated to increase the effective solar input by
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0.25 W/m2. This is also within an order of magnitude of the solar input

increase as determined using the first order approximation energy budget.

In Chapter 3 it was shown that in the 1960s and from the 1970s onwards

there has been a decrease in stratospheric ozone. The greatest decrease in

ozone has been observed to occur near the poles of the Earth, with the largest

decrease being the Antarctic ozone hole that occurs in late winter and spring.

It is observed that with a decrease of stratospheric ozone there is an increase

in UV-B incident upon the surface of the Earth. The greatest depletion in

the ozone layer also occurs where there is the greatest melting of the Earth’s

cryosphere, hence where there is the largest change in albedo.

To determine if these events are linked, a model of the Earth was developed.

A known simple two layer model of the Earth was extended, in chapter 4, to

create a third layer to more closely examine the behaviour of the observed

atmospheric layers. A set of values for the parameters was determined and in

chapter 5 the three layer model was used to model the scenarios of greenhouse

gases, solar irradiance, snow-ice albedo feedback and ozone depletion. Of these

four models, using observed values of change for the various scenarios, the

change in temperature was determined.

Compared with the observed surface warming of 0.55K, the greenhouse gas

scenario demonstrated the largest change with an increase in temperature of

0.47K. The temperature increase for solar variability was 0.098K, for ozone

depletion, 0.087K and for albedo decrease, 0.087K. It is of note that the ozone

depletion scenario was the only scenario that demonstrated a cooling of the

stratosphere.

In Chapter 6, these results of the three layer model were compared to other

climate models. The importance of including a snow-ice albedo feedback mech-

anism into the three layer model was established. It was therefore decided to

alter the three layer model to include this mechanism. Two different snow-

ice albedo feedback mechanisms were tested using the three layer model in

Chapter 7. The first, simple mechanism acted as an amplification factor and

increased the model change in temperature for the greenhouse gas, solar irra-

diance and ozone depletion scenarios. This increase demonstrated that any of

the three scenarios could be responsible for a significant change in the Earth’s

observed temperature with an increase in temperature caused by greenhouses

of 1.40K, by solar variation of 0.30K and by ozone depletion of 0.12K. The

second albedo mechanism was used and this showed an increase of temperature

in all scenarios and a receding of glaciations towards the poles.
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8.2 Final Conclusion on Ozone Depletion and

Global Warming

The aim of this thesis is to determine if ozone depletion is plausibly a con-

tributory factor to modern global warming. While it is observed that ozone

depletion and global warming have occurred concurrently, this in itself is not

enough to determine any causative link. A scenario was determined where

ozone depletion causes a reduction of UV-B absorption in the stratosphere.

This was then modelled using a three layer model of the Earth’s atmosphere.

This determined that the greenhouse gas, the solar variability and the ozone

depletion scenarios all produced warming of the surface atmosphere. Of these

scenarios, only the ozone depletion produced the observed cooling of the strato-

sphere. It is the conclusion of this thesis that no one of the three scenarios

presented can be ruled out as a cause of global warming either as a sole ex-

planation or in combination with other mechanisms. A mechanism was shown

which demonstrated that ozone depletion produces an increase of surface tem-

perature by an increase of absorbed UV-B and a decrease in stratospheric

temperature by a decrease in absorption of UV-B by the stratosphere. It was

further demonstrated that a further mechanism, snow-ice albedo feedback,

amplified by reinforcement the effects of surface temperature increase due to

ozone depletion. It is therefore concluded that ozone depletion is a likely cause

of at least a reasonable part of observed global warming. It is a component

that we expect will be essential to include to achieve a complete understanding

of the mechanics of global warming.

8.3 Further Study

Topics that warrant further investigation include:

A more complete modelling of the increase of energy caused by the Snow-

Ice Albedo Feedback Mechanism. While this mechanism is understood, it has

not been fully explored, especially with relation to real world values.

A more complete modelling of the increase of UV-B at the surface of the

Earth. The modification of an existing GCM model would be of use. This

would require major modifications to allow the modelling of varying amounts

of ozone at varying latitudes at various times of year. Both the modelling

of ozone by location and season and modifying a Global Climate Model to

produce meaningful results incorporating this information will be of use in
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determining a more rigorous model of the Earth atmosphere climate system.

It is important to keep observing and collecting better data on snow, ice,

sea-ice and Antarctic temperatures. And it is of great importance that we

increase the data known about the southern oceans.
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