

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://waikato.researchgateway.ac.nz/

ABSTRACT

With the development of hardware, mobile phone has become a feature-rich handheld

device. Built-in camera and Bluetooth technology are supported in most current

mobile phones. A real-time image processing experiment was conducted with a

SonyEricsson P910i smartphone and a desktop computer. This thesis describes the

design and implementation of a system which uses a mobile phone as a PC mouse.

The movement of the mobile phone can be detected by analyzing the images captured

by the onboard camera and the mouse cursor in the PC can be controlled by the

movement of the phone.

 ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Bill Rogers, for his valued ideas, helpful advices,

patience and continuous support during the time of my study. Thanks also to the

Waikato University TSG (Technical Support Group) people for providing the

experiment environment.

 iii

CONTENTS

Abstract ……………………………………………………………………………ii

Acknowledgement ………………………………………………………………...iii

Contents ……………………………………………………………………………iv

Chapter 1 Introduction …………………………………….………………………1

1.1 The mobile phone as a Swiss army knife ……………….………………….1

1.2 The structure of the thesis …………………………………………...……..2

Chapter 2 Literature Review ………………….………………….………………3

2.1 Marker Tracking and HMD Calibration for a Video-based

Augmented Reality Conferencing System…………………………….….3

2.2 Location based Applications for Mobile Augmented Reality ……………….5

2.3 Rapid and Accurate Deployment of Fiducial Markers for

Augmented Reality …………..……………………………………………….7

2.4 Toolkit for Bar Code Recognition and Resolving on Camera

Phones – Jump Starting the Internet of Things..………………………………8

2.5 Using camera-equipped mobile phones for interacting with

real-world objects ……………………………………………………………10

2.6 Adaptive image thresholding algorithm ……………………………………..11

2.7 Mixed Interaction Spaces …………………………………………..………..14

2.8 Computer Vision Face Tracking For Use in a Perceptual User Interface …..16

Chapter 3 Technical Background ……………………………………………..…..17

3.1 Experiment environment ………………………………………..............17

3.1.1 Hardware environment ……………….………..…………..………17

3.1.2 Development environment ……………...…………..……..………….18

3.2 Brief introduction of Bluetooth ………..…………………………………..19

 iv

3.2.1 The structure of the Bluetooth network ……..…………………………19

3.2.2 Bluetooth Protocol………………………………...……………………20

3.3 Brief Introduction of Camera Video Format ………………………..……23

3.3.1 Colour space …………………………………………………………...24

3.3.2 The RGB colour model ….…………………………………………….24

3.3.3 YUV colour model ………….………………………………………26

3.3.4 P910i Video Format .…………………………………………………..26

3.3.5 RGB YUV conversions ………………………………………………..27

3.4 Methods used ………………………………………………………………28

Chapter 4 System Design ……………..……………………………………………30

4.1 Image recognition…………………………………………………………..31

4.1.1 Patterned surface ……………………………………………………..31

4.1.2 Conversion to Binary Image ..……………………………………….33

4.1.2.1 Using Y plane only ………...…………………………………….34

4.1.2.2 Using a Fixed Threshold Value …………………………………34

4.1.3 Intersection finding ……………………………..…………………….38

4.2 Bluetooth network………………….…….……….…………………..…….39

4.2.1 Bluetooth protocol……….……….…………….……………………....39

4.2.2 Simple Video Transfer Protocol (SVTP) …………….………………...40

4.3 Revised Design……….……….……….……….……….……….………….43

Chapter 5 Implementation …….…….……….……….……….……….……….47

5.1 Mobile device application implementation……….……………..….……….48

5.1.1 Symbian GUI programming……….……….………………….……….50

5.1.1.1 Naming Conventions……….…….……….……….……….….…50

5.1.1.2 Exception handling……….……….………….…………………..50

5.1.1.3 Two-phase construction……….………….……….……………...52

5.1.1.4 Symbian GUI application framework ……….……….……….…53

5.1.2 Mobile Phone Class Details ……….……….……….………………...53

 v

5.1.2.1 Bluetooth network handler ……….……….……….…………….55

5.1.2.2 Image recognition ……….……….……….………………….….58

5.1.2.3 SVTP (Simple Video Transfer Protocol) implementation ……….62

5.1.2.4 The control class ……….……….……….……………………….63

5.1.2.5 The view class ...…….……….……….……….……….………...64

5.2 Windows application implementation……….……….…………………...….65

5.2.1 Windows Bluetooth programming……….……….……….…………...67

5.2.2 Structure of the server application……….……….………….………...68

5.2.2.2 Protocol handler ……….……….……….……….……….……...70

5.2.2.3 Mouse controller……….……….……….…………….…………71

5.2.2.4 User interface object……….……….……….…………….……..73

Chapter 6 Conclusion…………………………………………………………………..……76

Chapter 7 Further work……………………………………………………………78

Bibliography…………………………………………….………………….……….80

 vi

List of Figures

Figure 2.1: An example of Fiducial Marker ….…………………………………….. 3

Figure 2.2, CSCW System configuration …………………….…………………….. 4

Figure 2.3: CSCW AR system ……………………………………….……………... 4

Figure 2.4: Location based Mobile AR system ………………………….…………. 6

Figure 2.5: Screenshot of BAUML viewer visualizing a section

of the building model ………..………………………….………………..7

Figure 2.6: Screenshots of the bar code applications …………………….…………. 8

Figure 2.7: Visual code mobile phone application ……………………………….…10

Figure 2.8: Image processing sequence ……………………………………………..10

Figure 2.9: The paper with strong illumination gradient ………………………….…12

Figure 2.10: The result using a global threshold ………………………………….…12

Figure 2.11: Result of using adaptive thresholding ………………………………….13

Figure 2.12: The Mixed Interaction Space with face tracking ……………………....14

Figure 3.1: A Photo of P910i mobile phone ……………………………………...….18

Figure 3.2: Three different Bluetooth network topology ……………………..……..20

Figure 3.3: Bluetooth protocol stack ………………………………………………...21

Figure 3.4: Image shows the mixing result of red, green and blue ………………….25

Figure 3.5: P910i video format …………………………………………………...…27

Figure 4.1:The system architecture ……………………………………………….…30

Figure 4.2: The hand drawn pattern used to help position recognition ……………...32

Figure 4.3: Mobile phone was tracking the intersections ……………………………32

Figure 4.4: Zoomed out image ………………………………………………………34

Figure 4.5: Converted binary image …………………………………………………35

Figure 4.6: Luminance distribution ………………………………………………….35

Figure 4.7: Adaptive thresholding …………………………………………………...36

Figure 4.8: One frame of captured stream …………………………………………...36

Figure 4.9: Using fixed value of threshold …………………………………………..36

 vii

Figure 4.10: Result of using adaptive thresholding ………………………………….37

Figure 4.11: The final result …………………………………………………………37

Figure 4.12: Intersection finding ………………………………………….................39

Figure 4.13: Before A went out ……………………………………………………...43

Figure 4.14: After A went out ………………………………………………………..43

Figure 4.15: The new pattern ………………………………………………………..45

Figure 4.16: Tracking algorithm …………………………………………………….45

Figure 5.1: The main process flow for the client ……………………………………49

Figure 5.2: Client side class diagram ………………………………………………..54

Figure 5.3: Our threshold algorithm …………………………………………………59

Figure 5.4: Binary result …………………………………………………………….60

Figure 5.5: Minimum size test ……………………………………………………….61

Figure 5.6: Screenshot of a running mobile phone application ……………………...65

Figure 5.7: Process flowchart of the server application ……………………………..66

Figure 5.8: Class diagram for the server application ………………………………...69

Figure 5.9: Screenshot of early implementation …………………………………….74

Figure 5.10: Screenshot of the server application ……………………………….…..75

 viii

List of Tables

Table 3.1: The devices used for this project …………………………………………17

Table 4.1: Control packet structure ...………………………………………………..42

Table 4.2: Raw video data packet structure …………...……………………………..42

Table 4.3: Position data packet structure …………………………………………….42

 ix

Chapter 1

Introduction

1.1 The mobile phone as a Swiss army knife

Nowadays, portable computing devices are becoming more popular in daily use,

especially smart phones. Because people usually carry a phone with them at all

times, it is interesting to consider alternative uses to which the phone might be put.

For example, a phone has a built-in screen light, and it can therefore be used as a

torch. Whilst it is not very bright and the light is not focused into a beam, it may help

someone to find a key hole on a dark night. The purpose of my research is to explore

ways in which we could make use of the features of a mobile device to control a

computer.

From the technical view point, the computing capability of embedded devices is

steadily increasing. Phones equipped with Bluetooth technology are available, and

permit rapid communication with other computing devices. The onboard camera is

becoming a standard part of most current mobile phones. It can be used as an

alternative to working with a stylus on a tiny screen. Also, mobile phones have

similar size and shape to a mouse. These provide the possibility of creating such an

application to provide wireless services between a smart phone and a computer. If

the idea could be implemented, it could bring a new convenient tool to computer

users. Furthermore, if some image processing were used in such a system, the

onboard camera in the smart phone could play the role of input device to the

computers, which could bring some more interesting features to those mobile

devices. For example, a user could use the smart phone as a wireless mouse and

handwriting board, sitting wherever he likes. Gently touching his mobile screen by

stylus, he can easily control the projector screen or point out the notes for students

through the media of a computer.

 1

Our research question then was, could we develop a system which would provide

some functionalities based on the connection of computers and handheld devices.

For example, the mobile phone could control music player, the slides demonstration

or be used as the computer mouse. In this project, we experimented with using a

mobile phone as a mouse to control a laptop or desktop PC. We tested our ideas not

only of the possibility but also of the usability. The framework of our system

includes smart phone touch screen input, onboard camera handling in smart phone

and Bluetooth communication between the PC and the mobile device.

1.2 The structure of the thesis

There are seven chapters in this thesis. This chapter explains the original idea and the

purpose of this project. In the next chapter, some other projects or related articles

will be introduced. The chapter three is intended to introduce the experimental

environment and the knowledge required for building the system. In chapter four,

our system design is presented and in the following chapter the implementation of

the design is explained in detail. In chapter six, some conclusions are drawn from the

experiment. In the last part, chapter seven, some advice and possible further

improvements are listed.

 2

Chapter 2

Review of literature

There are many examples in the literature in which image processing is used to

support navigation tasks of various kinds. In this chapter we review some of this

work that is relevant to the project. In most situations where image processing has

been used for navigation, an important goal has been to achieve real time

performance and low latency – at least 10 frames per second. A number of methods

have been used to simplify the image processing to meet the real time criterion.

Some are discussed in the review.

A number of system use Fiducial Markers positioned in the environment.

Figure 2.1: An example of Fiducial Marker

A Fiducial Marker is a large simple icon drawn in black on a white background. It is

reasonably easy to recognize because of the high contrast (black/white). Also, a

reasonable range of shapes is possible to identify different locations.

2.1 Marker Tracking and HMD Calibration for a Video-based Augmented

Reality Conferencing System (Kato and Billinghurst, 1999)

The system Kato and Billinghurst (1999) introduced provided a new user interface

technology, Human-Human interface instead of Human-Computer interface. It

 3

supports the idea of 3D Computer Supported Collaborative Work (CSCW), which let

users interact with each other by the computer generated shared virtual object. The

system structure is shown below, the figure is from their paper.

Figure 2.2, CSCW System configuration

The system employed an optical see-through augmented reality technique. The AR

user could see the real world directly through the head mounted display with

superimposed virtual objects. The share object was marked by six fiducial markers

which were used to calculate the virtual whiteboard coordinates and all 3D relative

calibration. And also there were some fiducial markers placed out of the shared

whiteboard for positioning the desktop users. The video from desktop users’ camera

can be directly positioned on those markers. Hence, the system could provide a multi-

user workplace. All users could work on the same virtual whiteboard at the same time.

Figure 2.3: CSCW AR system. The left is a user who was doing the test with the

system, The right is the image the user saw, which was drawn on the HMD

They have solved two major problems for the project, “calibration of the HMD and

camera, and estimating an accurate position and pose of fiducial markers” (Kato and

 4

Billinghurst, 1999). The essential idea of the solution is to find the corresponding

transformation matrices. The shared object coordinates then could be transformed into

the camera’s coordinate system, hence, the eye’s coordinate system. Finally, the HMD

(Head Mounted Display) screen coordinates could be calculated by the perspective

projection of the objects in eye’s 3D coordinates.

The experimental results mentioned in the paper showed that the model they built

worked more accurately when the objects were close to the camera. When the camera

was moving away from the objects, the accuracy decreased. This problem might have

been caused by the size of the markers. As the outline contour of markers were

involved in 3D coordinate calculation, the smaller marker would give less accuracy of

the shared whiteboard 3D coordinates.

2.2 Location based Applications for Mobile Augmented Reality (Reitmayr and

Schmalstieg, 2003)

This is an indoor location navigation system. The user could navigate around a

building with some necessary equipment. The equipment included: a HMD; helmet

with camera and inertial sensor; a notebook computer for data processing and a pair

of special gloves for capturing hand posture. The structure of the building was

known by the computer. More importantly, the building was labeled with optical

marks (fiducial markers) which can be captured by the camera and recognized by

computer. Moreover, the gloves have attached optical markers which are used to

locate the position of the user and interact with the user. When a user is walking

through the building, the augmented reality technology is used to help the user to

navigate the building. They built two location based applications which are based on

their mobile augmented reality system. One is Signpost. Signpost is a kind of

location finding software. The user could know where he/she is and the shortest path

would be shown on the HMD. The other software is a book retrieving system. It

could give the location hints about a book.

 5

Fiducial
Markers

Figure 2.4: Location based Mobile AR system. The top shows the environment; the

bottom left shows the HMD, helmet and the inertial sensor; the bottom right shows

the image displayed in HMD

The basic idea of this system is that optical marker tracking is used for locating

position and augmented reality is used to interact with the user.

Comparing to our project, location finding could be based on a similar solution,

tracking simple physical markers. Augmented reality is not necessary in our case

 6

since we are concerned with navigation on a computer screen, not a real world

situation. Also, movement is more important than the actual position to us. In their

system, the position of each marker is well-known before navigating whereas, in our

system, the position of markers will be unknown it brings us more flexibility as the

surface used could be created at any time as long as it satisfies the surface

requirement. If we define some less constrained rules, the surface could even be

drawn by hand.

2.3 Rapid and Accurate Deployment of Fiducial Markers for Augmented Reality

(Schall, Newman and Schmalstieg, 2005)

This paper discussed a way to rapidly generate the virtual 3D model of environment.

Several surveying areas were selected before experiments. Also, some common

markers must be positioned between two adjacent surveying areas and the common

markers were used for transforming the spatial relationship between markers. During

the surveying, each recognized marker would be saved in 3D Cartesian coordinates

converted from local polar coordinate system. After all survey points had been

checked in sequence, the 3D model was also created based on the saved information.

Figure 2.5: Screenshot of BAUML viewer visualizing a section of the building model

 7

The most important technique in this paper is to use the spatial relationship to

transform the different local coordinates to global coordinates. In this way, the final

3D model could be generated dynamically and simultaneously while the camera was

moving. Common points are essential to this method. They were used to connect all

the discrete points (objects) so that all local information could be transformed into

global coordinates. The idea of bridging neighbouring areas with common markers

could help to solve local-global converting problems.

The Fiducial Marker systems are generally implemented on desktop computers and

dealing with the three dimensional space positioning problems. A system designed to

work on a mobile phone may use similar ideas. In some systems, one dimensional or

two dimensional barcodes are used with mobile devices.

2.4 Toolkit for Bar Code Recognition and Resolving on Camera Phones – Jump

Starting the Internet of Things (Adelmann, Langheinrich and Floerkemeier, 2006)

Figure 2.6: Screenshots of the bar code applications

This paper described a system design and some prototypical applications. The

system recognizes 1D barcodes using the onboard camera of a mobile phone and

displays some relevant information retrieved from a server. As daily use of mobile

phone becomes more popular, using the onboard camera of a mobile phone instead

of extra scanning devices is a handy way for a user to retrieve information on a

 8

specific product. Basically, the system was designed with two parts, the barcode

recognition client and the information server. The client captures the image of the

barcode printed on the package of the product and recognizes the code from the still

image. The code, is then sent to the information server. The server will query some

relevant information from the local database or the Internet when the retrieval

request is received. Finally, the information will be sent back to the client and

displayed to the user. The information server could be mobile based software or PC

software.

As mentioned in the paper, the toolkit, especially the recognition algorithm, was

designed for low computing resource devices like mobile phones. Although, there

are some more professional barcode recognition algorithms available with more

reliable results, those are still too expensive in terms of image processing time. Note

that recovering bar codes from images is a different approach to that used in shops to

scan products. The shop scanners work by scanning a laser beam over the product

and using specialized electronics to process the result. The image analysis was based

on a “scanlines” method. To improve the results’ reliability, they used multiple

scanlines instead of one line. The final result was determined by the majority of the

multiple scanlines. The “scanlines” method could also be used in our project to

process images as fast as possible. In our case, we have to deal with video stream

continuously instead of some still images. The algorithm we choose must be fast

enough to do real time processing.

2.5 Using camera-equipped mobile phones for interacting with real-world

objects (Rohs and Gfeller, 2004)

“The idea described in this paper is to use the built-in cameras of consumer mobile

phones as sensors for 2-dimensional visual codes” (Rohs and Gfeller, 2004). The idea

of this paper is to code the items into small images and use the onboard camera to find

the items by figuring out the corresponding codes of the small images though an

 9

image recognition algorithm.

Figure 2.7: Visual code mobile phone application. The left is the visual code

example and the right is the running application

To reduce the effect of low quality images, which could be distorted, blurred with

strong illumination gradient affection, captured from the onboard cameras, the paper

gives some ideas to follow.

1. using binary images (black and white image) instead of colour or grayscale

images for further processing

2. using adaptive thresholding method to eliminate the effects of lighting level and

gradients

3. the visual coding schema should be carefully designed to reduce the complexity

of image recognition algorithm

Also, the steps of achieving the goal is outlined clearly.

Captured

image
Grayscale

image
Binary
image

Location finding
algorithm

Figure 2.8: Image processing sequence

 10

The steps shown above are very helpful for most image processing projects,

especially for the low complexity images. Our goal is to have a similar way to

calculate the motion of the mobile phone but a different visual coding schema using

less time. For the purpose of mouse control by mobile phone, the high accuracy of

code recognition is not necessary; instead, detecting the movement of the mobile is

important. Therefore, the code could be simpler, even hand drawn grids could fulfill

the task.

An important aspect of the implementation described above was the use of adaptive

thresholding.

2.6 Adaptive image thresholding algorithm (Fisher, Perkins, Walker and Wolfart,

1994)

This paper talks about adaptive thresholding. Thresholding is a way to segment a

multi-value image to a two-value image. Changing “The intensity values above a

threshold to a foreground value and all the remaining pixels to a background value.”

(Fisher, Perkins, Walker and Wolfart, 1994). Thresholding is the most widely used

method to generate a binary image for further processing. The simplest way of using

thresholding is to calculate the average value of all pixels in an image and then

comparing to each pixel with the average. However, in most cases, the light is not

evenly spread over the surface. Sometimes, a strong illumination gradient could

affect the quality of the thresholding results greatly, which could stop further

processing. Some examples from a page image show the effect of illumination

gradient.

 11

http://www.cee.hw.ac.uk/hipr/html/copyrght.html
http://www.cee.hw.ac.uk/hipr/html/copyrght.html
http://www.cee.hw.ac.uk/hipr/html/copyrght.html

Figure 2.9: The paper with strong illumination gradient

Figure 2.10: The result using a global threshold

 12

As can be seen above, the poor result is caused by the illumination issue. The better

solution for this problem is to use local adaptive thresholding instead of global

thresholding. For each pixel, only the pixels within certain area around that pixel are

taken into account. Therefore, the threshold for each pixel only depends on its

neighbouring pixels.

Figure 2.11: Result of using adaptive thresholding

In our experiment, real time image processing is needed and the lighting conditions

could keep changing during the movement of mobile device. In particular, because

the phone is being used close to the scanned surface, there is often shadow from the

phone and users hand. Adaptive thresholding, thus, would be the better choice to

achieve the greatest quality.

A mobile phone system that is most like our proposed system is a Mixed Interaction

Spaces. It allows a user to use a mobile phone as a 3D cursor.

 13

2.7 Mixed Interaction Spaces (Hansen, Eriksson and Lykke-Olesen, 2005)

Mixed Interaction Spaces: This paper “describes a new interaction technique for

mobile devices named Mixed Interaction Space that uses the camera of the mobile

device to track the position, size and rotation of a fixed-point” (Hansen, Eriksson and

Lykke-Olesen, 2005). The technique is to use the space surrounding the mobile

device. In particular, it uses the human face as a physical mark instead of printed or

hand drawn mark. All space surround the mobile device is available for use. When

the camera is moving, the space is changing, then, the change is converted as 4

dimensional vector as input. The four dimensions include zoom in and zoom out, up

and down, left and right, also the rotation. The following shows the space and

tracking.

Figure 2.12: The Mixed Interaction Space with face tracking

The highlight of this idea is using the face instead of other fixed-points as the tracing

marks. This avoid the need for other devices or related materials. Generally, physical

marks like points are selected from some patterned surface or still images. Using

 14

MIXIS is more convenient. When user interacts with mobile device, only thing

he/she has to do is moving the mobile in front of his/her face. Whereas, in other

systems, there are still more devices involved, for example, the coded patterns on the

surface or some kind of circle or cross is used to trace the change of movement.

Furthermore, since it explores 3D space instead of 2D space, it could provide more

input information by same operations than other tracking methods.

However, the MIXIS technique limits the way of interaction. This works well for

applications on the phone. For example, panning or zooming a map display. It is not

convenient for controlling something else as it is too easy to lose the face from the

camera view. The user has to look at the camera while using it, or at least, the user

has to face the camera. As the MIXIS is designed for mobile applications, there are

no other devices like computers involved, the mobile device could take advantage of

this technique. If the PC and mobile device are combined together as a whole

system, the mobile device play the role of an input device, and is not the focus of the

user’s attention. This system is not ideal for our application.

As the image recognition processes are generally very complex, the high

performance hardware is required. The system on mobile phone used CAMSHIFT to

reduce amout of image analysis due to its slow processor.

2.8 Computer Vision Face Tracking For Use in a Perceptual User Interface

(Bradski, 1998)

People from Intel lab introduced an algorithm, named Continuously Adaptive Mean

Shift (CAMSHIFT) algorithm, which is used to dynamically track human faces. As

described in the paper, CAMSHIFT is an improved algorithm based on the Mean

Shift algorithm. The Mean Shift algorithm was designed to deal with a static model

of colour probability distribution whereas CAMSHITF can process the model

finding with a dynamically changing colour probability distribution. A simple

description of their face tracking process is listed below:

 15

1. record the face image

2. use HSV(Hue Saturation Value) colour system to convert the image to 1D

histograms, and save it as a colour model

3. for each frame from the camera, convert all pixels to a probability of flesh

image.

4. use CAMSHIFT to locate the centroid of the last search window and

calculate the new search window centered at the centroid found for next

frame.

The algorithm can track four dimensional changes for a user, X, Y, Z and head roll,

which could be used in variety of areas. Also, it has the ability to cope with noise. An

example mentioned in their paper showed after addeding 0, 10, 30 and 50% uniform

noise data to the original video frames the result was still reliable.

The results generated from their experiments had proved their algorithm is a reliable

solution for human face or hand tracking. The CAMSHIFT algorithm is somewhat

complex or computational expensive algorithm since a great deal of mathematical

calculations is involved. However the idea of performing image analysis in a search

window based on the result form the last frame is used in our project.

 16

Chapter 3

Technical Background

Before entering the more complex parts, I will give an introduction of the

experimental environment and the knowledge required for building the system. In

this chapter, the environment will be described first. Bluetooth technology and the

camera related graphics system will be explained respectively. Finally, some

methods that I have used to understand these ideas are explained.

3.1 Experiment environment

The experimental environment contains two parts, the hardware and the software.

The hardware includes the mobile phone and the PC. The software involves the

development tools that are used in this project.

3.1.1 Hardware environment

To make the mobile device interact with the PC, we have to run our software in two

systems, the mobile system and the PC system. The development platform for both

systems is the PC. Table 3.1 shows the devices.

 Desktop Computer Mobile phone

SE P910i

CPU Intel Pentium® 4 at 2.60GHz ARM9 at 156 MHz

RAM 504MB 64 MB

Accessory Bluetooth USB Dongle

(Bluetooth Version 1.2)

Onboard camera,

built-in Bluetooth (Bluetooth

Version 1.2)

OS Windows XP with SP2 Symbian UIQ2.1

Table 3.1: The devices used for this project

 17

Figure 3.1: A Photo of P910i mobile phone

In our experiment, we used a SonyEricsson P910i mobile phone and a desktop

computer. The computer has a normal hardware setup except for a USB Bluetooth

dongle which is used to receive and transmitting Bluetooth radio signals. The P910i

mobile phone is a PDA like handheld device. It has a large screen and a relatively

powerful processor. However, for the embedded CPU, especially for ARM9, there is

no FPU (Floating Point Unit). All floating point calculations are done by software on

the integer processor. Hence, any floating point calculation would slow down the

whole process.

Also, note that we have used a desktop computer rather than a laptop as the

computer being controlled. This was convenient in our experimental setup. The

software will work equally well with a laptop.

3.1.2 Development environment

To develop the software for Windows XP, Visual Studio .Net 2003 is used with the

Microsoft Platform SDK. The MS Platform SDK provides the necessary packages

for the Bluetooth development with the Microsoft Bluetooth stack.

 18

The mobile phone software was developed under Windows XP as well. There is a

free download of Borland C++ Builder X Mobile Edition, which can work with UIQ

2.1 SDK together. To develop for SonyEricsson P910i mobile phone camera

applications, the P800/P900/P910 Specific C++ API for UIQ 2.1 SDK has to be

installed as well. This package provides the libraries and header files for video

development. With the UIQ SDK, a developer can test their application in the EPOC

emulator. However for Bluetooth and camera related projects, the emulator is not

reliable enough. There are many posts on the Internet describing a similar situation;

applications ran well in the emulator but crashed on the real devices. This problem is

probably due to the high dependency on hardware. The emulator is general software

provided by Symbian, which simply emulates different devices to the same faked

solution. Therefore, the real-time image processing application has to be tested in the

real device instead of the emulator. This will make testing more convenient. The real

device UIQ application is created on the Windows platform and then installed to the

mobile phone directly by the software provided by the phone manufacturer.

3.2 Brief Introduction of Bluetooth

Bluetooth is one of the wireless communication solutions. It was designed for

solving the unreliability of infrared beams (IrDA). Bluetooth is mainly used in a

short range (up to 10 meters) wireless network. Because of its low power

consumption, fast data transmission (compared to IrDA) and better reliability,

Bluetooth is commonly built-in to modern portable devices (PDA, Smartphone,

Portable computers etc.).

3.2.1 The structure of the Bluetooth network

Basically, there are three different kinds of network topologies for Bluetooth. The

concepts, master and slave, are used for the role of each device. For people who

have some network experience, master/slave is somewhat similar to the

 19

Server/Client model except for one thing. The difference is that master/slave is only

involved in the physical link layer whereas Server/Client can be used in several

different layers. A Bluetooth network is only initialized by the master device. The

invited devices will become the slaves. However, in the application layer, the

connection requests can be started by any device in the network.

Figure 3.2: Three different Bluetooth network topology.

The kinds of network topology are:

a: Point-to-point is the simplest one-to-one connection.

b: Piconet (point-to multipoint) is the one-to-many connection. A piconet can

contain a maximum of 7 slave devices.

c: Scatternet contains several piconets. The master or slave of one piconet can also

be the slave of another piconet.

In our case, one mobile phone with a desktop computer, our application will be of

type (a).

3.2.2 Bluetooth Protocol

The Bluetooth specification also describes the Bluetooth protocol stack.

 20

Figure 3.3: Bluetooth protocol stack

Figure 3.3 shows the whole stack from the bottom, low level, to the top, high level. I

will give a brief explanation of the most popular protocols.

Bluetooth Radio:

The radio specification. This is the lowest layer for Bluetooth stack and implemented

in the Bluetooth hardware. It includes the frequency and power specifications.

Baseband:

The hardware layer which controls the receiving/sending mechanism.

The Link Manager Protocol (LMP):

This layer is used to control other devices. (i.e., switching master/slave)

These three layers together provide the hardware level communication support for

 21

Bluetooth.

Host Controller Interface (HCI) interface:

This is the interface layer for application software. All functions in the lower layer

will be encapsulated in Interface.

Logical Link Control and Adaptation Protocol (L2CAP):

This layer provides the connection-oriented and connection-less data services to all

the upper layers. As seen in Figure 3.3, L2CAP is the first layer above the HCI

interface. L2CAP links uses PSMs (Protocol & Service Multiplexer) to communicate

with each other and handle packet segmentation and reassembly.

Radio Frequency COMM (RFCOMM):

This layer emulates a standard RS232 serial port. Applications use this protocol layer

and therefore can use the standard AT commands. Furthermore, applications can also

use this layer by writing/reading a COM port if a COM port is associated to the

RFCOMM connection. Comparing to the L2CAP layer, RFCOMM uses channels

instead of PSMs to communicate between applications. Also, there is maximum

number of channels limitation for the RFCOMM layer. Only thirty channels are

available.

Service Discovery Protocol (SDP):

This protocol is designed for remote device service discovery. As the Bluetooth

network is a dynamic wireless network, the topology of the network could change

from time to time. Network resources are limited as well (for instance, the

RFCOMM protocol only has 30 channels to use). The better solution for applications

is to dynamically use resources. If the master device dynamically associates a

channel to use, how could the slaves know which channel they should connect to?

SDP is the solution for this question. SDP provides many details in service queries

and device queries. A device, then, queries for a list of the services another device

 22

provides or for just the one it is interested in, using the SDP protocol.

Object Exchange (OBEX):

This is designed to transmit objects. All objects which operating system can

recognize can be sent by the protocol of OBEX. This includes pictures, audio clips,

ring-tones, text or binary applications.

To an end user, probably there are no differences resulting from the choice of

interface level. However, to a programmer, there are important differences. The

protocols below HCI interface are outside software control. For projects which use

Bluetooth for a continuous connection to achieve their goals, the protocols above

RFCOMM probably are too specific. The most used protocols for software

developers are SDP, L2CAP and RFCOMM. Another more important reason is these

three protocols are the essential layers of the Bluetooth stack and in general, they are

supported well in all Bluetooth devices. For developers with Internet programming

experience, the term port probably is much more familiar than the PSMs or channels.

The PSM in L2CAP and the channel number in RFCOMM actually follow a similar

programming logic. Also, from the programming point of view, L2CAP corresponds

to UDP programming and RFCOMM to TCP programming.

3.3 Brief Introduction of Camera Video Format

With development of the integrated circuit industry, the calculation capability of

embedded device increases greatly. Based on the increased processing ability, the

onboard camera has recently become standard on new generation mobile phones.

However, the embedded device still has less processing capability than a desktop PC.

Generally, the onboard cameras have less resolution and lower sampling rate than the

popular web cameras for the PC. In this section, I will explain some basic concepts

about camera video format, especially for P910i.

 23

Before talking about the details of P910i video stream, I will give some general

information about the colour system, which is the basis of the entire graphic world

including hardware devices and the software applications.

3.3.1 Colour space

Generally, colour space means a set which includes all possible colours. However,

there are some different colour spaces. The reason for the differences is that one

colour space contains all the possible results from a model, also known as colour

model. Therefore, for each colour model there is a colour space corresponding. A

colour model describes the way that digits represent a colour. Typically, a colour

model is composed of three or four components.

The different colour models were designed for different purposes. For example, the

RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) colour models are

mainly used in computer graphic related fields. YUV model is widely used in the

television broadcasting systems. CMYK (Cyan, Magenta, Yellow, Key) is a very

popular model for the printing industries. Also there are many other colour models

like YDbDr, RYB and CIELAB(L*a*b*) etc.. All these models have their own

features in different areas. In our project, we will not consider the details for all of

them. The ones we will be interested in are the RGB and YUV models.

3.3.2 The RGB colour model

As the name RGB implies, the RGB colour model represents all colours as

combinations of red, green and blue components. One colour in RGB colour space,

therefore, is formed by three values from the three primary colours, red, green and

blue. However, the RGB definition does not define what exactly ‘red’, ‘green’ and

‘blue’ are. Therefore, there are some pre-defined RGB colour spaces for use. sRGB

 24

(standard RGB, created by HP and Microsoft) space and Adobe RGB (developed by

Adobe System) space are most widely used in computer graphic processing.

Although there are many details in the specifications of sRGB and Adobe RGB

colour spaces, we will not consider any more detail than is necessary for our topic.

One important idea to understand is that the RGB colour model is a kind of additive

colour model. Any colour in the space is the result by adding the values of three

components. The following is a graph shows the results. Areas of overlap show the

effects of adding colours. The white in the middle results from adding equal and

large amounts of red green and blue.

Figure 3.4: Image shows the mixing result of red, green and blue

On a computer we can represent RGB colours in different ways: 16 bit (High

Colour) mode, 24 bit (True colour) mode, 32 bit mode and 48 bit mode. The main

difference is that the more bits that are used, the more levels the mode can represent.

The mode we are interested in is the 24/32 bit mode which is usually represented by

a 32 bit integer. Even in the 24 bit mode, most applications still use a 32 bit integer

to represent the colour although there are 8 bits left un-used. This is due to the

hardware word-aligned addresses accessing mechanism. For the 32 bit mode, the

extra 8 bits is used for other purpose like palette entry or transparency level. In the

 25

Windows system, the macro RGB is used for defining the colour. It provides 256

levels for each colour component. The combination of three zero valued components

is defined as the colour black and three 255s represents as the white colour.

In some applications, we also see a colour model called RGBA, in which the A

represents the transparency channel, also called alpha channel. RGBA uses a 24 bits

for RGB data and defines the extra 8 of 32 bits to represent 256 levels of

transparency. A well-known use for RGBA is the image format PNG.

3.3.3 YUV colour model

The YUV colour model is to represent the colour space as one luminance component

and two chrominance components. The luminance component (Y) is the level of

brightness, and chrominance components (U and V) provide colour as a pair of

colour difference signals, giving hue and saturation. This model is widely used in

television broadcasting standard.

There are many different YUV formats for different kind of signal sampling. YUV

formats can be treated in two groups, the packed and planar formats. The difference

is that the packed format takes Y, U and V samples for each pixel and treats them as

one, then saves all pixels in sequence; whereas the planar format saves the Y, U and

V samples in three separate planes. For the packed formats, there are Y411, Y211,

Y41T, YUYV and more formats. The planar formats have YVU9, YV12, YV16,

Y41B, I420, Y42B and more.

3.3.4 P910i Video Format

As the format used in our project is what we are interested in, this section will

explain the details of SonyEricsson P910i camera video format. P910i mobile phone

uses a different sampling system to all standard formats, so called user defined YUV

 26

4:2:0 data format. As described in User Guide to the Sony Ericsson Camera API, the

actual pattern follows the sequence,

for each even row, only the Y value included, 1 byte Y per pixel

for each odd row, 2 bytes Ys, one byte U and one byte V,

where U and V represent 4 pixels, the 2 Ys before UV and 2 Ys above

this row.

The format can be shown in Figure 3.5:

Figure 3.5: P910i video format. UV values shared with 4 Ys in the bold area

The frame size is also defined in the Camera API document, it is the same size as

QCIF (Quarter CIF). QCIF is part of the CIF (Common Intermediate Format) video

format standards in videoconferencing. The CIF standard describes the pixel

horizontal and vertical resolutions for YUV sequences video signals. QCIF is

defined as 176 pixels in horizontal size and 144 pixels in vertical size.

3.3.5 RGB YUV conversions

As the P910i video is packed using the YUV model and both the systems, MS

Windows XP and Symbian OS UIQ use RGB model to build all the user interface

 27

parts, conversion from YUV to RGB is necessary for our experiment.

After some research, several conversion formulae were found:

Formula from Keith Jack:
R = 1.164(Y - 16) + 1.596(V - 128)

G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)

B = 1.164(Y - 16) + 2.018(U - 128)

Julien formula:
R = Y + 1.403 * V

G = Y – 0.344 * U – 0.714 * V

B = Y + 1.770 * U

Microsoft formula:
C = Y - 16

D = U - 128

E = V - 128

R = clip((298 * C + 409 * E + 128) >> 8)

G = clip((298 * C - 100 * D - 208 * E + 128) >> 8)

B = clip((298 * C + 516 * D + 128) >> 8)

Where clip is to ensure a value is in range of 0 to 255

Avery Lee's JFIF formula:
R = Y + 1.402 * (Cr-128)

G = Y - 0.34414*(Cb-128) - 0.71414*(Cr-128)

B = Y + 1.772 * (Cb-128)

Where Cr = V and Cb = U

In the implementation, we have tested all the three formulas above and they all

reproduced the mobile phone captured images correctly in the PC side applications.

However, in the final implementation, the Microsoft is selected for its slightly better

colour expression, and also because it does not use floating point arithmetic.

3.4 Methods used

To solve our problem, some research and testing was done before designing the

 28

system. As this was the first time I had touched embedded system software

development, especially the Symbian UIQ application, I used some general methods

to make myself familiar with the system.

Study other work

Some other graphic processing projects, especially the papers they provided, were

studied. The focus for the studies was the image recognition methods. For example,

the methods were used to locate the camera and how the image analysis works?

The Internet research

I used Google to search for references to the Symbian OS, UIQ platform. The most

time searching was spent on Bluetooth related issues. Also, I have done some

research on image processing related issues, like colour spaces and the conversion

between different colour spaces.

Read and Write

There are many articles talking about Bluetooth programming and mobile phone

onboard camera programming. Sony Ericssion also provides an example in the

camera API package. I have read many articles and much example code. To make

some technical details more clear, I have written some test programs which include

the image binary algorithm, position finding algorithm and Bluetooth

communication tests. To understand how the UIQ program is organized, I have

written two small test applications. All the work above is to prepare for the better

completion of this project.

 29

Chapter 4

System Design

The system design for our project will be explained on the basis of the information

provided earlier. To achieve our goal, a smart phone acting as a wireless mouse, the

system is obviously composed of two parts, the mobile phone application and the PC

side application. From the point of development, mobile phone camera access, image

processing and Bluetooth network are the main parts of this project. The whole

system was designed using a traditional Client/Server model. On the PC side, it has a

server and a client, which is listening to the mobile device and processing the data or

commands from the mobile device. The mobile device has client software running,

which captures the raw video stream, does some processing to locate the position

and sends the result through Bluetooth to the PC.

The reason the image processing was implemented in the mobile client side is that

the transmission capability of Bluetooth is still not fast enough to transmit a raw

video stream. Thus, we must send as little data as possible through the Bluetooth

network.

The following graph shows the final design idea:

 Graph 1 architecture of design

Figure 4.1: The system architecture

Client on
Mobile
device

Bluetooth

Server on

socket data

request/ack

Server
socket

for
listening

Client socket

Mouse control
thread

commands

 30

In this chapter, I will explain in three sections: the image recognition; the Bluetooth

network; and the revised design based on the results from the first implementation.

4.1 Image Recognition

Image recognition will be discussed in three parts, the surface we are going to use,

the image to binary algorithm that generates a binary version of the image and how

the location is found based on the binary data (the intersection finding method).

4.1.1 Patterned surface

To help the location finding, physical markers are used in a similar way to that used

in many other projects including the mentioned projects in chapter 2. In our case, a

patterned surface is used to locate the position. The surface, a white paper, is filled

with parallel horizontal and vertical thick lines. Any white piece of paper can be the

surface. It is not necessary for it to be pre-prepared and the lines can be drawn with

any thick pen. The example shown in Figure 4.2 has lines drawn with a ruler.

However, hand sketched lines would suffice.

 31

Figure 4.2: The hand drawn pattern used to help position recognition

Figure 4.3: Mobile phone was tracking the intersections.

The distance between two lines need not be equal. Roughly spaced lines are enough

 32

to figure out changes of position. There are some constraints the surface should

follow,

1. The lines with same direction, horizontal or vertical, should not

overlap

2. Those horizontal or vertical lines should not be too far apart. This is to

ensure that, at any time, there is at least one intersection existed in a

captured frame

3. The lines should be thick enough. Ensure that clear lines (without

breaks) occur in the camera image.

When the camera is moving, the coordinate of the left top line intersection in the

image is calculated. The coordinates will be sent to the PC. The idea of using a grid

as the pattern was considered to provide a simple way to recognize and track

location because in normal operation, the camera is close to the surface and

movements will quickly take it out of range of single objects. The reason for thick

lines is that the camera is too close to the surface. Also, using grids could give some

extra information about the position, for example, the rotation to the nearest 90

degree.

4.1.2 Conversion to Binary Image

Many image processing methods start by converting a colour image into a binary

image. As compared to a colour image, a binary image only contains 2 colours,

which will simplify the problem and require fewer calculations in the following

image processing steps. Another important idea is that the binary image contains two

kinds of information, the one we interested in as the foreground colour and the one

we do not care about as the background colour. Based on these points the binary

image contains the information we need and binary processing is much easier and

 33

therefore much faster for the position finding process. Converting the YUV plane to

binary image should be done before further calculation.

4.1.2.1 Using Y plane only

As explained before, the raw captured video stream is encoded of YUV space.

Before the binary image is generated, we need an extra step, which is grayscale

image generation. The binary image will then be created from the grayscale image.

To convert a colour image into a grayscale image, the formula calculating the grey

level from the RGB values can be used directly. Therefore, the straightforward way

is to convert YUV space into the RGB space, and then create the grayscale image

from the RGB image. However, in our design, YUV is a special case. Y samples are

the set of luminance, which could be treated as grey levels directly. Thereby, the

design is to use the Y samples directly as the grey levels. The chroma components, U

and V will be ignored. In this way, the processing time will also be saved.

4.1.2.2 Using a Fixed Threshold Value

Once we have the grayscale image, thresholding will be done. At the beginning of

design, a fixed number was used as the threshold. The threshold value was taken to

be the grey level average of all pixels. The following images show original and the

converted images

Figure 4.4: Zoomed out image. Similar effects as Zoomed in image

 34

Figure 4.5: Converted binary image (threshold 85)

The quality of the binary image will affect the final result greatly. The converted

image shown above has a poor quality. The central area has several broken lines

which will make the next step very difficult. The problem is caused by the strong

illumination gradient. The distribution of luminance sample values is not as expected

which ideally would have a big gap between two groups of values.

0
100
200
300
400
500
600
700

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Figure 4.6: Luminance distribution

Figure 4.6 shows the luminance distribution of Figure 4.4. The horizontal axis

represents the range of sample values. The vertical axis represents the number of

sample values occurring. As seen above, the range of samples takes only about one

third of 256 different levels (between 40 and 130). Also, the threshold cannot

reasonably be selected from the distribution.

To reduce the effect of strong illumination gradient, an adaptive threshold method

(mentioned earlier) was used. The original adaptive threshold method is to calculate

an average value of a rectangle area around each pixel.

 35

Figure 4.7: Adaptive thresholding

For example, the average of nine pixels, or more, including pixel ‘a’ itself are

calculated. The average will be used as the threshold for comparison. If the average

is greater than the level of ‘a’, ‘a’ will become a white point, otherwise, it will be

converted to black.

Figure 4.8: One frame of captured stream

Figure 4.9: Using fixed value of threshold

Figure 4.9 shows the result using fixed value 85. The broken part of the horizontal

line will cause an inaccurate result in further processing. The worst part of the

converted result will always be the part which has the strongest illumination gradient

 36

affection. When the adaptive thresholding method is used, the result turned to the

following.

Figure 4.10: Result of using adaptive thresholding

Results were more reliable if the neighborhood size was increased from 3*3 to

21*21, which means the threshold is the average of 21*21 pixels around the target

pixel. The mean constant value is 7, which is used to eliminate the black noise on the

background.

However, the calculation is computationally expensive. It took too long to process

one frame in the mobile phone. The solution for this problem is using the fixed

threshold and adaptive thresholding together. In a certain area, the average is used

for processing each pixel within this area. In this way, the computing time is saved

and the quality of results is still acceptable as shown below.

Figure 4.11: The final result

Figure 4.9, 4.10 and 4.11 above also have been subject to a fine tuning process

 37

which fills one white pixel gaps in black areas, and speeds up next processing in

some cases.

4.1.3 Intersection finding

The goal of this step is to find the top left intersection of drawn lines in the binary

image generated from the last process. The algorithm used in intersection finding is

designed as following way,

start at top row of the binary image

for each row from left to right

 for each angle within certain range (-60 degree to 60 degree from horizontal line)

 for each pixel in the line at the current angle

 if it is white, break

 if it is the n-th black pixel, record the position as P and
 try the line through P at 90 degree rotated from the current angle

 if the n-th black pixel from P without any white found in both direction(up and down)

 the intersection found, which is P

 otherwise, continue

 otherwise, continue;

 end for

 end for

end for

The basic idea of this method is that it is trying to scan each row at all possible

angles. If there is a line found, it tries to determine whether the corresponding

vertical line exists. If all conditions are matched the left top intersection is found.

The only problem with this method in practice is that if the edges of the image match

horizontal or vertical lines the algorithm above will return an unreliable result. This

problem can be easily solved by selecting the point within central part of the image.

The image below shows the final result.

 38

Figure 4.12: Intersection finding

The scanning area is within the gray rectangle and the gray cross is the point the

method found.

4.2 Bluetooth network

4.2.1 Bluetooth protocol

Before designing the connection structure, some experiments were done. The mobile

phone package includes some PC based software which can be used to access a

mobile phone by Bluetooth. The bluetooth driver it used is from a company called

Broadcom and the bluetooth software is called Widcomm. During the first test of the

Bluetooth connection, everything was working as expected, including download and

upload of files between mobile phone and PC. Connections could be created easily.

However, the smartphone software package does not include the Widcomm software

development kit. At the time of looking at the Broadcom web, it charged more than

one thousand US dollars for its SDK, whereas Microsoft Service Pack 2 provides

bluetooth stack development SDK for free. Therefore, the Microsoft SP 2 was

chosen for implementing our bluetooth connection. At the time of writing this thesis,

I found Broadcom had changed their price strategy and the SDK can now be freely

downloaded after filling some user information.

 39

As Bluetooth provides several protocols for use, L2CAP is the one most applications

choose, as mentioned in the UIQ documentation. However, in early experimentation,

an connection using L2CAP between mobile phone and PC could not be created

properly. When the Widcom Bluetooth software is used, the connection was quite

easy as expected, whereas when the Microsoft Bluetooth stack was used, connection

with L2CAP layer was impossible. The socket can never be created in this case. It

might be due to some Bluetooth stack implementation or compatibility issues as

Widcomm has supported its product for years where Microsoft SP 2 is much

younger. Also I found one article written at the end of 2005 which said that the

Microsoft Bluetooth stack only support RFCOMM protocol. Based on the fact that

only RFCOMM could work for us, finally, the protocol RFCOMM was used. As

mentioned in the earlier chapter, RFCOMM was designed to emulating serial port

communication over L2CAP protocol. In practice, all methods used are mostly same

as using TCP programming, especially under Windows XP.

On the PC side, we intended that the server would setup a service called “Mouse

Camera”. This would have allowed the mobile device to query the device

information and discover, for example which channel the server was using. The UIQ

software in P910i would then have used the SDP protocol to look for the “Mouse

Camera” service and obtained the channel number from the server. However,

because SDP inquiries do not work in our environment, the final decision was to use

a fixed channel for communication. This will be explained in the next chapter.

4.2.2 Simple Video Transfer Protocol (SVTP)

Over Bluetooth communication, the project needs its own way to communicate data.

For example, position information, a raw video stream or a compressed video stream

could be transferred to the PC and some feedback could be sent back to the mobile

device. Therefore, a simple protocol, Simple Video Transfer Protocol was designed

and used as the method of communication in our system. The protocol is defined as

 40

follows.

a) Packet Header:

typedef struct {

unsigned char tag;

unsigned char type;

} SVTPHeader;

1. Byte 00: SVTP packet mark, always 0x18, meaning this is a SVTP packet
2. Byte 01: packet type, can be one of the followings,

00: flow control, 01: data packet, 02: Camera Info (not implemented)

b) For each packet type:

. Flow Control (FC, 00):

1. Byte 0: type of command, one of the following values:
 00: success (ACK), 01: error, 02: raw video, 03: position

. Data Packet (DP, 01):

1. Byte 0: command type
 00: reserved, not defined, 01: reserved, not defined, 02: raw video,
 03: position

. Camera Information (CI, 02): (not implemented)

1. Byte 0: size of captured frame. Currently only
 0: QCIF defined (176 * 144)
2. Byte 1: YUV format, Only
 0: 4:2:0 defined.

c) For each data packet:

Raw Video Stream (RVS, 02):
 Fixed data size (including header): 640, (for one frame, needs about 60 packets)
1. Byte 0 - 3: number of processing frame.
2. Byte 4: current fragment of this frame
3. Byte 5 - 8: length of the following data
4. Byte 9 – end: video raw data. Maximum buffer size is 0x18C0 (6336) bytes

Position Data (PD, 03)
1. Byte 0: horizontal coordinate x
2. Byte 1: vertical coordinate y
3. Byte 2: the camera rotation angle

 41

4. Byte 3: reserved, used in the final implementation for which button clicked

All control packets are sent from the PC to the phone and all Data packets sent from

the phone to the PC. The Tables below might display the packet structure better.

0 1 2
Mark CTL 0x00(success)
Mark CTL 0x01(error)
Mark CTL 0x02(raw video)
Mark CTL 0x03(position)

Packet Mark: 0x18 (Mark), CTL: 0x00 (control packet)

Table 4.1: Control packet structure

0 1 2 Byte: 3 - 6 Byte: 7 Byte: 8 - 11 Byte: 12 - end
Mark DATA CMD

type
Frame No. Fragment

No.
Length of
followings

Data (fixed
size of 600B)

Mark: 0x18, DATA: 0x01, CMD: 0x02, fixed size 12 + 594 = 606 bytes

Table 4.2: Raw video data packet structure

0 1 2 3 4 5 6

Mark DATA CMD X Y Angle Reserved

Mark: 0x18, DATA: 0x01, CMD: 0x03, fixed size 7 bytes

Table 4.3: Position data packet structure

The reason for the raw video packet including frame number and fragment number is

that, if a whole frame is put into the buffer to send, the PC side receives the data not

in one packet, but in several small packets sequentially. Therefore, the design was

changed to send smaller sized packets each time and include the frame number and

current fragment number with each.

As the initial idea was to do all possible calculations on the PC side, raw video

transmission was tried first. However, the transmission time was too long for one

frame. We decided to put the image processing part in the mobile device. Hence, in

the defined Simple Video Transfer Protocol (SVTP), finally, only the position data

packet structure is used.

 42

4.3. Revised Design

After some experiments, we met some problems. The location finding took longer

than expected. We required the mobile phone to process 15 frames within one

second. After some optimisation, the number of frames processed per second was

still within the range 0 to 4. Another annoying problem was when the intersection

found was leaving the frame or searching area, the algorithm sometimes found the

wrong intersections, or, in other words, when the target point was changed, the new

target point might not be the expected left top one. The situation is shown below.

Figure 4.13: Before A went out

The dashed rectangle is the searching area (camera image). The black horizontal and

vertical lines are the patterns the algorithm is looking for. The surface is moving

toward the left top direction, i.e. the camera is moving diagonally down to the right.

The left top intersection A in the searching window is found as the target point.

Figure 4.14: After A went out

 43

Figure 4.14 shows the next frame the camera captured. Intersection A now is out of

the searching window. The result for our algorithm will find the target point C. In the

PC, the mouse should keep in the same direction, but the actual target is changed to

C now(C is actually on the right bottom direction towards A). Inaccuracy in

recognition made it very difficult to detect and properly handle this situation. To

make mouse keep in the same direction, the last motion direction has to be recorded

for next move. Also this will require the server software to do some extra calculation

to determine if the target point has changed or not, in which case it should ignore

current target point information.

As the onboard camera is very sensitive to the changing of the light, the binary

image could sometimes become worse. When the camera is moving, the light

conditions are gradually changing. In the worse cases, the target was incorrectly

calculated as E or F. This makes the situation even more complicated. The mis-

calculated point would control the PC mouse to follow an un-expected behaviour.

To avoid such situation, the design was changed in a major way.

1. the pattern is changed to a solid circle (dot) with certain size. Again, this

can easily be drawn on a piece of blank paper, whenever it is needed.

2. the algorithm now is tracking the centre circle instead of finding the left

top intersection.

 44

Figure 4.15: The new pattern, a solid black circle

The advantage of using this pattern is that the target will no longer change, and

finding the circle needs less calculation than finding an intersection. The rotation

calculation is ignored which means floating point calculation in mobile device is no

longer needed.

The algorithm for finding the centre point of the circle is as following.

Figure 4.16: Tracking algorithm. The target dot shown as the gray solid circle

try each line from top to bottom

scan through the current line from left to right

 45

the top point A of the target should always be found first.

count the length of from A to B vertically. The half length of AB will be the radius

based on the position of A, calculate the position of point O.

This is a very simple algorithm, and it gives the server more reliable results.

 46

Chapter 5

Implementation

The design of the system is as stated in the previous chapter. In this chapter, we will

focus on how the design was implemented and improved based on test results. As an

experimental project, during the implementation, the functionality achieved is our

main interest. Our design ideas will be proved practically possible or not. The

functions we designed will work as expected or not function at all. We will not be

concerned with the usability of the software too much at this stage.

Following the design, the system will have two separate applications running on the

P910i and Windows XP respectively. The P910i application runs as a client and the

XP application sets up a Bluetooth server. The server, then, waits for position

information from the P910i to control the mouse pointer. Before the final

implementation, video data transmission was also been tested. The camera in the

mobile device, SonyEricsson P910i mobile phone, captures 15 frames every second

and each frame contains 38016 bytes. To transfer 15 raw frames in one second would

need a data transfer rate reaching at least 38016 * 8 * 15 bits per-second, which is

about 4.35Mbps. However, the USB dongle we used only provides at most 721kbps

and the result we achieved was at the rate of one or one half frame per second. This

was too slow for our mouse control application, but it did allow us to use the mobile

phone as a (low frame rate) web cam for the PC. This test program was not

developed further for the mouse application, but might have some interesting

applications of its own. Therefore, due to the low speed issue, we stop trying to send

raw video data. Instead, all calculations will be performed on the mobile side. Only

calculated coordinates will be sent to the PC.

In the following parts of this section, I will explain the two applications. In some

parts where we revised the design, I will give more details about the implementation.

 47

Also, some source code is presented for better understanding.

5.1 Mobile device application implementation

The client application should implement the following functions: accessing onboard

camera; converting raw video frames to binary images; finding the centre point of

the target dot; creating the Bluetooth connection and sending the position

information to the server. The processing sequence is very straightforward. The

main process flow can be simply shown in the following chart.

 48

Start

End

Video Frames
Ready?

Find the target

Is Bluetooth
network

connected?

Send result to the
Server

Does user

want to stop?

No

No

No

Yes

Yes

Yes

Close Bluetooth
connection

Make Bluetooth
connection

Figure 5.1: The main process flow for the client

Before explaining each class of the client application, I will introduce some general

Symbian GUI programming concepts.

 49

5.1.1 Symbian GUI programming

Symbian GUI applications are written in C++. However, due to the fact that

embedded hardware has the less calculation and storage capability, the Symbian

system has some features to reduce resource requirements.

5.1.1.1 Naming Conventions

Symbian programming has its own naming conventions. They are not necessary to

build the applications, but their use will help others to better understand the code.

T… classes (class names start with a capital T) are simple classes and are usually

allocated in the stack. These classes are data classes and do not contain other

external object references. They can be simply declared as normal C++ type or

structures.

C… classes are derived from CBase class. These classes are allocated in the heap. To

use these classes, developers use ‘new’ to allocate a C… object instance, and

manipulate them via pointers.

R… classes are the resource handling classes. The resources are usually owned

elsewhere and the R classes are the handles to access them.

M… classes are the interface classes. They contain pure virtual methods only. To use

these M classes, developers have to subclass the M classes and implement the virtual

methods.

5.1.1.2 Exception handling

Symbian C++ does not use the standard exception handling mechanism (try and

 50

catch). The main purpose of the Symbian exception handling mechanism is focused

on memory consumption. For example, if the application crashed, how could the

system release the memory which the crashed application had allocated?

The Leave mechanism was designed for this. “Leaving means that an exception (or an

abnormal event) has occurred” (the “Starter's Guide” in the UIQ SDK package).

All the methods with a suffix L in their names contain some operations which could

cause leave. When leave happens the developer should call the static function

User::Leave() to invoke the system leave mechanism. In Symbian coding, all C…

classes should be initialized by a NewL or NewLC function. The names will tell the

developers this operation might cause Leave if an allocation operation failed and

developer should use the Symbian method of catching the exception. The difference

between the suffices L and LC is L is only means leave but LC means the created

object has been pushed onto a cleanup stack already.

The Cleanup Stack was designed to de-allocate memory when leave occurred. The

idea is, when allocating a C… object, the pointer of the object should be pushed onto

a system maintained cleanup stack. If a leave happens, the static method

User::Leave() would invoke the cleanup mechanism to de-allocate the objects in the

cleanup stack. An example of using the cleanup stack is:

CMyClass * object = new CMyClass();

CleanupStack::PushL(object);// before some operations

 // which could lead to leave

 // the object is pushed onto

 // the system cleanup stack

SomeDangerousProcessL();

CleanupStack::PopAndDestroy();

To catch errors, Symbian system uses TRAP and TRAPD. TRAPD is a macro for

 51

TRAP that declares a return variable automatically. When the program leaves, the

cleanup stack mechanism will de-allocate any objects pushed onto the cleanup stack

in that method and then, look for the most recent TRAP. The TRAP, therefore, will

be used to handle the exception and retrieve the error reason or state. A typical use of

TRAP will be like the following:

TInt error = KErrNone;

TRAP(error, SomeDangerousMethodL());

If(error != KErrNone){

 …

}

or simply using the macro TRAPD,

TRAPD(error, SomeDangerousMethodL());

If(error != KErrNone){

 …

}

5.1.1.3 Two-phase construction

The Symbian system introduced a different way to ensure that even if the constructor

of an object leaves, the system can still handle the exception. As in the normal C++

design, if a leave occurred in the constructor, the destructor would not be called.

Therefore, the other objects created in the constructor will not be released. To handle

the “new” situation, Symbian OS uses a two-phase construction. In the constructor, it

is required that there are no memory allocation operations. All the allocation

operation are required to be in a member function, conventionally called

ConstructL(). Any C… class (allocated on the heap) should have a public static

function to do the two step construction and return a pointer to the object. The public

static member function is usually called NewL or NewLC, depending on whether or not

the object is pushed onto the cleanup stack.

 52

5.1.1.4 Symbian GUI application framework

All Symbian GUI applications are DLLs(Dynamic Link Libraries). The type of a

GUI application is declared as UID in the project specification file. The framework

of GUI application follows the MVC (model view control) pattern. For any GUI

application there are three classes which have to be implemented to satisfy the MVC

pattern.

A model class with the suffix “Document” is used to create the control class and is in

charge of all external resources.

The control class usually has the suffix “AppUi” and handles all user input. The

developer should notice that this class does nothing about interface operations.

However, it creates the view class to do the UI operations.

The view class handles all the user interface related operations. All the paint routines

should be implemented in this class. “View” is the most commonly used suffix by

this class.

Besides MVC classes, we still need an application class which is used to create our

document class and return the UID of this application. Also, for each application, the

MVC model needs an entry point since it actually is a DLL. There are two functions

that have to be provided. One is to initialize the DLL, named E32Dll. Another is

CQikApplication::NewApplication, which is used to create our DLL

instance;

5.1.2 Mobile Phone Class Details

The client has 11 classes including 2 interface classes. The structure is shown in the

following class diagram.

 53

CBTNetwork

<< interface >>

MBTNetworkObserver

CBTReader CBTWriter
 CCMApplication

CCMDocument

CCMAppView

CCMAppUi

CCameraProtocol

CMovementAnalyzer

<< interface >>

MButtonObserver

Figure 5.2: Client side class diagram

The code follows the UIQ 2.1 MVC framework.

CCMApplication: the main application which inherits from

CQikApplication. It will create our CCMDocument.

CCMDocument: the model class which is a subclass of CEikDocument. Since we

do not need external resources, this class is only used to create the CCMAppUi class.

MBTNetworkObserver: an interface class. All network related events will

correspond to its pure virtual methods respectively.

CBTNetwork: the Bluetooth network handler. It does all the network related

operations. The final result will be sent to the server by this class. In the case of

sending raw video frames, this class also receives the ACK packets from the server.

 54

CBTWriter: an asynchronous network sending class. It is a member object of

CBTNetwork.

 CBTReader: an asynchronous network reading class. It is a member object of

CBTNetwork.

CCameraProtocol: this class implements the SVTP protocol as described earlier.

This class will accept the calculated results, pack them into SVTP format, and then

gives the buffer to CBTNetwork.

CMovementAnalyzer: the image recognition class. It does all the image analysis

including conversion into grayscale, generation of binary, and the target finding.

CCMAppUi: the subclass of CEikAppUi. It handles the GUI input events. Also

this class inherits several other classes to receive camera, network, touch screen

events.

MButtonObserver: an interface class. Its purpose is to notify the CCMAppUi

class the touch screen user input.

CCMAppView: the user interface handler. All paint processes should be done in this

class. It is a subclass of CCoeControl.

5.1.2.1 Bluetooth network handler

CBTNetwork is the class which encapsulates all Bluetooth related operations.

CBTNetwork inherits from CActive class. CActive class is a system provided

asynchronous object. It is controlled by CActiveScheduler class. When a

request is completed, CActiveScheduler will call CActive’s member method

RunL. CActiveScheduler is an asynchronous service provider and handles all

 55

events of CActive objects in sequence. For each thread in a Symbian system, there

is only one CActiveScheduler which can handle many active objects. This is

the Symbian asynchronous call solution which is much less costly than having one

active object per thread. The steps for using CActive object are shown below.

. Add the class onto the CActiveScheduler before requesting any actions

 CActiveScheduler::Add(this);

. Issue a request

 SetActive();

. Process the results when request completed as shown before in void

CBTNetwork::RunL() method. The status of request completion is checked and

further action can be taken based on the results

Having the description of CActive object, we will explain how a CBTNetwork

object connects to the server. To connect to the server, requires the following steps:

. Connecting to system socket server. This will establish the sub-session

communication for our RSocket object iBTSocket to use:

iSocketServ.Connect();

. Set up the protocol to use. In our case, we use RFCOMM as the base protocol:
iSocketServ.FindProtocol(_L("RFCOMM"), pInfo);

. Select the remote device using a system provided dialogue. UIQ provides a ready-

to-use Bluetooth device selection dialogue, CQBTUISelectDialog, which will

list all Bluetooth devices the hardware can find. The user can then select the one the

server application is running on. When the LaunchSingleSelectDialogLD

returns, the remote device address will be assign to the one selected. The main

 56

purpose of this operation is to retrieve the remote device address.

CQBTUISelectDialog * dialog =

new (ELeave) CQBTUISelectDialog(
iRemoteDevAddr,
iRemoteDevName,
iRemoteDevClass,
CQBTUISelectDialog::EQBTDeviceFilterAll,
serviceFilter /*, ETrue */);

// popup Select Bluetooth device dialog

if(dialog->LaunchSingleSelectDialogLD()){
// if comes here, all parameters passed

// in CQBTUISelectDialog should be updated already

 return KErrNone;
}else return KErrCancel;

. Connect to the PC. To connect to the server, we use the remote device address just

obtained. Also, the channel that the server uses is needed as well. In our experiment,

to simplify the process, we use a fixed channel number, channel 1.
// iRFCOMMPChannel is 1

iRemoteSockAddr.SetPort(iRFCOMMPChannel);
iRemoteSockAddr.SetBTAddr(iRemoteDevAddr);
// open the subsession create before for communication

Tint aRetValue =
 iBTSocket.Open(iSocketServ, _L("RFCOMM"));
// connect to the remote device

iBTSocket.Connect(iRemoteSockAddr, iStatus);

. Event processing. As mentioned earlier, we have to check the values returned in

RunL function. In the method RunL, we use a switch statement to check the return

states (network connected, network broken, data arrived and others). Based on state

found, different events are sent to the CCMAppUi class.

For non-blocking communication, this class has also included two active attributes.

One is for writing data to the iBTSocket. Another is for reading data from the

iBTSocket. They are objects of the CBTWriter and CBTReader classes.

 57

To send network events to the control class CCMAppUi, CBTNetwork also has a

reference to an MBTNetworkObserver class. CCMAppUi is the actual object

which implements this interface class (as will be explained later). The event

notifications are simply done by calling implementations of the virtual methods of

MBTNetworkObserver.

As stated before, a fixed channel number is used for communication instead of using

the SDP protocol to retrieve the remote device channel number. The SDP queries

have been implemented in our code. However, using SDP to query the information

of the device which we selected will always return a system error. The error number

is -6312, which is documented in the Symbian OS error code listing as

KErrL2CAPRequestTimeout. There is no further information about this error in the

UIQ SDK documentation. Some posts on the Internet talk about similar situations

but in the S60 SDK which is slightly different from UIQ SDK. The solution

suggested for S60 SDK was to avoid keeping RHostResolver open once the remote

device was found. RHostResolver is the class used to retrieve remote device

addresses. It does the same work as CQBTUISelectDialog does, but without

the elegant user interface. However, using CQBTUISelectDialog, it is not

possible to alter the way in which RHostResolver is operated. Therefore, their

solution cannot be implemented in our system. So far, the SDP query function in our

experimental environment does not work. To check whether the SDP could ever

function properly, we have tested an open source program, BeMused, which

provides Bluetooth services on a PC, allowing a user to use the mobile phone to

control Media player and PowerPoint on the PC. BeMused is supposed to work in a

UIQ system. When experimenting with this application, the “find server” menu

always came out with exactly the same error number as we have. To make progress,

finally, we set the communication channel to a fixed number.

5.1.2.2 Image recognition

 58

CMovementAnalyzer is the class which implements all necessary image

processing routines. It does several steps, including converting to grayscale,

thresholding, intersection and centre point finding. Intersection finding was used in

the first implementation. As mentioned, the pattern in the final design was changed

to a solid circle. However, the method for calculating the left top intersection is still

in the code.

No matter which pattern is used, binary conversion is always needed. The method

ConvertToBinary(…) is used to do the conversion. The parameter for this

method is the raw frame buffer pointer. After processing is done, this class will hold

a buffer which contains binary data for this frame. The most time consuming process

in this method is thresholding. As explained in the design section, all pixels within a

certain area will use the same threshold for this area. To make the process faster, in

the implementation, a large area (size of 21 * 21 pixels) was used. After further

experiments, to achieve better binary result, the area for calculating the threshold

value was selected to be a larger rectangle (size of 41 * 41 pixels) which covers all

the to be calculated pixels.

Figure 5.3: Our threshold algorithm. when

converting area A to binary, area B will be used to

calculate the local constant threshold value.

Likewise, area D will be used to calculate the

threshold for converting area C

The result still gives us an acceptable binary image as shown below.

 59

Figure 5.4: Binary result. The left is a captured raw frame; the right is the binary result

Also a searching window was used to reduce the thresholding calculation. The initial

size of the window is the actual size of video frame. It is used to define the

conversion area. Only the pixels within this area will be converted to binary and the

rest will be ignored. When a target point is found, the searching window will be

centered at this point for the next search. The size will be changed to the size of the

square with twice length of the target diameter. In some situations, the binary image

turns out to be of very poor quality. The algorithm, hence, might not find the target.

In this case, the searching window will be set back to the initial case for the next

frame. The idea of this design was similar to CAMSHIFT algorithm described in

chapter two.

Once the binary image is obtained, another method of CMovementAnalyzer,

TrackTarget() can be used to find the centre point of the black circle, and its

diameter. TrackTarget() does line by line scanning. In practice, it scans every

alternate line and checks the first pixel of each pair of pixels in the line. If a black

pixel is found, the pixels above and before the current checked one are checked to

see if they are black or not. In this way, the first black pixel will be found with nearly

a quarter of the full scanning time. To determine whether the pixel found is the top

point of the target or just noise data, a minimum circle size is needed. Within the

minimum size, a number of evenly distributed points were tested.

 60

Figure 5.5: Minimum size test. All black pixels will be tested

In our implementation, there are 29 pixels within the minimum circle size (diameter

is 18 pixels) tested. If 20 or more out of 29 tests turned out the true results (blacks),

the point (A) is thought as a target top point. This process tests whether the black

area has big enough size, therefore rejecting small areas of noise.

Based on the point we have found, a binary search used to detect the size (diameter)

of the target circle. Only the column starting at point A is tested. As the minimum

length is known, the next pixel below the minimum length starting at A will be the

first one to test. If it is black, the test will jump down with a fixed length. Then, the

second check will be done. If it is black the test will jump down with half size of the

fixed length or jump up with the half length if it is white. Further tests will be made

until the jump length becomes 1. In the implementation, only 4 tests were need as

starting jumping length was chosen to be 18 pixels. After 4 tests, the jump length

will be 18/(24) = 1.125 which is close enough for our needs. After this process, the

circle information (centre position and diameter) are available.

As mentioned in the design section, intersection finding is no longer used in the

project. Since it was implemented in the first design version and the code is still in

the client source, I will explain briefly how it works. Basically, the

CMovementAnalyzer uses one simple call, named

 61

CalculateLTIntersection(), to perform all necessary calculations. It takes 3

steps to generate a result. The implementation tries TopDownScan(…)s on each

row and TopDownScan tries LeftRightScan()s at all possible angles (interval

of one degree). If the current pixel is black, a VerticalScanAt() will be done at

this point. These three private methods, TopDownScan(), LeftRightScan()

and VerticalScanAt(), have the same return. They return false if a white pixel is

discovered. The purpose of the last two methods is to find lines that match the

minimum length requirement.

In our experiments, we have found that camera in mobile phone generally has a low

shutter speed. This will cause a blurring problem when the mobile phone is moving

rapidly. The blurred images would make image processing stop early and our

algorithm would fail in these situations.

5.1.2.3 SVTP (Simple Video Transfer Protocol) implementation

The class CCameraProtocol implements Simple Video Transfer Protocol,

encapsulating point and raw video stream transfer. It provides a simply public

interface.

ReceivedData(TDesC8& aBuffer): processes ACK or CTL packets from the

Server.

SendFrame(TDesC8 &aBuffer): sends a raw frame to the server.

SendPosition(TUint8 x, TUint8 y, TInt8 theta, TUint8& aButton): sends

the target position to the server. For sending the circle tracking

results, the third parameter will be the diameter of the circle. The

last parameter is the clicked button id.

The implementation of these functions focuses on byte sequence organization. This

class also has references to the interface class MBTNetworkObserver and the

 62

network handler CBTNetwork. The first reference is to notify the CCMAppUi if

something is not obeying the protocol. The second one is for the network sending

and receiving tasks.

5.1.2.4 The control class

CCMAppUi is the control class of the MVC model. Actually all the classes are

connected and controlled by this class. It inherits from several super classes.

CEikAppUi: the base class for all control objects.

MBTNetworkObserver: the interface used to receive network events.

MCoeView: which receives view change events. If another application comes to the

front (which is called active), the client would be told and release

control of the camera so that other application could use it.

MCameraObserver: is to receive camera events

SonyEricsson::MViewFinderObserver: P910i specific interface which is

used to receive the event, “view finding finished”. The camera

processing was designed to find the current view first. The view, then,

has the video painted directly onto it.

MButtonObserver: is to catch those touch screen events.

Also, this class controls all other parts of the application. It has a network, a camera,

a protocol and a moving analyzer object as members. All these objects are organized

by this class and the UI notifications which will be shown by the view class are sent

via this class as well.

 63

One important thing to mention here is the number of frames captured each time.

The callback function FrameReady is provided by SonyEricsson API. This method is

called after capturing five frame. In the API document, it clearly says only five

frames is the only valid number for video capturing. It does bring us some

difficulties to catch up with the most updated frame. There will always be up to a

five frame latency for the video processing. We were never able to correct this

problem. Hopefully the next release of the API will work better.

5.1.2.5 The view class

As mention before, this class is created by the control class. It handles all the

painting routines for user interface. All touch screen events are received in this class.

To notify the control class about the user actions, MButtonObserver was

provided. MButtonObserver is an interface class which contains pure virtual

methods only. The control class, therefore, inherits this interface in order to receive

these clicking events.

A screen shot of the running application is shown below.

 64

Figure 5.6: Screenshot of a running mobile phone application. The application was

tracking the solid circle and the rectangle in the camera screen is the search area.

Note: this is not intended as an end user interface. It provides features that are

helpful in developing and debugging the application.

5.2 Windows application implementation

The Windows application is playing the role of a server and runs on a desktop PC. It

was developed in Visual Studio 2003 with Microsoft platform SDK. As stated

earlier, a fixed channel was used for our project Bluetooth communication instead of

setting up a Bluetooth service. The sequence of operations is that this application

sets up the Bluetooth socket and listens on the channel. A separate thread is provided

for controlling mouse movement. Once the server receives a connection request, it

creates a socket and accepts the connection. Then, the application waits for

information sent by the client device. When information is received, the server

checks the type of the information. If it is a position command, the application sends

the command to the mouse control thread. If it is a raw video data packet, the frame

will be displayed on the PC screen. The process can be shown in the following

 65

flowchart.

start

Setup Bluetooth
connection

Starting mouse
control thread

Has connection
request?

Create Bluetooth
connection

Receive packet?

Figure 5.7: Process flowchart of the server application

Position data or
raw frame data?

Send command to
mouse control thread

Display the
frame

Is connection
closed?

Quit program?

Yes

Yes

End

position

Yes

Yes

No

frame

No

No

No

 66

Before explaining the class details, I will provide a general outline of Bluetooth

programming on MS Windows. More detail about Windows XP Bluetooth

programming can be read in the MSDN (Microsoft Developer Network) website.

There are also numerous forum postings by people who have worked with MS

Bluetooth software.

5.2.1 Windows Bluetooth programming

In the chapter on system design, I mentioned that development in Windows would be

based on the Windows native Bluetooth libraries and APIs (Application

Programming Interfaces). All the server code uses native Windows Bluetooth stack

support. Microsoft Windows XP actually did not natively support Bluetooth devices

until Service Pack 1 was released. To write Bluetooth applications, developers have

to install the Microsoft Windows XP Platform SDK (which can be freely

downloaded from Microsoft website). To make the MS Bluetooth stack work

properly, the Bluetooth driver that came with the Bluetooth dongle (aerial) was not

installed to the system. We assume that Windows socket programming is familiar.

Developers who have no experience with Windows socket programming can easily

find plenty of articles describing the methods used.

Basically, the Microsoft Bluetooth API is an extension of the Window Sockets 2 API.

One of the differences is that Bluetooth socket uses some different data structures

than those used in TCP/IP programming. There is a basic structure SOCKADDR_BTH

which is used to initialize Bluetooth specific socket details. When binding the

address to a socket, a SOCKADDR_BTH will be passed in as a SOCKADDR pointer.

When creating the Bluetooth socket, the usage of the socket function follows this

form:

socket(AF_BTH, SOCK_STREAM, BTHPROTO_RFCOMM);

 67

The first argument is the socket type which means, in this case, it is a Bluetooth

socket. The second and the last arguments should be as shown. Currently, only the

RFCOMM protocol is supported. The last two arguments can not take any other

values. I have searched for MS supported Bluetooth protocols on the web (including

the MSDN website), but none of results turned out to be helpful except for one

article which said that the Microsoft Bluetooth stack only supports RFCOMM

protocol. After some experiments, only the RFCOMM protocol could be

successfully used to create the Bluetooth socket. Although there is another protocol

type defined in ws2bt.h header file, BTHPROTO_L2CAP, using this type would

always raise a socket error.

Another difference between Bluetooth socket programming and ordinary socket

programming is the Bluetooth service setup and query. As stated in the last chapter,

SDP is usually used for Bluetooth applications. A remote device can retrieve device

details from the service provider and show the services available. To setup a

Bluetooth service in Windows XP, the method WSASetService(…) is used to

register or deregister services. The function has a structure WSAQUERYSET as one of

its arguments and all service related details are specified in that structure.

To query for remote services, the WSALookupServiceBegin is used to start the

query. WSALookupServiceNext is used to retrieve the next available service.

Device details are returned if WSALoopupServiceNext is called successfully.

However, the code for setting up Bluetooth service was commented out for the

reason that the service inquiries always failed on the client (mobile phone). Channel

1 was always used for our system.

5.2.2 Structure of the server application

The class diagram below shows the structure of the server application.

 68

<< interface >>

CRemoteFrameObserver

Figure 5.8: Class diagram for the server application

CBTServer: the server socket implementation. It initializes the Bluetooth network

and waits for client connection requests.

CBTClient: a socket which does all the protocol related tasks.

CRemoteFrameObserver: an interface class used to notify the user interface of

network event.

CMouseServer: a mouse control object which will control the mouse movement

based on the commands it received.

CRemoteCameraDlg: the user interface class. All other objects will be organized

from this class. This object will control all other objects.

CBTClient

CBTServer

CRemoteCameraDlg

CDialog

CAsyncSocket

CMouseServer

 69

5.2.2.1 Bluetooth handler

CBTServer is the class which implements all the operations that a server needs.

The class inherits the MFC (Microsoft Foundation Class) class, CAsyncSocket, in

order to provide the non-blocking socket functionality. CAsyncSocket itself

provides some virtual methods which can be overridden to perform specific tasks. In

our case, the Bluetooth socket used these as follows:

. in the constructor, the Bluetooth address and the Bluetooth service

information were initialized.

. in method Create(), the Bluetooth socket was created and attached

to the CAsyncSocket member m_hSocket. Then, Bluetooth

service is started after registration and the socket is bound to the

address initialized in the constructor.

. in method OnAccept(…), a socket (CBTClient) would be

created for client connection once this method was called.

. in method OnClose(…), the class deregisters the Bluetooth service

and notifies the user interface since this method is called if the

connection has stopped for some reason.

. in method Stop(), the Bluetooth server stops all its services and the

any active connection socket (CTBClient) is deleted as well.

This class handles all actions including starting the Bluetooth server, stoping the

server and creating/deleting a socket for the connection. As mentioned in the client

implementation, the communication mechanism of objects was an implementation of

an interface class, CRemoteFrameObserver. It provides some pure virtual

 70

methods. CBTServer holds a reference to the interface class. Whenever a network

event occurs, CBTServer call StateChanged() of the

CRemoteFrameObserver. All objects inheriting the interface,

CRemoteFrameObserver, then, would know of the change by checking their

m_State members.

5.2.2.2 Protocol handler

All protocol related functions are implemented in the class CBTClient.

CBTClient is a subclass of CAsyncSocket. There was no need to do any extra

work here for the remote Bluetooth connection. After the OnAccept() of

CBTServer was called, this object would have been created and could be used in

the same way as in other TCP socket in Windows.

This class provides a couple of methods corresponding to different functionalities.

When the class receives data, it checks the packet head. If it was a control packet,

ProcessCtrlPacket(…) would be used for processing. Or,

ProcessDataPacket(…) would be called if it was a data packet. As for

receiving raw video frames, the server has to acknowledge (send an ACK message)

each packet received from the mobile phone. The method SendCtrlPacket(…)

was implemented for the purpose. Once the whole frame has been received,

GenerateFrame() would create the image for the frame. To notify the user

interface, this class has a pointer pointing to the implementation of

CRemoteFrameObserver object.

Actually, in the final implementation, the raw frame related methods were not used.

Only point position information was used.

5.2.2.3 Mouse controller

 71

Because of the mobile system limitation of the five frame latency mentioned earlier,

and the fact that in one second, the times of position information the server received

was in the range from 3 to 15. The mouse control class, CMouseServer, therefore,

was implemented to keep the mouse moving smoothly as expected.

CMouseServer was implemented as a separate thread. It provides four methods

for other objects to control the mouse.

StartServer: start the mouse control server and waiting for

commands. After calling this, the thread should start

running.

StopServer: stop the mouse control server.

IsRunning: return true if the thread is running, false otherwise.

MoveMouse: send a command to the mouse control server. The

mouse server then will set the mouse pointer to follow

the command and fire the mouse button event if the

command includes appropriate flags.

In method MoveMouse(…), a thread lock was used to prevent updating the mouse

status with the half changed member variables. In the implementation for the moving

speed, the distance to the centre point of the camera screen was taken into account.

If the circle was away from the centre point, the moving speed would become faster

than for closer positions. If the black circle is right on the centre point, movement

would stop.

For the thread programming, there was a global static C style method, named

MouseControlThreadProc(…), used as a callback function when starting the

 72

thread. When the function was executed, the current object was passed in this

callback function. The member Run() of the object passed in (CMouseServer)

would be called. In the method Run(), it keeps checking for a command and

controlling the mouse pointer until the exit condition occurred. In our project, the

mouse would keep moving for one and half seconds and the speed was gradually

changed to zero. Whenever, a new command was set by MoveMouse(…), all status

about the mouse moving would be changed immediately. In the experiments, the

usability improved after the mouse thread was implemented.

5.2.2.4 User interface object

The user interface class, CRemoteCameraDlg, is a subclass of MFC class

CDialog. It provides the buttons to start/stop the Bluetooth server, ask the mobile

phone to send raw video, or track the circle. A video frame can be displayed on the

form. Furthermore, this class implements the interface,

CRemoteFrameObserver, in order to receive network events.

CRemoteCameraDlg implements four pure virtual methods and overrides the log

method. When a whole raw video frame has been received, the FrameReady(…)

method is be called. The CImage would, then be displayed on the form. In the

method PositionReady(…), this object would the information to the mouse

server. Also, if any network status changed, StateChanged() would be called.

The following image shows the display of received raw video.

 73

Figure 5.9: Screenshot of early implementation. Only raw video frames

were sent. This image was taken after the connection closed.

In the final implementation, the server receives position information only.

 74

Figure 5.10: Screenshot of the server application. The bottom edit control with black

background was used for debugging. In the left top area, the circle was shown based

on the information received including the position and diameter of the circle. The

arrow to the centre point means the direction the mouse would move to.

 75

Chapter 6

Conclusion

In our experiments, the mobile device (phone) was successfully used as a PC input

device. As the main purpose of this project was to examine the possibility of using a

mobile device camera as input device, connected to a PC through Bluetooth wireless

communication, our conclusion is that such usage is possible. During the

experiments, video frames were successfully displayed in a PC application and more

importantly, the PC mouse could be controlled by the mobile phone. Based on our

tests, systems that extend the PC’s input devices to include handheld equipment can

be built using current hardware.

However, from our results we see that the usability of such a system still needs a lot

of improvement to be suitable for daily use. There are three main reasons for poor

usability. One problem is the limitation of P910i system software. The camera API

that the Symbian OS in SonyEricsson P910i provides is missing some features which

we really need in real-time video processing. The program always adds five-frame

latency from the time that action starts. Ideally, the program in the mobile phone

should start processing a frame immediately after the frame is captured. Another

issue is that the transmission speed of Bluetooth for most current Bluetooth devices

is not fast enough. Doing the image recognition in the PC could bring some more

interesting features to the system. The mobile phone camera could also act as a web

camera device for Windows PC, which could be used in any Windows applications.

As the PC has more calculation capability than the embedded devices, the result of

image recognition could be more accurate as well. As our experiments show,

transferring raw frames in real-time is not possible. The peak transmission rate for

Bluetooth 1.1 or 1.2 devices is 721 kbps. Even that was not reached during our

experiments. Also, we have found that in the most cases, the speed of transmission

depends on the position and direction of the Bluetooth dongle. This, therefore,

 76

finally forced the decision that image recognition could only be implemented in the

mobile phone.

Finally, as the hardware limitation, it is very common that the images captured

become blurred if a user moves the camera (mobile phone camera or other cameras)

at high speed. The problem cannot be solved by the software developers. Therefore,

the mobile phone camera may not be suitable for those applications which need high

speed mouse movement, for example, some shooting games. However, the blurring

effect could be used to advantage. A real mouse can be lifted off the surface and

moved without altering the curser position. High speed blurring offers a way of

achieving a similar effect with the phone “mouse”. Rapid movements would return

no position hits and could therefore be used for position shifting. We have not

implemented this idea, so cannot draw conclusions about its practicability.

All in all, to build such a system is feasible, though there are some limitations. The

five frame latency, about one third of a second, still may be acceptable in some

applications.

 77

Chapter 7

Further Work

Since the usability of the system needs improvement to provide a better user

experience, further work would mainly focus on these issues. To improve usability,

improvements could be made based on the conclusions in the last chapter.

At the hardware level, the Bluetooth specification version 2.0 provides a high speed

transmission of 2.1 Mbps. There are already some mobile phones implementing

Bluetooth version 2.0 and also some USB Bluetooth dongles. Using the faster

devices would make the server receive information from mobile device more

frequently.

Apart from the hardware issues, some software level improvements could be done in

the future.

To make more reliable Bluetooth connections, some other Bluetooth SDKs could be

used. For example, the Widcom Bluetooth SDK is more mature than the one

Microsoft provides. It may also be possible to dig deeper into the mobile phone

camera related APIs, allowing a system to process one frame at a time. This is

supposed to be possible with the “FrameReady” callback function. Later releases

may repair this bug or by doing some programming tricks, like pointer address

analysis, setting some flags in the passed in frame data buffer, a method of dealing

with one frame at each call could be found. If it was possible, mouse control would

be more responsive. Also, the target finding algorithm could be more accurate for the

circle information if some more lines instead of only the vertical and horizontal

diameters were checked. By changing the light conditions, the best or better light

condition could be found and by emulating the lights to make the binary algorithm

 78

work better. The user interfaces of the client and server could be designed again for a

better user experience.

 79

Bibliography

Adelmann, R., Langheinrich, M., & Floerkemeier, C. (2006). A Toolkit for Bar-

Code-Recognition and -Resolving on Camera Phones – Jump Starting the

Internet of Things.Workshop Mobile and Embedded Interactive Systems

(MEIS'06) at Informatik 2006. Retrieved October, 2006 from World Wide

Web: http://www.vs.inf.ethz.ch/publ/papers/barcodes2006.pdf

Bluetooth SIG, Inc. (2006, January). Specification of the Bluetooth System: Host

Controller Interface. Volume 04. Washington.

Bluetooth SIG, Inc. (2004, November). Specification of the Bluetooth System: Master

Table of Contents & Compliance Requirements, Covered Core Package

version: 2.0 + EDR. Volume 0-3. Washington.

Bradski, G. R.(1998). Computer Vision Face Tracking For Use in a Perceptual User

Interface. Intel Technology Journal, Q2, p15.

Dasgupta, K. (2000). Bluetooth Protocol and Security Architecture Review, Project

Submitted for Computer and Network Security course. The United States of

America: University of Tennessee.

Davies, E. (1990). Machine Vision, Academic Press, 1990, pp91 - 96.

Fisher, B., Perkins, S., Walker A., & Wolfart, E. (1994). Hypermedia Image

Processing Reference, Adaptive Thresholding. UK: University of

Edinburgh. Retrieved May 11, 2006 from World Wide Web:

http://www.cee.hw.ac.uk/hipr/html/adpthrsh.html

 80

http://www.cs.utk.edu/%7Edunigan/cs594-cns00/intro.html
http://www.cee.hw.ac.uk/hipr/html/copyrght.html

Gonzales, R., & Woods,R. (1992). Digital Image Processing, pp443 - 452. Addison-

Wesley Publishing Company.

Hansen, T. R., Eriksson, E., & Lykke-Olesen, A., (2005). Mixed Interaction Spaces

– a new interaction technique for mobile devices, UbiComp 2005. Tokyo,

Japan.

Jain, A. (1986). Fundamentals of Digital Image Processing, p408. Prentice-Hall.

Kato, H. & Billinghurst, M. (1999, October). Marker tracking and hmd calibration

for a video-based augmented reality conferencing system. Proc. IWAR, 10,

pp85-94.

MSDN from Microsoft Official Website. (2004). Converting Between YUV and

RGB. Retrieved November, 2005 from World Wide Web:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wceddraw/html/_dxce_converting_between_yuv_and_rgb.asp

Reitmayr, G. & Schmalstieg, D. (2003). Location based Applications for Mobile

Augmented Reality. Proc. 4th Australasian User Interface Conference.

pp65-73, Adelaide, Australia.

Rohs, M.& Gfeller, B. (2004). Using camera-equipped mobile phones for

interacting with real-world objects. Advances in Pervasive Computing.

Retrieved January 9, 2006 from World Wide Web:

http://www.vs.inf.ethz.ch/res/papers/rohs-gfeller-visualcodes-2004.pdf

Schall, G., Newman J., & Schmalstieg D. (2005, June). Rapid and Accurate

Deployment of Fiducial Markers for Augmented Reality,Proc. 10th

 81

http://scholar.google.com/url?sa=U&q=http://www.vs.inf.ethz.ch/publ/papers/rohs-gfeller-visualcodes-2004.pdf
http://scholar.google.com/url?sa=U&q=http://www.vs.inf.ethz.ch/publ/papers/rohs-gfeller-visualcodes-2004.pdf
http://www.vs.inf.ethz.ch/res/papers/rohs-gfeller-visualcodes-2004.pdf

Computer Vision Winter Workshop. Retrieved March 16, 2006 from World

Wide Web: http://www.icg.tu-graz.ac.at/pub/pdf/schall05cvww.pdf

Sony Ericsson Mobile Communications AB. (2003, August). User Guide to the Sony

Ericsson Camera API.

Sony Ericsson Mobile Communications AB. (2004, October). Developers Guidelines: UIQ

C++ and PersonalJava-P800, P900 and P910 series. Retrieved October, 2005

from World Wide Web:

http://developer.sonyericsson.com/getDocument.do?docId=65023

Symbian Ltd. (2002). How to use the Camera API. Retrieved October, 2005 from

World Wide Web:

http://www.symbian.com/developer/techlib/v70sdocs/doc_source/devguide

s/cpp/multimedia/onboardcameraguide/HowToUse.guide.html

Symbian Ltd. (2002). System panic reference. Retrieved October, 2005 from World

Wide Web:

http://www.symbian.com/developer/techlib/v70sdocs/doc_source/reference

/SystemPanics/index.html#PanicsReference%2eindex

Symbian Software Ltd. (2004). Symbian OS v7.0 help documentation: UIQ 2.1 SDK.

Wikipedia Encyclopedia. (2006). Absolute color space. Retrieved January, 2006

from World Wide Web: http://en.wikipedia.org/wiki/Absolute_color_space

Wikipedia Encyclopedia. (2006). CMYK color model. Retrieved January, 2006 from

World Wide Web: http://en.wikipedia.org/wiki/CMYK_color_model

Wikipedia Encyclopedia. (2006). Color model. Retrieved January, 2006 from World

 82

http://www.symbian.com/developer/techlib/v70sdocs/doc_source/reference/SystemPanics/index.html#PanicsReference%2eindex
http://www.symbian.com/developer/techlib/v70sdocs/doc_source/reference/SystemPanics/index.html#PanicsReference%2eindex

Wide Web: http://en.wikipedia.org/wiki/Colour_model

Wikipedia Encyclopedia. (2006). Color space. Retrieved January, 2006 from World

Wide Web: http://en.wikipedia.org/wiki/Colour_space

Wikipedia Encyclopedia. (2006). OCIF. Retrieved January, 2006 from World Wide

Web: http://en.wikipedia.org/wiki/OCIF

Wikipedia Encyclopedia. (2006). RGB color model. Retrieved January, 2006 from

World Wide Web: http://en.wikipedia.org/wiki/RGB_color_model

Wikipedia Encyclopedia. (2006). YCbCr. Retrieved January, 2006 from World Wide

Web: http://en.wikipedia.org/wiki/YCbCr

Wikipedia Encyclopedia. (2006). YUV. Retrieved January, 2006 from World Wide

Web: http://en.wikipedia.org/wiki/YUV

Wilson, D. (2006). RGB/YUV Pixel Conversion. Retrieved November, 2005 from

World Wide Web: http://www.fourcc.org/fccyvrgb.php

Wilson, D. (2006). YUV Formats. Retrieved November, 2005 from World Wide

Web: http://www.fourcc.org/yuv.php#Planar%20YUV%20Formats

 83

http://en.wikipedia.org/wiki/Colour_space
http://www.fourcc.org/email.php
http://www.fourcc.org/fccyvrgb.php
http://www.fourcc.org/email.php
http://www.fourcc.org/yuv.php#Planar%20YUV%20Formats

