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Abstract

Motivated by various challenging real-world applications, such as drug activity prediction

and image retrieval, multi-instance (MI) learning has attracted considerable interest

in recent years. Compared with standard supervised learning, the MI learning task is

more difficult as the label information of each training example is incomplete. Many MI

algorithms have been proposed. Some of them are specifically designed for MI problems

whereas others have been upgraded or adapted from standard single-instance learning

algorithms. Most algorithms have been evaluated on only one or two benchmark datasets,

and there is a lack of systematic comparisons of MI learning algorithms.

This thesis presents a comprehensive study of MI learning algorithms that aims to compare

their performance and find a suitable way to properly address different MI problems. First,

it briefly reviews the history of research on MI learning. Then it discusses five general

classes of MI approaches that cover a total of 16 MI algorithms. After that, it presents

empirical results for these algorithms that were obtained from 15 datasets which involve

five different real-world application domains. Finally, some conclusions are drawn from

these results: (1) applying suitable standard single-instance learners to MI problems can

often generate the best result on the datasets that were tested, (2) algorithms exploiting the

standard asymmetric MI assumption do not show significant advantages over approaches

using the so-called collective assumption, and (3) different MI approaches are suitable for

different application domains, and no MI algorithm works best on all MI problems.
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Chapter 1

Introduction

Multi-instance (MI) learning has received much attention recently as the MI setting

is well-suited to represent various complex real-world classification problems. Unlike

standard supervised learning in which every training instance is explicitly labeled, in MI

learning, the label information of every example is incomplete. Like standard supervised

learning, the aim of MI algorithms is to generate a model based on training examples,

so that the model can accurately make predictions on new examples. The prediction

tasks for MI problems are more difficult than those for single-instance learning problems

because the real cause of the class label is ambiguous. This thesis focuses on studying

algorithms attempting to deal with MI classification problems.

The remainder of this chapter is organized as follows. Section 1.1 introduces some basic

concepts of MI learning used throughout this thesis. Section 1.2 states the objectives

of this thesis. Section 1.3 briefly reviews the history of MI learning and related work.

Section 1.4 shows the structure of this thesis. Section 1.5 has some implementation notes.

1.1 Basic Concepts in Multi-instance Learning

The multi-instance concept was first formally proposed in (Dietterich, Lathrop &

Lozano-Perez, 1997). It was originally motivated by a drug activity prediction problem.

In this problem, a molecule can have several conformations (i.e. shapes) with different

properties that result in the molecule being of “musk” or “non-musk” type. However,

it is unknown which particular conformation is the cause of a molecule being of the

“musk” type. The traditional single-instance setting can not represent this application

problem properly as one molecule may have several alternative conformations. Therefore,

Dietterich et al. (1997) proposed the multi-instance setting, in which each example is

represented by a collection of single instances instead of a single instance.
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In the MI setting, an example, which is called a “bag”, consists of a collection of unlabeled

instances. In this thesis, we only consider two-class classification problems, so each bag

has a class label that is either 1 (for a positive example) or 0 (for a negative one). Each

“instance” within a bag is described by a vector of features. However, the label of each

individual instance within a bag is unobserved. In other words, the cause of the class

label is not clearly known. For example, in the drug activity prediction problem, a

molecule is represented as a bag that contains all possible conformations of this molecule,

and every conformation of the molecule is represented as an unlabeled instance. In other

words, a training example, which is either “musk” (positive) or “non-musk” (negative),

is represented as a collection of unlabeled instances with only one associated bag label.

Each instance is a fixed-length vector of nominal or numeric attribute values, just as in

standard single-instance learning.

Dietterich et al. (1997) made an asymmetric MI assumption regarding the process that

determines whether a bag label is positive or negative based on the (unknown) class

labels of the instances in the bag. If and only if a bag contains at least one instance

which is positive, the bag is labeled as positive. Otherwise, if all instances in a bag

are negative, the bag is labeled as negative. This assumption has been regarded as the

standard MI assumption and many MI algorithms that can be found in the literature

follow this assumption.

However, several MI algorithms that have been proposed more recently, especially

methods aimed at upgrading single-instance learners to deal with MI data, discarded the

standard MI assumption and instead use a so-called “collective assumption” (Xu, 2003).

The collective assumption is symmetric. It assumes all individual instances within a bag

contribute equally and independently to the bag’s class label.

This thesis discusses MI learning algorithms. To avoid confusion it refers to standard

supervised learning algorithms as “single-instance learning algorithms”. In the single-

instance setting, each training instance is assigned an explicit class label whereas in the

multi-instance setting, the class label is assigned to a bag of instances. Therefore, the

task of accurately classifying or predicting is more difficult in MI learning.
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1.2 Thesis Objectives

In recent years, many MI algorithms have been proposed in the literature. However, in

most cases, the evaluation of these algorithms was based on very few MI datasets (e.g. the

two Musk benchmark datasets) and the proposed algorithms were often compared with

very few other approaches (e.g. an early MI learning method called Diverse Density). The

aim of this thesis is to present a comprehensive study of MI methods. To this end extensive

experiments on a collection of real-world datasets were performed in an attempt to address

some specific questions regarding MI problems: such as how well standard single-instance

learners work on MI problems, which kind of MI assumption is most suitable for real-world

dataset, and which MI algorithm is most suitable for a specific application domain. More

precisely, there were three objectives for the work presented in this thesis:

1. To integrate all MI classifiers from the MILK system for multi-instance learning (Xu,

2003) into the WEKA workbench and to implement more well-known MI algorithms;

2. To evaluate the performance of various kinds of MI approaches on a wide range of

real-world datasets;

3. To perform an in-depth study of how well different kinds of MI approaches work on

MI problems.

A major part of this thesis is also a review of the MI learning algorithms that were

evaluated.

1.3 Background and Related Work

In this section, we briefly review the history of research on MI learning. In the early

stage of development, the MI algorithms that were created were often specially designed

for the MI setting. In the later stages, researchers showed more interest in upgrading or

directly applying standard single-instance learning algorithms to MI problems.

In the area of MI learning, the article that introduced the axis-parallel rectangles (APRs)

algorithm (Dietterich, Lathrop & Lozano-Perez, 1997), can be regarded as the first

paper to formally introduce the multi-instance framework and it proposed the first MI

algorithm specifically designed to learn from MI examples. The APRs method assumes

that the classifier can be represented as a hyper-rectangle that includes at least one

3



instance of every positive bag and does not include any instances from negative bags. The

MI setting for the drug activity prediction problem was first introduced in this paper,

which resulted in the two versions of the Musk benchmark datasets. Soon after, a related

algorithm based on the PAC theory was introduced under the MI framework (Auer,

Long & Srinivasan, 1997), and then a more practical algorithm called MULTINST was

presented in (Auer, 1997). The MULTINST algorithm assumes that all instances from

all bags are generated independently and the algorithm is based on simple statistics of

the bags and designed to efficiently learn APR concepts.

In 1998, Maron et al. proposed a new MI algorithm called Diverse Density (DD) and

this algorithm is commonly used for bench-marking other MI algorithms. It assumes that

there is a concept point in the feature space that is close to all positive bags and far away

from all negative bags. The DD algorithm is very famous and has been cited in almost

every paper on MI learning. A few years later, the DD algorithm was extended further

by combining it with the Expectation-Maximization (EM) algorithm, resulting in the

EMDD algorithm (Zhang & Goldman, 2002). DD and its extension EMDD have been

used on several MI problems, namely drug activity prediction, stock selection, natural

scene classification and image retrieval. These algorithms will be discussed in more detail

in Section 2.1.

Since 2000, much effort has been targeted at adapting single-instance learning algorithms

to MI problems. An MI version of the C4.5 decision tree learner, called RELIC, was

presented in (Ruffo, 2000). Wang and Zucker (2000) explored a lazy learning approach

to MI learning. They adapted the k nearest neighbor algorithm to MI problems by

using the Hausdorff Distance for measuring the distance between sets of point. Two

variants of this approach, Citation KNN and Bayesian KNN, were proposed in (Wang

& Zucker, 2000). They will be discussed in more detail in Section 2.3. Also in 2000,

Ramon and Raedt applied the Neural Network learning technique on MI learning (Ramon

& Raedt, 2000). In 2001, an MI version of a decision rule learner called RIPPER

was proposed in (Chevaleyre & Zucker, 2001). In 2002, several methods attempting

to adapt the support vector machine (SVM) method to MI learning were investigated.

Gärtner et al. (2002) proposed a kernel-based method that uses an MI-kernel at the

bag level. Andrews et al. (2002) proposed two methods to utilize the standard SVM

to solve MI problems. One is to identify the unobserved class label for each individual

instance using a standard SVM. The other is to generalize each bag by searching for
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the “most positive” instance and the “least negative” instance for positive and neg-

ative bags respectively. SVM-based methods will be discussed in more detail in Section 2.2.

In 2003, Frank and Xu introduced a simple wrapper for applying standard single-instance

learner directly to MI problems. In the Wrapper approach (Frank & Xu, 2003), the

standard asymmetric MI assumption is explicitly discarded and the collective assumption

is used, which treats the positive and negative bags in a symmetric way. Moreover, Frank

and Xu introduced a new weighting scheme to properly treat instances from different bags

differently. This method will be discussed in more detail in Section 2.4. Later, Xu and

Frank (2004) also proposed a method to upgrade linear logistic regression and boosting

to MI problems, which also used the collective assumption. Ensemble methods have also

been suggested to combine MI learners in order to achieve a better performance, such as

the bagging approach (Zhou & Zhang, 2003) and the boosting approach (Auer & Ortner,

2004).

Apart from MI learning for classification problems, efforts have also been made on

developing MI methods dealing with real-valued outputs. The MI algorithms Citation

KNN and DD were extended for the real-valued data setting in (Amar, Dooly, Goldman

& Zhang, 2001). An MI regression algorithm was also proposed in (Ray & Page, 2001).

As MI learning was originally motivated by two class problems, this thesis focuses on in-

vestigating binary class problems and real-valued prediction problems are beyond its scope.

Many MI algorithms have been proposed and many MI application domains have been

investigated, but the scope of existing studies of MI learning is very limited. Researchers

often pay a lot of attention to the performance of their newly proposed algorithm on

the traditional drug activity prediction task and a few particular application domains

they are interested in. The result is that very limited comparisons between different MI

algorithms and different application domains are performed. Many algorithms appear to

work very well on the two versions of the classic Musk dataset for drug activity prediction.

However, a perfect solution for the Musk datasets should obviously not be the final goal

of MI learning.

The only exception to this is the very recent work by Ray and Craven (2005). They

performed an empirical study of the relationship between standard supervised learning

and MI learning on a non-trivial collection of datasets. They attempted to answer
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questions such as, how well do standard supervised learners do on MI data, and is there

any single MI algorithm well suited to every MI domain. In this study (Ray & Craven,

2005), a number of MI learning algorithms including DD, Logistic Regression, SVM

and FOIL were empirically compared with their corresponding standard single-instance

learning counterpart. The evaluation was based on a wide range of MI problems that

have previously been considered in the MI literature. The application areas included drug

activity prediction (the Musk datasets), content based image retrieval, identification of

Trx proteins and text categorization. The conclusion was that some MI algorithms, such

as DD and Logistic Regression, are always superior to their single-instance counterparts

but that single-instance learning algorithms learn accurate models in many MI domains

and sometimes are the best algorithms (Ray & Craven, 2005). The empirical results also

show that different MI algorithms are appropriate for different MI problems and that

no single MI algorithm was well-suited to every MI domain that was tested. Compared

with the work by Ray and Craven (2005), this thesis will provide a more comprehensive

study of MI algorithms. A total of 16 MI algorithms will be investigated on a total of 15

real-world datasets.

1.4 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 presents the MI algorithms

that have been investigated, divided into five different kinds of approaches: probabilistic

approaches, support vector machine approaches, distance-based approaches, approaches

based on applying single-instance learners and two-level distribution approaches. For each

MI approach, we describe its main idea and introduce several methods that instantiate it.

A total of 16 individual MI algorithms that have been implemented in WEKA (Witten

& Frank, 2005) are discussed in this chapter.

Chapter 3 empirically evaluates the MI algorithms described in this thesis on a wide

range of real-world datasets. The MI application domains considered were collected from

previous projects involving MI learning, including drug activity prediction, image re-

trieval, protein identification, the East-West challenge and text categorization. Extensive

experiments were performed on these datasets. The empirical results of these experiments

are compared and discussed in this chapter. At the end of Chapter 3, an attempt is made

to identify suitable MI approaches for different application domains.

6



Chapter 4 summarizes the findings of this thesis and compares them with the findings

from previous related work (Ray & Craven, 2005).

1.5 Implementation Notes

For the experiments in this thesis all the classifiers from the MILK system (Xu, 2003) were

integrated into WEKA and four more MI algorithms were implemented. More precisely,

the work included:

1. Integrating all the MI classifiers in MILK system into the weka.classifiers.mi package.

2. Implementing MIEMDD, MISVM, MIOptimalBall, MISMO, and adding a third

transformation method, minimax, to the SimpleMI classifier.

3. Collecting the MI datasets used in this study and running the experiments using

WEKA.

In the following is a full list of all MI classifiers in the weka.classifiers.mi package, which

will be included in the next development release of WEKA:

• MIDD: Diverse Density classifier

• MIEMDD: Expectation-Maximization Diverse Density

• MDD: Diverse Density with collective assumption

• MILR: Logistic Regression with standard MI assumption

• MILRARITH: Logistic Regression with collective assumption (arithmetic mean)

• MILRGEOM: Logistic Regression with collective assumption (geometric mean)

• MISMO: SMO algorithm for building SVMs for MI data using MI-kernels

• MISVM: Maximum Pattern Margin Formulation

• CitationKNN: a lazy learning approach for MI problems

• MINND: Nearest Distribution classifier

• MIOptimalBall: Optimal Ball classifier

7



• MIWrapper: a method for applying single-instance learners to MI problems

• SimpleMI: applying single-instance learners to MI data by summarization

• MIBoost: Boosting for MI data

• TLD: Two-level Distribution classifier

• TLDSimple: a simplified version of the Two-level Distribution classifier

These methods will all be discussed in Chapter 2.
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Chapter 2

Algorithms

In recent years, more and more algorithms for multi-instance (MI) learning have been

proposed by researchers. Some of the MI algorithms are particularly designed to learn

MI concepts whereas some are adapted from standard single-instance learning algorithms.

In this chapter, we are going to explore a total of sixteen MI algorithms. According

to the underlying ideas of these MI algorithms, they are divided into five groups, which

result in five separate sections. They are probabilistic approaches, support vector machine

approaches, distance-based approaches, methods that apply single-instance learners to MI

problems and two-level distribution approaches.

2.1 Probabilistic Approaches

In this section, we review methods for MI learning that are based on probabilistic models.

The basic idea is to define a suitable probability function or probability density function

for the MI problem and estimate the parameters of the function based on the training

data, using a statistical criterion, i.e. maximum likelihood estimation, to find the most

likely values of the parameters. At testing time, we determine the class label of a new

bag by assigning the class label with maximum probability.

We first look at a well-known MI learning approach called Diverse Density (DD) (Maron,

1998; Maron & Lozano-Perez, 1998), discuss variants of it and then discuss the logistic

regression approach as applied to MI learning (Xu & Frank, 2004). More specifically,

we discuss the standard DD algorithm, an extension of DD that combines the general

EM approach with the DD model, called Expectation-Maximization Diversity Density

(EMDD) (Zhang & Goldman, 2002), and another version of DD that uses the so-called

“collective” assumption instead of the “standard” MI assumption. We then discuss how

to apply the general logistic regression approach to solve MI problems and cover three

different kinds of logistic regression models based on different MI assumptions.
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2.1.1 Diverse Density

The Diverse Density (DD) approach was the first probabilistic model developed for

MI learning. It was originally proposed by Maron and Lozano-Perez in 1998 (Maron,

1998; Maron & Lozano-Perez, 1998). They define Diverse Density at a point to be “a

measure of how many different positive bags have instances near that point, and how far

the negative instances are from that point” (Maron & Lozano-Perez, 1998). The basic

idea of the DD approach is to find a point in the feature space with high Diverse Density.

In other words, a candidate point is one that is close to as many different positive bags

as possible and at the same time as far away from the negative bags as possible.

Maron and Lozano-Perez derived a probabilistic measure of DD at a single point, which

can be regarded as the probability of this point representing the “true concept” (i.e. the

target point). The DD method assumes that the “true concept” can be retrieved by

maximizing the probabilistic measure of DD through the whole feature space. Let us

denote the positive bags in the training data as B+, the negative bags as B− and the jth

point in the ith bag as Bij . Therefore, B+
ij represents the jth point in the ith bag, whose

bag label is positive. The probabilistic measure of DD can then be written as (Maron &

Lozano-Perez, 1998):

DD(x) = Pr(x = t|B+
1 , ... , B+

n , B−
1 , ... , B−

m). (2.1)

Here, x denotes a single point in the feature space and t denotes the point that is the

“true concept”. The goal is to maximize this DD measure. Applying Bayes rule and

assuming a uniform prior over concept locations, maximizing the DD function is equivalent

to maximizing the following likelihood function:

arg max
x

Pr(B+
1 , ... , B+

n , B−
1 , ... , B−

m|x = t),

because using Bayes rule, Equation 2.1 can be written as

DD(x) =
Pr(B+

1 , ... , B+
n , B−

1 , ... , B−
m|x = t)Pr(x = t)

Pr(B+
1 , ... , B+

n , B−
1 , ... , B−

m)
.

Here, Pr(x = t) is assumed to be a uniform prior that is constant.

Pr(B+
1 , ... , B+

n , B−
1 , ... , B−

m) is the probability of producing the data which is

also constant and can be regarded as a normalizing term that need not be calculated

explicitly (Maron, 1998). Therefore, the likelihood is the only term left to compute.

10



Assuming further that all the bags are conditionally independent given the target concept,

the following equivalent expression can be achieved:

arg max
x

∏

i

Pr(B+
i |x = t)

∏

i

Pr(B−
i |x = t).

Finally, applying Bayes rule and assuming a uniform prior over concept locations again,

Maron and Lozano-Perez derived a general definition of maximum DD as follows (Maron

& Lozano-Perez, 1998):

arg max
x

∏

i

Pr(x = t|B+
i )

∏

i

Pr(x = t|B−
i ). (2.2)

DD assumes that the bags are conditionally independent, so each bag in the feature

space can be viewed as a Bernoulli trial and a single point x being the “true concept”

as an event (Maron & Lozano-Perez, 1998). This results in the bag-level probability

product shown in Equation 2.2 . This is a bag-level expression. The individual instances

in the bags are not mentioned. For a positive bag and a negative bag, a single point x

being the “true concept” has different implications. For a positive bag, x being the “true

concept” implies that x should be close to the bag. Therefore, the first product term in

the equation actually measures the closeness between the target point and the positive

bags. On the other hand, for a negative bag, x being the “true concept” implies that x

should be far away from this bag. Therefore, the second product term in the equation

actually measures how far the target point is away from the negative bags.

In order to compute the two product terms in Equation 2.2, we need to consider how a

single instance in a bag influences the bag-level class probability. Two different models

have been proposed by Maron (1998) to represent the bag-level construction. One is called

the “noisy-or model” and the other is called the “most-likely-cause model”.

• Noisy-or model

The noisy-or model was first introduced by Pearl (1988) in the context of Bayesian

networks. The word noisy means each cause influences the result with some

probability and it is not a deterministic cause. The word or indicates the method

used to combine all these independent causes. It is also suitable for the MI case.

In the noisy-or model, it is assumed that the event can only happen if at least

one of the causations occurred and the probability of any cause failing to trigger

11



the event is independent (Maron, 1998). If we assume each single instance within

a bag has its own label but it is not clear whether it is positive or negative, and

each instance can be viewed as an independent cause of a positive bag label that

influences the label with some probability, then we arrive at the noisy-or model.

The standard MI assumption implies the fact that the boolean bag label (either

negative 0 or positive 1) is the result of a logic OR of all the single-instance labels

within that bag. Given the MI assumption, the probability that a bag is positive is

equivalent to the probability that not all individual instances within that bag are

negative. On the other hand, the probability that a bag is negative is equivalent to

the probability that all individual instances within that bag are negative.

The noisy-or model can be expressed as (Maron, 1998):

Pr(x = t|B+
i ) = 1−

∏

j

(1− Pr(x = t|B+
ij ))

and

Pr(x = t|B−
i ) =

∏

j

(1− Pr(x = t|B−
ij )).

Here, the probability Pr(x = t|Bij) is a measure of the closeness between a point Bij

and the target point x (discussed below). In other words, it is the probability of a

single instance being positive. Therefore, 1−Pr(x = t|Bij) refers to the probability

of a single instance’s label being negative. Again, as we have assumed each instance

within a bag is an independent cause of the bag label, the processing of instances

within a bag can be considered as Bernoulli trials with different probability. This

results in the expression
∏

j(1− Pr(x = t|Bij)) in the two above equations.

• Most-likely-cause model

Unlike the noisy-or model, the most-likely-cause model only considers a single

representative instance of each bag. The model picks the instance from each

bag that is most likely to be responsible for the bag label. More specifically, the

representative instance of a bag is the one which has the highest probability to be

positive in that bag.

12



It is obvious that the most-likely-cause model is different from the noisy-or model in

that it only considers the “key” point within each bag. This point represents a single

Bernoulli trial within each bag and therefore the most-likely-cause model does not

involve a product expression. The most-likely-cause can be expressed as (Maron,

1998) :

Pr(x = t|B+
i ) = arg max

j
Pr(x = t|B+

ij )

and

Pr(x = t|B−
i ) = 1− arg max

j
Pr(x = t|B−

ij ).

The most-likely-cause model also conforms to the standard MI assumption. In the

two-class case, we assume the threshold for making a positive classification is set to

0.5. Then the most-likely-cause model implies that in a positive bag, the instance

with the highest probability to be positive has a probability greater than or equal to

0.5 to be positive. This is equivalent to assuming that at least one instance within

a positive bag is positive. Similarly, in a negative bag, the instance with the highest

probability to be positive should have a probability of being positive of less than 0.5.

This is equivalent to all instances within a negative bag being negative.

Now the last question is how to model the instance-level probability Pr(x = t|Bij). An

instance-based probability estimator is required. Maron (1998) proposed to model the

probability related to the distance between the target point x and a single-instance point

in the feature space. So the DD algorithm uses the Euclidean distance metric to measure

the distance and the probability can then be estimated by a Gaussian-like distribution

whose center is the target point x. If the single-instance point is close to the the target

point, the probability Pr(x = t|Bij) is high. Otherwise, if it is far away from point x, the

probability is low. Furthermore, it is necessary to find the best scaling for each individual

feature because each feature’s influence on the bag label is quite different in many cases.

Some features are very important while some are even irrelevant. The generative model

for the instance-level probability can be expressed as follows (Maron, 1998):

Pr(x = t|Bij) = exp(−
∑

k

s2
k(Bijk − xk)2). (2.3)

Here, k denotes the kth feature, Bijk denotes the value of the kth feature of the point

Bij . x is the target point vector and s is a scaling vector for the features. So the target

13



concept actually consists of two values for each feature. Formally, suppose each point has

k features. Then the target concept can be expressed as x = {x1, ..., xk, s1, ..., sk}.

One problem of searching for the maximum DD measure through the whole feature

space is that we need to ensure the point being found is a global maximum value not

just a local maximum. The optimization algorithm may just find a local maximum, and

different starting points may result in different target points. Hence, it is important to

try some sensible starting points. The DD algorithm uses gradient ascent with multiple

starting points (eg. starting from each point from each positive bag) to find the point

that maximizes the diverse density function in the hope that the global maximum can be

found. However, trying all points in all positive bags as suggested in (Maron, 1998) can

be extremely time consuming, especially for datasets with large bags. In order to make

the DD algorithm run faster, the implementation of DD with the noisy-or model (Xu,

2003) used for the experiments in this thesis tries all the points in the positive bags

with the largest size. This is not necessarily detrimental. According to (Xu, 2003), this

strategy gives even a higher accuracy on the Musk1 dataset than the strategy of trying

every point in all positive bags.

In summary, DD (with either the noisy-or model or the most-likely-cause model)

matches the standard MI assumption well. It has been shown to produce good results in

solving MI problems (Maron, 1998; Maron & Lozano-Perez, 1998). Apart from this, the

most-likely-cause and the noisy-or models provide a general method for converting the

multi-instance setting to a single-instance setting.

2.1.2 Expectation-Maximization Diverse Density

Expectation-Maximization Diversity Density (EMDD) is an extension of the DD algo-

rithm (Zhang & Goldman, 2002). It combines the Expectation-Maximization algorithm

(EM) with the DD algorithm used with the most-likely-cause model. As we have

seen, the most-likely-cause model involves the “maximum” function and this causes a

non-differentiable optimization problem in the DD algorithm with the most-likely-cause

model. Maron (1998) uses a “softmax” approximation for the “maximum” function

to solve the problem. However, this greatly increases the computing time. EMDD

aims to avoid this non-differentiable problem by solving the “maximum” function in
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the expectation step (E-step) of the EM algorithm. Moreover, according to (Zhang &

Goldman, 2002) the EM process may help to avoid getting trapped in a local maximum

of the likelihood because the EM process iteratively updates the previous target point.

Let us discuss how EMDD works. Figure 2.1 shows the EMDD algorithm. Like the

general EM approach, EMDD starts with some initial hypothesis as the guess of the

target point x. With each different initial hypothesis, it repeats the E-step and M-step

combined with the DD algorithm to iteratively search for the hypothesis with the

maximum likelihood. In the implementation of EMDD written for the experiments

in this thesis, each point in three randomly picked positive bags is tried as the initial

hypothesis. For the expectation step (E-step), we use the hypothesis x as a base to pick

a single instance from each bag: the one that is the most likely to be responsible for

each bag label. Thus the E-step converts the multi-instance setting into a single-instance

setting. As a result, a set of instances in which each single instance represents one bag

has been extracted. For the maximization step (M-step), we apply the DD algorithm

with the most-likely-cause model to search for a new hypothesis x′ that maximizes the

DD likelihood function and record its corresponding DD measure value. Then, like in the

normal EM process, we update the hypothesis to the new point x′ and repeat the above

two steps for more iterations until the algorithm has converged.

The convergence test is performed before each execution of the E-step. If the DD measure

of the current iteration is less than or equal to that of the previous iteration, we regard

it as convergence. Note that in Figure 2.1, the negative logarithm of the DD measure

(NLDD) has been considered instead. The reason for that is that our optimization

procedure is formulated in terms of minimization rather than maximization, and we are

looking for a minimum value. The stopping condition turns out to be that the NLDD

value of the current iteration (nldd1) is greater than or equal to the NLDD value

obtained from the previous iteration (nldd0). Moreover, in order to reduce the training

time, we set the maxmimum number of iterations to be 10 as suggested in (Zhang &

Goldman, 2002). Usually, the NLDD value decreases dramatically after the first several

iterations and then begins to flatten out.

However, the EMDD algorithm described in the original paper (Zhang & Goldman,

2002) had some problem in the selection of the best hypothesis. Several later papers

(Andrews, Tsochantaridis & Hofmann, 2002; Xu, 2003) have also pointed out the
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Build Classifier:
Normalize or standardize the training data (determined by user);
Let minError = +∞;
Randomly pick 3 positive bags from the training data;
For each instance Ij from each selected bag

Initialize the starting hypothesis x:
Let x = {x1, ..., xn, s1, ..., sn};
For each dimension k = 1, ..., n

xk = Ik; sk = 1.0;
nldd0 = +∞;
nldd1 = a large value smaller than nldd0;
iterationCount = 0;

while ( nldd1 < nldd0 or iterationCount < 10 )
iterationCount + +;
E-step:
For each bag Bi in the feature space

Find the representative instance p∗i given hypothesis x:
p∗i = argmaxBijPr(x = t|Bij)

where Pr(x = t|Bij) = exp[−∑n
k=1(s

2
k(Bijk − xk)2)];

M-step:
Find the target point x′ with the maximum Diversity Density given the p∗i :
x′ = arg maxx(

∏
i Pr(x = t|B+

i )
∏

i Pr(x = t|B−
i ))

where Pr(x = t|B+
i ) = exp[−∑n

k=1(s
2
k(p

∗
ik − xk)2)]

and Pr(x = t|B−
i ) = 1− exp[−∑n

k=1(s
2
k(p

∗
ik − xk)2)];

nldd0 = nldd1;
nldd1 = NLDD(x′);
Update the hypothesis as:

pre x = x;
x = x′;

Let error = 0;
If nldd1 > nldd0

Let h = pre x;
Else

Let h = x;
Evaluate the hypothesis h on the training data and count the error;
Keep track of the best hypothesis that has the minimum number of errors:

If error < minError
minError = error;
Update the best hypothesis: X = h;

Classify:
Normalize or standardize the unknown bag data Bi;
Initialize distribution;
For each instance within the bag Bi

calculate the likelihood using the best hypothesis X, and find the maximum value:
distribution[1] = maxBij (exp[−∑n

k=1(S
2
k(Bijk −Xk)2)]);

distribution[0] = 1− distribution[1];
return distribution;

Figure 2.1: EM-DD algorithm, adapted from (Zhang & Goldman, 2002)
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problem. In the EMDD algorithm, the hypothesis candidates are all the hypothesis

obtained from each completed EM iteration with the different initial starting points. In

the paper (Zhang & Goldman, 2002), the final model selection is made according to the

error rate on the testing data instead of the training data. Therefore the high accuracy

(over 96%) that was obtained using 10-fold cross-validation on the musk benchmark

datasets, which will be discussed in Section 3.1.1, is not convincing. In our implemen-

tation, we correct this mistake by choosing the best hypothesis based on the training data.

EMDD is suitable for datasets with large bags because it converts each multi-instance

bag into a single instance before DD is run. Thus this application of the most-likely-cause

model can, theoretically, greatly decrease the time cost for the optimization process.

2.1.3 Diverse Density with Collective Assumption

The standard DD algorithm and its EMDD variant both adopt the standard MI

assumption. However, another kind of assumption has been introduced for MI learning

by Xu (2003), that resulted in high accuracy for some practical problems such as drug

activity prediction. This assumption is called the “collective assumption”. The collective

assumption regards the class label of a bag as a collective property that is related to

all the instances within that bag. Compared with the standard MI assumption, which

implicitly assumes that there is a “key” positive instance within a positive bag, the

collective assumption equally considers every instance’s contribution to the bag label as

being equally important.

Based on this new assumption, another modified version of DD has been developed (Xu,

2003) by discarding the standard MI assumption and instead applying the collective

assumption. We assume that all instances within a bag contribute independently and

equally to a bag’s class label. Under this new assumption, we now average the probability

Pr(x = t|Bij) associated with each single instance within a bag. Thus we can express the

bag-level probability as follows:

Pr(x = t|B+
i ) =

1
Ni

∑

j

Pr(x = t|B+
ij )
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for a positive bag B+
i , and

Pr(x = t|B−
i ) =

1
Ni

∑

j

(1− Pr(x = t|B−
ij ))

for a negative bag B−
i . Here, Ni denotes the number of instances within the ith bag.

This model is learned using the same algorithm as the standard DD model.

2.1.4 Logistic Regression Model

In standard single-instance supervised learning, the linear logistic regression algorithm fits

a linear model to the log-odds of the class probabilities. At classification time, an unknown

instance is assigned to the class whose corresponding linear function value is maximum

among all the classes. For a two-class problem where y = 1 denotes the positive label and

y = 0 denotes the negative label, the two resulting instance-level functions are

Pr(y = 1|x) =
1

1 + exp(−βx)

and

Pr(y = 0|x) =
1

1 + exp(βx)
.

The weight vector β is found by fitting the model to the training data. Unlike linear

regression, which determines the weight vector by minimizing the squared error, logistic

regression determines it by maximizing the log-likelihood function. The likelihood is

the product of the probability for each training instance given the model. Usually, to

avoid arithmetic underflows, the logarithm of the likelihood is used, in which case the

product of probabilities turns into a sum of logarithms of probabilities. The greater the

log-likelihood, the better the model fits to the data.

However, for MI problems, the standard logistic regression model cannot be applied

directly as the class label for each single instance within a bag is not known. An indirect

estimate of the logistic model has been proposed in (Xu & Frank, 2004). They extend the

standard instance-based logistic regression model to be a bag-level model under specific

assumptions. The assumptions indicate how the instance-level class probabilities are

combined to form the bag-level probability so that the actual class label for each instance

is not required. The details of these are discussed below.
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The bag-level log-likelihood function can then be expressed as follows, in the same form

as in normal supervised learning:

LL =
N∑

i

[yi log Pr(y = 1|b) + (1− yi) log Pr(y = 0|b)]. (2.4)

Here, N denotes the total number of bags. yi denotes the ith bag label (either 0 or 1). b

denotes a single bag. Now the question is how to generate the two bag-level probabilities

Pr(y = 1|b) and Pr(y = 0|b). Like in standard single-instance supervised learning, we

model the class probability for each individual instance within a positive bag and a negative

bag as Pr(y = 1|x) = 1
1+exp(−βx) and Pr(y = 0|x) = 1

1+exp(βx) respectively. Different

assumptions regarding the combination of these instance-level probabilities to bag-level

probabilities lead to different models. Here, we briefly illustrate three different kinds of

logistic regression models. The first two models have been presented in (Xu & Frank, 2004)

and both discard the standard MI assumption and use the collective assumption (Xu, 2003)

instead. To make a comparison, the third model applies the standard MI assumption.

• Multi-instance logistic regression with arithmetic mean model

The collective assumption assumes that each individual instance within a bag con-

tributes independently and equally to the bag label. Under this assumption, it is

natural to look at the average instance-level probabilities within a bag. For each

bag, the model simply calculates the arithmetic mean of the probabilities for each

instance to construct the conditional probability of the bag-level class label. This

can be expressed as follows:

Pr(y = 1|b) =
1
n

n∑

i

1
1 + exp(−βxi)

Pr(y = 0|b) =
1
n

n∑

i

1
1 + exp(βxi)

.

Here, n denotes the number of instances within the bag b and xi denotes the ith

instance in the bag.

• Multi-instance logistic regression with geometric mean model

This model uses the same assumption as the previous one. The difference is that

this model actually uses the geometric mean to implement the collective assumption

instead of the previous arithmetic mean. Xu and Frank (2004) derive this bag-
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level model by estimating the log-odds function instead of directly estimating the

probability function as follows:

log
Pr(y = 1|b)
Pr(y = 0|b) =

1
n

n∑

i=1

log
Pr(y = 1|xi)
Pr(y = 0|xi)

.

The bag-level log-odds function is computed as the average of the instance-level log-

odds functions. When this is done, Pr(y = 1|b) and Pr(y = 0|b) can then be written

as (Xu & Frank, 2004)

Pr(y = 1|b) =
[
∏n

i Pr(y = 1|xi)]
1
n

[
∏n

i Pr(y = 1|xi)]
1
n + [

∏n
i Pr(y = 0|xi)]

1
n

Pr(y = 0|b) =
[
∏n

i Pr(y = 0|xi)]
1
n

[
∏n

i Pr(y = 1|xi)]
1
n + [

∏n
i Pr(y = 0|xi)]

1
n

.

This is where the geometric mean comes from. Modeling each single-instance within

a bag as Pr(y = 1|x) = 1
1+exp(−βx) and Pr(y = 0|x) = 1

1+exp(βx) , we can finally

obtain the bag-level probability functions as (Xu & Frank, 2004):

Pr(y = 1|b) =
exp( 1

nβ
∑

i xi)
1 + exp( 1

nβ
∑

i xi)

Pr(y = 0|b) =
1

1 + exp( 1
nβ

∑
i xi)

.

It is easy to see that these two expressions can be rewritten as

Pr(y = 1|b) =
exp(βx̄)

1 + exp(βx̄)

Pr(y = 0|b) =
1

1 + exp(βx̄)
,

where x̄ denotes the mean point of a bag. It shows that this model is equivalent

to converting the multi-instance data to single-instance data by averaging all the

instances within a bag and then directly applying the standard single-instance linear

logistic regression model to the converted dataset. This conversion can be performed

by simply extracting the mean of each bag as a representative of the bag.

• Multi-instance logistic regression with standard MI assumption

The standard MI assumption requires that there is at least one positive instance

within a positive bag and no positive instance within a negative bag. Like in one
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version of the DD model, which also adopts the MI assumption, we can use the same

noisy-or model here to represent this assumption. The model can be expressed as

follows:

Pr(y = 1|b) = 1−
n∏

i

(1− Pr(y = 1|xi)) = 1−
n∏

i

1
1 + exp(βxi)

Pr(y = 0|b) =
n∏

i

Pr(y = 0|xi) =
n∏

i

1
1 + exp(βxi)

.

For these three kinds of models based on the three different assumptions, the general

form of the bag-level log-likelihood function is the same (see Equation 2.4). The weight

parameter of the model β can be found by maximizing the bag-level log-likelihood

function based on the training data. Using the standard optimization process, the

parameters are found iteratively and the iterations stop when the improvement from one

step to the next is small enough. A quasi-Newton optimization procedure with BFGS

updates is used in the implementation (Xu, 2003).

2.2 Support Vector Machine Approaches

The support vector machine (SVM) is a supervised learning algorithm developed by

Vapnik (1995). The SVM approach uses linear models to achieve non-linear class

boundaries. To this end it maps the data into a new instance space (a high-dimensional

feature space) by a non-linear mapping so that linear models for the transformed data

correspond to non-linear models in the original instance space. The non-linear mapping

can be performed efficiently using a so-called “kernel” function.

In this section, we are going to study how to apply the supervised SVM approach when

solving MI problems. Two different kinds of solutions will be discussed. The first solution

aims to derive bag-level MI kernels (Gärtner, Flach, Kowalczyk & Smola, 2002). The

second solution attempts to identify the unobserved class label for each single-instance

by using the standard SVM solution (Andrews, Tsochantaridis & Hofmann, 2002).
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2.2.1 Multi-instance Kernels

In standard single-instance SVMs, training data is given as a set of instance-label pairs

(xi, yi), and they are non-linearly mapped to a high-dimensional space F . The SVM

algorithm aims to find a maximum margin hyperplane in F that can linearly separate two

classes. As it can be shown that all information required to find this linear separation

consists of inner products of each pair of the original data points, the mapping process

to the high-dimensional space does not actually have to be performed explicitly. Instead,

a kernel function, which plays the role of the dot product, needs to be defined and this

function is evaluated for each pair of original data points. If the kernel function K is

defined, the decision boundary can be expressed as:

∑

i

αiyiK(xi, x) + b = 0. (2.5)

Here, xi is the training data and yi is the corresponding class label. αi and b are the

parameters that need to be determined. All points x for which this equation holds are on

the decision boundary.

Two commonly used kernel functions are:

• polynomial: K(xi, xj) = (xi · xj)d

• radial basic function (RBF): K(xi, xj) = exp(−γ ‖ xi − xj ‖2), γ > 0.

When testing, an unknown instance x′ can be classified by the obtained SVM function:

f(x) =
∑

i

αiK(xi, x) + b. (2.6)

where xi is the training data point. The point xi is called a “support vector” if the

corresponding parameter αi is non-zero. If the resulting value f(x′) is greater than 0, the

unknown instance is classified as positive. Otherwise, it is classified as negative.

For MI problems, the supervised SVM algorithm can not be applied directly because the

kernel function requires the explicit instance-label pairs (xi, yi). However, this problem

can be solved by using a bag-level multi-instance kernel function (MI kernel) (Gärtner,

Flach, Kowalczyk & Smola, 2002). Once the bag-level kernel is defined, we can make use

of bag-label pairs (Bi, Yi) instead of instance-label pairs (xi, yi) in Equation 2.5 so that
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the SVM approach can be easily applied to MI problems.

The MI kernel is derived from prior work on kernels for discrete spaces (Haussler, 1999;

Gärtner, 2000). There, a kernel on sets is defined as follows:

Kset(X,X ′) :=
∑

x∈X,x′∈X′
Kχ(x, x′)

where X,X ′ ⊂ χ and K is a kernel on χ.

Based on this set kernel definition, a kernel that can separate MI concepts is defined as

follows (Gärtner, Flach, Kowalczyk & Smola, 2002):

KMI(X, X ′) =
∑

x∈X,x′∈X′
Kp

I (x, x′) (2.7)

where p ∈ N is a constant specified by the user, and Kp
I (x, x′) is a standard single-instance

kernel. This is a variant of the set kernel. X and X ′ are bags of instances. Gärtner et al.

(2002) show that any MI problem can be separated using an MI kernel with sufficiently

large p.

In addition, another simple MI kernel approach called the “statistic kernel” is also proposed

in (Gärtner, Flach, Kowalczyk & Smola, 2002). The idea is to summarize a set (bag) of

instances in a single-instance version by computing statistics on the data. In other words,

the idea is to simply use statistics, such as the mean, median, maximum, minimum etc.,

to represent each set (bag) of instances. The statistic kernel is defined as follows:

Kstat(X, X ′) := K(s(X), s(X ′)),

where, s(X) is the result of a statistic computed on train bag X, which is represented as

a single instance and K(., .) is a standard single-instance kernel function. For example, if

we choose the maximum statistic, s(X) is a vector containing the maximum value of each

attribute within bag X.

In this thesis, we upgrade two commonly used kernels implemented in WEKA (the

polynomial kernel and the RBF kernel) into MI kernels. Using this transformation, the

SVM implementation in WEKA, based on the SMO algorithm (Platt, 1998) can be easily

23



applied to MI datasets.

A bag-level polynomial kernel for MI problems can be defined as:

KMI(X, X ′) =
∑

x∈X,x′∈X′
(x · x′)d

where X and X ′ represent a pair of bags. x and x′ are the individual instances within

the bags X and X ′ respectively. d is the exponent of the polynomial kernel.

Similarly, a bag-level RBF kernel for MI problem can be defined as:

KMI(X, X ′) =
∑

x∈X,x′∈X′
exp(−γ ‖ x− x′ ‖2).

Note that in these two cases, we do not need to consider the constant exponent p

from Equation 2.7 separately. This can be done equivalently by properly adjusting the

exponential parameter d in the polynomial kernel and the parameter γ in the RBF kernel.

It is not necessary to involve the new exponent p once again.

Furthermore, we also implement a statistic kernel called “minimax kernel” with the map-

ping s(X) defined as follows (Gärtner, Flach, Kowalczyk & Smola, 2002):

s(X) = (minx1, ...,minxm, maxx1, ...,maxxm),

where m is the number of attributes in the original feature space and min and max return

the minimum and maximum value in a bag respectively. It is clear that the transformed

feature space contains 2m attributes.

Apart from its promising performance in experiments (Gärtner, Flach, Kowalczyk &

Smola, 2002), the great advantage of this statistic kernel is its efficiency.

2.2.2 MISVM

The MI kernel-based SVM approach described before actually ignores the standard MI

assumption because all instances in a bag contribute equally to the bag’s label. However,

Stuart Andrews et al. (2002) suggested another SVM based approach, which follows the

standard MI assumption. The main idea of this approach is to transform the MI data
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setting into a single-instance data setting by properly assigning the unobserved class label

to each individual instance in the positive bags (all instances in negative bags are assumed

to be negative). The standard single-instance SVM learning scheme is applied to assign

these labels. Andrews et al. call this method “maximum pattern margin formulation

of MI learning”. The aim is to find the maximum margin MI-separating hyperplane, in

which all instances in every negative bag are located on one side of the hyperplane and

at least one instance in every positive bags is located on the other side of the hyperplane.

We implemented this approach for the experiments in this thesis. It is called “MISVM ”

in the following. For the standard SVM, we use the SMO algorithm in WEKA. The

MISVM algorithm is given in Figure 2.2.

The key problem in the MISVM approach is how to determine and assign the proper

class label to the individual instances within each positive bag. The MISVM algorithm

first initializes all instances in the positive bags with the positive class labels and then

iteratively adjusts these labels until they converge.

First, we convert the MI dataset into the single-instance setting by assigning a binary

class label (either 1 or 0) to each individual instance according to its corresponding

bag label. If an instance belongs to a positive bag, we initialize its class label as “1”.

Otherwise, if it belongs to a negative bag, the initialized label is “0”.

Of course, under the MI assumption, single-instance label settings within the positive

bags assigned in this way are not precise enough. The next step is to use the standard

SVM algorithm to refine these label settings. This can be achieved by first using the

standard SVM algorithm to build an SVM model based on the converted data with

initialized labels and then using the obtained SVM model to test each instance in the

positive bags. If the original assigned class label does not conform to the result of testing,

the original label is changed. Note it is not necessary to test the instances in the negative

bags as the MI assumption implies that they all must be negative, which is the same as

what they all have been initialized to. In order to ensure that at least one instance within

each positive bag is assigned the positive label “1”, we should avoid the situation that all

have been assigned the negative label “0”. Hence, for each positive bag, the sum of the

instances’ class value should be greater than 0. Otherwise, the algorithm simply chooses

the instance that is most likely to be positive and resets its class label to be “1”. This can

25



Build Classifier:
For each bag B

If B is a positive bag
Initialize class label for each instance xi within B as yi = 1;

Else
Initialize the label of each instance xi within B as yi = 0;

Do
Build standard single-instance SVM model based on the labeled data;
For each positive bag B+

For each single-instance xi within B+

Compute SVM output f(xi) =
∑

j αjK(xj , xi) + b;
If (f(xi) ≤ 0) yi = 0;
Else yi = 1;

If (
∑

i yi == 0) //no positive classification
Find instance xi∗ within bag B+ where i∗ = arg maxi f(xi);
Set y∗i = 1;

While (single-instance labels have been changed)

Classify:
Initialize distribution;
For each single-instance xi within the unknown bag

Compute f(xi) =
∑

j αjK(xj , xi) + b;
If (f(xi) ≤ 0) yi = 0;
Else yi = 1;

If (
∑

i yi == 0)
distribution[0] = 1.0; // predicted as a negative bag

Else
distribution[0] = 0; // predicted as a positive bag

distribution[1] = 1− distribution[0];
return distribution;

Figure 2.2: MISVM algorithm, adapted from (Andrews, Tsochantaridis & Hofmann, 2002)
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be determined by comparing the output values of the currently obtained SVM function

(Equation 2.6) for all instances in the bags and picking the one with maximum output

value. The algorithm then rebuilds the SVM model on the data with modified class

labels. This process of assigning labels is simply repeated until no more label changes are

required for any of the instances in the positive bags.

At testing time, a bag-level classification result can be obtained based on instance-level

classification results. To obtain instance-level classifications, the resulting SVM model

is used to classify each instance within the bag with unknown label and an estimate of

class label is obtained for each instance. Then to classify the bag, we simply follow the

standard MI assumption: if all instances have a negative class label assigned to them, the

unknown bag is classified as a negative bag; otherwise, it is classified as a positive bag.

2.3 Distance-based Approaches

In traditional lazy learning, such as the k-nearest-neighbor (KNN) approach, the nearest-

neighbors are chosen by measuring the Euclidean distance between points (instances).

The unknown class label of an instance can then be predicted as the most common

class label of the instances’ nearest neighbors. The gist of this type of learning is to

make a decision based on similarity. However, for MI problems, the simple Euclidean

distance measure scheme is no longer applicable as each point’s label is unobserved. So

the similarity function needs to be upgraded.

This section discusses three different distance-based approaches that have been proposed

to solve MI problems. First, we look at a method called Citation KNN (Wang & Zucker,

2000) that introduces a way to measure the distance between bags using the Hausdorff

Distance (Edgar, 1990) and the final decision making is based on both “references” and

“citers”. Secondly, we briefly review another method called Nearest Distribution (Xu,

2001). Unlike other distance-based approach, this method does not measure the similarity

of the observed data directly. Instead, it uses Kullback-Leibler to measure the similarity

of probability distributions that are derived from the observed data. Thirdly, we discuss

a method called Optimal Ball (Auer & Ortner, 2004). The Optimal Ball method is not a

lazy learning approach, but it is similarity based. It aims to find a “ball” in the feature
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space so that all negative bags are outside the ball and all positive bags are inside or

at least intersection with the ball. It introduces a simple way to measure the distance

between one single point and a bag.

2.3.1 Citation KNN

Citation KNN uses the Hausdorff Distance (Edgar, 1990) to measure the distance between

two sets. However, in the original Hausdorff Distance method, an outlier data point that

is far away from the other points tends to dominate the distance result and thus it is

modified. If we have two sets of data A = {a1, ..., am} and B = {b1, ..., bn}, the Hausdorff

Distance is defined as follows:

H(A,B) = max{h(A,B), h(B, A)}

where

h(A, B) = max
a∈A

min
b∈B
‖ a− b ‖ .

Suppose the resulting distance between two sets is d using this distance measure. Then

d is the minimum value so that each point in one set (A set or B set) can find at least

one point in the other set (B set or A set) within Euclidean distance d. However, the two

max notations in the definition above tend to determine the distance between the two sets

based on outlier data points. In order to avoid this, a modified Hausdorff Distance has

been proposed (Wang & Zucker, 2000). Instead of choosing the maximum distance when

computing h(A,B), the modified version ranks the distances first and chooses the kth

distance value. Formally, it modifies the Hausdorff Distance definition as follows (Wang

& Zucker, 2000):

hk(A,B) = ktha∈A min
b∈B
‖ a− b ‖ .

Here, a total of m distance values need to be ranked as A contains m points. If the

distances are ranked in an increasing order, k = m chooses the maximum one whereas

k = 1 chooses the minimum one. Actually, the Minimal Hausdorff Distance (k = 1)

picks the nearest pair of points, with each point belonging to a different set, and regards

the distance between them as the distance between the two sets. The experimental

results (Wang & Zucker, 2000) shows that in general the Minimal Hausdorff Distance

performs better than the Maximum Hausdorff Distance.
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Having defined a distance function, it is possible to apply the standard KNN method to

MI problems now. We may simply predict the class label of an unknown bag as the most

common class label of its nearest bags. However, Wang and Zucker (2000) found that the

results were not satisfactory. The conjecture is that this is due to the specific character of

MI problems where the MI assumption is true, and where the instance labels within each

positive bag are unobserved. Suppose in the feature space there are some positive bags

that contain a large number of negative instances. Then it is not surprising that some

actual negative bags may regard some of these positive bags as their nearest-neighbors,

which may finally result in a false positive result.

To reduce this problem, a method called Citation KNN has been introduced by Wang

and Zucker (2000). Based on the standard KNN strategy, this new method is not only

interested in a certain bag’s “references” (i.e. nearest neighbors), but also its “citers”.

Here, the term “citers” refers to the other bags that regard this bag as one of their nearest

neighbors. The key point of this solution is that it can provide some valuable information

as a useful complement. An analogy is that sometimes one cannot make a correct decision

by oneself, especially when one only has limited information about a problem and it may

be better to consider other people’s suggestions as each person may know different aspects

of the problem. For MI problems, finding one bag’s true nearest neighbors based on the

bag itself may not be enough, as similarity may not be judged correctly. Combining the

similarity judgments based on the other bags (i.e. the “citers”) one can often obtain a

more accurate result. This is why the standard KNN approach may not be capable to

solve MI problems and it may be possible to achieve higher accuracy using the Citation

KNN approach.

In practice, the Minimal Hausdorff Distance measure is suggested to be used in finding the

“references” for a particular bag. Finding the “citers” is a little more complicated because

they cannot be obtained directly. Let us denote all training bags as B = {b1, ..., bn}. It

is easy to get a ranking of similarity scores Sb for a particular bag b according to a given

distance measure. Assume we can retrieve the rank of any other bag {bi|bi ∈ B, bi 6= b} in

Sb by function Rank(bi, b). Wang and Zucker (2000) defines the “C-nearest citers” for a

certain bag b as follows:

Citers(b, C) = {bi|Rank(bi, b) ≤ C, bi ∈ B}.
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At classification time, both the references’ labels and the citers’ labels for the unknown

bag are considered. Suppose Rp denotes the number of “R-nearest references” being pos-

itive, Cp denotes the number of “C-nearest citers” being positive, Rn denotes the number

of “R-nearest references” being negative and Cn denotes the number of “C-nearest citers”

being negative. Then an unknown bag is judged to be positive if Rp + Cp > Rn + Cn.

Otherwise, it is judged to be negative. Note that if there is a tie, it is better to classify

a bag as a negative bag (Wang & Zucker, 2000). The reason is that under the MI

assumption false positive errors are more likely to occur than false negative errors.

2.3.2 The Nearest Distribution Method

The basic Nearest Distribution method (Xu, 2001) relies on some special assumptions.

It assumes that each bag contains enough instances and all dimensions of the data are

equally relevant to the classification. Under these assumptions, a distribution can be

derived for each dimension of each bag and the obtained distributions can be used directly

for classification instead of the original data. The Nearest Distribution method does not

employ the MI assumption. It assumes that all instances in a positive bag are equally

relevant to the bag’s classification.

The first step of the Nearest Distribution method is to derive the distribution for each

bag from the training data. In principle, arbitrary distribution can be used in this

approach. However, simply deriving one Gaussian model for each dimension of each bag

is considered due to the often limited number of instances in the bags. Before deriving

the distributions, all attribute values are scaled to lie between 0 and 1. For the Gaussian

model, we just need to compute the mean and the standard deviation for each attribute.

We will use these Gaussian distributions to represent the original data. In other words, we

can discard the original data and just store the mean, variance and bag label for future use.

The second step of the Nearest Distribution method is to find the nearest neighbors for

a test bag. The test bag is also required to be represented by Gaussian distributions

for each dimension. This can be done in the same way as the training data has been

processed. After that, the obtained testing and training distributions are comparable. A

mechanism called the Kullback-Leibler distance can be used to compare the distributions.

Also known as the relative entropy, the Kullback-Leibler (KL) distance is a measure of
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difference between two random variables. For the continuous case, it can be defined as

follows (Cover & Thomas, 1991):

KL(f, g) =
∫ ∞

−∞
f(x) · log

f(x)
g(x)

dx (2.8)

where f(x) and g(x) are the probability densities of the variable that we are comparing.

Based on above definition on two variables, the multivariate continuous case in MI prob-

lems can be defined as follows (Xu, 2001):

KL(f, g) =
∫ ∫

...

∫ ∞

−∞
[f · log

f

g
]dx1dx2...dxn (2.9)

where n is the number of the dimensions, f denotes f(x1, ..., xn) and g denotes

g(x1, ..., xn). As stated above, all dimensions are assumed to be independent (i.e. with

one univariate Gaussian per dimension). Therefore we can write f(x1, ..., xn) =
∏

f(xi)

and g(x1, ..., xn) =
∏

g(xi).

The Kullback-Leibler can be regarded as a kind of distance measure because the KL

value is ensured to be positive and KL(f, g) = 0 only if f(x) = g(x). However, it is

different from a standard distance measure in that KL(f, g) 6= KL(g, f). The asymmetric

character makes it sensitive to the assignment of f(x) and g(x) to the two distributions.

Xin (2001) used f(x) to represent the test bag and g(x) to represent the training bags.

Based on the definition of the KL distance in Equation 2.9 and the definition of the

Gaussian density function, the KL distance can be expressed in a more specific way after

some mathematical transformations (Xu, 2001):

KL =
∑

j

(log(σj2/σj1) + (σ2
j1/2σ2

j2) + (µj1 − µj2)2/2σ2
j2 −

1
2
) (2.10)

where j denotes the jth dimension, σj1 and µj1 are the two parameters of the Gaussian

distribution derived from the test bag and σj2 and µj2 are derived from the training

bag. Nearest Distribution finds the nearest neighbors for the test bag based on the KL

distance. The rest of the classification process is just the same as in the standard KNN

algorithm.

The basic Nearest Distribution method can be further improved by applying attribute
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selection and cleansing the noisy data. Attribute selection is done by providing each

dimension with a weight. The weight vector for each bag is determined by maximizing

the distance between bags with different classes and minimizing it otherwise (Xu, 2001).

So Equation 2.10 is modified to become:

KL =
∑

j

(log(σj2/σj1) + (σ2
j1/2σ2

j2) + Wj2(µj1 − µj2)2/2σ2
j2 −

1
2
), (2.11)

where Wj2 is the weight for attribute j for the relevant training bag. Cleansing noisy data

is done by discarding noisy instances. The noisy data in a bag is defined as the instances

within a bag close to the instances of other bags with a different class label (Xu, 2001).

2.3.3 Optimal Ball

The Optimal Ball method for MI data has been introduced in (Auer & Ortner, 2004)

as a weak learner for the boosting (Freund & Schapire, 1996) approach. The basic idea

of the method is to find an optimal ball in the feature space, that all negative bags are

outside this ball, in other words, the ball can separate the positive and negative concept.

The center of the optimal ball is an instance point from one of the positive bags and the

radius of the ball is maximized based on the accuracy evaluation. For classification, if

each single point within a new bag is outside the optimal ball, this new bag is classified as

negative. Otherwise, it is classified as a positive bag. The algorithm for our MI Optimal

Ball implementation is given in Figure 2.3.

The first step is to calculate the distance from each instance in each positive bag to all

other bags. Assume B denotes a single bag in the training data and x denotes a single

instance. The distance between an instance and a bag is defined as follows (Auer &

Ortner, 2004):

d(x,B) = minx′∈Bd(x, x′). (2.12)

Here, d(x, x′) is a distance measure between two instances. The distance between

an instance and a bag is defined as the distance from this instance to its closest

instance in the bag. In this thesis, we simply use the Euclidean distance to measure

the distance between two instances. However, other distance measures can also be

applied. In this way, each instance in the positive bags will have a corresponding

distance list that contains the distance values from that point to all bags. In our imple-
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Build Classifier:
//calculate the distance from each point in each positive bag to all other bags
For each positive bag B+

i

For each instance xij in positive bag B+
i

For each bag Bk

Compute the distance from data point xij to Bk as follows:
d(xij , Bk) = minx′∈Bk

d(xij , x
′);

Store d(xij , Bk) in D[i][j][k];

//try each instance in each positive bag as a ball center
//and find the center with maximum radius that can obtain the highest accuracy
Let highestAccuracy = 0, Radius = 0;
For each positive bag B+

i

For each instance xij in bag B+
i

Make a copy of D[i][j] as D′[i][j] and sort it in an increasing order;
For each element k′ in D′[i][j]

r = (D′[i][j][k′ + 1]−D′[i][j][k′])/2 + D′[i][j][k′];

//evaluate the accuracy:
Let weightCount = 0;
For each training bag Bk

If ((D[i][j][k] ≤ r) AND Bk is positive )
OR ((D[i][j][k] > r) AND Bk is negative )
weightCount + = WBk

where WBk
is the weight of bag Bk;

//update the ball center with maximum radius and highest accuracy
If (highestAccuracy < weightCount)

OR (highestAccuracy == weightCount AND r > Radius)
BallCenter = xij ; highestAccuracy = weightCount; Radius = r;

Classify:
Initialize distribution;
For each instance xi in the test bag

Calculate the distance d between BallCenter and Point xi;
If (d ≤ Radius)

distribution[1] = 1.0 //predict as positive;
break;

distribution[0] = 1− distribution[1];
return distribution;

Figure 2.3: OptimalBall algorithm, adapted from (Auer & Ortner, 2004)
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mentation, the distance from an instance to the bag containing that instance is set to zero.

The second step is to construct the candidate balls. We try all possible balls and find

the best one according to the evaluation results on the training data. Each point in the

positive bags is tried as a temporary ball center in turn. The possible radii for each

ball center are generated based on the distances from this ball center to all other bags

(which have been computed in the first step). We simply sort these distance values in

an increasing order. The possible radii are all the medium values between two neighbors

in the list. For example, suppose there are n bags in total and {d1, ..., dn} is an ordered

distance list corresponding to an instance x. We can construct n − 1 balls in total

with a ball center fixed at point x but with different radii. The list of possible radii

can be written as {(d1+ d2−d1
2 ), ... , (dn−1+

dn−dn−1

2 )}, with a total of n−1 medium values.

The third step is to evaluate all the candidate balls and select the best one, that is the one

reaching the highest accuracy with the maximized radius. Suppose w denotes the weight

distribution over all bags. The boosting algorithm assigns weights to the bags, and the

weighted accuracy is computed. Formally, the radius of the optimal ball for a particular

center x is defined as follows:

ro = max{r|maxE(h(x, r), w)}. (2.13)

Here h(x, r) represents a candidate ball with x and r being the center and the radius

respectively, and E(h(x, r), w) is the accuracy evaluation function. To classify a training

bag using a specific candidate ball h(x, r) is easy, we just need to check the distance

from the ball center to the bag, which has already been calculated and stored at the very

beginning. If the distance is greater than the ball radius r, the bag is classified as negative.

Otherwise, it is classified as positive. The overall evaluation on the whole training data

is done by computing the sum of the weights of all correctly classified bags. The op-

timal ball is computed for each center and the final selection is based on the observed error.

In this algorithm, if the total number of bags is n, all instances in the positive bags will

be tried as ball centers with n − 1 possible radii. For each candidate ball, we evaluate

the performance on the training data and record the one with the best performance. If

there is more than one candidate ball reaching the same highest score, the one with the

maximum radius will be the final selection.
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2.4 Applying Single-instance Learners to Multi-instance

Problems

In order to solve MI problems, many special purpose algorithms have been developed.

On the other hand, as there are many existing single-instance learning algorithms, and

making use of these algorithms on MI data would be of great value if applying the

single-instance learners were possible.

This section describes three methods that aim to apply single-instance learning algorithms

to MI problems. The first one is called the Wrapper method (Frank & Xu, 2003). It

modifies the MI data by assigning the bag label to each instance of the corresponding bag

and then builds a propositional classifier based on the modified data. The second method

is called SimpleMI, and is simple and very fast. It transforms the original MI data into

a format where one instance represents one bag. The transformation is based on some

summary statistics of the data in the bag. As a result, a single-instance learner can be

directly applied to the transformed data. The last method we are going to discuss is

MIBoost (Xu, 2003), which upgrades the standard AdaBoost method (Friedman, Hastie

& Tibshirani, 2000) so that it can process MI data and combine the “weak” hypotheses

generated by a single-instance learning algorithm into a “strong” MI classifier.

2.4.1 Wrapper

The Wrapper method for MI problems was proposed in (Frank & Xu, 2003). The

method is quite straightforward and the experimental results presented by Frank and Xu

show that it is competitive with other MI algorithms on the Musk benchmark datasets.

According to the paper, there are two key points to ensure the good performance of the

Wrapper method.

The first key point is that it discards the standard MI assumption and uses the collective

assumption which we have encountered before (Sections 2.1.3, 2.1.4 and 2.2.1). In

other words, the Wrapper assumes that all instances in a bag contribute equally and

independently to the bag’s label. To satisfy the requirements of propositional (i.e.

single-instance) algorithms, the data is represented in an attribute-value format, and the
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Wrapper simply assigns the bag label to each instance in a bag.

The second key point is a suitable weighting scheme for the instances because it is in-

evitable that some bags contain many more instances than others. In order to equally

treat all the bags, the Wrapper initializes the weight of each instance according to the

size of its corresponding bag. If ni denotes the number of instances within the ith bag,

then the weight of each instance of this bag is set to 1
ni

. However, this modification is

not perfect as some learning algorithms are sensitive to the absolute value of the instance

weights (Frank & Xu, 2003). The above weight setting scheme may create a large number

of instances with a very small weight. Frank and Xu finally propose to solve this problem

by multiplying the weight of each instance by a constant factor, letting the total weight

of all instances be the same as the number of instances. Therefore, the weight for the jth

instance in the ith bag is initialized as follows:

wij =
m

N
× 1

ni
, (2.14)

where m denotes the total number of instances in the data, N denotes the total number

of bags in data and ni denotes the number of instances in the ith bag. Frank and Xu

show that applying the above two steps is necessary to achieve good performance on the

Musk data.

At prediction time, the obtained model is used to process each instance within an

unknown bag and returns a set of class probability estimates for each instance. The

question is how to combine these estimates to form a prediction for a bag. There are

basically two options based on different assumptions.

The first option is to use the standard MI assumption to guide the final decision. Under

the MI assumption, one just needs to check what is the maximum probability for any

single instance being positive. If the highest probability is greater than 0.5, that means

at least one instance within a bag is predicated to be positive. Therefore, the bag is

classified as positive. Otherwise, if the highest probability of being positive is less than

0.5, it means all instances within a bag are predicated to be negative. Therefore, the

bag is classified as negative. It seems natural to make the prediction in this way for

MI problems. However, the experimental results on the Musk data are not satisfactory

(Frank & Xu, 2003).
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On the other hand, as suggested in (Frank & Xu, 2003), sticking to the collective

assumption would mean making each instance-level probability estimate contribute

equally to the bag-level prediction. Thus, under the collective assumption, the final

decision should be made based on the average of the class probabilities of all individual

instances. The average can be either the arithmetic or the geometric average. The

experimental results show the accuracy is higher using the collective assumption on Musk

data (Frank & Xu, 2003). This makes sense because the collective assumption is used at

training time and should thus be used at prediction time.

The Wrapper provides an easy solution to use the various single-instance learners to solve

MI problems. The only requirement is that the single-instance learner should be able to

deal with instance weights and provide the class probability estimates.

2.4.2 Simple MI

SimpleMI is another method that can directly apply single-instance learning algorithms

to MI problems. Compared with other similar methods, SimpleMI is a very simple one.

Apart from its simplicity, it has another significant advantage in that it is very fast.

The idea is to summarize each bag of data and construct one instance to represent

the whole bag. Of course, the instance label is inherited from the corresponding

bag. Through the summarizing process, the MI dataset is converted into a single-

instance dataset and any kind of single-instance learner can be applied to it without any

constraint. In this way, a model can be efficiently obtained based on the summarized data.

At prediction time, we first summarize the unknown bag in the same way as it has been

done for the training bags. Then we use the obtained single-instance model to predict

the class label directly. Obviously, this “one-instance-representing-one-bag” style makes

the prediction process very straightforward by avoiding the combination process required

in other methods.

For this thesis, three different summarization methods have been implemented in

SimpleMI. The first one is named “arithmetic mean”. For each bag, it computes the

arithmetic mean of each attribute and then constructs a new instance where the value

37



of each attribute is set to the mean. The second option is named “geometric mean”

and computes the geometric mean of each attribute for every bag. Formally, if n is the

total number of dimensions and x̄1 refers to the mean value of the first dimension, a new

instance used to summarize a bag is (x̄1, ..., x̄n).

The third option is named “minimax” and records both the minimum and maximum

value of each dimension for every bag. Actually, we have already encountered this kind

of summarization when discussing the MI kernel in Section 2.2.1. It can be expressed

as (minx1, ...,minxn, maxx1, ...,maxxn), where n is the number of dimensions in the

original data. It is clear that the transformed data contains 2n dimensions.

2.4.3 MI Boosting

The boosting approach is well known for excellent performance in the single-instance

setting. Its most commonly used version called AdaBoost was first introduced in (Freund

& Schapire, 1996). Boosting sequentially generates a set of weak classifiers by reweighting

the training instances and as a result a much stronger classifier can be obtained by

combining these weak classifiers. It encourages new weak classifiers to become experts for

instances handled incorrectly by earlier ones (Witten & Frank, 2005). If we have a weak

learner that can deal with MI problems and handle bag weights, the AdaBoost algorithm

can be applied directly to MI problems. For example, using the MI learner Optimal Ball

described in Section 2.3.3 as a weak learner, AdaBoost can easily be applied without any

changes.

However, due to the limited number of MI learners, it is worthwhile to find a way to wrap

the boosting algorithm around a single-instance weak learner. Motivated by this point,

Xu and Frank (2004) upgraded the AdaBoost algorithm into an MI learner called MIBoost

based on the collective assumption. It has been shown that boosting can be viewed and

understood under some statistical principles, namely additive modeling and maximum

likelihood (Friedman, Hastie & Tibshirani, 2000). The MIBoost algorithm follows the

same statistical principles. Like AdaBoost, MIBoost strives to find an additive model

which can be expressed iteratively as

F (B) = F (B) + cf(B). (2.15)
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1. Initialize weights of each bag to Wi = 1/N, i = 1, 2, ..., N .

2. Repeat for m = 1, 2, ..., M :
(a) Set Wij ←Wi/ni, assign the bag’s class label to each

of its instances, and build an instance-level model hm(xij) ∈ {−1, 1}.
(b) Within the ith bag (with ni instances), compute the error rate ei ∈ [0, 1]

by counting the number of misclassified instances within that bag,
i.e. ei =

∑
j 1(hm(xij)6=yi)/ni.

(c) If ei < 0.5 for all i’s, STOP iterations, Go to step 3.
(d) Compute cm = arg min

∑
i Wi exp[(2ei − 1)cm] using numeric optimization.

(e) If (cm ≤ 0), go to step 3.
(f) Set Wi ←Wi exp[(2ei − 1)cm] and renormalize so that

∑
i Wi = 1.

3. return sign[
∑

i

∑
m cmhm(xtest)].

Figure 2.4: MIBoost algorithm, adapted from (Xu & Frank, 2004)

Here, B denotes an arbitrary bag, f() denotes a weak classifier and c is a constant

that needs to be learned in each boosting iteration. The details of the derivation of the

MIBoost algorithm are described in (Xu & Frank, 2004). In the following, we describe

the basic steps of the MIBoost algorithm.

Figure 2.4 shows the pseudo code for MIBoost algorithm. Here, N is the total number

of bags, ni denotes the number of instances in a bag and the subscript i denotes the ith

bag. hm denotes a single-instance weak classifier built in the mth iteration. The value of

hm() is either −1 or 1. Note that, for convenience, Xu and Frank assume the class label

of a bag is either 1 or -1 rather than 1 or 0 here. xij denotes the jth instance in the ith

bag and yi denotes the class label of the ith bag.

MIBoost begins by equally initializing the weights of each bag Wi to 1
N and then it

iteratively generates a set of single-instance weak classifiers based on the collective

assumption. Using the collective assumption, MIBoost assigns equal weights (Wi
ni

) and the

same bag label to all instances within a bag. Therefore, a single-instance weak classifier

hm can be built as shown in Step 2(a) of Figure 2.4. The next step is to evaluate the

weak learner hm on the training data. The evaluation is based on the error rate of each

bag ei ∈ [0, 1], which can be obtained by counting the number of misclassified instances

within that bag (i.e. ei =
∑

j 1(hm(xij)6=yi)/ni). According to the collective assumption, all

instances in a bag contribute equally and independently to the bag label. The bag-level

decision can be determined by the majority prediction for all instances within a bag. If
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ei is less than 0.5, it means the bag-level prediction of the ith bag is correct. Therefore,

having all ei less than 0.5 for all bags is equivalent to correctly predicting all the bags. If

this is the case, the iterations can be stopped as indicated in Step 2(c) of Figure 2.4. On

the other hand, if this is not the case, the next key step is how to update the bag-level

weights Wi according to the error rate ei.

As we know, in each boosting iteration, MIBoost adds a classifier f() with the best value

for c to the model. The aim is to minimize the exponential loss EBEY |B[exp(−yF (B))].

More precisely, in the mth iteration, fm(B) is obtained from the weighted version of the

training data, and then cm is derived by minimizing the exponential loss function (Xu &

Frank, 2004):

EBEY |B[exp(−yF (B) + cm(−yfm(B)))] =
∑

i

Wi exp[cm(−y
∑

j h(xij)
ni

)]

=
∑

i Wi exp[(2ei − 1)cm].

In the implementation, cm is found using a Quasi-Newton method (Xu & Frank, 2004).

This is done in Step 2(d). Note that in Step 2(e), c is constrained to be positive just in

order to act in accordance with AdaBoost (Xu & Frank, 2004).

After the best value for c has been obtained, the bag-level weights can be updated. Each

Wi is multiplied by exp[(2ei − 1)cm] and all the bags’ weights are normalized so that the

total weight remains 1.

It has been shown (Friedman, Hastie & Tibshirani, 2000) that in AdaBoost, the additive

model obtained by minimizing the exponential loss function estimates the log-odds
1
2 log Pr(Y =1|X)

Pr(Y =−1|X) . This is the same in MIBoost. Hence a prediction is made by treating

the obtained model F (B) as a bag-level log-odds function. This is implemented using the

simple summation in Step 3.

2.5 Two-level Distribution Approach

The two-level distribution approach (TLD) was originally proposed by (Xu, 2003). The

idea is to extract distribution parameters for each bag and to model these parameters
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using bag-level distributions, so that the class probabilities can be obtained using Bayes

rule.

2.5.1 TLD

The TLD method contains two steps. In the first step, it derives the distribution

properties from all individual instances within each bag. The obtained distributions

are the so-called “instance-level distributions”. In the second step, it aims to derive

hyper-distributions from these instance-level distributions so that the positive and

negative classes can be discriminated. The distributions obtained from the second step

are called the “bag-level distributions”.

Now we briefly discuss how to derive these two-level distributions. The TLD method

discards the MI assumptions and uses the collective assumption instead. It assumes all

individual instances within a bag contribute equally and independently to the bag label.

Under this assumption, the instance-level distributions can be obtained using arbitrary

distribution models. However, for computational tractability, Xu (2003) uses a Gaussian

model for each dimension of each bag. Then the question is how to derive bag-level

distributions based on the instance-level distributions. According to (Xu, 2003), the

problem can be considered from a Bayesian perspective (O’Hagan, 1994). For each class,

we can regard the Gaussian parameters of the instance-level distributions as random and

governed by a hyper-distribution. Therefore, the task is converted into estimating the

parameters of the hyper-distributions (i.e. bag-level distributions) for the different classes.

We use the notation introduced in (Xu, 2003). Let us denote the jth bag with nj instances

as bj = {xj1, ..., xjk, ..., xjnj}. θ denotes the parameters of the instance-level distributions.

Y denotes the class label which can be either 0 or 1 in the two-class case. δy denotes the

bag-level distribution parameters for each class (y = 1 for the positive class and y = 0

for the negative class). Therefore, Pr(bj |Y ) can be written as Pr(bj |δy). The likelihood

function L can be written as follows:

L =
∏

j

Pr(bj |δy) =
∏

j

∫
Pr(bj |θ)Pr(θ|δy) dθ. (2.16)

Here, Pr(bj |θ) represents an instance-level distribution. If we assume all individual in-

stances within a bag are independent, we have Pr(bj |θ) =
∏nj

i P (xji|θ) where xji denotes

the ith instance in the jth bag. If there are m attributes and e bags for a particular class,
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and we further assume all the attributes are independent, the likelihood function can be

rewritten as:

L =
e∏

j=1

(
m∏

k=1

{
∫

[
nj∏

i=1

Pr(xjik|θk)]Pr(θk|δy
k) dθk}). (2.17)

As mentioned before, a Gaussian model is used to estimate instance-level probability

Pr(xjik|θk) with mean µk and variance σ2
k. So we have:

nj∏

i=1

Pr(xjik|θk) =
nj∏

i=1

((2πσ2
k)
−1/2 exp[−(xjik − µk)2

2σ2
k

])

= (2πσ2
k)
−nj/2 exp[−S2

jk + nj(x̄jk − µk)2

2σ2
k

] (2.18)

where x̄jk =
∑nj

i=1 xjik/nj and S2
jk =

∑nj

i=1(xjik − x̄jk)2.

For the bag-level probability Pr(θ|δy
k) in Equation 2.17, we apply the corresponding natural

conjugate form of the Gaussian distribution (O’Hagan, 1994). As described in (Xu, 2003),

the natural conjugate form with four parameters (ak, bk, wk and mk) can be written as

follows:

Pr(θk|δy
k) = g(ak, bk, wk)σ2−

bk+3
2

k exp(−
ak + (µk−mk)2

wk

2σ2
k

) (2.19)

where

g(ak, bk, wk) =
a

bk
2

k 2−
bk+1

2√
(πwk)Γ(bk/2)

.

In this bag-level model, µk follows a normal distribution with mean mk and variance

wkσ
2
k. The variance σ2

k follows an Inverse-Gamma distribution (O’Hagan, 1994). After

combining the two levels’ models (Equations 2.18 and 2.19), and combing the integral in

Equation 2.17, the likelihood function for one class can be written as (Xu, 2003):

L =
e∏

j=1

m∏

k=1

a
bk/2
k (1 + njwk)(bk+nj−1)/2Γ( bk+nj

2 )

[(1 + njwk)(ak + S2
jk) + nj(x̄jk −mk)2]

bk+nj
2 π

nj
2 Γ( bk

2 )
. (2.20)

The corresponding log-likelihood function is:
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LL =
m∑

k=1

e∑

j=1

log Bjk

where

Bjk =
a

bk/2
k (1 + njwk)(bk+nj−1)/2Γ( bk+nj

2 )

[(1 + njwk)(ak + S2
jk) + nj(x̄jk −mk)2]

bk+nj
2 π

nj
2 Γ( bk

2 )
. (2.21)

The TLD approach learns the four parameters (ak, bk, wk and mk) by maximizing this

log-likelihood function. This is done using the quasi-Newton optimization procedure with

BFGS updates implemented in WEKA (Xu, 2003). It can be seen from Equation 2.21

that the log-likelihood function only involves the sample mean x̄jk and sum of squared

errors Sjk for bag j and attribute k.

At classification time, we simply compute the mean and the sum of squared errors of the

new bag b and then compute the log-odds function:

log
Pr(Y = 1|b)
Pr(Y = 0|b) = log

Pr(b|δ1)Pr(Y = 1)
Pr(b|δ0)Pr(Y = 0)

(2.22)

where the two prior probabilities Pr(Y = 1) and Pr(Y = 0) can be estimated from the

training data according to the number of bags for each class. If the resulting log-odds

value is greater than zero, the new bag is classified as positive (Y = 1). Otherwise, it is

classified as negative (Y = 0).

2.5.2 TLD Simple

In practice, running the original TLD method described above can take a significant

amount of time as four parameters per attribute are required to be estimated through the

optimization procedure. To solve this problem, a simplified approach called TLD Simple

has also been proposed in (Xu, 2003). Two modifications have been made in this simplified

version:

• In the instance-level distribution (Equation 2.18), the Sjk term is dropped. This

modification is based on the well known “central limit theorem”, which states that

the mean of any set of variates with any distribution having a finite mean and vari-

ance tends to the normal distribution (Feller, 1971). Dropping the Sjk is equivalent

to assuming that the mean x̄jk follows a normal distribution with parameters µk and
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σ2
k

nj
.

• In the bag-level distribution (Equation 2.19), the “Inverse-Gamma” distribution for

σ2
k is dropped. Instead, σ2

k is regarded as fixed and is directly estimated from the

training data. Thus the parameters ak and bk are no longer needed. σ2
k is estimated

as follows (Xu, 2003):

σ̂2
k =

∑

j

[
1
nj

∑

i

(xjik − x̄jk)2]/(e−
∑

j

1
nj

)

where nj is the number of instances in the jth bag and e is the number of bags. This

is the average of the per-bag sample variances.

After applying these two simplifications, the log-likelihood function for one class be-

comes (Xu, 2003):

LL =
m∑

k=1

e∑

j=1

log Bjk

where

Bjk = (2π
wknj + σ2

k

nj
)−1/2 exp[

−nj(x̄jk −mk)2

2(wknj + σ2
k)

]. (2.23)

Compared with Equation 2.21, the parameters ak and bk have disappeared. Moreover, the

maximum likelihood solution of mk has a simple analytical form so that only the parameter

wk needs a numeric optimization procedure (Xu, 2003). The required computing time is

thus dramatically decreased.
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Chapter 3

Applications and Experiments

This chapter evaluates the MI algorithms described in Chapter 2 on a set of real-world

datasets. As standard MI learning is only defined for two-class problems, we only consider

two-class problems. All experiments were performed using the experiment environment

of the WEKA workbench (Witten & Frank, 2005). The datasets used represent a wide

range of application domains. We first introduce these application domains and then

briefly describe our experimental methodology. After that, we show and compare the

experimental results of the different MI algorithm approaches. The aim is to investigate

what kind of algorithm is suitable for what type of MI problem and to determine suitable

MI approaches for each specific application domain.

3.1 Multi-instance Application Domains

In this section, we introduce the application domains involved in our experiments. They

include drug activity prediction, image retrieval, protein identification, the classic East-

West challenge and text categorization. Some of them, such as the East-West challenge,

originally come from Inductive Logic Programming (ILP) tasks. Using the Proper tool-

box (Reutemann, 2004), the relational data can be transformed into a multi-instance

representation by flattening the nested structure of the relational data into a single table

with multiple instances per bag. As a result, a total of 15 datasets where used in the

experiments. Tables 3.1 and 3.2 list the key properties of these datasets. Note the number

of attributes does not include the bag ID and the class attribute.

3.1.1 Drug Activity Prediction

The most popular MI application is the drug activity prediction problem introduced

in (Dietterich, Lathrop & Lozano-Perez, 1997), represented by the Musk datasets. The

Musk datasets are the standard benchmark datasets in the MI domain. Almost all papers
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Table 3.1: Properties of the twelve MI Datasets
Dataset Number of Bags Number of Number of Average

Positive Negative Total Attributes Instances Bag Size
Musk1 47 45 92 166 476 5.17
Musk2 39 63 102 166 6598 64.69
Mutagenesis-atoms 125 63 188 10 1618 8.61
Mutagenesis-bonds 125 63 188 16 3995 21.25
Mutagenesis-chains 125 63 188 24 5349 28.45
Suramin 7 4 11 20 2378 216.18
Elephant 100 100 200 230 1391 6.96
Tiger 100 100 200 230 1220 6.10
Fox 100 100 200 230 1320 6.60
Trx 25 168 193 8 26611 137.88
EastWest 10 10 20 24 213 10.65
WestEast 10 10 20 24 213 10.65

Table 3.2: Properties of the three MI Datasets with an explicit test set
Dataset Training Bags Testing Bags Number of Number of Average

Pos. Neg. Toltal Pos. Neg. Total Attributes Instances Bag Size
Component 359 359 718 64 2348 2412 200 36894 11.79
Function 385 385 770 58 4414 4472 200 55536 10.59
Process 620 620 1240 137 10341 10478 200 118417 10.11

that introduce new MI algorithms have used these datasets to perform the evaluation.

In the Musk datasets, a single bag represents one molecule. Each molecule can have

several different conformations (i.e. shapes), and a single instance within a bag represents

one conformation of the corresponding molecule. The molecules in the Musk datasets

have been assigned labels as either being of “musk” type or “non-musk” type by human

experts. However, it is unknown which kind of conformation of a molecule results in

the “musk” label (i.e. the true class labels of the individual instances are unknown).

The aim is to predict whether a new molecule is of “musk” or “non-musk” type. The

Musk problem has two versions, Musk1 and Musk2. Compared with the Musk1 dataset,

molecules contain more conformations in the Musk2 dataset.

Another drug activity prediction problem we consider is the mutagenicity of molecules.

The original Mutagenesis dataset (Srinivasan, Muggleton, King & Sternberg, 1994)

represents a relational problem and has been widely used in the ILP domain. The

prediction of the mutagenicity of a compound molecule is related to the prediction

of carcinogenesis. The original relational data can be represented as MI data. As

explained in (Reutemann, Pfahringer & Frank, 2004; Reutemann, 2004), the rela-

tional data can be flattened into a single table by performing joins on the original

tables. This method was used to transform the relational data into an MI dataset. In

the resulting MI dataset, each bag represents one compound molecule. Three datasets

were generated using the following three transformations proposed in (Reutemann, 2004) :
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a) each bag contains all atoms of a compound molecule

b) each bag contains all atom-bond tuples of a compound molecule

c) each bag contains all adjacent pairs of bounds of a compound molecule

The last drug activity prediction problem we consider is the Suramin dataset (Braddock,

Hu, Fan, Stratford, Harris & Bicknell, 1994), which also comes from the ILP domain. It

uses the atomic structure and bond relationships to represent a compound molecule. The

task is to discover whether a compound can be active or inactive as an anti-cancer agent.

Like the Mutagenesis problem, this ILP problem was transformed into an MI problem

by flattening the relational data into a single table (Reutemann, Pfahringer & Frank,

2004; Reutemann, 2004). Note that the Suramin dataset contains only 11 bags.

3.1.2 Image Retrieval

The MI model has been used in content-based image retrieval (CBIR) (Maron &

Ratan, 1998; Maron & Lozano-Perez, 1998; Zhang, Yu, Goldman & Fritts, 2002) and

recently several researchers have evaluated MI algorithms on image datasets (Andrews,

Tsochantaridis & Hofmann, 2002; Tao, Scott & Vinodchandran, 2004; Ray & Craven,

2005). In CBIR, users present examples of their desired images and the task is to figure

out whether a given image is one they are interested in. An image is represented by a set

of segments (pixel regions) that are characterized by color, texture and shape descriptors.

A bag represents an image and an instance within a bag represents one segment of the

image. It is unknown which segments and features of an image are related to the desired

content (i.e. the class labels of the individual instances are again unknown). In the

experiments presented here, three animal image datasets (“elephant”, “fox” and “tiger”)

provided by (Andrews, Tsochantaridis & Hofmann, 2002) were used. If an image contains

the desired animal, it is a positive example. Each dataset contains 100 positive examples

(bags) and 100 negative examples (bags). The negative examples are randomly drawn

from the other categories. The goal is to distinguish images containing the desired animal

from those that do not contain it.

3.1.3 Identifying Trx-fold Proteins

In tasks involving the identification of new proteins in superfamilies with low primary

sequence conservation, such as the Thioredoxin-fold (Trx-fold) protein identification
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task, conventional approaches (e.g. building hidden Markov models on the primary

sequence data) become inefficient (Wang, Scott, Zhang, Tao, Fomenko & Gladyshev,

2004). Therefore, Wang et al. proposed the idea of using multi-instance learning to

solve the protein identification problem. Later, identification of Trx-fold protein has been

regarded as a multi-instance problem by others, such as in (Tao, Scott & Vinodchandran,

2004; Ray & Craven, 2005).

In the Trx-fold protein problem the aim is to identify whether a given protein belongs

to the family of Trx proteins. It has been framed as a multi-instance problem in the

following way (Tao, Scott & Vinodchandran, 2004). First, all the sequence patterns,

called “motifs”, in each protein’s primary sequence are found. After that, all fixed-length

subsequences around the motifs are extracted (30 upstream, 180 downstream, with total

length 214). Then each extracted sequence is represented by eight numeric properties.

Finally, each protein is represented as a bag and each extracted sequence is represented

as an instance within the bag.

3.1.4 East-West Challenge

The well-known East-West Challenge was originally presented in the ILP domain (Michal-

ski & Larson, 1977). The task is to predict whether a train is eastbound or westbound.

A train contains a variable number of cars which have different shapes and carry different

loads. The problem is represented using a relational description format. As we have

encountered several times before, the ILP problem with a relational representation can

be transformed into the MI setting by flattening the data into a single table.

As the standard MI assumption is asymmetric and it is not clear whether an eastbound

train or a westbound train can be regarded as a positive example in the MI setting, we

generated two MI versions of this dataset for our experiments. One is called “East-West”,

in which the eastbound trains are positive examples and the other is called “West-East”,

in which the westbound trains are positive examples.

3.1.5 Text Categorization

We use the text categorization domain introduced in (Ray & Craven, 2005). The task

is a part of the work described in (Blaschke, Leon, Krallinger & Valencia, 2005). Given
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a name of a protein and a full-text article from a biomedical journal, the task is to

determine whether this protein-article pair can be annotated with a particular Gene

Ontology (GO) code. For the MI setting, each article is represented as a bag. An

instance of a bag refers to a paragraph of the corresponding article. Each paragraph is

represented as a set of word occurrence frequencies and some statistics about the nature

of the protein-GO code interaction. The idea is that if there is one instance (paragraph)

that is related to the protein-GO code, the bag is positive. Otherwise, if no instance

(paragraph) within a bag is related to the protein-GO code, the bag is negative. The GO

contains three aspects of gene products, namely cellular components, molecular functions

and biological processes. Therefore, three MI datasets (called component, function and

process) are generated according to each GO aspect.

In this thesis, we used these three text categorization datasets. Their key properties are

listed in Table 3.2. As we can see from the table, the training data and the testing data

are separated. For the training data, the number of positive and negative bags is the

same. However, for the testing data, the proportion of the positive bags is very small

(less than 3%). The training data used to build the model consists of articles published

in the Journal of Biomedical Chemistry and the testing data used to test the model are

articles published in Nature (Ray & Craven, 2005).

3.2 Experimental Methodology

For this thesis, extensive experiments on the MI datasets described above with a wide

range of MI approaches were performed. Except for the TLD method (due to its excessive

computing time), all algorithms described in Chapter 2 (including TLDSimple) have

been evaluated empirically on the MI datasets in Tables 3.1 and 3.2, and these datasets

represent a broad range of practical problems.

The repeated hold-out method was used to obtain performance estimates for the learning

methods investigated. Except for the three datasets from the text categorization domain,

which have pre-defined train/test splits, all the datasets were randomly split into two

subsets for training and testing. For each learning scheme, we repeated the random

split 100 times. In each split, 90 percent of the data (i.e. using 90% of the bags) were

used for training and the remaining 10 percent for testing. The data was stratified at
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the bag-level to preserve class proportions. Final accuracy estimates were obtained by

averaging the 100 runs’ results. We also recorded the standard deviation and tested for

significant differences using the corrected resampled t-test (Nadeau & Bengio, 2003) at the

5% significance level. This test was specifically designed for the repeated hold-out method.

For the three text categorization datasets, we performed one single run based on the

pre-defined train/test split for each scheme investigated. Because the class distribution

is different in the train and test sets, the Area Under Curve (AUC) measure (Bradley,

1997) was used in addition to accuracy on these three datasets.

All the experiments were performed using the WEKA workbench (Witten & Frank,

2005). All algorithms were applied with their default settings if other parameter settings

are not specifically mentioned. For the approaches described in Section 2.4, i.e. applying

single-instance learners to MI problems, we used a variety of single-instance learning

algorithms implemented in WEKA as the base learners.

3.3 Experimental Results and Analysis

This section presents the experimental results for all the MI algorithms described in

Chapter 2. In order to present a clear view, it first shows the results grouped by type

of learning algorithm as well as application domain. The results on the three text

categorization problems are discussed separately in Section 3.3.6. Then we compare the

results obtained from different approaches across domains. Finally, we discuss and look

for a suitable approach for each application domain.

For each learning scheme, the classification accuracy with standard deviations is reported

(except on the three text categorization datasets). A significant improvement in accuracy

for the reference scheme compared to the other schemes is marked with a “◦”, and a

significant degradation in accuracy is marked with a “•”.

3.3.1 Results for Probabilistic Approaches

We ran two sets of experiments for the probabilistic approaches. One covers the Diverse

Density (DD) methods from Sections 2.1.1, 2.1.2 and 2.1.3, and the other the Logistic

Regression (LR) methods from Section 2.1.4.
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For the DD approach, the following three versions of the DD algorithm were evaluated on

the 12 datasets from Table 3.1:

• DD : standard diverse density algorithm with noisy-or model (Section 2.1.1)

• EMDD : Expectation-Maximization version of DD with the most-likely-cause model

(Section 2.1.2)

• MDD : DD algorithm under the collective assumption (Section 2.1.3)

The accuracy estimates obtained from 100 runs of the hold-out method are listed in

Table 3.3.

Generally, DD performs best among the three but the advantage is not significant.

From Table 3.3 we can see that 9 out of 12 accuracy results obtained from DD are

higher than both obtained from the other two algorithms. However, there are no signifi-

cant differences except on the Mutagenesis-chains dataset. It is surprising that there is

no dataset where making the MI assumption yields a significant advantage (DD vs MDD).

The EMDD method appears to be a promising candidate scheme for datasets with large

bag size due to its improved computation efficiency compared to DD. The performance

of EMDD on the standard benchmark Musk2 dataset, with an average bag size of 64.69

instances, is somewhat better than that of the DD method. More importantly, the

accuracy reaches 85.57% for EMDD but only 80.39% for DD. EMDD outperforms DD

on Musk2 not only in terms of accuracy but also in terms of training time. The average

training time of EMDD was about 4 times faster than training of DD on the Musk2

dataset (1306.67 seconds for EMDD and 5060.85 seconds for DD). It appears that for

datasets with a large bag size, EMDD may be a promising alternative to DD that can

improve efficiency without degrading classification accuracy.

For the logistic regression (LR) approach (Section 2.1.4), the following three versions were

evaluated on the 12 datasets from Table 3.1:

• MILR: logistic regression using the standard MI assumption

• MILR-ARITH : logistic regression using the collective assumption with arithmetic

mean
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Table 3.3: Accuracy of Variants of the Diverse Density Approach

Dataset DD EMDD MDD
Musk1 84.65±11.83 83.61±13.16 77.64±15.31
Musk2 80.39±13.44 85.57±10.28 73.01±14.20
Mutagenesis-atoms 72.89± 9.34 68.89±12.29 71.74± 7.65
Mutagenesis-bonds 75.96± 7.48 73.43± 9.22 72.48± 7.54
Mutagenesis-chains 79.90± 9.67 71.49±12.22 • 77.05± 9.30
Suramin 65.88±38.74 52.94±41.08 67.06±37.44
Elephant 81.45±10.23 75.25±10.57 78.35± 9.21
Fox 59.40± 9.88 59.65± 9.16 64.80±10.44
Tiger 72.20± 8.80 71.35± 9.45 67.70± 9.36
Trx 89.99± 6.00 87.92± 6.22 87.06± 2.29
EastWest 64.50±32.79 64.00±28.50 56.50±29.86
WestEast 36.00±29.37 38.00±27.63 49.00±33.32
◦, • statistically significant improvement or degradation wrt left-most
scheme

Table 3.4: Accuracy of Variants of the Logistic Regression Approach

Dataset MILR MILR-ARITH MILR-GEOM
Musk1 73.51±13.43 85.03±11.26 ◦ 76.68±13.88
Musk2 78.51±13.06 81.26±10.85 78.94±12.33
Mutagenesis-atoms 74.00±10.37 71.47± 8.92 69.80±10.15
Mutagenesis-bonds 76.61± 8.40 68.58± 7.08 • 82.96± 7.94
Mutagenesis-chains 78.27± 8.84 72.74± 8.91 78.44± 9.60
Suramin 60.00±39.94 38.82±39.62 67.06±37.44
Elephant 78.90± 9.28 79.85± 9.14 79.75± 8.92
Fox 57.35±10.81 55.20±10.12 52.50± 9.99
Tiger 75.30± 8.98 76.35± 8.64 79.00± 9.24
Trx 85.30± 5.18 87.11± 2.30 87.31± 4.37
EastWest 67.00±36.39 59.00±34.36 55.00±34.45
WestEast 35.50±34.30 57.00±33.35 55.00±34.45
◦, • statistically significant improvement or degradation wrt left-most

scheme

• MILR-GEOM : logistic regression using the collective assumption with geometric

mean

The accuracy estimates for these three versions of the LR algorithm are listed in Table 3.4.

From these results, it is hard to say which method is the best. In most cases, there are no

significant differences among the three methods. The MILR-ARITH method obtains one

significantly higher accuracy compared to MILR on Musk1 and one significantly lower

accuracy result on Mutagenesis-bonds. On the two versions of the Musk datasets, the

MILR-ARITH method performs better than the other two methods. Overall, we can say

that there is no clear advantage for the method that attempts to exploit the standard MI

assumption (MILR).

Comparing DD with the three versions of LR, we find that DD outperforms each LR

version on 8 out of 12 datasets. Compared with DD, the degradation in accuracy on

the Musk1 and Trx datasets is significant in the case of MILR, and the degradation in

accuracy on the Mutagenesis-chains and Mutagenesis-bonds datasets is significant in the

case of MILR-ARITH. However, the three LR-based methods are much faster than the
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DD method. In the experiments, the MILR was more than 50 times faster than the DD

method on the musk2 dataset.

Comparing Tables 3.3 and 3.4, we can also see that for the East-West challenge, the

EastWest dataset, which regards eastbound trains as positive examples, appears to be

a closer fit to the standard MI assumption, compared with the WestEast dataset that

regards the westbound trains as positive examples. The accuracy results for the two

datasets (EastWest and WestEast) obtained from DD, EMDD and MILR, which follow

the standard MI assumption, exhibit big differences. They are 64.50% vs 36%, 64% vs

38% and 67% vs 35.5% respectively. On the other hand, as MDD, MILR-ARITH and

MILR-GEOM follow the collective assumption, the results for these three methods on

the two datasets are similar or the same. They are 56.5% vs 49%, 59% vs 57% and

55% vs 55%. Thus it appears that east bound trains should be viewed as positive examples.

In summary, DD is the most competitive probability-based method for the kinds of MI

problems investigated here. However, one obvious drawback of the DD method is its

expensive running time. For the datasets with large bag size, using EMDD can greatly

reduce the running time. However, compared with the DD-based approaches, the three

versions of the logistic regression method are much more efficient.

3.3.2 Results for Support Vector Machine Approaches

In the following, the MI kernel-based SVM method (Section 2.2.1) and the MISVM method

(Section 2.2.2) are evaluated empirically. Table 3.5 shows the accuracy estimates obtained

from 100 runs of the hold-out method on the 12 datasets from Table 3.1. The table

compares the following six different schemes:

• MISMO(RBF): MI kernel-based SVM method using MI RBF kernel (the RBF kernel

parameter gamma was set to 0.1)

• MISMO(Poly): MI kernel-based SVM method using MI polynomial kernel (the ex-

ponent was set to 2)

• MISMO(minimax): MI kernel-based SVM method using minimax kernel combined

with polynomial kernel (the exponent was set to 2)

• MISMO(linear): MI kernel-based SVM method using linear setting (the exponent
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Table 3.5: Accuracy of Support Vector Machine Approaches

Dataset MISMO MISMO MISMO MISMO MISVM MISVM
(RBF) (Poly) (minimax) (linear) (RBF) (linear)

Musk1 87.04±12.00 82.69±12.79 90.16± 9.49 78.33±12.34 • 89.21± 9.84 73.87±14.32 •
Musk2 84.90±10.69 85.76±11.20 84.76±10.05 83.18±11.25 83.92±10.36 70.74±13.14 •
Mutagenesis-a 70.96± 8.36 75.64±10.13 ◦ 71.62±10.82 70.26±10.39 66.54± 1.85 66.54± 1.85
Mutagenesis-b 82.36± 8.85 82.46± 8.62 71.28± 6.88 • 81.06± 9.22 66.54± 1.85 • 66.54± 1.85 •
Mutagenesis-c 85.22± 8.35 82.87± 8.22 74.58± 8.95 • 83.00± 8.29 66.54± 1.85 • 66.54± 1.85 •
Suramin 61.18±39.62 67.06±37.44 61.18±40.37 67.06±37.44 67.06±37.44 67.06±37.44
Elephant 82.35± 8.63 83.65± 8.07 85.30± 7.71 81.55± 7.90 75.80± 8.16 79.45± 9.32
Fox 55.20±10.02 56.60±11.52 57.60±11.31 54.75±11.02 49.35± 5.71 49.25± 8.74
Tiger 80.25± 8.60 83.50± 7.50 75.85± 9.02 79.00± 8.13 75.65± 8.43 80.70± 7.42
Trx 86.08± 3.83 86.70± 5.54 87.06± 2.29 87.06± 2.29 87.06± 2.29 87.06± 2.29
EastWest 74.00±31.37 72.00±32.81 59.50±34.59 70.50±32.64 52.00± 9.85 60.50±21.67
WestEast 74.00±31.37 72.00±32.81 59.50±34.59 70.50±32.64 22.50±27.87 • 38.00±25.74 •

◦, • statistically significant improvement or degradation wrt left-most scheme

was set to 1)

• MISVM(RBF): MISVM method using standard single-instance RBF kernel (the

standard RBF kernel parameter gamma was set to 0.5)

• MISVM(linear): MISVM method using standard linear SVM setting

Note that two different gamma values for RBF kernel were used in MISMO(RBF) and

MISVM(RBF) schemes as we observed that using these two parameter values (0.1 for

MISMO(RBF) and 0.5 for MISVM(RBF)) obtained a better result in each case.

In general, the MI kernel-based approach performs better than the MISVM approach.

Note that the MI kernel-based approach actually discards the standard MI assumption

and follows the collective assumption because all instances are given equal weight in the

classification, whereas the MISVM attempts to exploit the standard MI assumption. The

good performance of the MI kernel approach demonstrates that these MI problems can

be properly separated using the MI kernel based on the collective assumption.

Again, we observe that the results for the MI kernel-based methods on the East-

West and the WestEast datasets are the same whereas the results for the MISVM

(which follows the standard MI assumption) differ greatly (60.5% and 38.0% respec-

tively in the linear case). This conforms to what we have discussed in the previous section.

3.3.3 Results for Distance-based Approaches

In this section, we compare the three distance-based methods described in Section 2.3.

They are OptimalBall, CitationKNN and the nearest distribution method MINND. Fol-
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Table 3.6: Accuracy of Distance-based Approaches

Dataset AdaBoost.M1 AdaBoost.M1 AdaBoost.M1 CitationKNN MINND
with OptimalBall with OptimalBall with OptimalBall R=2, C=4 K=5

(50) (10) normalized (10)
Musk1 87.50±10.69 83.25±11.93 79.71±13.44 • 90.37±10.40 75.10±14.12 •
Musk2 83.18±11.95 84.01±11.03 83.34±11.35 84.61±11.54 72.82±14.93
Mutagenesis-atoms 75.33± 9.74 75.33± 9.74 73.35±10.13 73.19± 9.23 45.63±12.55 •
Mutagenesis-bonds 75.28± 8.38 75.28± 8.38 75.09± 8.54 75.36± 9.48 31.24± 3.48 •
Mutagenesis-chains 75.28±10.10 74.69± 9.96 72.07±10.11 74.06± 9.29 41.20±11.20 •
Suramin 31.18±37.78 31.18±37.78 72.94±34.12 67.06±37.44 67.06±37.44
Elephant 79.55± 8.17 78.55± 9.08 74.20±10.02 50.00± 0.00 • 74.75±10.55
Fox 48.65± 7.84 48.50± 7.80 55.90±10.45 50.00± 0.00 58.45±10.04 ◦
Tiger 66.25±10.67 64.75± 9.62 68.85± 8.16 50.00± 0.00 • 66.45± 9.96
Trx 84.94± 5.74 85.73± 5.09 89.43± 5.82 87.63± 4.05 87.01± 2.39
EastWest 79.00±24.80 79.50±24.72 73.00±28.80 45.00±24.10 • 57.00±30.17
WestEast 45.50±29.38 47.00±30.00 50.50±35.17 50.50±27.06 74.50±26.11

◦, • statistically significant improvement or degradation wrt left-most scheme

lowing Auer and Ortner (2004), the OptimalBall was applied as a weak learner in a boost-

ing approach. In our experiment, we simply used the AdaBoost.M1 boosting algorithm

implemented in WEKA, with OptimalBall as its base learner. The experimental settings

were as follows:

• AdaBoost.M1 with OptimalBall : Three different parameter settings were used for

this approach. They are boosting with 50 iterations, boosting with 10 iterations and

boosting with 10 iterations on normalized data (where each attribute was normalized

to the [0,1] range).

• CitationKNN : In this experiment, we adopted the best experimental setting reported

in (Wang & Zucker, 2000) where this scheme was evaluated on the Musk datasets.

We set the number of references (R) to 2 and the number of citers (C) to R + 2

which is 4. This setting implies that citers are more important than references for

MI problems. Moreover, the results were obtained by using the minimal Hausdorff

distance method.

• MINND : We set the number of neighbors to 5.

The experimental results on the 12 datasets from Table 3.1 are shown in Table 3.6.

The three AdaBoost.M1 variants with OptimalBall perform similarly, except the scheme

that used the normalization option, which exhibited a significant degradation on the

Musk1 dataset. Increasing the number of iterations from 10 to 50 in boosting does not

show a distinct improvement in this experiment. Comparing the first two schemes in Ta-

ble 3.6 (AdaBoost.M1 with OptimalBall 50 iterations and Adaboost.M1 with OptimalBall

10 iterations), we see that the accuracy on five datasets is increased with 50 iterations,
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kept the same on three and slightly decreased on four. The most obvious improvement

occurs on the Musk1 dataset, where accuracy increases from 83.25% to 87.50%. However,

this improvement is not significant.

The CitationKNN method obtains the best results on the Musk datasets. The accuracy

estimates reaches 90.37% on Musk1 and 84.61% on Musk2. However, the CitationKNN

algorithm seems not suitable for the image retrieval datasets. The accuracy estimates

on the three image datasets are all 50% and two of these results are significantly worse

compared with the other methods.

The MINND method does not perform well in the drug activity prediction domain.

Compared with the other methods, four out of the six exhibit significant degradations. On

the other hand, the MINND method works well on the three image datasets. Especially

on the Fox dataset, its accuracy is significantly higher than that of the other methods.

In summary, the CitationKNN method seems suitable for the drug activity prediction

problems, especially for Musk datasets, but it does not work well on the image retrieval

problems. The MINND method has some advantage for the image retrieval problem

compared with the other two methods but performs worse on the drug activity prediction

problem. AdaBoostM1 with OptimalBall does not always perform best but it is almost

always competitive or better than the other two distance-based methods on all MI

domains that we tested.

3.3.4 Results for Approaches based on Single-instance Learning

In this section, three different methods of applying single-instance learners to MI problems

have been investigated. They are Wrapper, SimpleMI and MIBoost. These methods have

been introduced in Section 2.4.

1. Wrapper

For the Wrapper method described in Section 2.4.1, we first ran two sets of experiments

to investigate the performance of the three different prediction methods and three

different weighting schemes respectively, as they are the two key points to obtain good

results (Frank & Xu, 2003). Then we ran experiments to compare the performance of

various single-instance learners used in conjunction with the Wrapper.
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Table 3.7: Accuracy of Wrapper with Different Prediction Methods (Base Learner: C4.5)

Dataset Method 1 Method 2 Method 3
Musk1 82.28±12.01 81.88±11.89 72.46±13.07 •
Musk2 78.44±12.95 78.56±12.78 68.16±12.69 •
Mutagenesis-atoms 75.94± 9.74 77.10± 9.75 68.88± 4.79 •
Mutagenesis-bonds 80.76± 8.82 82.35± 8.61 74.43± 6.27 •
Mutagenesis-chains 83.75± 7.64 83.45± 8.29 74.64± 6.93 •
Suramin 67.06±37.44 67.06±37.44 67.06±37.44
Elephant 80.25± 9.00 78.55± 9.88 67.40± 6.98 •
Fox 63.80±10.10 62.60±10.88 56.40± 6.89 •
Tiger 76.55± 9.09 75.20± 9.07 67.30± 9.08 •
Trx 87.73± 2.86 87.68± 2.95 19.41± 5.88 •
EastWest 52.50±33.62 59.00±32.86 51.00±10.00
WestEast 49.50±30.56 53.00±30.83 46.50±22.76
◦, • statistically significant improvement or degradation wrt left-most
scheme

a. Wrapper with three different prediction methods

The three different prediction methods are:

• Method 1: arithmetic average of the class probabilities of all individual instances

• Method 2: geometric average of the class probabilities of all individual instances

• Method 3: using the maximum class probability of all individual instances

For this set of experiments, three single-instance classifiers implemented in WEKA were

used as base learners. As the first scheme, we used the C4.5 decision tree learner with

default settings. As the second scheme, SMO using RBF kernels was used. In order to

meet the requirement of the Wrapper method, that the single-instance learner must be

able to provide class probability estimates, we fit logistic models to the output of the

support vector machine (Frank & Xu, 2003). Moreover, we standardized the attributes in

order to get a better result. As the third scheme, we used linear logistic regression with

default settings as the base learner. The experimental results for the three schemes are

shown in Tables 3.7, 3.8 and 3.9 respectively.

It is obvious that using the third method, predicting based on the maximum class

probability, which actually follows the standard MI assumption, is the worst one among

the three. The accuracy estimates for the third prediction method are significantly worse

on 9 out of 12 datasets when applying C4.5 as the base learner (see Table 3.7), 4 out

of 12 when applying SMO (see Table 3.8) and 5 out of 12 when applying linear logistic

regression (see Table 3.9). The other two prediction methods, arithmetic average and

geometric average, perform similarly for all three base learners. This shows that using

the standard MI assumption at prediction time is not suitable, as the Wrapper actually
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Table 3.8: Accuracy of Wrapper with Different Prediction Methods (Base Learner: SMO
with RBF kernel)

Dataset Method 1 Method 2 Method 3
Musk1 90.68±10.03 90.33± 9.84 84.59±12.06
Musk2 85.89±10.51 85.63±10.40 79.17±10.70 •
Mutagenesis-atoms 66.54± 1.85 66.54± 1.85 66.54± 1.85
Mutagenesis-bonds 66.54± 1.85 66.54± 1.85 66.54± 1.85
Mutagenesis-chains 71.34± 5.15 71.35± 5.92 66.54± 1.85 •
Suramin 32.94±37.44 32.94±37.44 67.06±37.44
Elephant 82.00± 9.16 82.25± 9.19 74.90± 8.38 •
Fox 62.70±10.28 63.25±10.13 62.40± 7.16
Tiger 78.55± 7.63 79.10± 7.50 71.55± 7.97 •
Trx 87.06± 2.29 87.06± 2.29 84.77± 5.57
EastWest 58.50±34.86 57.50±35.80 62.00±21.46
WestEast 58.50±34.86 57.50±35.80 42.00±18.42
◦, • statistically significant improvement or degradation wrt left-most
scheme

Table 3.9: Accuracy of Wrapper with Different Prediction Methods (Base Learner: Linear
Logistic Regression)

Dataset Method 1 Method 2 Method 3
musk1 80.22±13.08 79.67±13.44 71.22±13.15 •
musk2 82.19±11.76 82.48±12.02 73.06±12.77 •
mutagenesis3-atoms 66.54± 1.85 65.90± 2.46 66.54± 1.85
mutagenesis3-bonds 67.18± 2.50 67.71± 3.00 66.54± 1.85
mutagenesis3-chains 71.08± 6.36 71.09± 6.49 66.54± 1.85 •
suramin 67.06±37.44 67.06±37.44 67.06±37.44
elephant 83.10± 8.61 82.90± 8.50 70.75± 7.83 •
fox 57.75±11.13 57.75±11.13 57.00± 7.14
tiger 78.60± 8.96 78.15± 8.49 68.35± 7.88 •
Trx 87.06± 2.29 87.06± 2.29 83.28± 6.56
EastWest 61.50±33.97 60.00±34.08 62.00±21.46
WestEast 61.50±33.97 60.00±34.08 50.00± 7.11
◦, • statistically significant improvement or degradation wrt left-most
scheme
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Table 3.10: Accuracy of Wrapper with Different Weighting Schemes (Base Learner: C4.5)

Dataset wi =

∑
Ni

N·Ni
wi = 1

Ni
wi = 1.0

Musk1 82.28±12.01 72.31±12.68 75.47±14.99
Musk2 78.44±12.95 72.54±12.64 70.82±13.59
Mutagenesis-atoms 75.94± 9.74 66.54± 1.85 • 76.10± 8.49
Mutagenesis-bonds 80.76± 8.82 66.54± 1.85 • 79.81± 8.74
Mutagenesis-chains 83.75± 7.64 66.33± 2.11 • 82.19± 8.64
Suramin 67.06±37.44 67.06±37.44 67.06±37.44
Elephant 80.25± 9.00 75.75± 9.25 78.95±10.45
Fox 63.80±10.10 61.15± 8.19 62.20±11.02
Tiger 76.55± 9.09 71.70± 9.02 74.45± 9.01
Trx 87.73± 2.86 87.06± 2.29 87.73± 2.86
EastWest 52.50±33.62 67.50±32.86 53.50±35.71
WestEast 49.50±30.56 67.50±32.86 43.50±34.56
◦, • statistically significant improvement or degradation wrt left-most
scheme

applies the collective assumption at training time (given each instance in a bag equal

weight). It is better to apply the collective assumption consistently at both training and

testing time.

b. Wrapper with three different weighting schemes

According to (Frank & Xu, 2003), the weighting scheme of the Wrapper method is impor-

tant to get good results on the Musk datasets. In this set of experiments, C4.5 was used

as the base learner in the Wrapper. The decision tree learner C4.5 is sensitive to instance

weights as its splitting stop condition is based on the total weight of the instances at a

node. The following three weighting schemes were tested:

1. Give each individual instance a weight of one: wi = 1.0.

2. Give each bag a weight of one and the weights of all individual instances within the

bag are set to the same value: wi = 1
Ni

, where Ni denotes number of instances in

the ith bag.

3. Give each bag the same weight so that the total weight of all bags is the same as

the total number of instances. The weights of all individual instances within a bag

are set to the same value: wi =
∑

Ni

N · 1
Ni

, where N denotes the number of bags.

Table 3.10 shows the results of the three different weighting schemes applied in the

Wrapper with base learner C4.5. The accuracy estimates were obtained by using the

arithmetic average as the prediction method.

It can be seen from the accuracy results listed in Table 3.10 that scheme 3 (wi =
∑

Ni

N · 1
Ni

)

is the best among the three. Compared with scheme 3, the performance of scheme 2

59



(wi = 1
Ni

) is worse on 9 out of 12 datasets, and significantly worse in three cases. For

scheme 1 (wi = 1.0), although there was no significant degradation compared with scheme

3, the accuracy estimates decreased on 8 out of 12 datasets.

c. Wrapper with different single-instance learners

For these experiments the same single-instance learning schemes as those that have been

investigated in (Frank & Xu, 2003) on the Musk datasets were used. One difference is

that the accuracy estimates in this thesis were obtained from 100 runs of random splitting

(because this enables a more time-grained parallelization of experiments in WEKA)

whereas the accuracy estimates shown in (Frank & Xu, 2003) were obtained from 10 runs

of stratified 10-fold cross-validation.

A total of 11 single-instance classifiers implemented in WEKA were used. All algo-

rithms were used with their default parameters. However, for the SMO classifier, the

data was standardized and logistic models were fit to the output for both the linear

support vector scheme and the RBF kernel scheme. Note that the arithmetic average

prediction method and the third weighting method (i.e. wi =
∑

Ni

N · 1
Ni

) were used

in all Wrapper schemes. The entire experimental results obtained from all 11 different

schemes based on the 12 MI datasets from Table 3.1 are listed in Table 3.11 and Table 3.12.

In order to compare these results and provide a clear view, the number of significant wins

and the number of wins for each pair of schemes is shown in Table 3.13. The first row of

the table displays the 11 Wrapper schemes with their corresponding index numbers (from

1 to 11). In the first column of the table, we use the same index number to represent

each scheme (also from 1 to 11). Each row of the table lists the number of wins of a

particular scheme compared with the other 10 schemes. The results are based on a total

of 12 datasets. Thus, 12 is the highest number and indicates a particular scheme performs

better than another scheme on all 12 datasets. For example, the entry with row index

1 and column index 8 is “3 (8)”. It means the first scheme (AdaBoost.M1 with PART )

outperforms the eighth scheme (SMO with RBF Kernel) on 8 datasets with 3 significant

wins. The last column of the table shows the total number of significant wins and the

total number of wins for each scheme compared with the other 10 schemes.

From Table 3.11, we see that the accuracy obtained from the Wrapper with base learners

that apply ensemble methods (i.e. the first four schemes listed in Table 3.11) are similar,
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Table 3.11: Accuracy of Wrapper with Different Base Learners (1)

AdaBoost.M1 AdaBoost.M1 Bagging Bagging PART C4.5
Dataset with PART with C4.5 with PART with C4.5
Musk1 85.22± 12.71 86.49±11.19 84.57±11.77 84.04±10.96 81.74±14.72 82.28±12.01
Musk2 81.97± 12.23 81.69±12.19 81.13±12.42 79.35±12.23 81.10±11.33 78.44±12.95
Mutagenesis-a 77.31± 8.90 77.26± 9.48 77.37± 9.85 77.27± 8.68 75.67± 9.40 75.94± 9.74
Mutagenesis-b 83.56± 8.14 82.97± 9.11 83.35± 8.24 82.50± 8.28 83.83± 7.93 80.76± 8.82
Mutagenesis-c 84.39± 8.15 84.33± 8.47 84.54± 8.39 84.39± 8.40 84.14± 8.18 83.75± 7.64
Suramin 67.06± 37.44 67.06±37.44 67.06±37.44 67.06±37.44 67.06±37.44 67.06±37.44
Elephant 85.40± 8.25 84.45± 7.85 85.05± 9.20 84.10± 8.71 83.05± 8.58 80.25± 9.00
Fox 63.75± 9.57 62.25± 9.54 67.00± 9.97 65.35±11.20 64.65± 9.72 63.80±10.10
Tiger 80.20± 7.35 80.25± 8.15 81.30± 8.06 80.95± 8.03 76.00± 9.40 76.55± 9.09
Trx 87.84± 2.93 87.84± 3.01 87.06± 2.29 87.73± 2.86 87.06± 2.29 87.73± 2.86
EastWest 53.00± 31.64 56.50±30.69 52.50±32.86 51.00±30.13 58.00±36.74 52.50±33.62
WestEast 53.00± 31.64 57.50±31.28 52.50±29.62 50.50±29.73 47.50±35.80 49.50±30.56

◦, • statistically significant improvement or degradation wrt left-most scheme

Table 3.12: Accuracy of Wrapper with Different Base Learners (2)

AdaBoost.M1 SMO SMO Linear Logistic IBk NaiveBayes
Dataset with PART linear RBF Regression
Musk1 85.22± 12.71 83.16±12.58 90.68±10.03 80.22±13.08 83.71±11.61 74.46±15.13 •
Musk2 81.97± 12.23 82.52±11.34 85.89±10.51 82.19±11.76 78.16±12.16 76.67±14.33
Mutagenesis-a 77.31± 8.90 66.54± 1.85 • 66.54± 1.85 • 66.54± 1.85 • 81.35± 8.83 66.54± 1.85 •
Mutagenesis-b 83.56± 8.14 66.54± 1.85 • 66.54± 1.85 • 67.18± 2.50 • 84.61± 8.48 64.03± 8.26 •
Mutagenesis-c 84.39± 8.15 68.05± 4.77 • 71.34± 5.15 • 71.08± 6.36 • 84.97± 7.71 60.26±10.65 •
Suramin 67.06± 37.44 32.94±37.44 32.94±37.44 67.06±37.44 78.82±34.83 67.06±37.44
Elephant 85.40± 8.25 82.10± 8.65 82.00± 9.16 83.10± 8.61 79.45± 7.72 81.35± 8.04
Fox 63.75± 9.57 59.95± 9.96 62.70±10.28 57.75±11.13 54.60± 9.63 • 54.80± 6.78 •
Tiger 80.20± 7.35 80.15± 9.22 78.55± 7.63 78.60± 8.96 78.50± 7.44 70.30± 8.43 •
Trx 87.84± 2.93 87.06± 2.29 87.06± 2.29 87.06± 2.29 87.73± 2.86 87.06± 2.29
EastWest 53.00± 31.64 54.50±36.30 58.50±34.86 61.50±33.97 52.00±34.02 59.00±33.62
WestEast 53.00± 31.64 54.50±36.30 58.50±34.86 61.50±33.97 51.50±33.68 59.00±33.62

◦, • statistically significant improvement or degradation wrt left-most scheme

Table 3.13: Comparison of Each Pair of Wrapper Schemes: Number of Significant Wins
(Number of Wins)

AdaBoost.M1 Bagging SMO SMO Linear Naive
PART C4.5 PART C4.5 PART C4.5 linear RBF Logistic IBk Bayes Total

1 2 3 4 5 6 7 8 9 10 11
1 - 0 ( 6) 0 ( 7) 0 ( 8) 0 ( 8) 0 (10) 3 ( 9) 3 ( 8) 3 ( 8) 1 ( 8) 6 ( 9) 16 (81)
2 0 ( 4) - 0 ( 5) 0 ( 7) 0 ( 8) 0 (10) 3 (11) 3 ( 7) 3 ( 8) 0 ( 8) 6 ( 9) 15 (77)
3 0 ( 4) 0 ( 6) - 0 (10) 0 ( 8) 0 ( 9) 3 ( 8) 3 ( 7) 4 ( 7) 1 ( 7) 5 ( 8) 16 (74)
4 0 ( 2) 0 ( 4) 0 ( 1) - 0 ( 8) 0 ( 9) 3 ( 9) 3 ( 8) 3 ( 8) 1 ( 5) 5 ( 9) 15 (63)
5 0 ( 3) 0 ( 3) 0 ( 2) 0 ( 3) - 0 ( 6) 3 ( 7) 3 ( 6) 3 ( 5) 1 ( 4) 4 ( 8) 14 (47)
6 0 ( 1) 0 ( 1) 0 ( 1) 0 ( 1) 0 ( 5) - 3 ( 6) 3 ( 6) 3 ( 6) 1 ( 4) 4 ( 8) 14 (39)
7 0 ( 3) 0 ( 1) 0 ( 3) 0 ( 3) 0 ( 4) 0 ( 6) - 0 ( 2) 0 ( 4) 0 ( 6) 1 ( 7) 1 (39)
8 0 ( 4) 0 ( 5) 0 ( 4) 0 ( 4) 0 ( 5) 0 ( 6) 1 ( 6) - 1 ( 4) 0 ( 7) 5 ( 7) 7 (52)
9 0 ( 3) 0 ( 3) 0 ( 3) 0 ( 3) 0 ( 5) 0 ( 5) 0 ( 6) 0 ( 6) - 0 ( 6) 2 ( 9) 2 (49)

10 0 ( 4) 0 ( 4) 0 ( 5) 0 ( 6) 0 ( 8) 0 ( 7) 4 ( 6) 4 ( 5) 3 ( 6) - 4 ( 8) 15 (59)
11 0 ( 2) 0 ( 2) 0 ( 2) 0 ( 2) 0 ( 2) 0 ( 3) 0 ( 3) 0 ( 3) 0 ( 0) 0 ( 4) - 0 (23)
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and they often outperform the schemes using other simple classifiers. For example,

the first and the third schemes listed in the table, applying AdaBoost.M1 with PART

and Bagging with PART as base learners, often perform better than applying the

corresponding simple classifier, PART : for the first scheme and the third scheme, both

have 8 out of 12 accuracy results which are higher than those obtained from the fifth

scheme (Wrapper with PART ), although there is no significant difference. Similarly, for

the second and the fourth schemes (applying AdaBoost.M1 with C4.5 and Bagging with

C4.5 ), 10 out of 12 and 9 out of 12 results respectively are higher than those obtained

from the sixth scheme (simply applying Wrapper with C4.5 ).

In Table 3.12, we compare the first scheme, applying AdaBoost.M1 with PART as the

base learner of the Wrapper, which is the best scheme overall, with the other five simple

classifiers. Compared with applying AdaBoost.M1 with PART scheme, applying SMO

with linear model performs worse on 9 datasets. Applying SMO with RBF kernel or

Linear Logistic Regression performs worse on 8 datasets. And each case results in three

significant degradations on the three Mutagenesis datasets. Applying the one nearest

neighbor method (IBk) as the base learner, the accuracy decreases on 8 out of 12 datasets

with one significant degradation on the Fox dataset. Accuracy is worst for the last simple

scheme, applying NaiveBayes. Compared with the first scheme, a total of 9 out of the 12

datasets result in degradations, of which six are significant.

All the above-mentioned comparisons are summarized in Table 3.13 (see the second row

with row index 1 of the table). Comparing the first scheme (AdaBoost.M1 with PART )

with all other 10 schemes on the 12 datasets, a total of 81 wins with 16 significant wins

were obtained (shown in the last column of the table).

The experimental results of the 11 schemes on the Musk datasets are similar to those

shown in (Frank & Xu, 2003). The highest accuracy on the Musk datasets was obtained

by using the support vector machine with RBF kernels, which reaches 90.68% on Musk1

and 85.89% on Musk2 (see Table 3.12).

Overall, if we rank the 11 Wrapper schemes according the total number of significant

wins and the total number of wins (the numbers listed in the last column of Table 3.13),

it is obvious that the first four schemes involving ensemble methods are the best. The

tenth scheme (one-Nearest-Neighbor) is the second best. The eleventh scheme, using
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Table 3.14: Accuracy of SimpleMI with Different Transformation Methods (Base Learner:
C4.5)

Dataset Arithmetic Geometric Minimax
Musk1 80.59±15.22 77.72±15.34 78.29±12.41
Musk2 75.06±13.66 80.66±12.66 80.79±12.49
Mutagenesis-atoms 79.62± 8.75 70.57± 8.89 • 74.43±10.04
Mutagenesis-bonds 80.94± 7.85 80.31± 8.85 81.27± 8.15
Mutagenesis-chains 77.37± 9.34 74.98± 8.64 80.22± 8.95
Suramin 34.71±40.11 59.41±41.90 59.41±41.90
Elephant 79.60± 8.43 75.65± 9.01 80.75±10.62
Fox 61.50±10.58 64.70± 9.53 58.00± 9.85
Tiger 75.70± 8.47 68.80± 9.70 72.15± 9.05
Trx 86.39± 3.64 85.44± 4.52 83.04± 6.00
EastWest 93.50±16.90 56.00±34.29 • 54.00±30.72 •
WestEast 93.50±16.90 56.00±34.29 • 54.00±30.72 •
◦, • statistically significant improvement or degradation wrt left-most
scheme

Table 3.15: Accuracy of SimpleMI with Different Transformation Methods (Base Learner:
SMO with RBF kernel)

Dataset Arithmetic Geometric Minimax
Musk1 89.59±10.72 89.78± 9.75 92.56± 8.18
Musk2 84.69±10.20 79.86±11.40 83.00±11.75
Mutagenesis-atoms 71.19± 9.81 68.96± 9.40 69.43± 9.54
Mutagenesis-bonds 75.21± 8.85 72.03± 9.08 72.48± 9.66
Mutagenesis-chains 79.40± 9.31 71.33± 8.91 • 71.45± 8.58 •
Suramin 76.47±34.15 61.18±40.37 61.18±40.37
Elephant 77.25± 9.06 78.25± 9.03 77.70± 9.11
Fox 60.30± 9.97 64.65±10.88 59.90± 8.96
Tiger 73.55± 8.08 73.40± 8.19 72.80± 9.36
Trx 85.23± 4.32 81.65± 7.07 77.14± 8.19 •
Eastwest 70.50±34.15 62.00±34.90 65.00±33.71
Westeast 70.50±34.15 62.00±34.90 65.50±33.86
◦, • statistically significant improvement or degradation wrt left-most
scheme

NaiveBayes as the base learner of the Wrapper, performs worst.

2. SimpleMI

For the SimpleMI method described in Section 2.4.2, we ran two sets of experiments.

In the first set of experiments we compared the three different summarization methods

and in the second set of experiments we compare the results for applying different

single-instance schemes as the base learners.

a. SimpleMI with three different summarization methods:

• Method 1: using the arithmetic per-bag mean of each attribute

• Method 2: using the geometric per-bag mean of each attribute

• Method 3: using the per-bag minimum and maximum each attribute

C4.5 with default settings and SMO with RBF kernel were used as the base learners for

SimpleMI and the experiment was performed on the 12 MI datasets from Table 3.1. The
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results are shown in Tables 3.14 and 3.15. As in the Wrapper, the data was standardized

for SMO and logistic models were fit to the output.

From Table 3.14, we see that SimpleMI using the arithmetic mean as the summarization

method and the C4.5 as base learner performs extremely well on the East-West problem.

The accuracy obtained from this scheme is much higher than the accuracy of the other

two methods. The accuracy reaches 93.50% on both the EastWest and the WestEast

dataset while the resulting accuracy for the other two methods is only 56% and 54%

respectively.

In most cases, the three different summarization methods for the SimpleMI algorithm

perform similarly. The arithmetic mean summarization method outperforms the other

two methods in a few cases. In Table 3.14, apart from the good performance of the

arithmetic mean method on the East-West challenge problem, the geometric mean

method results in a significant degradation on the Mutagenesis-atoms dataset compared

with the arithmetic mean method. In Table 3.15, compared with the arithmetic mean

method, the geometric mean and the minimax method exhibit significant degradation

on the Mutagenesis-chains dataset, and the minimax method also exhibit significant

degradation on the Trx protein dataset.

b. SimpleMI with different single-instance learners

Eleven single-instance classifiers, the same ones as those that were investigated for the

Wrapper method were used as the base learners for SimpleMI. For the summarization

method of SimpleMI, we used the arithmetic mean option. The entire experimental

results obtained from the 11 different schemes based on 12 MI datasets are listed in

Table 3.16 and Table 3.17. As for the Wrapper method, the number of significant wins

and the number of wins for each pair of schemes is shown in Table 3.18.

Similar to the results obtained from the Wrapper method, the accuracy obtained from

the SimpleMI with the four base learners involving ensemble methods are similar (see the

first four schemes listed in Table 3.16) and they often outperform the schemes using other

simple classifiers (see Table 3.16 and Table 3.17). For example, the first scheme, SimpleMI

with Adaboost.M1(PART), outperforms each of the other seven simple classifiers on at

least 8 out of the 12 datasets.
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Table 3.16: Accuracy of SimpleMI with Different Base Learners (1)

AdaBoost.M1 AdaBoost.M1 Bagging Bagging PART C4.5
Dataset with PART with C4.5 with PART with C4.5

Musk1 78.96± 12.38 83.16±13.24 78.89±13.15 80.18±12.44 75.71±13.23 80.59±15.22
Musk2 78.62± 12.72 79.07±12.76 80.77±11.70 81.41±12.27 75.93±13.52 75.06±13.66
Mutagenesis-a 82.15± 8.30 81.56± 8.25 80.61± 8.01 79.56± 8.55 76.33± 9.72 79.62± 8.75
Mutagenesis-b 84.95± 8.09 84.07± 8.22 84.11± 7.86 84.21± 8.42 83.67± 9.49 80.94± 7.85
Mutagenesis-c 82.76± 9.42 80.37± 8.19 82.26± 8.90 80.95± 9.59 79.17± 9.84 77.37± 9.34
Suramin 35.88± 39.80 53.53±42.11 57.06±41.66 59.41±41.18 43.53±44.18 34.71±40.11
Elephant 83.35± 8.04 84.85± 8.18 85.10± 9.04 83.40± 8.22 81.35± 7.81 79.60± 8.43
Fox 62.50± 10.14 63.30± 9.24 64.70± 9.12 64.90± 9.02 60.80± 9.66 61.50±10.58
Tiger 80.30± 8.64 80.65± 8.55 81.30± 7.71 80.70± 8.07 76.15±10.34 75.70± 8.47
Trx 83.94± 5.69 83.99± 5.99 86.08± 3.60 85.88± 3.71 86.24± 4.35 86.39± 3.64
Eastwest 81.50± 29.86 78.00±29.58 85.50±24.92 85.00±25.13 93.50±16.90 93.50±16.90
Westeast 81.50± 29.86 78.00±29.58 82.00±28.00 79.50±29.38 93.50±16.90 93.50±16.90

◦, • statistically significant improvement or degradation wrt left-most scheme

Table 3.17: Accuracy of SimpleMI with Different Base Learners (2)

AdaBoost.M1 SMO SMO Linear Logistic IBk NaiveBayes
Dataset with PART Linear RBF Regression
Musk1 78.96± 12.38 79.98±14.02 89.59±10.72 ◦ 72.38±13.78 84.43±12.30 86.97±10.81
Musk2 78.62± 12.72 79.19±11.93 84.69±10.20 76.44±11.07 78.30±12.12 79.39±12.05
Mutagenesis-a 82.15± 8.30 74.10± 8.72 • 71.19± 9.81 • 69.80±10.15 • 79.10± 8.41 69.83± 9.82 •
Mutagenesis-b 84.95± 8.09 83.40± 8.52 75.21± 8.85 • 83.01± 8.00 84.82± 8.46 73.77± 9.29 •
Mutagenesis-c 82.76± 9.42 79.47± 9.08 79.40± 9.31 78.44± 9.60 84.85± 7.29 78.49± 9.09
Suramin 35.88± 39.80 76.47±34.15 ◦ 76.47±34.15 ◦ 76.47±34.15 ◦ 64.12±41.27 39.41±43.71
Elephant 83.35± 8.04 79.60± 7.97 77.25± 9.06 74.65±10.01 • 68.20±10.31 • 80.00± 8.76
Fox 62.50± 10.14 55.10±10.44 60.30± 9.97 54.15± 9.87 58.90± 9.31 54.00± 9.10 •
Tiger 80.30± 8.64 76.80± 9.25 73.55± 8.08 • 74.80± 9.37 73.80± 9.43 71.70±10.23 •
Trx 83.94± 5.69 86.34± 4.26 85.23± 4.32 87.31± 4.37 77.37± 8.26 • 82.65± 7.29
Eastwest 81.50± 29.86 55.00±34.45 • 70.50±34.15 53.00±36.11 • 73.50±32.14 69.00±34.66
Westeast 81.50± 29.86 55.00±34.45 • 70.50±34.15 53.00±36.11 • 73.50±32.14 69.00±34.66

◦, • statistically significant improvement or degradation wrt left-most scheme

Table 3.18: Comparison of Each Pair of SimpleMI Schemes: Number of Significant Wins
(Number of Wins)

Adaboost.M1 Bagging SMO SMO Linear Naive
PART C4.5 PART C4.5 PART C4.5 linear RBF Logistic IBk Bayes Total

1 2 3 4 5 6 7 8 9 10 11
1 - 0 ( 5) 0 ( 4) 0 ( 4) 0 ( 8) 0 ( 8) 3 ( 8) 3 ( 8) 4 (10) 2 ( 9) 4 ( 9) 16 (73)
2 0 ( 7) - 0 ( 2) 0 ( 3) 0 ( 9) 0 ( 9) 1 ( 9) 4 ( 8) 4 (10) 2 ( 8) 4 (10) 15 (75)
3 0 ( 8) 0 (10) - 0 ( 7) 0 ( 9) 1 ( 8) 4 ( 9) 4 ( 9) 5 (10) 3 ( 8) 4 (11) 21 (89)
4 0 ( 8) 0 ( 9) 0 ( 5) - 0 ( 9) 0 ( 7) 3 (10) 3 ( 9) 5 (10) 3 ( 8) 4 (11) 18 (86)
5 0 ( 4) 0 ( 3) 0 ( 3) 0 ( 3) - 0 ( 6) 2 ( 6) 1 ( 8) 2 ( 9) 2 ( 6) 1 (10) 8 (58)
6 0 ( 4) 0 ( 3) 0 ( 4) 0 ( 5) 0 ( 4) - 2 ( 6) 1 ( 8) 3 ( 7) 2 ( 7) 2 ( 7) 10 (55)
7 1 ( 4) 0 ( 3) 0 ( 3) 0 ( 2) 1 ( 6) 1 ( 5) - 1 ( 6) 0 (10) 2 ( 5) 2 ( 7) 8 (51)
8 2 ( 4) 0 ( 4) 1 ( 3) 1 ( 3) 2 ( 4) 1 ( 4) 1 ( 5) - 2 ( 8) 2 ( 6) 1 (11) 13 (52)
9 1 ( 2) 0 ( 2) 0 ( 2) 0 ( 2) 1 ( 3) 1 ( 5) 0 ( 1) 1 ( 3) - 1 ( 4) 1 ( 5) 6 (29)

10 0 ( 3) 0 ( 4) 0 ( 4) 0 ( 4) 0 ( 6) 1 ( 5) 1 ( 7) 2 ( 6) 3 ( 8) - 3 ( 8) 10 (55)
11 0 ( 3) 0 ( 2) 0 ( 1) 0 ( 1) 1 ( 2) 0 ( 5) 0 ( 5) 0 ( 1) 1 ( 7) 1 ( 4) - 3 (31)
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Table 3.18 summarizes the performance of each scheme compared with the others.

According to the total number of significant wins and the total number of wins, listed

in the last column of table, it is obvious that the first four schemes involving ensemble

methods perform better than the other seven schemes. Among these four schemes, the

third one (SimpleMI with Bagging (PART)) is the best, which obtains a total of 89 wins

with 21 significant wins compared with all other 10 schemes on the 12 datasets. On the

other hand, the two schemes, that use Linear Logistic Regression and Naive Bayes as

the base learner of SimpleMI respectively, perform worst. The remaining five schemes,

namely the fifth (PART ), the sixth (C4.5 ), the seventh (SMO with linear setting), the

eighth (SMO with RBF kernel) and the tenth (IBk) perform similarly.

3. MIBoost

For the MIBoost method described in Section 2.4.3, two simple and fast decision

tree learners implemented in WEKA were used as the weak learners. The first one

is a fast decision tree learner called REPTree and the second one is a DecisionS-

tump. For the REPTree, we used unpruned trees and set the maximum tree depth

to three. We ran the experiments with the maximum number of boosting iterations

set to 10 and 50 respectively. Table 3.19 shows the experimental results on the 12 datasets.

The results show that, in general, a higher accuracy can be achieved by increasing the

number of boosting iterations. From Table 3.19 we see that in most cases, MIBoost with

a maximum of 50 iterations performs better than MIBoost with 10 iterations. The most

obvious improvement occurs when using DecisionStump as the weak learner of MIBoost

on the Musk1 dataset. The accuracy increases from 66.22% using 10 iterations to 79.09%

using 50 iterations.

Comparing the two weak learners, it is obvious that using REPTree often yields better

results than using DecisionStump. As shown in Table 3.19, except on the two versions

of the East-West challenge problem, using REPTree always performs better than using

DecisionStump. In the case with 50 iterations, using DecisionStump results in three

significant degradations on the Mutagenesis datasets compared to using REPTree. In

the case with 10 iterations, using DecisionStump results in four significant degradations

(three are on Mutagenesis datasets and the other one is on the Musk1 dataset).
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Table 3.19: Accuracy of MIBoost

Dataset REPTree DecisionStump REPTree DecisionStump
(50) (50) (10) (10)

Musk1 84.84±11.55 79.09±13.06 81.32±13.98 66.22±13.53 •
Musk2 79.50±12.39 78.35±12.80 80.55±11.93 71.72±12.30
Mutagenesis3-atoms 79.26± 9.24 68.50± 6.50 • 77.31± 9.24 67.61± 5.98 •
Mutagenesis3-bonds 86.73± 7.31 75.85± 9.35 • 84.97± 8.30 71.58± 9.13 •
Mutagenesis3-chains 83.09± 7.70 76.95± 9.14 • 81.54± 8.28 71.51± 8.45 •
Suramin 67.06±37.44 67.06±37.44 67.06±37.44 67.06±37.44
Elephant 84.70± 8.46 81.40± 8.41 83.65± 8.31 80.50± 8.27
Fox 66.90± 9.58 63.85± 8.34 65.65± 9.92 61.00± 9.72
Tiger 83.65± 8.07 79.90± 8.96 80.40± 9.39 76.70± 8.02 •
Trx 87.43± 4.59 87.20± 2.96 87.31± 4.09 87.06± 2.70
Eastwest 55.00±32.18 58.50±38.31 59.00±28.76 68.00±32.97
Westeast 56.50±33.83 58.50±38.31 58.50±30.20 68.00±32.97

◦, • statistically significant improvement or degradation wrt left-most scheme

3.3.5 Results for Two-level Distribution Approach

In this section, we evaluate the performance of the Two-level Distribution (TLD)

approach. As mentioned before, the required computing time of the original TLD

algorithm is expensive because there are four parameters that need to be estimated for

each attribute using the optimization procedure. In the experiments, only its simplified

version, TLDSimple, described in Section 2.5.2 was evaluated.

We compare the TLDSimple method with the SimpleMI with NaiveBayes scheme shown in

Table 3.17 and the MISMO with minimax kernel scheme shown in Table 3.5. These three

schemes are comparable because all of them extract summary statistics (i.e. “metadata”)

from bags. In the SimpleMI with NaiveBayes scheme, the bag-level metadata is the aver-

age mean value of each bag. In the MISMO with minimax kernel scheme, the metadata

is extracted by combining the minimum and the maximum attribute value of each bag.

Table 3.20 shows the comparison of these three methods on the 12 datasets from Table 3.1.

From Table 3.20, we see that TLDSimple works well on the Musk datasets (85.29% on

Musk1 and 79.69% on Musk2). However, both SimpleMI with NaiveBayes and MISMO

with minimax kernel perform better than TLDSimple in most cases. SimpleMI with

NaiveBayes outperforms TLDSimple on 11 datasets with 5 significant improvements and

MISMO with minimax kernel outperforms TLDSimple on 10 datasets with 6 significant

improvements.
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Table 3.20: Accuracy of TLDSimple compared with two Related Methods

Dataset TLDSimple SimpleMI MISMO
NaiveBayes minimax

Musk1 85.29±12.30 86.97±10.81 90.16± 9.49
Musk2 79.69±12.25 79.39±12.05 84.76±10.05
Mutagenesis-atoms 38.56±11.90 69.83± 9.82 ◦ 71.62±10.82 ◦
Mutagenesis-bonds 45.47±12.52 73.77± 9.29 ◦ 71.28± 6.88 ◦
Mutagenesis-chains 43.18± 7.60 78.49± 9.09 ◦ 74.58± 8.95 ◦
Suramin 32.94±37.44 39.41±43.71 61.18±40.37
Elephant 74.40± 9.33 80.00± 8.76 85.30± 7.71 ◦
Fox 50.30± 6.51 54.00± 9.10 57.60±11.31
Tiger 61.00±10.87 71.70±10.23 ◦ 75.85± 9.02 ◦
Trx 65.41±13.42 82.65± 7.29 ◦ 87.06± 2.29 ◦
Eastwest 61.00±28.05 69.00±34.66 59.50±34.59
Westeast 61.00±28.05 69.00±34.66 59.50±34.59
◦, • statistically significant improvement or degradation wrt left-most
scheme

3.3.6 Results on Text Categorization Datasets

The experimental methodology for the three text categorization datasets is different

from the others. As we mentioned before (in Section 3.2), the pre-specified training

and test sets were used for these three datasets. Apart from classification accuracy,

we also report the Area Under Curve (AUC) measure. The reason is that the class

distributions for these three datasets are extremely unbalanced, so the high accuracy does

not always represent good performance. In these text categorization problem, balanced

data is used for training, but the class distribution for the testing data is extremely

unbalanced. In test set, the number of positive bags vs the total number of bags in the

Component, Function and Process datasets are 64 vs 2412, 58 vs 4472 and 137 vs 10478

respectively (see Table 3.2). For such unbalanced test data, even if a classifier totally

fails to distinguish positive examples from negative ones, the estimated accuracy can

still be very high. Therefore, we should use the AUC measure instead to evaluate the

performance on these datasets.

AUC is the most frequently used performance measure extracted from a Receiver

Operating Characteristic (ROC) curve. The ROC curve was original introduced by

the signal processing community in order to evaluate the capability of distinguishing

informative radar signal from noise (Egan, 1975). The ROC curve is constructed as a

two-dimensional measure of performance, in which the X axis is the false positive rate

and the Y axis is the true positive rate. The AUC is the value of the area under the

curve and the value of AUC is between 1 and 0. If the AUC value is equal to 1, it means

perfect classification accuracy has been achieved. Table 3.21 shows the estimated ac-

curacy and AUC on the three text categorization datasets obtained from different schemes.
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Table 3.21: Accuracy and AUC on Text Categorization Datasets

Dataset (1) DD (2) MILR (3) MILR (4) MISMO (5) MISMO (6) MISMO
-ARITH (RBF) (minimax) (linear)
Accuracy

Component 74.75 86.19 82.67 82.30 70.19 70.11
Function 92.20 68.20 91.86 91.41 77.93 89.92
Process 91.40 93.84 89.21 91.25 83.78 90.97

AUC
Component 0.76 0.78 0.85 0.85 0.83 0.84
Function 0.78 0.75 0.83 0.83 0.79 0.76
Process 0.84 0.83 0.84 0.81 0.80 0.77

Dataset (7)CitationKNN (8) SimpleMI (9) Wrapper (10) Wrapper (11) MIBoost (12) TLDSimple
(R=2, C=4) with with SMO with SMO with

NaiveBayes (RBF) (Poly E=2) REPTree (50)
Accuracy

Component 63.76 85.82 70.27 78.90 64.76 94.49
Function 71.85 92.58 81.82 87.46 84.19 97.05
Process 80.07 91.03 86.30 87.55 84.12 94.90

AUC
Component 0.80 0.80 0.87 0.85 0.85 0.79
Function 0.77 0.78 0.88 0.85 0.84 0.80
Process 0.78 0.80 0.83 0.84 0.84 0.81

It is obvious that among the 12 schemes tested, the ninth scheme Wrapper with

SMO(RBF) performs best. The AUC value on the Component and Function dataset

reaches 0.87 and 0.88 respectively, and both are higher than the AUC of any other

scheme. On the Process dataset, the AUC value is 0.83 which is the second highest value

(0.84 is the highest value). The tenth scheme Wrapper with SMO(Poly) appears to be

the second best scheme. The AUC on the three datasets is 0.85, 0.85 and 0.84 respectively.

3.3.7 Suitable MI Approaches for Different Application Domains

In order to get a clear view of the different MI approaches’ performance on each

application domain, the best and the second best scheme for each of the 15 MI datasets

is summarized in Table 3.22. We used two different performance measures to determine

the ranking. Normally, the ranking is based on the accuracy estimates. But for the three

text categorization datasets, the ranking is based on the Area Under Curve (AUC) value.

The reason for this is explained in Section 3.3.6.

The simple Wrapper approach with single-instance learning algorithms can learn accurate

models in many cases. From Table 3.22, we can see that on 8 out of the 15 datasets

we can achieve the best performance using the Wrapper with a suitable single-instance

learning algorithm. Among the remaining 7 datasets, we can obtain the best performance

on three of them by using SimpleMI with a suitable single-instance learning algorithm
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Table 3.22: The Best and the Second Best Scheme for the 15 MI datasets
Dataset Accuracy Best Scheme Accuracy Second Best Scheme

or AUC or AUC
Musk1 90.68% Wrapper with SMO(RBF) 90.37% Citation KNN
Musk2 85.89% Wrapper with SMO(RBF) 85.76% MISMO (Poly)
Mutagenesis-a 82.15% SimpleMI with AdaBoost.M1(PART) 81.56% SimpleMI with AdaBoost.M1(C4.5)
Mutagenesis-b 86.73% MIBoost with REPTree(50) 84.95% SimpleMI with AdaBoost.M1(PART)
Mutagenesis-c 85.22% MISMO (RBF) 84.97% Wrapper with IBK
Suramin 78.82% Wrapper with IBk 76.47% SimpleMI with SMO (Linear)

SimpleMI with SMO (RBF)
SimpleMI with Linear Logistic

Elephant 85.40% Wrapper with AdaBoost.M1(PART) 85.30% MISMO with minimax
Fox 67.00% Wrapper with Bagging (PART) 66.90% MIBoost with REPTree (50)
Tiger 83.65% MIBoost with REPTree (50) 83.50% MISMO (Poly)
Trx 89.99% DD 87.92% EMDD
EastWest 93.50% SimpleMI with PART (or C4.5) 85.50% SimpleMI with Bagging (PART)
WestEast 93.50% SimpleMI with PART (or C4.5) 82.00% SimpleMI with Bagging (PART)

Component 0.87 Wrapper with SMO (RBF) 0.85 MILRARITH
MISMO(RBF)
Wrapper with SMO(Poly)
MIBoost with REPTree (50)

Function 0.88 Wrapper with SMO(RBF) 0.85 Wrapper with SMO(Poly)
Process 0.84 DD 0.83 Wrapper with SMO(RBF)

MILRARITH MILR
Wrapper with SMO(Poly)
MIBoost with REPTree(50)

and on another two by using MIBoost with REPTree. Hence it appears that standard

supervised single-instance learning algorithms can properly deal with many MI problems

if they are wrapped into an appropriate meta learner. This offers a very simple and

efficient solution to MI learning.

The most suitable MI approach for each MI domain is different. From Table 3.22, we see

that for the drug activity prediction applications, the Wrapper with SMO(RBF), Wrapper

with IBk and SimpleMI with AdaBoost.M1 (PART) deliver very good results. For the

six datasets regarding this application domain that were tested, using one of these three

schemes can achieve either the best or the second best result. For the image retrieval

application, it appears that ensemble techniques may have some advantage in this area.

The three best schemes for the three image datasets are different, but they all involve

either boosting or bagging. The Trx protein identification problem is the big exception

in the collection of datasets. Here, applying MI algorithms that exploit the standard

asymmetric MI assumption can get the best results. The experiments show that using DD

and EMDD delivers the two best solutions for this problem. For the East-West challenge

problem, the best scheme is SimpleMI with PART(or C4.5). For the test categorization

application, the two best schemes are the Wrapper with SMO(RBF) and the Wrapper

with SMO(Poly). This is not surprising as support vector machines are known to perform

well on text categorization problems.
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From the experimental results, it appears that the methods which attempt to exploit

the standard MI assumption do not have any significant advantages. Among a total

of 16 MI algorithms that were described in Chapter 2, five algorithms, DD, EMDD,

MILR, OptimalBall and MISVM, make use of the standard MI assumption. All

other algorithms ignore this assumption and treat all instances in a bag equally. Our

experimental results show that on most datasets we can achieve good results using

algorithms that actually discard the standard MI assumption (see Table 3.22). Recall

that for the Wrapper method, following the standard MI assumption when making

predictions actually performs worse than following the collective assumption (this was

demonstrated in the first part of Section 3.3.4). The only exception (i.e. where the

standard asymmetric MI assumption appears to help) is the Trx protein identifica-

tion problem, for which DD and EMDD are the two best classifiers. This means the

standard MI assumption may be more suitable for the Trx data than for the other datasets.

It is hard to say which single algorithm performs best on all the different MI problems that

were tested. For example, the Wrapper with SMO(RBF) performs best on the two Musk

datasets but performs badly on the three Mutagenesis datasets, the Suramin dataset and

the East-West problem (see Table 3.12). The Wrapper with IBk performs quite well on

the three Mutagenesis datasets and the Suramin dataset, but it performs badly on the

Fox dataset and the East-West problem (also see Table 3.12). This indicates that the MI

problems that were investigated have various different aspects independent of their multi-

instance nature. Hence the lesson is that researchers may need to put more effort into

trying many different methods when addressing a new MI problem. And simple methods

based on standard single-instance learners should be tried first.
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Chapter 4

Conclusions

Multi-instance learning has become a popular research topic in the machine learning area

since 1997 and many MI algorithms have been proposed since then. However, due to the

complexity and the diversity of real-world MI problems, current MI research is still in a

growth period and not in a fully developed stage. Motivated by the current situation in

MI learning, this thesis presents an empirical study of MI algorithms. We empirically

evaluated the performance of sixteen MI algorithms. A total of fifteen datasets covering

five different real-world application domains have been investigated.

The empirical results in this thesis show that applying standard single-instance learning

algorithms to deal with MI problems can yield good classification performance in most

cases. This provides a very simple and efficient solution to MI learning problems. Ray

and Craven (2005) drew a similar conclusion from their research and found that ordinary

supervised learning algorithms can do well in many MI domains and sometimes are the

best algorithms for a task.

The results in this thesis additionally show that when applying single-instance learners to

MI problems, using the collective assumption is normally superior to using the standard

MI asymmetric assumption. For the single-instance learning algorithms evaluated in (Ray

& Craven, 2005), the instance-level prediction with the highest confidence was used as

the prediction for the bag, which actually follows the standard MI assumption. As a

comparison, the average predicted class probability was used in this thesis to determine

the bag-level label, which discards the standard MI assumption and follows the collective

assumption instead. The results show that using the average prediction method can yield

better results for this approach of applying single-instance learners to MI problems.

The results also show that different MI approaches are suited best to different application

domains. There is no single MI algorithm that can outperform all other algorithms on
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all application domains that were tested in this thesis. This conclusion is consistent and

lends further support to findings from previous research (Ray & Craven, 2005).

Although some inroads have been made in this thesis, identifying the most suitable MI

algorithm for a particular application domain is still an open question. Based on the

empirical results presented in this thesis, we found that for the Trx protein identification

problem, the standard MI assumption appears to be very suitable and using the DD

algorithm yields the best solution for this problem. The experimental results in (Ray &

Craven, 2005) are also consistent with this observation. For all other datasets simpler

approaches based on the collective assumption appear to be sufficient or even superior.

Apart from these findings, the results also show that ensemble techniques are useful in the

image retrieval applications investigated here and the results demonstrate the superiority

of support vector machines on MI text categorization problems.
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