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Abstract

This thesis examines the dynamical behaviour of incorporating NMDA (an excita-
tory neurotransmitter) for the electrodynamic model of the cerebral cortex. The
model used is the mean-field model developed by Steyn-Ross et al. (2005) which
describes the behaviour of the cortex in terms of parameters averaged over spatially
localised populations. The behaviour of the model is determined by the four control
parameters: inhibitory effect λi, subcortical drive s, and NMDA neurotransmitter
effect set by an excitatory factor λe and the magnesium concentration C. Adopting
this model could give a better understanding of the cortex functionality and the
anaesthetic mechanism.

The model predicts that there are either one or three stationary states available to
the cortex. We identify two of these with “highly activated” state and a “quiescent”
state and focus on the transition between the two. Theoretical stability predictions
(eigenvalue analysis) verified by a numerical simulation show that the system is
unstable between the two Hopf bifurcations. In addition, in the stable region the
steady states remains stable under a small perturbation, while in the unstable region
either a transition between states or a limit cycle (oscillation) occurs depending on
the position of the steady state.
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Chapter 1

Introduction

In 1997 Dr Moira Steyn-Ross (a theoretical physicist at Waikato University) was
given a new research by Dr Jamie Sleigh (a senior anaesthetist at Waikato Hospi-
tal). Dr Sleigh noticed that the anaesthetised patients went from consciousness to
unconsciousness suddenly rather than gradually as the anaesthetic concentration is
increased. Since then the Waikato cortical modelling group (Dr Moira Steyn-Ross,
Dr Alistair Steyn-Ross, Dr Jamie Sleigh, and Dr Marcus Wilson) started developing
a mean-field model to have a better understanding of the anaesthetic effects on the
human cerebral cortex. Their main aim was to theoretically describe the behaviour
of the electrical activity in the cortex of a person undergoing anaesthesia. They
predict that the cortex can be either “highly activated” or “quiescent”. As the
anaesthetic concentration is increased, a sudden phase transition occurs at a critical
concentration, from the conscious state to unconscious state.

The awake −→ asleep switchover can be understood as being analogous to the
physical phase transition that happens as water freezes to form ice. There is no
intermediate state between liquid water and solid ice, instead the transition occurs
abruptly.

Measuring electroencephalogram (EEG) signals from the brain determines whether
a patient is conscious or unconscious. However, consciousness-monitoring devices
can be inaccurate, in some cases an anaesthetized patient woke up during the oper-
ation while he was reported unconscious. But that patient might not be able to tell
the surgeon that he is awake because the drugs used to induce unconsciousness have
the effect of stopping muscles “flinching”, paralysing the body during the surgery.
Also, anaesthetics are known to cause loss of memory around the operation time.
Therefore, an awake patient most likely would forget this traumatic situation before
reporting it.

An accurate cortical model (such as the Waikato model) could be used to under-
stand how anaesthetics work. Ideally, such a model could identify when a patient is
about to wake up during the operation, alerting theatre staff that more anaesthetic
should be administered to keep the patient unconscious. Hence, more anaesthetics
might be given to him to stay unconscious until the operation is finished. This might
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2 Introduction

improve patient safety and reduce the nightmare risk of inadequate anaesthesia.

1.1 Thesis overview

The aim of this thesis is to examine the dynamical behaviour of incorporating NMDA
(an excitatory neurotransmitter) into the Waikato cortical model.

A brief review of the neurophysiology is given in Chapter 2 in order to understand
the biology behind our model. I start this Chapter by introducing the brain parts
and defining the neuron and its structure. Then the electrical activity generated by
a typical neuron was discussed, as well as neural communication. The categories
and mechanism of anaesthesia are presented. Since NMDA effect our main concern
in this thesis, it is discussed in the end of this Chapter.

Chapter 3 is about modelling the cerebral cortex. It starts by describing the
mean-field model and giving a brief history of mean-field models, how these models
improved over the time and what contribution each neuroscientist has made. Before
we discuss the Steyn-Ross et al. (1999) model we give more detail about three
relevant models: Hodgkin and Huxley (1952), Tuckwell (1988), and Liley et al

(1998, 1999, 2002). Then the equations of the Steyn-Ross et al. (1999) model are
derived and explained in detail.

In Chapter 4 the effects of NMDA is introduced to our cortical model by following
Jahr and Stevens (1990). After introducing the NMDA to the system, the station-
ary states are numerically computed. The main four input parameters [inhibitory
neurotransmitter λi, subcortical drive s, NMDA excitatory neurotransmitters (λe
and magnesium concentration C)] were varied to examine their effects on the steady
states. We conclude this chapter by a theoretical stability prediction.

In Chapter 5 I simulate the system numerically using the one-step stochastic
Euler method. Finally I discuss the results of the numerical simulation and compare
them with the theoretical predictions of Chapter 4. In Chapter 6 a brief summary
is given, as well as suggestions for further work.

1.2 Original work

The majority of this thesis is my own original work (Chapters 4, 5 and 6) while
Chapters 2 and 3 give a summary of other people’s work. However, I used sometimes
other people’s work for the sake of completeness. I received a beneficial guide from
Dr Moira Steyn-Ross in formulating the model equations and their analysis. The
nmda ss finder.m code is written by D. A. Steyn-Ross to locate the steady states.
Some other codes are written by me with some help from Hono Kayano. Apart from
that I did all needed calculations and analysis.



Chapter 2

Neurophysiology

2.1 Brain and neuron

The human brain is the most complex organ in the body (Tortora and Grabowski
(2000)). The main four parts of the brain are: brain stem, diencephalons, cerebel-
lum and cerebrum. The brain stem is located between the spinal cord and the dien-
cephalons; it includes the midbrain, pons and medulla oblongata. The diencephalon
stretches from the brain stem to the cerebrum and consists of the thalamus, hy-
pothalamus, epithalamus and subthalamus. The second largest part of the brain is
the cerebellum which is located in the inferior posterior portion of the head. It is
divided into two large hemispheres, and made up of ten smaller lobules. Its essen-
tial function is to coordinate skilled movements and regulate posture and balance.
Cerebrum is considered to be the largest element of the brain which lies in the top of
the brain stem. It is also divided into two halves, left and right hemispheres and has
four lobes: frontal, parietal, occipital and temporal lobes. It plays an important role
in providing people with ability of reading, remembering, arithmetic and creating
other significant skills.

Looking at the brain from a wider perspective, some regions look white (white
matter) and glistening while others tend to be gray (gray matter). The white matter
contains the myelinated axons from many neurons (long distance wiring) where
myelin is white looking substance. The gray matter contains neuronal cell body,
dendrites and axons where there is little or no myelin so it looks more grayish.
It actually forms a layer (roughly 3 mm thick) around the cerebrum called the
cerebral cortex. Projections (wiring connections) to and from the cerebral cortex
are connected to the white matter which is located below the cerebral cortex.

Neurons (or nerve cells) are tiny data processing units that are thought to be
responsible for most of the brain functionality located in cerebral cortex. There
are approximately 100 billion neurons in the cerebral cortex and each neuron is
connected to many other neurons, generating a vast neural network. Each neuron
can either be excitatory or inhibitory, and it is believed that the cerebral cortex
consists of 85% excitatory neurons and 15% inhibitory neurons (Braitenberg and
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4 Neurophysiology

Schüz (1991)).

A single neuron (shown in Fig. 2.1) is composed of three parts: cell body (soma),
dendrites and an axon. The soma (or cell body) has a cell nucleus surrounded by
cytoplasm. The dendrites (dendritic trees) are generally short, extremely branched
projections which are directed outward from the soma. The fundamental role of the
dendrite is to sample its chemical environment by receiving inputs from surrounding
neurons. The axon has a long slim cylindrical shape that stretches out from the cell
body and ends in branched root projections. The role of the axon is to transmit
information (nerve pulses) from the soma to the surrounding neurons.

Figure 2.1: Diagram showing neuron structure. Each neuron consists of three main
parts: the soma or cell body, the dendrites and the axon. [http://scienceblogs.
com/purepedantry/2006/07/background_to_the_20_year_coma.php]

2.2 Electrical signals in neurons

Each neuron, like other cells, contains ionic fluid (intracellular fluid), and is sur-
rounded by ionic fluid outside its membrane (extracellular fluid). These two fluids
have differing concentrations of certain ions (e.g. K+, Na+) causing a potential dif-
ference to be generated across the neuron’s membrane (membrane potential). The
extracellular fluid is used as the reference that defines zero potential. The neuron is
said to be at rest when it is not receiving stimuli from its dendritic tree. The resting
potential is found to be roughly −70 mV relative to the defined zero potential. At
resting membrane potential, the buildup of the negative ions in the intracellular
fluid equals the buildup of the positive ions in the extracellular fluid.

The neuron’s membrane contains ion channels that allow specific ions to diffuse
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across the membrane. According to Tortora and Grabowski (2000) there are four
main ions in a neuron intracellular and extracellular fluid: potassium (K+), sodium
(Na+), calcium (Ca2+) and chloride (Cl−). There are two types of channels: leakage
and gated channels. Leakage channels are always open and have higher permeability
to some particular ions (typically membrane permeability to K+ is higher that Na+).
In contrast, some sort of stimulus is required to cause the gated channels to open.
For example, a change in membrane potential opens K+ channels during an action
potential. In all cases, the diffusion of ions across a membrane channel causes a flow
of current that can change the membrane potential.

2.3 Neuron communication

There are two types of electrical signals in neural communication: graded potentials
and action potentials. The action potentials allow short and long distance com-
munication within the body, while the graded potentials only allow short distance
communication (Tortora and Grabowski (2000)).

When a stimulus causes the gated ion channels to open or close in a membrane,
a neuron produces the graded potential which is a small deviation from the rest-
ing voltage that makes the membrane either more polarised (more negative) or less
polarised (less negative). The less polarised case is called depolarising graded po-
tential, while the more polarised case is called the hyperpolarising graded potential
as shown in Fig.2.2.

If the depolarisation reaches a certain threshold value (approximately −60 mV),
the gated ion channels open, allowing the neuron’s membrane to become less neg-
ative generating a pulse of voltage called an action potential (neuron’s membrane
fires). The action potential mainly consists of depolarising and re-polarising phases
as shown in Figure 2.3. The action potential cycle starts at the resting membrane
potential (K+ and Na+ are closed). The stimulus causes depolarisation to threshold
(Na+ and K+ channels open), followed by a re-polarising phase in which Na+ chan-
nels are inactivating while K+ are still open, then an after-hyperpolarising phase
where Na+ are in resting state while K+ are still open, and finally back to the
resting state.

In order to understand the communication in the neural nervous system, it is
essential to first understand the synaptic communication between two neurons. The
neuron sending the signal is called pre-synaptic, while the neuron receiving the signal
is called post-synaptic. Between these two pre-and post-synaptic neurons there
exists a gap called the synaptic cleft. The communication is done via electrical
and chemical signals, where the electrical activity is accountable for the flow of
information around the neuron while the actual communication between neurons
is achieved by a chemical process. The overall communication process starts when
the pre-synaptic electrical signal (nerve impulse) is converted into a chemical signal
(called neurotransmitter), that gets diffused across the synaptic cleft and acts on
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Figure 2.2: Graded potential; most graded potentials appear in the cell body and
dendrites (dashed outline). (a) The membrane polarisation becomes more negative
than the resting level (hyperpolarising graded potential). (b) The membrane polar-
isation becomes less negative than the resting level (depolarising graded potential).
[Source: Fig. 12.10 of Tortora and Grabowski (2000)]

receptors in the post-synaptic neuron’s membrane, causing a post-synaptic potential
and finally converted back to an electrical signal again. Figure 2.4 explains the steps
of the synaptic communication as following:

1. Action potential arrives at the pre-synaptic axon;

2. Depolarising phase of the action potential in which both Ca+ and Na+ channels
are normally opened;

3. Increase in the concentration of Ca2+ inside the presynaptic neuron triggers
some chemical process that releases neurotransmitter molecules into the synap-
tic cleft;

4. Neurotransmitter molecules diffuse across the synaptic cleft and bind to neu-
rotransmitter receptors in the post-synaptic neurons’s membrane;

5. Binding of neurotransmitter to their receptors opens the channels and allows
particular ions to flow across the membrane;

6. Ionic flow causes depolarisation or hyperpolarisation of the postsynaptic mem-
brane depending on which ions the channels admit;

7. If depolarisation reaches threshold (roughly −60 mV), one or more action
potentials are generated.
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Figure 2.3: Action potential (AP) or impulse. When the neuron membrane is de-
polarised by a stimulus, an action potential is generated. [Source: Fig. 12.11 of
Tortora and Grabowski (2000)]
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Figure 2.4: Signal transmission at a chemical synapse. Neurotransmitter molecules
are released from a presynaptic neuron and bind to receptors in the membrane of
the postsynaptic neuron, then a postsynaptic potential is produced (may eventually
lead to an action potential). [Source: Fig. 12.14 of Tortora and Grabowski (2000)]

2.3.1 Excitatory and inhibitory post-synaptic potential

The post-synaptic potential generated by the neurotransmitter can be either exci-
tatory or inhibitory. If the neurotransmitter causes the post-synaptic membrane to
depolarise, then the potential generated is called an excitatory post-synaptic po-
tential (EPSP). In contrast, if it causes the post-synaptic membrane to become



2.4 Anaesthesia 9

hyperpolarised, then the potential generated is called an inhibitory post-synaptic
potential (IPSP).

The EPSP occurs when the gated channels open allowing Na+, K+ and Ca+

ions to pass through, but the inflow of Na+ is greater than either K+ outflow or
Ca+ inflow. The generation of the EPSP does not necessary mean that a firing will
occur but it makes the neuron more excitable and hence more likely to fire in the
next EPSP.

On the other hand, the IPSP occurs when the gated Cl− or K+ channels open.
When Cl− channels open, the membrane permeability to K+ increases causes more
diffusion of K+ outwards and leading to a more negative membrane and hence less
likely to fire.

2.4 Anaesthesia

Anaesthesia is categorised as a crucial clinical and surgical medication as it has
the ability of safely and reversibly render a patient unconscious. This surgical rev-
olution, started in the 1840s by Oliver Wendell Holmes, allowed many advanced
and complicated surgeries to be performed. The anesthetised patient may have the
following effects: lack of pain sensation, lack of memory and muscle relaxation.

Depending on the type of surgery and the patient’s medical condition, one of
four broad categories of anesthesia can be used:

1. Local anesthesia: This type of medication is given to block sensation at a
particular part of the body while the patient remains conscious. Usually an
injection of local anesthetic is given in the area of nerves that provide feeling
to that part of the body;

2. Sedation: This medication makes a patient “drowsy” in an effort to make
him/her more comfortable. It does not result in complete unconsciousness but
can result in amnesia (lack of memory) and the patient may “fall asleep” for
a period of time;

3. General anesthesia: This medication causes the patient to be totally uncon-
scious yet his vital physiological functions, such as breathing and maintenance
of blood pressure, continue to function.

Throughout this thesis, the general anesthesia is the type that is studied and
assumed for the modelling. According to Guedel (1937), there are four stages in the
induction of general anaesthesia:

1 Analgesia and amnesia: Patient remains conscious while experiencing
pain relief and dreamy disorientation;

2 Delirium: Consciousness is lost with possible signs like: rise in blood
pressure and irregular breathing, breath holding, swallowing, vomiting
and uncontrolled violent movements;
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3 Surgical anaesthesia: At this stage the surgery is safe where breathing
returns to regular, skeletal muscles are relaxed, eye movements slow;

4 Respiratory paralysis: This is the anaesthetic crisis stage where the
patient’s respiration stops; death from circulatory collapse will follow
without assisted ventilation and circulatory support.

It has been found that it is possible for an apparently anaesthetized patient
to wake up during an operation, turning the operation into a nightmare. To pre-
vent this, the anaesthetist should monitor the movements and the behaviour of the
patient throughout the operation’s duration and adjust the drug amount and con-
centration as required. Patient behaviour is an indirect and imprecise measure of
the anaesthetic depth, and may lead to under or overdosing the anaesthetic drug,
Kuizenga (2001).

To be more precise in determining brain activity, a device was invented to indi-
rectly measure the electrical activity inside the cerebral cortex via electrodes placed
on the scalp. This device draws a voltage-vs-time traces known as EEG (elec-
troencephalogram) that the anaesthetist can use to determine if changes in drug
concentration are needed.

According to Steyn-Ross (2002), an observer of a patient under anaesthetic effect
would notice a change in the inhibition/excitation of the brain at particular stages
of the anaesthesia. There is a reduction in brain activity at stage 1 after the drug is
given. This brain inhibition is followed by an abrupt excitation state found in stage
2. The brain then goes back to a full inhibition state in stage 3 where surgeries
are performed. The conscious-to-unconscious transition (stage 2 to 3) looks similar
to a classical first-order thermodynamic phase transition in physics. Therefore he
coined the phrase “Anaestheto-dynamic phase transition” for this abrupt change in
the brain state induced by a general anesthetic drug.

2.5 Anesthetic mechanism

Despite the use of general anesthetics for more than 150 years, its mechanism of
action inside the brain remained a mystery for a long time. However, with the
use of modern advanced scientific knowledge and experimental techniques, scientists
have made good progress in understanding the brain’s activity and the anesthetic
mechanism. Understanding the types of synaptic transmission would give a possible
explanation about changes in brain activity during anaesthesia.

There are two types of synaptic transmissions: excitatory and inhibitory trans-
mission. The type of the transmission depends on the type of neurotransmitters
and the corresponding ion channel receptors that they interact with. The inhibitory
transmission mainly uses a neurotransmitter called GABA (γ-aminobutyric acid)
which interacts with GABA receptors that are permeable to negatively charged
chloride ions (Cl−). The main effect of GABAergic anaesthetics (e.g. propofol)
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is to prolong GABA channel opening, increasing the postsynaptic inhibition. This
would lead in opening these channels for longer time generating a hyperpolarising
wave and hence making the neurons less likely to fire, and causing unconsciousness.
Franks and Lieb (1997) argue that this explains the change in brain activity caused
by general anaesthetics. Fig. 2.5 illustrates the interaction between chloride ions
and the GABA receptor.

Figure 2.5: A GABAergic model for anaesthetic action: (a) An action potential at
the membrane of an inhibitory presynaptic neuron causing GABA neurotransmitter
to be diffused across the synaptic cleft. The GABA receptors in postsynaptic neu-
ron’s membrane open to the chloride ions Cl− resulting in hyperpolarisation. (b)
The effect of prolonged opening of the postsynaptic GABA channels leading to an
increase in inhibition. (c) Structure of each channel with its five protein subunits.
(d) The structure of each subunit of each channel. [Source: Fig. 1 of Franks and
Lieb (1997)]

The GABA receptor shown in Fig. 2.5(c) is simplified as a block diagram in
Fig. 2.6. Inhibition occurs when the GABA neurotransmitter binds with the GABA
receptor molecule causing hyperpolarisation. Overall, this enhancement of inhibitory
effect is thought to be the basis of the so-called GABAergic anaesthetics that lead
to fully unconsciousness state.

The second type of synaptic transmission is excitatory. According to Waters and
Machaalani (2004), the L-glutamate (amino acid) neurotransmitter interacts with
glutamate receptors to allow the ingress of positively charged sodium ions (Na+),
causing depolarisation waves in the postsynaptic neuron, making it more likely to
fire. Thus an alternative method for inducing anaesthesia would be to reduce the
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Figure 2.6: A block-diagram of the GABA receptor: Inhibition occurs when the
GABA neurotransmitter binds with the GABA receptor molecule causing hyperpo-
larisation. [Source: Fig. 1.3 of Steyn-Ross (2002)]

effectiveness of these excitatory synaptic events.

The excitatory synaptic transmission activates two types of channel receptor:
metabotropic and ionotropic. The metabotropic receptors are not ionic channels
but pass signals into the cell via other accessory proteins. The ionotropic channel
receptors have three types: AMPA, NMDA (N -methy1-D-aspartate) and kainate.
As NMDA is our main concern in this thesis we will go into more detail. The NMDA
receptors are composed of assemblies of three subunits: NR1, NR2A-D and NR3A
as shown in Fig. 2.7. NMDA action is unique because it requires simultaneous
binding of two subunits, NR1 subunit combined with one or more NR2 or NR3
subunits. It is permeable to Na+, K+ and Ca2+ ions and regulated by Mg2+, which
serves to block Ca2+ influx in a voltage-dependent manner. NMDA is important for
many neural process such as neuronal migration, proliferation, injury and synaptic
plasticity (where brain structure can change to better cope with the environment),
Waters and Machaalani (2004).

The NMDA neurotransmitter increases excitatory activity. It is possible to in-
duce anaesthesia by suppressing the excitatory effectiveness of the NMDA receptor
on the postsynaptic neuron’s membrane. This NMDA-antagonist class of agent is
called a dissociative anaesthetic. These dissociative agents do not usually result in
full unconsciousness (Franks et al. (1998); Jevtovic-Todorovic et al. (1998)). The
duration of the the excitatory postsynaptic response to the presynaptic action po-
tential depends on both anaesthetic concentration (greater concentration is inversely
proportional to the duration of the EPSPs) and the voltage state of the receiving
neuron (the magnesium block in the ion channel is only removed when the neuron is
depolarised). This fact makes modelling the action of the NMDA receptor compli-
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Figure 2.7: Classification of the ionotropic glutamate receptors. [source: http:
//www.bris.ac.uk/synaptic/public/basics_ch1_1.html]

cated. However, the focus of this thesis is to develop a model for NMDA-antagonist
effect in general anaesthetic. Fig. 2.8 shows a simplified block diagram of the NMDA
receptor.

Figure 2.8: In its inactivated (not excited) configuration, a magnesium ion blocks the
channel within the NMDA receptor. Once excitation occurs, this magnesium block
is removed allowing other ions to diffuse down their concentration gradient: Na+

and Ca2+ ions enter the cell causing depolarisation. The excitation occurs when
Gly (glycine) and one of either Glu (glutamate) or NMDA binds to the receptor
molecule. [Based on Fig. 1 of Thomas and Riley (1998)]

2.5.1 Indirect effects of anaesthetics on the NMDA synapse

The anaesthetic action of anaesthetics that do not primarily affect the NMDA
synapse, such as GABA agonists, can be a consequence of indirect effects on the
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working conditions of the NMDA receptor (Flohr et al. (2000)). In other words, in
order for an anaesthetic action to be induced by any agent, the NMDA receptor will
be indirectly effected (disrupted). According to Flohr’s model of the NMDA synapse
as a target of anaesthetics, the activity of the NMDA receptor could be modified by
inhibitory (GABA) and excitatory (AMPA) synapses located near the receptor as
shown in Fig. 2.9.

This hypothesis was proven by Flohr’s experimental evidence showing that propo-
fol (a GABAergic agent) partially blocks the uptake of radio-labelled MK-801 (an
NMDA antagonist that binds to the PCP site within the NMDA channel). It was
also demonstrated by Steyn-Ross (2002) modelling of GABAergic induction, where
the “dissociated state” could also occur when slow NMDA-mediated currents are
incorporated into the model.

Figure 2.9: The Flohr model of the NMDA synapse as a target for anaesthet-
ics. GABA and AMPA receptors can influence NMDA receptor working condition.
[Source: Fig. 2 of Flohr et al. (2000)]



Chapter 3

Modelling the cerebral cortex

3.1 Mean-field model

Modelling the relations between input and output signals for an individual neuron is
a hard task to achieve due to the enormous number of contributing factors. There-
fore neuroscientists divide neurons into populations of the same type having dense
random interconnections, and model these populations. Each group of neurons is
called a “neural mass”. The properties of this neural mass (e.g. firing rate, time-
dependent membrane potential, etc.) are determined by the spatial averages of all
the neurons within this neural mass, so the model is given the name “mean-field”.

Our mean-field model describes the electrical activity inside a small volume of
neural tissue called a macrocolumn. The macrocolumn is cylindrical volume (∼1
mm3) with a diameter of ∼0.3–1 mm and length of ∼2–3 mm. This column contains
roughly 40,000 to 100,000 neurons where approximately 85% are excitatory and 15%
are inhibitory (Braitenberg and Schüz (1991)).

Since our modelling is concerned with neural activity during the anaesthetic
state, the goal is to determine the level of consciousness of the anaesthetized pa-
tient. This modelled level should be consistent with the clinical results achieved by
monitoring electroencephalogram (EEG) recordings. The EEG indirectly measures
the electrical activity inside the cerebral cortex by electrodes placed on the scalp.
By modelling the fluctuation of the excitatory membrane potential, we can make
comparisons between theory and the experimentally acquired EEG.

3.2 Brief history of mean-field models

The following section will describe in short the development of mean-field models.
More elaboration about certain cortical models will be given later depending on
their relevance to our research.

The mean-field model was first proposed by Beurle (1956). His model only
included an excitatory population of neurons where the connectivity between the
neurons decreases exponentially with distance. He assumed a threshold value that

15
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the neuron’s membrane voltage must exceed in order for it to fire. Furthermore, he
also included a refractory period that occurs after the firing during which the neuron
cannot fire again (threshold potential depends on its history, potential is high before
decaying to its resting value). As an effect of the refractory period, the neuron
temporarily becomes insensitive to further firing, which creates a state of control
that prevents any global firing propagation. Yet, this is inadequate to provide the
level of stability that a real cortex can maintain. This paradox was overcome later
in 1963 by Griffith who introduced the inhibitory synapses that hyperpolarised the
post-synaptic neuron making it less likely to fire.

Some years later, Wilson and Cowan (1972, 1973) also modelled both excitatory
and inhibitory populations, and assumed that synaptic activity was much slower
than the membrane time-constant. They simplified their equations by using a time
coarse-graining assuming that the PSPs (post-synaptic potentials) were rectangular
functions for both excitatory and inhibitory events, differing only in sign. They
introduced two factors that have been used in later mean-field models: considering
inhibition acts only locally with a rapid exponential decrease with distance, and the
use of nonlinear sigmoid function to map from membrane voltage to firing rate.

Following this, Freeman (1975) formalised the concept of mean-field by intro-
ducing the concept of neural mass as populations of neurons having different in-
terconnection properties. He also emphasised the conversion of synaptic input to
membrane potential and then to action potential rate (firing rate). In his model,
both synaptic and dendritic delays were included, noting that the contribution of de-
lays in feedback loops could lead to oscillatory behaviour in populations of excitatory
and inhibitory neurons.

The spatial and temporal variation of cortical voltages generated by a neural
mass were described as an integral wave equation in Nunez’s model [Nunez (1974,
1981)]. In this model, an oscillation in the cortical voltages was expected to be
determined by the relative numbers of excitatory and inhibitory neural mass con-
nections, and by the velocity distribution functions for action potential propagation.
For particular choices of boundary conditions, the standing waves can be calculated
for certain wave numbers. He then stated that this is the source of cortical rhythms
such as the alpha rhythm seen in the EEG. The importance of including boundary
conditions was also considered by later modellers.

Jirsa and Haken (1996, 1997) derived mean-field equations for the dendritic cur-
rents by generalising the work of Wilson and Cowan and of Nunez. Following Wilson
and Cowan, they assumed that the EPSP and IPSP functions have the same magni-
tude but different sign. They considered the activity of the inhibitory population as
a function of the the excitatory neural population activity, meaning that the firing
rate of an inhibitory neuron is dependent on the membrane potential of surrounding
excitatory neurons, and not on its own membrane potential.

Also in 1996 and 1997, Wright and Liley used anatomical data to derive ex-
pressions for the number of synapses between two neurons as a function of their
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separation. They used a sigmoidal form for the mapping between membrane voltage
and spike rate, and approximated the post-synaptic potential (PSP) as a triangular
function. In their model, they followed Wilson and Cowan in assuming that the
synaptic activity was much slower than the membrane time-constant.

One year later, Robinson et al. (1997) further developed the Wright and Liley
model by using a more physiologically realistic biexponential function instead of a
rectangular PSP. They studied the steady states of the model and found that it can
either have one or three steady states, with the middle state being unstable for the
case of three steady states. Robinson et al. (1998) represented their steady state
solutions as a ratio of `i/`e where `i or `e represents the net post-synaptic response
per unit synaptic concentration of inhibitory/exitatory neurotransmitter. The three
states only appear when `i/`e = 1 (same magnitude for excitatory and inhibitory
responses). However, if the domination of excitatory response over inhibitory is
stronger (or vice versa), the system reduces to only one stable state.

The later work of Liley et al. (1999), and of Liley et al. (2002), improved the
earlier models and theories by enhancing the treatment of excitatory and inhibitory
neurotransmitter kinetics. For the first time in mean-field models, they incorporated
the constraints on depolarisation and hyperpolarisation voltage extremes enforced
by cell reversal potentials.

The Steyn-Ross et al. (1999) model, a modification of Liley’s model, was designed
to predict the general behaviour of a patient’s brain under general anaesthesia. They
found only certain stable stationary states for the soma voltages as they increased the
time course of the inhibitory post-synaptic potential (IPSP). Then they introduced
stochastic subcortical terms to model the fluctuation seen in an EEG. The results
of the stability analysis of the steady states showed that an abrupt change from one
state to another must occur as anaesthetic concentration is increased, corresponding
to the anaesthetised patient abruptly moving from consciousness to unconsciousness.

3.3 Neural equivalent circuit

The neural system can be represented as an electrical circuit with three main compo-
nents for each ionic species (Na+, K+, Cl−) as shown in Fig. 3.1. A battery is used to
represent the difference in concentration between the intracellular and extracellular
ionic fluid. For example, the extracellular concentration of Na+ is much greater than
its intracellular concentration, so the Na+ battery is oriented to produce an inwards
conventional current. If the membrane becomes more permeable to Na+, more Na+

ions would flow inwards into the cell interior. The magnitude of the battery voltage
can be calculated using the Nernst potential formula (Eq.3.1) described shortly. The
second component is the variable conductance (inverse-resistance) which models the
membrane pores (channels). Finally, a capacitor represents the thin accumulations
of ions in the water either side of the membrane.

The Nernst potential is the ideal equilibrium voltage for the diffusive force arising
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Figure 1.7: Electrical circuit used by Hodgkin and Huxley to represent a patch of nerve membrane
at rest. Each ion channel is modelled as a conductance (inverse resistance) driven by battery whose
magnitude and direction is given by the Nernst potential of the ion.

INa = (V − VNa) gNa (1.6a)

where the coefficient gNa is the sodium conductance [units: Ω−1]. We can write parallel expres-
sions for the potassium and chloride currents

IK = (V − VK) gK (1.6b)

ICl = (V − VCl) gCl . (1.6c)

Thus for the resting nerve cell, the conventional current for Na+ ions will be in the negative
direction (i.e., directed inwards), while for K+ and Cl− ions the conventional current will be
positive (outwards).

In general, the conductance is not constant: it depends on both the membrane voltage V

and its history. However, defining conductance in this way (with the V − VX term factored out;
X is one of Na+, K+, or Cl−) simplifies the functional form of gX since it does not have to change
sign as V crosses the Nernst potential VX and the current reverses direction.

For their Fig. 1.7 circuit, Hodgkin and Huxley wrote the total membrane current as the sum
of capacitive and ionic currents,

I = C
dV

dt
+ Iion (1.7)

where the ionic current is the sum of the individual channel contributions

Iion = INa + IK + ICl (1.8)

giving the total current as

I = C
dV

dt
+ (V − VNa) gNa + (V − VK) gK + (V − VCl) gCl . (1.9)

At rest, I = 0 and C dV/dt = 0, and Eq. (1.9) predicts a resting voltage that is the weighted
sum of Nernst potentials,

Figure 3.1: Neural equivalent circuit. [Source: Steyn-Ross (2002)]

Table 3.1: Typical ion concentration (in mmol/L) and Nernst potentials (mV) for a
resting neuron. Nernst potentials were calculated for a neuron at body temperature
(37◦C) giving RT

F = 26.7 mV. [Source: Steyn-Ross (2002)]

Ion Inside Concentration Outside Concentration Nernst Potential
Na+ 10 140 +70
K+ 140 4 −95
Cl− 4 103 −87

Ca2+ < 105 5 > 350

from the concentration gradient across the membrane of a given ion. This Nernst
potential (VX) for a given ion (X) can be calculated using the following formula:

VX = Vin − Vout =
RT

zF
loge

[X]out

[X]in
(3.1)

where:
T is the absolute temperature,
R = 8.314 J K−1 mol−1 is the ideal gas constant,
z is the signed valence of the ion (e.g. z = −1 for Cl−),
F = 9.648× 104 C mol−1 is the Faraday constant.

There are three possible cases of concentration gradient for a positive ion: if the
membrane voltage V = VX, there is no flow of current; if V < VX, current will flow
down the concentration gradient; and finally, if V > VX, the current direction will
reverse. The Nernst potential is also known as the “reversal potential”, since it is
the point of voltage balance between normal and reversed current direction.
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3.4 Hodgkin-Huxley model

3.4.1 Resting voltage

A series of experiments on a squid giant axon were carried out by Hodgkin and
Huxley (1952) investigating the flow of electrical current through the squid’s mem-
brane surface. Their goal was to develop a model using a mathematical description
derived from the conduction and excitation behaviour of the membrane. This model
has been used as a basis for later ionic current models of excitable tissues.

The neural equivalent circuit described earlier (Fig. 3.1) was derived from the
Hodgkin and Huxley model describing the flow of current through the membrane
surface. The capacitance and conductance determines the current flow through the
membrane surface. The overall current is made up of four sources: the capacitive
current (IC), sodium (INa), potassium (IK) and chloride (ICl) ionic channel currents
represented by the following formulae:

IC = C
dV

dt
(3.2)

INa = (V − VNa)gNa (3.3)

IK = (V − VK)gK (3.4)

ICl = (V − VCl)gCl (3.5)

where the coefficients gNa, gK , gCl are the channel conductances (Ω−1).

These four formulae can be assembled into a single equation:

I = C
dV

dt
+ INa + IK + ICl (3.6)

At rest I = 0 and C dV
dt = 0, thus

0 = (V − VNa)gNa + (V − VK)gK + (V − VCl)gCl (3.7)

Therefore Eq.(3.7) predicts a final resting voltage that is the conductance-weighted
sum of Nernst potentials (typically −70 mV):

Vrest =
gNaVNa + gKVK + gClVCl

gNa + gK + gCl
(3.8)

3.4.2 Action potential

Hodgkin modelled the action potential of the squid giant axon by replacing the
constant conductances of Na+, K+ shown in Fig.3.1 with variable conductances
(voltage and time-dependent) as illustrated in Fig.3.2.
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Vrest =
gNaVNa + gKVK + gClVCl

gNa + gK + gCl
. (1.10)

Tuckwell (1988b, pp. 5–6) points out that Eq. (1.10) is linear in the Nernst potentials for
the various ions, while the GHK prediction of Eq. (1.3) is not linear in the individual Nernst
potentials, except when only one kind of ion is involved. This inconsistency arises from the
fact that conductance and permeability are not interchangeable concepts (Koester, 1991, p.90).
Permeability depends on the state of the membrane, while conductance also depends on the
concentration of surrounding ions.5

For the present work we will assume a nominal resting voltage of −70 mV, as calculated
using the GHK formula on p. 12.

1.5.2 Modelling the Action Potential

When a synaptic or other injected current drives the membrane voltage from its −70-mV resting
level to a threshold of approximately −60 mV, a population of voltage-dependent Na+ channels,
normally closed at rest, opens abruptly, thereby increasing the sodium conductance gNa and
leading to a rapid influx of Na+ ions, driving the membrane voltage towards the sodium reversal
potential VNa. Within a fraction of a millisecond, the Na+ channels begin to close or “inactivate.”
At the same time, voltage-dependent K+ channels sense the voltage upswing on the leading edge
of the action potential, and open to produce a large outward current. The combined effect of
Na+ channel inactivation and K+ channel activation result in an abrupt downswing to terminate
the action potential.
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Figure 1.8: Hodgkin and Huxley equivalent circuit used to model the formation of an action potential.
The gNa and gK rest conductances of Fig. 1.7 are replaced by voltage- and time-dependent functions.
Once the membrane voltage crosses a trigger threshold (about 10 mV above Vrest), voltage-gated sodium
channels turn on, increasing sodium conductance and inward sodium current, further depolarizing the
membrane, leading to regenerative increases in sodium conductance and membrane voltage. After a delay,
the voltage-gated potassium channels turn on, eventually restoring the membrane to its resting voltage.
See Fig. 1.9.

Tuckwell (1988b, pp. 44–57) gives a good account of the classic Hodgkin–Huxley model for
the formation of the action potential in a nerve membrane. What follows is a brief summary.

5For example, the membrane could be highly permeable to K+, but if the surrounding K+ concentrations are
low, the conductance (ionic current per unit voltage difference) will be low.

Figure 3.2: Neural equivalent circuit with variable conductances. [Source: Steyn-
Ross (2002)]

The voltage-dependent Na+ channels are normally closed at resting state. Once
the membrane voltage (Vm) is driven from its resting value (−70 mV) to the thresh-
old value (roughly −60 mV), the Na+ channels activate and abruptly open, increas-
ing the sodium conductance gNa, leading to a rapid influx of Na+ ions. This drives
the membrane voltage towards the sodium reversal potential VNa as indicated in
Fig.3.3a. The Na+ channels begin to close within a fraction of a millisecond. Simul-
taneously, the voltage-dependent K+ channels become activated due to the voltage
upswing on the leading edge of the action potential. Hence, the K+ channels open,
producing a larger outwards current. Combining the effect of the activation and
deactivation of the channels results in a rapid downswing to terminate the action
potential as drawn in Fig.3.3b.

3.5 Tuckwell subthreshold neuron

One of the goals of the Hodgkin-Huxley model is to find a precise mathematical
description of the neuron action potential. However, action potentials cannot be
seen in scalp EEG records. This is due to the very fast rise and fall times of the
action potentials which are strongly low-pass filtered by the cerebrospinal fluid, scalp
tissue and skull which are located between the brain surface and scalp electrode. In
fact, the EEG records display the much more slowly varying fluctuations in the
spatially- and temporally-averaged local potentials of the excitatory neurons.

Modelling the EEG signal requires computing the soma voltage calculated from
a membrane integration of all the incoming presynaptic activity, consisting of the
inflowing excitatory postsynaptic currents (EPSCs) minus the outflowing inhibitory
postsynaptic currents (IPSCs). The averaged effect of a train of action potentials on
the neural population can be preserved via a sigmoid (Fig.3.10) mapping from aver-
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Figure 1.9: Predictions from the Hodgkin–Huxley model for the formation of an action potential (top
figure) via differentially-timed changes in sodium and potassium conductances (bottom figure). Here, Vm

is the membrane voltage, Efire is the firing threshold, ENa and EK are the sodium and potassium Nernst
potentials. Also plotted in the lower figure is the sodium inactivation parameter h. [From Halsey and
Smith (1970), after Hodgkin and Huxley (1952)]

EPSCs (excitatory postsynaptic currents) minus the outflowing IPSCs (inhibitory postsynaptic
currents). But no matter how high the integrated soma voltage gets, the neuron is not permitted
to fire off action potentials!—otherwise the soma voltage time-series will contain spikes. Instead,
the averaged effect of a train of action potentials on the neural population can be preserved via
a sigmoid (i.e., S-shaped; see Fig. 3.2 on p. 42) mapping from average soma voltage to average
spike-rate, and it is this output spike-rate (not the spikes themselves) which will determine the
presynaptic activity and hence the average postsynaptic voltage.

The Liley neuron (to be described shortly) models the formation of (spike-free) EEG by
interacting excitatory and inhibitory populations of neurons. Because the Liley neuron never
“fires,” it is intuitively helpful to approach it as a generalization of the Tuckwell subthreshold
neuron described in Tuckwell (1988b, p. 9).

The first step is to replace the Fig. 1.7 sodium, chloride, and potassium batteries, and their
associated conductances, with a single battery Vrest in series with resting conductance grest. The
resulting circuit is shown in Fig. 1.10. The neuron is maintained in this −70 mV resting state

Figure 3.3: a: Prediction from the Hodgkin and Huxley model for the formation of
an action potential. b: Action potential is generated by differentially-timed changes
in Na+ and K+ conductances. [from Halsey and Smith (1970), after Hodgkin and
Huxley (1952)]
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age soma voltage to average spike-rate. The spike-rate determines the presynaptic
activity and hence the average postsynaptic voltage.

1.6 The Tuckwell Neuron 17

by various ion pumps working in the background to keep the ion concentration gradients, and
therefore the ion batteries, fully “charged.”
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Figure 1.10: Equivalent circuit of the resting neuron. The combined effects of the Na+, Cl−, and K+

non-gated ion channels of Fig. 1.7 are represented here by a single channel of constant conductance grest

driven by an eternal battery of voltage Vrest = −70 mV.

Next, we couple in the synaptic inputs. For simplicity, we will follow Tuckwell in assuming
that there is only one ion species involved in excitation and only one involved in inhibition.
Then their Nernst potentials will be the synaptic reversal potentials, denoted VE and VI . The
circuit for the Tuckwell neuron appears in Fig. 1.11.
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Figure 1.11: The Tuckwell subthreshold neuron. The membrane capacitor integrates synaptic input
currents to give a graded local potential V ; the population-average local potential is assumed to be
proportional to scalp-measured EEG. This neuron never fires off an action potential.

Total currents sum to zero, giving

C
dV

dt
= (Vrest − V ) grest + (VE − V ) gE + (VI − V ) gI . (1.14)

Looking ahead a little (see Table 3.16 on p. 40), Liley chooses reversal potentials which
roughly correspond to those of sodium for an excitatory neurotransmitter release, and to potas-
sium for an inhibitory neurotransmitter release:

VE = +45 mV ≈ VNa,

VI = −90 mV ≈ VK .

6But note the change in nomenclature: VE → hrev
e ; VI → hrev

i

Figure 3.4: The K+, Cl− and Na+ batteries and conductances replaced by Vrest in
series with grest. [Source: Steyn-Ross (2002)]

Modelling the EEG generated by the neuron population was attempted using
mean-field theory developed by Liley et al (1998, 1999, 2002). The Liley neuron
models the formation of the EEG by the fluctuating potential of populations of
excitatory and inhibitory neurons. It is useful to view the Liley neuron as a gener-
alisation of the Tuckwell subthreshold neuron described in Tuckwell (1988).

The Tuckwell subthreshold neuron was produced by modelling a resting neuron
coupled with synaptic inputs. Firstly, the sodium, chloride and potassium batteries
and conductances are replaced with a single battery Vrest in series with resting
conductance grest as Fig.3.4 illustrates. As the neuron is in a resting state, the value
of the battery Vrest is maintained at −70 mV. The second step is to couple in the
synaptic inputs. Tuckwell assumes that there is only one ion species involved in
the excitation and similarly only one involved in inhibition. Each synaptic input is
then modelled by a variable conductance and a synaptic reversal potential VE and
VI (same as Nernst potentials). The final Tuckwell neuron is drawn in Fig. 3.5.

Total currents sum to zero, giving

C
dV

dt
= (Vrest − V )grest + (VE − V )gE + (VI − V )gI (3.9)

Dividing the previous equation by grest yields:



3.6 The Liley neuron 23

τ
dV

dt
= (Vrest − V ) + (VE − V )

gE
grest

+ (VI − V )
gI
grest

(3.10)

where τ = C/grest is the membrane time constant.
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by various ion pumps working in the background to keep the ion concentration gradients, and
therefore the ion batteries, fully “charged.”

C

|Vrest|

g
rest

Outside (0 mV)

Inside (at V)

+

−

Figure 1.10: Equivalent circuit of the resting neuron. The combined effects of the Na+, Cl−, and K+

non-gated ion channels of Fig. 1.7 are represented here by a single channel of constant conductance grest

driven by an eternal battery of voltage Vrest = −70 mV.

Next, we couple in the synaptic inputs. For simplicity, we will follow Tuckwell in assuming
that there is only one ion species involved in excitation and only one involved in inhibition.
Then their Nernst potentials will be the synaptic reversal potentials, denoted VE and VI . The
circuit for the Tuckwell neuron appears in Fig. 1.11.
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Figure 1.11: The Tuckwell subthreshold neuron. The membrane capacitor integrates synaptic input
currents to give a graded local potential V ; the population-average local potential is assumed to be
proportional to scalp-measured EEG. This neuron never fires off an action potential.

Total currents sum to zero, giving

C
dV

dt
= (Vrest − V ) grest + (VE − V ) gE + (VI − V ) gI . (1.14)

Looking ahead a little (see Table 3.16 on p. 40), Liley chooses reversal potentials which
roughly correspond to those of sodium for an excitatory neurotransmitter release, and to potas-
sium for an inhibitory neurotransmitter release:

VE = +45 mV ≈ VNa,

VI = −90 mV ≈ VK .

6But note the change in nomenclature: VE → hrev
e ; VI → hrev

i

Figure 3.5: Tuckwell subthreshold neuron. The capacitor integrates the synaptic
input currents to give a graded local potential V . [Source: Steyn-Ross (2002)]

3.6 The Liley neuron

Liley (2002) developed a population-based neural model in order to reproduce the
scalp measured EEG signal generated by a macrocolumn. He assumes that each
macrocolumn consists of two “neurons”. The first “neuron” is a spatial average
representing the population of excitatory neurons. It has (roughly) a pyramidal
shape with axon-dendrites axes aligned parallel to each other and perpendicular
to the scalp. The spatially averaged current and potential can now be easily de-
tected by the EEG electrodes because the current dipoles produced by excitatory
synaptic events will be reinforced. The second “neuron” represents the population
of inhibitory neurons inside the macrocolumn, having roughly spherical symmetry,
with random dendrite and axon orientations. The current dipoles produced by this
inhibitory “neuron” tend to cancel, so EEG electrodes do not detect inhibitory
synaptic events.

The potential activity detected at the scalp using the EEG electrodes arises from
the slow fluctuations in the spatial average representing the population of excitatory
neurons (Ve). Ve is assumed to be directly proportional to the scalp EEG, while Vi
(inhibitory population average voltage) has no “direct” effect on the EEG. However,
Vi does moderate the behaviour of Ve, thus having an “indirect” effect on the EEG.

There are two types of connections in Liley neural model: short-range (within
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macrocolumn) and long-range (in/out of the macrocolumn). For the short range,
all of the synaptic types are allowed: e → k or i → k (where k is either excitatory
e or inhibitory i neuron). The long-range however, allows only two synaptic types
e→ e or e→ i. Fig. 3.6 shows the elements of Liley’s neural model.

20 Steyn-Ross et al.
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Figure 2. Schematic “wiring diagram” for a cortical macrocolumn showing two ex-
citatory neurons (triangles) and two inhibitory neurons (circles). Total number of
neurons per macrocolumn is ∼105. The numeric labels identify synaptic connection
types which can be within macrocolumn: φβ

jk (1. . . 4); from other macrocolumns:
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Figure 3.6: Schematic wiring diagram for a cortical macrocolumn showing two exci-
tatory neurons (triangles) and two inhibitory neurons (circles). [Source: Steyn-Ross
et al. (2005)]

3.7 Mapping from Tuckwell → Liley

Liley’s model can be viewed as a generalisation of the Tuckwell subthreshold neuron.
This means the first neuron represents the spatially averaged population of excita-
tory neurons, while the second one represents the population of inhibitory neurons
as drawn in Fig. 3.7. The list below shows how the remappings from Tuckwell to
Liley population neurons (Steyn-Ross, 2002):
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Tuckwell neuron → Liley “neurons”
V → he, hi membrane voltage
VE → hrev

e excitatory reversal potential = +45mV
VI → hrev

i inhibitory reversal potential = −90mV
Vrest → hrev

e , hrev
i resting potential = −70mV

C → Ce, Ci membrane capacitance
gE → gee, gie conductance for excitatory-reversal battery
gI → gei, gii conductance for inhibitory-reversal battery

grest → grest
e , grest

i conductance for resting-potential battery

Hence the he,i equations of motion for the Liley mapped circuit in Fig. 3.7 are:

Ce
dhe
dt

= (hrev
e − he)gee + (hrev

i − he)gie + (hrest
e − he)grest

e (3.11)

Ci
dhi
dt

= (hrev
e − hi)gei + (hrev

i − hi)gii + (hrest
i − hi)grest

i (3.12)

Similarly, the membrane time constant becomes:

τe =
Ce
grest
e

(3.13)

τi =
Ci
grest
i

(3.14)

Thus dividing Eqs. (3.11) and (3.12) by grest
e and grest

i yields:

τe
dhe
dt

= (hrev
e − he) + (hrev

i − he)
gee
grest
e

+ (hrest
i − he)

gie
grest
e

(3.15)

τe
dhi
dt

= (hrev
i − hi) + (hrev

e − hi)
gei
grest
i

+ (hrest
i − hi)

gii
grest
i

(3.16)

Liley’s final mapping replaced the conductance ratios with voltage ratios as in
the following equations:

τe
dhe
dt

= (hrev
e − he) + (hrev

i − he)
Vee(he)

hrev
e − hrest

e

+ (hrest
i − he)

Vie(hi)
hrev
i − hrest

e

(3.17)

τi
dhi
dt

= (hrev
i − hi) + (hrev

e − hi)
Vei(he)

hrev
e − hrest

i

+ (hrest
i − hi)

Vii(hi)
hrev
i − hrest

i

(3.18)

The double-subscripting on the four synaptic conductances (gjk, j, k ∈ {i, e})
appeared in Fig. 3.7, means that the two circuits are very strongly coupled via a
local feedback. This feedback is represented in Fig. 3.6 by two nonlinear (sigmoidal)
voltage to spike-rate converters (triangles) Se(Ve) and Si(Vi). They couple back the
excitatory and inhibitory output potentials Ve,i to the four gjk(j, k ∈ {i, e}) synaptic
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Figure 3.7: Shows excitatory (left) and inhibitory (right) neural populations for
Liley’s generalisation of Tuckwell subthreshold neuron. [Source: Steyn-Ross (2002)]

input conductances. Here, the four possible local feedbacks are allowed: e → k or
i → k (where k ∈ {i, e})). Therefore, four multiplicative scale factors (Nβ

jk boxes)
are needed to indicate the degree of local inter-connectedness between the excitatory
and inhibitory populations within the macrocolumn. Liley’s model with the local
feedbacks are shown in Fig. 3.8.

We complete Liley’s neural equivalent circuit by considering all of the three
inputs to the macrocolumn conductances: local, long-distance cortical, and subcor-
tical. The full equivalent circuit appears in Fig.3.9 as a continuous 1D line of neural
mass representing the links inside the macrocolumn. The three inputs are combined
at the

⊕
summing point to determine the gjk synaptic conductances. For simplicity,

the “batteries” (reversal and resting potentials) have been omitted in this circuit.
Similarly, only the independent subcortical inputs Pjk of the middle macrocolumn
were shown instead of drawing them for every macrocolumn.

3.8 Steyn-Ross model

The Steyn-Ross model, is an adaption of Liley’s one-dimensional cortical equations
was designed to predict the brain reactions to general anaesthetic. In this thesis, we
will follow Steyn-Ross et al. (2005) in describing the equations.

3.8.1 Integral equations for the macrocolumn

As mentioned previously, at resting state, there is no synaptic input. Therefore
the soma voltage of the neuron population e or i, will be fixed at V rest

e,i ≈ −64 mV
(resting voltage). This value remains fixed as the concentration differences of Na+

and K+ is maintained across the cell membrane. When the dendritic tree receives
a spike input, it travels all the way to the soma where it is summed with other
synaptic inputs, causing a time-dependent variation about V rest

e,i . See Table 1 for
full list of macrocolumn model constants.
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Figure 3.8: Tuckwell → Liley neural model with local feedbacks coupling the two
populations together. [Source: Steyn-Ross (2002)]

Table 3.2: Symbol definitions and model constants for the Liley equations. [Source:
Steyn-Ross et al. (2005)]

Symbol Description Value Unit
τe,i membrane time constant 0.050,0.050 s
V rev
e,i cell reversal potential 0,−70 mV

V rest
e,i cell resting potential −64,−64 mV
ρe,i synaptic gain (1.00,−1.05)× 10−3 mV.s
Nα
ee,ei long-range e→ k connections 3710,3710 -

Nβ
ee,ei local e→ k synaptic connections 410,410 -

Nβ
ie,ii local i→ k synaptic connections 800,800 -

N sc
ee,ei subcortical e→ k synaptic connections 50,50 -

N sc
ie,ii subcortical i→ k synaptic connections 50,50 -
ε axonal conduction speed 9 ms−1

Λee,ei axonal inverse-length scale 40,40 m−1

γee,ei rate constant for e→ k synaptic input 70,70 s−1

γie,ii rate constant i→ k synaptic connections 58.6,58.6 s−1

Qmax
e,i maximum firing rate for sigmoid 30,60 s−1

θe,i inflexion-point voltage for sigmoid −58.5,−58.5 mV
σe,i sigmoid width 4, 6 mV
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Figure 3.9: Full circuit diagram of Tuckwell → Liley neural model with the three
inputs to the macrocolumn: local, long-distance cortical, and subcortical. The two
populations are coupled via local feedback. [Source: Steyn-Ross (2002)]
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Vk(t) = V rest
k +

∫ t

−∞
Lk(t− t′)[Ek(t′) + Ik(t′)]dt′, where k = e, i (3.19)

Here, Lk(t) is the impulse response of the soma:

Lk(t) =

 1
τk

exp[−t/τk], t ≥ 0,

0, t < 0
(3.20)

Ek(t) and Ik(t) are the excitatory and inhibitory voltage inputs to the soma:

Ek(t) = ρeψek(t)Φek(t), ρ > 0 (3.21)

Ik(t) = ρiψik(t)Φik(t), ρ < 0 (3.22)

where:
ρ is the synaptic strength (mV/s),
Φ is the input flux rate spikes s−1,
ψjk are dimensionless weighting function that scale the effectiveness of the Φjk

(input flux). It is in proportion to the difference between the cell voltage Vk of the
receiving neuron and the relevant ionic reversal potential V rev

j ,

ψjk(t) =
V rev
j − Vk(t)
V rev
j − V rest

k

(3.23)

Here, V rev
e = 0 mV for excitatory receptors, and V rev

i = −70 mV for inhibitory
receptors.

The total excitatory/inhibitory input flux Φek/Φik at a neuron k can be repre-
sented as the temporal convolution of the dendrite impulse response H(t) with the
pre-synaptic spike rate φek/φik, scaled by the number of one-way e, i → k synaptic
connections Nek/Nik,

Φek(t) =
∫ t

−∞
Hek(t− t′)[Nβ

ekφ
β
ek(t

′) + φscek(t
′) +Nα

ekφ
α
ek(t

′)]dt′ (3.24)

Φik(t) =
∫ t

−∞
Hik(t− t′)[Nβ

ikφ
β
ik(t
′) + φscik(t′)]dt′ (3.25)

The subscripts identify distinct spike-rate contributions form local (β: within the
macrocolumn) distant (α: cortico-cortical excitatory connections from other macro-
column) and subcortical (sc: input from subcortical structures such as thalamus
and brain-stem). There is no cortico-cortical φαik term, because there are no distant
inhibitory connections from other macrocolumns.

As discussed earlier, each incoming action potential releases a chemical signal
into the synaptic cleft called the neurotransmitter. The neurotransmitter changes
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the dendritic conductance of the post-synaptic neuron causing a momentary change
in voltage as a result of charge transfer through the opened ion channels.

Following the Tuckwell model, the time-course for the momentary postsynaptic
potential can be written as an “alpha” function dendrite impulse response Hjk(t):

Hjk(t) =

tγ2
jk exp[−tγjk] t ≥ 0,

0, t < 0.
(3.26)

A two-component neuron model is described by these equations: The soma dy-
namics (in Eq.(3.17)) are determined by the Lk(t) exponential response function,
while the dendrite (synaptic) dynamics in φek/φik are determined by the Hjk(t)
alpha function impulse response Eq.(3.26).

3.8.2 Differential equations for the macrocolumn

For the purpose of locating the steady states of the cortex model and determining
their stability properties, the integral equations of Vk(t) and φek/φik can be trans-
ferred to differential equations. To do so, we need to take the time-derivative of
k = e, i convolution indexed by Eq. (3.19). This can be achieved by using the cal-
culus theorem for differentiation under an integral with time-dependent end-points.
The result will be a pair of first-order equations of motion for Ve,i (the macrocolumn-
average excitatory and inhibitory soma voltages),

τe
dVe
dt

= V rest
e − Ve(t) + ρeψee(t)Φee(t) + ρiψie(t)Φie(t) (3.27)

τi
dVi
dt

= V rest
i − Vi(t) + ρeψei(t)Φei(t) + ρiψii(t)Φii(t) (3.28)

In order to get differential equations for the rate-change of the Φjk (input flux
terms), the convolutions of Eqs. (3.24, 3.25) need to be differentiated twice using the
calculus theorem. This implies the following pairs of equations: For excitatory-input
flux,

(
d

dt
+ γee)2Φee = [Nα

eeφ
α
ee(t) +Nβ

eeQe(t) + φscee(t)]γ
2
ee (3.29)

(
d

dt
+ γie)2Φie = [Nβ

ieQi(t)]γ
2
ie (3.30)

while the inhibitory-input flux convolutions yield,

(
d

dt
+ γii)2Φii = [Nβ

iiQi(t)]γ
2
ii (3.31)

(
d

dt
+ γei)2Φei = [Nα

eiφ
α
ei(t) +Nβ

eiQe(t) + φscei(t)]γ
2
ei (3.32)
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3.8.3 Synaptic flux densities

Intra-macrocolumn fluxes

The fluxes φjk(t) within the macrocolumn can be written as:

φβjk(r, t) =
∫
fβjk(r− r′)Qj(r′, t)dr′ (3.33)

where fβjk is the distribution function that defines the exponential decay over space
for the density of synaptic connection inside the macrocolumn:

fβjk(r− r′) =


λjk

2 exp(−λjk|x− x′|) (1D),
λ2

jk

2π exp(−λjk|r− r′|) (2D)
(3.34)

with λjk being the inverse-length scale for connection strength. Note that these
distribution functions are normalised:∫

fβjk(r) dr = 1 (3.35)

The Qj(r′, t) mentioned in Eq. (3.33) is the empirical mapping from membrane
voltage to neuronal firing rate defined as:

Qj(r′, t) =
Qmax
j

1 + exp[−(Vj(r′, t)− θj)C/σj ]
(3.36)

where:
θj is the firing population-average threshold voltage,
σj is the measure of the empirical sigmoidal spread,
Qmax
j is the maximum firing rate for the macrocolumn,

C = π/
√

3 allows the σj to be interpreted as the standard deviation of the
sigmoid-derivative curve dQj/dVj .

Now assuming a spatial coarse-graining results in the following equation:

φβjk(r
′, t) = Qj(t) (3.37)

Long-range, cortico-cortical fluxes

The long range flux is represented by the following equation:

φαjk(r, t) =
∫
dr′nαek(r− r′)Qe(r′, t− |r− r′|/v) (3.38)

where v denotes the average axonal conduction speed.

The long-range flux (φαjk(r, t)) is described by a wave equation whose form will de-
pend on the definition for the long-range synaptic distribution function (nαek(r−r′)),
for example,
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Figure 3.10: Sigmoidal function relating firing rate to average soma potential. (a)
Excitatory sigmoid Qe (thin curve) and Inhibitory sigmoid Qi (thick curve). (b)
First derivative of sigmoid functions: dQe/dVe (thin curve); dQi/dVi (thick curve).

nαek(r− r′) =


Λek

2 exp(−Λek|x− x′|) (1D),
Λ2

ek
2π exp(−Λek|r− r′|) (2D)

(3.39)

From the above equations (Eqs. (3.38) and (3.39)), two different wave equations
are derived:

[(
∂

∂t
+ υΛek)2 − υ2 ∂

2

∂x2
]φαek = υΛek(

∂

∂t
+ υΛek)Qe(x, t) (1D) (3.40)

[(
∂

∂t
+ υΛek)2 − 3

2
υ2∇2]φαek = υ2Λ2

ekQe(r, t) (2D) (3.41)

For the sake of simplicity, Robinson (1997) applied another 2D synaptic distri-
bution function,

nαek(r− r′) =
Λ2
ek

2π
K0(Λek|r− r′|) (2D) (3.42)

∼ 1√
ΛekR

exp(−ΛekR) for large R (3.43)

where R = |r− r′|, and K0 is a Macdonald function (modified Bessel function of
the second kind). This alternative choice leads to a simpler 2D wave equation:

[(
∂

∂t
+ υΛek)2 − υ2∇2]φαek = υ2Λ2

ekQe(r, t) (2D) (3.44)

where the symbol Λek indicates the inverse-length scale for long-range connection.
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3.8.4 Subcortical flux: White-noise driving

There is physiological evidence that the cortex requires a continuous background
“wash” of input noise to function normally. This fact motivates us to include white-
noise stimulation in this model.

The two excitatory subcortical spike rates φsc
ek appearing in Eqs.(3.29, 3.32) are

modelled as a mean level of spike-rate input to which is added Gaussian white noise:

φsc
ek = sekQ

max
e +

√
sekQmax

e .ξm(t) m = 1, 2 (3.45)

The sek are dimensionless scale-factors that determine the level of subcortical
driving. Note that the two stochastic terms ξm(t) of the φsc

jk are independent, zero
mean, delta-correlated white-noise sources

〈ξm(t)〉 = 0 (3.46)

〈ξm(t)ξn(t′)〉 = δmnδ(t− t′) (3.47)

3.8.5 Summary of stochastic DEs for cortex

Here are a list of model’s differential equations:

For soma voltages:

τe
dVe
dt

= V rest
e − Ve(t) + ρeψee(t)Φee(t) + ρiψie(t)Φie(t) (3.48)

τi
dVi
dt

= V rest
i − Vi(t) + ρeψei(t)Φei(t) + ρiψii(t)Φii(t) (3.49)

Synaptic spike-rate inputs:

(
d

dt
+ γee)2Φee = [Nα

eeφ
α
ee(t) +Nβ

eeQe(t) + seeφ
sc
ee(t)]γ

2
ee (3.50)

(
d

dt
+ γie)2Φie = [Nβ

ieQi(t)]γ
2
ie (3.51)

(
d

dt
+ γii)2Φii = [Nβ

iiQi(t)]γ
2
ii (3.52)

(
d

dt
+ γei)2Φei = [Nα

eiφ
α
ei(t) +Nβ

eiQe(t) + seiφ
sc
ei(t)]γ

2
ei (3.53)

The 2D wave equation (Robinson):

[(
∂

∂t
+ υΛek)2 − υ2∇2]φαek = υ2Λ2

ekQe(r, t) (2D) (3.54)

Voltage-to-firing rate sigmoid:
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Qj(r′, t) =
Qmax
j

1 + exp[−(Vj(r′, t)− θj)C/σj ]
(3.55)

Subcortical fluxes:

φsc
ek = sekQ

max
e +

√
sekQmax

e .ξm(t), m= 1,2 (3.56)

In the next chapter, we will search for the number of the macrocolumn steady
states after introducing the effect of NMDA. Then a theoretical stability prediction
of the stationary states will be discussed by analysing the eigenvalues of the system.



Chapter 4

NMDA-modulated mean-field

cortical model

4.1 Modelling NMDA

Chapter 3 discussed existing mean-field models which are characterised by excitatory
neurotransmitters such as AMPA, and inhibitory neurotransmitters such as GABA.
We now introduce the effects of NMDA (another excitatory neurotransmitter) by
following Jahr and Stevens (1990). They normalise the conductance of NMDA-
receptor as follows:

g(V,C) =
1

1 + kC exp−aV
(4.1)

where:
V is the excitatory voltage (mV),
C is the magnesium concentration (mM) which lies in the range 1 6 C 6 10,
k = 1

3.57 (mM)−1,
a = 0.062 (mV)−1.

We thus replace ρe in the cortical equations of Chapter 3 with:

ρe −→ ρe(1 + kC exp−aV )−1 (4.2)

Fig. 4.1 illustrates the relationship of NMDA responses between the conductance
(g) and the voltage (V ) at 10 magnesium concentrations (C). For all 10 values of C,
magnesiums blockade is completely overcome at voltages more positive than about
+80 mV.

35
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Figure 4.1: Voltage dependence of NMDA conductance g for 10 values of magnesium
concentrations C. Blockade is completely overcome at membrane voltages more
positive than about +80 mV. [C = 1, 2, 3, ..., 10].

4.2 Stationary states

Our method relies on the investigation of the behaviour of small perturbations
around the stationary states of the cortex. In order to compute the stationary
soma voltages V 0

e and V 0
i as a function of neurotransmitter effects and subcortical

driving, all time and space derivatives in Eqs.(3.48) to (3.54) need to be set equal
to zero (d/dt = d/dx = 0) and also the noise = 0.

To simplify the set of Eqs.(3.48) to (3.54) we take the advantage of the parameter-
value symmetries shown in Table 2:

V rest
e = V rest

i

τe = τi

γee = γei = γe

γie = γii = γi

Λee = Λei = Λe
Nα
ee = Nα

ei =Nα
e

Nβ
ee = Nβ

ei = Nβ
e

φsc
ee = φsc

ei = φsc
e

Thus, as can be seen from Eqs.(3.48) to (3.54) the pairs (Φee,Φei) and (Φie,Φii)
obey the same differential equations as do the pair (φαee, φ

α
ei). We thus define:
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φαee = φαii ≡ φαe
Φee = Φei ≡ Φe

Φie = Φii ≡ Φi

Applying the above simplifications reduces our cortical system to five differential
equations, as follows:

Two first-order (3.48 and 3.49) for the soma voltages:

τe
dVe
dt

= V rest
e − Ve(t) + ρeψee(t)Φe(t) + ρiψie(t)Φi(t) (4.3)

τi
dVi
dt

= V rest
i − Vi(t) + ρeψei(t)Φe(t) + ρiψii(t)Φi(t) (4.4)

two second-order (3.50 and 3.53) synaptic spike-rate inputs:

(
d

dt
+ γee)2Φe = [Nα

e φ
α
e (t) +Nβ

e Qe(t) + sφsc
e (t)]γ2

e (4.5)

(
d

dt
+ γi)2Φi = [Nβ

i Qi(t)]γ
2
i (4.6)

and one second-order for the 2-D wave equation (Robinson):

[(
∂

∂t
+ υΛe)2 − υ2∇2]φαe = υ2Λ2

eQe(r, t) (2D) (4.7)

The second-order equations can be reformulated as pairs of first-order DEs. This
results in a set of eight ODEs as follows:

τe
dVe
dt

= V rest
e − Ve(t) + ρ′eψee(t)Φe(t) + ρ′iψie(t)Φi(t) (4.8)

τi
dVi
dt

= V rest
i − Vi(t) + ρ′eψei(t)Φe(t) + ρ′iψii(t)Φi(t) (4.9)

dΦe

dt
= Me (4.10)

dMe

dt
= −2γeMe + [−Φe +Nα

e φ
α
e (t) +Nβ

e Qe(t) + sφsc
e (t)]γ2

e (4.11)

dΦi

dt
= Mi (4.12)

dMi

dt
= −2γiMi + [−Φi +Nβ

i Qi(t)]γ
2
i (4.13)

dφαe
dt

= Ωe (4.14)
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dΩe

dt
= −2υΛeΩe + [υ2∇2 − υ2Λ2

e]φ
α
e + υ2Λ2

eQe(t) (4.15)

where:
ρ′e = λeρe(1 + kC exp−aVe)−1,
ρ′i = λiρi,
Me, Mi and Ωe are ancillary variables.

To find the stationary states from the eight ODEs we set all time derivatives in
the long time limit to zero (d/dt = 0), also we do the same for the space derivatives
(∇2 = 0) and the noise terms. Then the following equations are obtained:

(φαe )0 = Q0
e (4.16)

(Φi)0 = Nβ
i Q

0
i (4.17)

(Φe)0 = (Nα
e +Nβ

e )Q0
e + sφsc

e (4.18)

Now substitute these into Eqs (4.8), (4.9) to find the stationary voltages V 0
e , V

0
i .

The resulting pair of equations cannot be solved analytically for Ve and Vi. Hence
a numerical scheme has to be implemented.

4.3 Numerical solution

In this implementation we assume full conformal symmetry, thus at steady state V 0
e

= V 0
i , but Q0

e 6= Q0
i . We model anaesthetic drug effect by scaling ρe, the synaptic

strength for excitatory spike inputs, by a dimensionless scale factor λe: ρe → λeρe

(EPSP area). Also, we do the same for IPSP area, by scaling ρi (the synaptic
strength for inhibitory spike inputs) by λi (dimensionless scale factor): ρi → λiρi.
There are four parameters used to model the anaesthetic effect: Mg-concentration
(mM) determines NMDA scaling of ρe (EPSP area); λe gives independent scaling of
ρe (EPSP area); λi scales ρi (IPSP area); s scales ee and ei subcortical flux.

We use nmda ss finder.m code (written by D. A. Steyn-Ross) to locate the
steady states. The four parameters used to define the anaesthetic effect are: C, λe,
λi, s (note that C = Mg-conc and s = sc in the nmda ss finder.m code). The first
equation dVe/dt is written as F1, and the second one dV i/dt is given the name F2.
Plotting F1 vs Ve,i (or Qe,i) gives a graph whose zero crossings locate the steady
states. By symmetry, the zeros of F1 will be identical to the zeros of F2. This vastly
simplifies the search for steady states.



4.3 Numerical solution 39

4.3.1 Isocline method

The stationary state of the cortex can be determined from the F1 vs Ve,i or F1 vs Qe,i
graphs. According to Wilson and Cowan (1972), these graphs are called nullclines
or isoclines (as dVe/dt = 0). The zeros of F1 (or F2) will give the steady states,
where the F1 isocline intersects the voltage axis. There can be either one or three
stationary states of the cortex depending on the anaesthetic concentration.

In order to observe the shape and behaviour of distribution of steady states for
varying anaesthetic effect, one of the four parameters was varied while keeping the
other three fixed, resulting in the following observations:

There are three possible isocline shapes, two with one stationary state and one
with three as shown in Figures 4.2, 4.3 and 4.4 respectively.

The default values for [C, λe, λi, s] are [0.78, 9.0, 1.0, 0.25]. Here are the ranges
for each parameter and the shape of the isocline for each range:

1. Varying magnesium concentration C with [λe, λi, s] fixed:
Three stationary states occur for 0.65 . C . 0.82 mM (see Fig. 4.4); elsewhere
only one stationary state exists (see Figs.4.2 and 4.3)

2. Varying λe with [C, λi, s] fixed:
Three steady states can be found for 8.6 . λe . 10.7; anywhere else only one
stationary state exists

3. Varying λi with [C, λe, s] fixed:
There are three stationary states for 0.83 . λi . 1.061, and only one station-
ary state anywhere else

4. Varying subcortical factor s with [C, λe, λi] fixed:
There are three stationary states for −2.6 . λi . 2.5, and only one stationary
state anywhere else

Note that negative spike-rates are unphysical, but they were included here to
produce a complete S-bend that allows comparison with the other S-bends.

4.3.2 Root finding

An alternative way of finding the stationary state of the cortex is to follow an
iterative numerical scheme of finding equilibrium soma voltages Ve,i (Steyn-Ross
(2002), Section 3.3.1). The graphical results found in the previous section should
provide a visual confirmation of the stationary states found by this iterative scheme.
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Figure 4.2: Graph of F1 vs Qe,i (left) and F1 vs Ve,i (right) with isocline showing a
single low-firing stationary state. Here, [C, λe, λi, s] = [0.85, 9.0, 1.0, 0.25]
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Figure 4.3: F1 vs Qe,i (left) and F1 vs Ve,i (right); isocline showing a single high-
firing stationary state. Here, [C, λe, λi, s] = [0.6, 9.0, 1.0, 0.25]
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Figure 4.4: F1 vs Qe,i (left) and F1 vs Ve,i (right) with isocline showing three
stationary states. Here, [C, λe, λi, s] = [0.78, 9.0, 1.0, 0.25]

In this scheme, the roots are determined by detecting axis crossings as a sign-change
in F1. The second step is to form a bracketing interval bounding each root. Finally,
each root is “polished” by applying a bisection technique (we used MATLAB’s

fzero function) to zero-in on the root to within a specified tolerance.

4.4 Distribution of roots

In this section we will show the locus of steady-state V 0
e,i soma voltages and Q0

e,i firing
rates as multivalued functions of neurotransmitter effects and subcortical driving,
(C, λe, λi and s). In each case the roots are distributed in an S-bend shape. Looking
vertically at the mid-range of the S-bend, three distinct equilibrium states can be
noted, while only one stationary state is located on other regions.

4.4.1 Variations in inhibitory neurotransmitter, λi

Fig. 4.5 indicates that for λi & 1.06, corresponding to strong anaesthetic effect, only
one state can be found on the bottom branch with about −65 mV soma voltage Ve,i
and around 1.5 s−1 firing rate forQe and 7.5 s−1 forQi (low firing rate, hyperpolarised
state). Also there is a single state on the top branch for λi . 0.82, corresponding to
strong anti-anaesthetic effect; here the soma voltage exceeds the sigmoidal inflexion
voltage (θe,i = −58.5 mV), giving a high firing rate for the neural population of
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about 30 s−1 for Qe and 60 s−1 for Qi (depolarised state). When the inhibitory
effect tends to the zero, λi → 0, the curve converges at the top-left corner to values
close to −38 mV where the neural populations are firing at close to their maximum
rates.
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Figure 4.5: (a) Model predictions for the stationary states for soma voltages Ve,i as
function of inhibitory neurotransmitter λi. (b) Equilibrium firing rates solutions for
excitatory Qe (grey curve) and inhibitory Qi (black curve) as a function of inhibitory
neurotransmitter effect. The graph was plotted by varying λi and fixing [C, λe, s]
= [0.78, 9.0, 0.25].

4.4.2 Variations in subcortical driving s

Fig.4.6 shows the steady-state distribution for variable subcortical driving. For s .

−2.7 (bottom branch), where the patient is considered to be strongly anaesthetized,
a single state is available with V ≈ −67 mV and low firing rate (Qe ≈ 0.5 s−1 and
Qi ≈ 3 s−1). When s & 2.6 and V ≈ −52.7 mV, the firing rate of the patient brain
is strong (Qe ≈ 28 s−1 and Qi ≈ 51 s−1). This is on the top-branch where one state
existed. For s→∞, the neural populations tend to their maximum firing rates.

4.4.3 Variations in excitatory neurotransmitter λe

It can be seen from Fig.4.7 that the hyperpolarised state occurs when λe . 8.53.
This happens on the bottom branch where only a single stationary state is available
with approximately the same voltages Ve,i (≈ −65mV) and firing rate Qe,i (1.5, 7.5
s−1 respectively) as for λi & 1.06. The depolarised state occurs when λe & 10.7,
corresponding to strong anti-anaesthetic effect. This is on the top branch where we
have one steady state and high firing rate (Qe ≈ 30 s−1 and Qi ≈ 60 s−1, similar
to λi . 0.82) because the soma voltage is greater than the sigmoid inflexion point.
For the excitatory effects, the maximum firing rate of the neural population occurs
when λe →∞; this is on the top-right corner where V ≈ −48.3 mV.



4.4 Distribution of roots 43

!5 0 5
!70

!68

!66

!64

!62

!60

!58

!56

!54

!52

Subcortical drive, s

V e,
i [m

V]

(a) Stationary States (Ve,i vs s) 

!5 0 5
0

10

20

30

40

50

60

Subcortical drive, s

Q
e, Q

i  [
s!

1 ]

(b) Stationary States (Qe,i vs s)

 

 

Qe

Qi

Figure 4.6: (a) Locus of steady states for soma voltages Ve,i as a function of sub-
cortical driving s. (b) Equilibrium firing rates for excitatory Qe (grey curve) and
inhibitory Qi (black curve). Note that negative subcortical drive values in the curve
are unphysical. The graph was plotted by varying s and fixing [C, λe, λi] = [0.78,
9.0, 1.0].
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Figure 4.7: (a) Locus of steady states for soma voltages Ve,i as a function of exci-
tatory neurotransmitter effect λe. (b) Equilibrium firing-rate solutions for Qe (grey
curve) and Qi (black curve). The graph was plotted by varying λe and fixing [C,
λi, s] = [0.78, 1.0, 0.25].

4.4.4 Variations in excitatory neurotransmitter C

The direction of the S-bend for magnesium concentration effect is the same as the
one for λi (inverted S-bend); this is shown in Fig.4.8. Looking at the bottom branch
when C & 0.83 mM, we obtain similar voltage and firing rates as λi & 1.06 Fig.(4.5)
and λe . 8.53 Fig.(4.7); giving a hyperpolarised state Ve,i ≈ −65 mV with firing
rate Qe,i = 1.5, 7.5 s−1 respectively. Similarly, looking at the top branch (depolarised
state) when C & 0.64 mM, roughly the same values of Qe ≈ 30 s−1 and Qi ≈ 60 s−1

are found compared to λi . 0.82 and λe & 10.7. Again a strong firing rate exists on
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the top branch when the soma voltages exceed the sigmoid threshold voltage. The
maximum firing rate of the neural population happens when V ≈ −48.3 mV, but
this time on the top-left corner for C → 0 compared to λe →∞.
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Figure 4.8: (a) Locus of steady states for soma voltages Ve,i as a function of Mg-
concentration C. (b) Equilibrium firing rates Qe (grey curve) and Qi (black curve).
The graph was plotted by varying C and fixing [λe, λi, s] = [9.0, 1.0, 0.25].

4.5 Significance of the steady-states

Following Steyn-Ross (2002), there are three distinct regions in the manifold of
steady-states of the cortex, see Fig.4.9:

Region I: This region is called “quiescent” or anaesthetized state, where the
macrocolumn has only a single low-firing quiescent state.

Region II: The macrocolumn has multiple steady states: Unlike the adiabatic
anaesthesia modelling reported by Steyn-Ross (2002) which displayed stable top and
bottom branches separated by an unstable mid-branch, we will show (in Section 4.7)
that the region of instability in the present model extends into the upper and lower
branches, terminated by a pair distinct Hopf bifurcation points.

Region III: The firing rate is very strong and a single active state is available;
this region is known as “highly activated”.

4.6 Stability analysis

Section 4.5 discussed the steady states. We now analyse the linear stability of these
steady states, and find predictions of interesting new dynamical behaviours.

4.6.1 Linear stability analysis: Theory

Consider a general system of two nonlinear ODEs:
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Figure 4.9: The S-bend of cortical steady states has three distinct regions: region
I known as “quiescent” where the macrocolumn has only a single low-firing state;
region III known as “highly activated” where the firing rate is very strong and a
single active state is available; and region II where for a given value of λ there are
three possible values for V 0

e,i. In this case λi is varied and the other parameters are
fixed [C, λe, s] = [0.78, 9.0, 0.25].

ẋ = f(x, y) (4.19)

ẏ = g(x, y) (4.20)

where a fixed point (x0, y0) must exist, such that,

f(x0, y0) = 0 (4.21)

g(x0, y0) = 0 (4.22)

To linearise this system, we expand the nonlinear functions about (x0, y0) as
x = x0 + δx, y = y0 + δy using a Taylor series in two variables,

f(x0 + δx, y0 + δy) = f(x0, y0) + [fx(x0, y0)δy] +
1
2!

(δx)2fxx(x0, y0)

+ 2δxδyfxy(x0, y0) + (δy)2fyy(x0, y0)...
(4.23)

g(x0 + δx, y0 + δy) = g(x0, y0) + [gx(x0, y0)δy] +
1
2!

(δx)2gxx(x0, y0)

+ 2δxδygxy(x0, y0) + (δy)2gyy(x0, y0)...
(4.24)
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From Eqs.(4.19)–(4.20) and (4.23)–(4.24) we obtain,

δ̇x = fx(x0, y0)δx + fy(x0, y0)δy + fxy(x0, y0)δxδy + ... (4.25)

δ̇y = gx(x0, y0)δx + gy(x0, y0)δy + gxy(x0, y0)δxδy + ... (4.26)

Retaining only first-order terms, we find

d

dt

[
δx

δy

]
=

[
fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

] [
δx

δy

]
(4.27)

These two linear DEs are considered to be the linear transformation of the general
system consisting of two nonlinear ODEs. This is a linear homogeneous system with
constant coefficients, so can be written in the general form (Boyce and Diprima
(1997)):

dx/dt = Ax, (4.28)

where A is the 2× 2 stability matrix and x is a 2× 1 vector. The eigenvalues of A

determine whether the solution of the system will decay exponentially towards or
grow exponentially away from its stationary state. When the determinant of A is
non-zero (det A 6= 0), then the matrix is nonsingular and hence x = 0 is the only
solution of the system. To find a solution of the form x = ξeλt, substitute x in Eq.
(4.28):

(A− λI)ξ = 0 (4.29)

Note that λ is the eigenvalue of the matrix A and ξ is the corresponding eigen-
vector. Eq. (4.28) can be used to to determine the eigenvectors, and the resulting
eigenvalues are the roots of the polynomial equation.

det(A− λI)ξ = 0 (4.30)

Thus, the general solution for the linear homogeneous system in Eq.(4.27) can
be written in this form:

x(t) = c1ξ
(1)eλ1t + c2ξ

(2)eλ2t (4.31)

where c1, c2 are constants, λ1, λ2 are eigenvalues and ξ(1), ξ(2) are eigenvectors.

The stability of the steady states is determined by both the nature (complex
or real) and sign (positive or negative) of the eigenvalues. Following Reichl (1998),
various cases of real and imaginary parts of λ1 and λ2 are listed to examine the
stability of the system:

1. Both λ1 and λ2 are real and negative with λ1 < λ2 < 0. This state is completely
stable. A solution displaced from the steady state will decay exponentially back
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to this state.

2. Both λ1 and λ2 are real and positive with 0 < λ1 < λ2. This state is completely
unstable. A solution displaced from the steady state will exponentially move
away.

3. Both λ1 and λ2 are real with λ1 < 0 < λ2. This state is unstable. In this case,
for nonzero c2 and t→∞, the positive eigenvalue will dominate.

4. Both λ1 and λ2 are purely imaginary. The stability of the steady state is
determined by the nonlinear terms, and the system oscillates around the steady
state (neither decays nor moves). This case is known as the Hopf bifurcation.

5. Both λ1 and λ2 are complex with negative real part, such that λ1 = α + iβ,
λ2 = α − iβ where α < 0. This is a stable state, because the solution from
the steady state is exponentially damped towards the steady state while at the
same time oscillates around it.

6. Both λ1 and λ2 are complex with positive real part, such that λ1 = α + iβ,
λ2 = α− iβ where α > 0. This is unstable state, where the solution displaced
from the steady state will exponentially move away from the steady state while
at the same time oscillating around it.

From the above linear analysis, we can determine the steady state-stability of
the nonlinear system. The neglected nonlinear terms cannot change the stability of
a stationary state. However, a phase transition or bifurcation to non-equilibrium
steady state can occur in a nonlinear system (Reichl (1998)). Although the linear
stability analysis allows us to know when this phase transition occurs, it cannot
determine the form of the new state.

4.6.2 Linear stability analysis for cortical model

In order to establish the stability of the steady states in our cortical model, the
eight nonlinear ODEs Eq.(4.8)–(4.15) must be linearised. This can be done by
applying the same approach used in linearising two nonlinear ODEs, Section 4.6.1.
We assume that all variables can be expressed as a homogenous equilibrium value
plus a fluctuating component. Thus, we write:

Ve(~r, t) = V 0
e + δVe(~r, t) (4.32)

Vi(~r, t) = V 0
i + δVi(~r, t) (4.33)

Φe(~r, t) = Φ0
e + δΦe(~r, t) (4.34)
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Me(~r, t) = M0
e + δMe(~r, t) (4.35)

Φi(~r, t) = Φ0
i + δΦi(~r, t) (4.36)

Mi(~r, t) = M0
i + δMi(~r, t) (4.37)

φαe (~r, t) = (φαe )0 + δφαe (~r, t) (4.38)

Ωe(~r, t) = Ω0
e + δΩe(~r, t) (4.39)

where ~r is the 2-D position vector, and δVe, δVi, δΦe, δMe, δΦi, δMi, δφ
α
e , δΩe are the

respective fluctuations about the equilibrium values V 0
e , V

0
i ,Φ

0
e,M

0
e ,Φ

0
i ,M

0
i , (φ

α
e )0,Ω0

e.

Taking d/dt of Eq.(4.32)–(4.39) gives the time-rate change of the perturbations.
Our linearised system can be represented in matrix form (similar to Eq. (4.27)) as
following:

d

dt



δVe

δVi

δΦe

δMe

δΦi

δMi

δφαe

δΩe


= A



δVe

δVi

δΦe

δMe

δΦi

δMi

δφαe

δΩe


(4.40)

where A is the 8×8 Jacobian matrix of partial derivatives evaluated at the equi-
librium point:

A =



J11 J12 J13 J14 J15 J16 J17 J18

J21 J22 J23 J24 J25 J26 J27 J28

J31 J32 J33 J34 J35 J36 J37 J38

J41 J42 J43 J44 J45 J46 J47 J48

J51 J52 J53 J54 J55 J56 J57 J58

J61 J62 J63 J64 J65 J66 J67 J68

J71 J72 J73 J74 J75 J76 J77 J78

J81 J82 J83 J84 J85 J86 J87 J88


(4.41)

Before computing A, we link the fluctuation (δVe, δVi, δΦe, δMe, δΦi, δMi, δφ
α
e , δΩe)

to its spatial Fourier transform (δ̂Ve, δ̂Vi, δ̂Φe, δ̂Me, δ̂Φi, δ̂Mi, δ̂φαe , δ̂Ωe) (Steyn-Ross
et al. (2007)), such that:
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δVe(~r, t) =
1

(2π)2

∫ ∞
−∞

δ̂Ve(~q, t)ei~q.~rd~q, (4.42)

δVi(~r, t) =
1

(2π)2

∫ ∞
−∞

δ̂Vi(~q, t)ei~q.~rd~q, (4.43)

δΦe(~r, t) =
1

(2π)2

∫ ∞
−∞

Φ̂e(~q, t)ei~q.~rd~q, (4.44)

δMe(~r, t) =
1

(2π)2

∫ ∞
−∞

M̂e(~q, t)ei~q.~rd~q, (4.45)

δΦi(~r, t) =
1

(2π)2

∫ ∞
−∞

Φ̂i(~q, t)ei~q.~rd~q, (4.46)

δMi(~r, t) =
1

(2π)2

∫ ∞
−∞

M̂i(~q, t)ei~q.~rd~q, (4.47)

δφαe (~r, t) =
1

(2π)2

∫ ∞
−∞

δ̂φαe (~q, t)ei~q.~rd~q, (4.48)

δΩe(~r, t) =
1

(2π)2

∫ ∞
−∞

δ̂Ωe(~q, t)ei~q.~rd~q, (4.49)

where ~q is the 2-D wavenumber vector. Using Fourier transformation leads to re-
placement of ∇2 by −q2 (where q = |~q|) in our system. The Fourier-transformed
equations are listed for completeness only; we will not use space in our stability
analysis or simulations (i.e. we will set q = 0).

4.6.3 Elements of the 8×8 Jacobian matrix

In order to obtain the stability characteristics of the new linear system, we need to
compute the eigenvalues of the 8× 8 Jacobian matrix.

Computing the matrix elements from Eqs.(4.8–4.15) (after Fourier transforming
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them) results in:

J11 = −1 + ψ̂eeΦ̂e
∂ρ̂′e

∂V̂e
+ ρ̂′eΦ̂e

∂ψ̂ee

∂V̂e
+ ρ′iΦ̂i

∂ψ̂ie

∂V̂e

1
τe

(4.50)

J13 = ρ̂′eψ̂ee
1
τe

(4.51)

J15 = ρ′iψ̂ie
1
τe

(4.52)

J21 = ψ̂eiΦ̂e
∂ρ̂′e

∂V̂e

1
τi

(4.53)

J22 = −1 + ρ̂′eΦ̂e
∂ψ̂ei

∂V̂i
+ ρ′iΦ̂i

∂ψ̂ii

∂V̂i

1
τi

(4.54)

J23 = ρ̂′eψ̂ei
1
τi

(4.55)

J25 = ρ′iψ̂ei
1
τi

(4.56)

J34 = 1 (4.57)

J41 = γ2
eN

β
e

∂Q̂e

∂V̂e
(4.58)

J43 = −γ2
e (4.59)

J44 = −2γe (4.60)

J47 = γ2
eN

α
e (4.61)

J56 = 1 (4.62)

J62 = γ2
iN

β
i

∂Q̂i

∂V̂i
(4.63)

J65 = −γ2
i (4.64)

J66 = −2γi (4.65)

J78 = 1 (4.66)

J81 = υ2Λ2
e

∂Q̂e

∂V̂e
(4.67)

J87 = υ2(−q2 − Λ2
e) (4.68)

J88 = −2υΛe (4.69)

Note that all other elements of the matrix are equal to zero.
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Thus,

A =



J11 0 J13 0 J15 0 0 0
J21 J22 J23 0 J25 0 0 0
0 0 0 J34 0 0 0 0
J41 0 J43 J44 0 0 J47 0
0 0 0 0 0 J56 0 0
0 J62 0 0 J65 J66 0 0
0 0 0 0 0 0 0 J78

J81 0 0 0 0 0 J87 J88


(4.70)

where:
∂ρ̂′e

∂V̂e
=

λeρeakCe
−acVe

(1 + kCe−acVe)2
(4.71)

The derivatives of the four weighting-functions ψjk are constants given by:

∂ψ̂ee

∂V̂e
=

−1
(V rev
e − V rest

e )
(4.72)

∂ψ̂ei

∂V̂e
=

−1
(V rev
e − V rest

e )
(4.73)

∂ψ̂ie

∂V̂i
=

−1
(V rev
i − V rest

i )
(4.74)

∂ψ̂ii

∂V̂i
=

−1
(V rev
i − V rest

i )
(4.75)

The firing-rate sigmoids Qe,i have the following derivatives:

∂Q̂e

∂V̂e
=
Qmax
e (C/σe) exp[−(V̂e − θe)C/σe]
(1 + exp[−(V̂e − θe)C/σe])2

(4.76)

∂Q̂i

∂V̂i
=
Qmax
i (C/σi) exp[−(V̂i − θi)C/σi]
(1 + exp[−(V̂i − θi)C/σi])2

(4.77)

4.7 Stability predictions

The dominant eigenvalue graphs [Figs 4.10, 4.11, 4.12 and 4.13] all have the following
regions in common; a stable part (solid black ) and an unstable part (dotted lines).
There are two stable regions one belonging to the upper (highly activated) branch
and the other to the lower (quiescent) branch. These are joined by an unstable
region.

The graph of the real part of the dominant eigenvalue against one of the four
input parameters [λi, λe, C, s] with the other three parameters kept constant at
near default values, generally looks like a loop. The loop tends to be partly greater
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than zero. This is the unstable region. The ‘legs’ of the loop below zero are the
stable regions corresponding to parts of the upper and lower branches of the S-bend.

The transition between the stable and unstable regions is marked by a Hopf
bifurcation point (circled) where the dominant eigenvalue has zero real part but
non-zero imaginary part. Regions on either side of the Hopf point are oscillatory.

The imaginary part of the dominant eigenvalue(s) represents the oscillation com-
ponent. Hence the purely real dominant eigenvalue of the central part of the unstable
region suggests that it may be non-oscillatory. However the other eigenvalues may
have non-zero imaginary parts and possibly generate oscillatory behaviour.

The noticeable feature of this model is that the dominant eigenvalue crosses zero
while it is still on the top or bottom branches before reaching the turning points
(TP1 and TP2) on the S-bend. This means that the regions between the Hopf points
and the turning points becomes unstable and a jump between states can occur. The
closer the state to the turning point the sooner the jump will occur.

The stability changes caused by variations in each of the four input parameters
are now discussed in more detail.

4.7.1 Stability changes with anesthetic effect λi

To demonstrate the effect of anaesthetic on model stability, the values of λi were
varied while the other parameters remain fixed; [C, λe, s] are [0.78, 9.0, 0.25].

In Fig.4.10 for low λi (minimal inhibition), the system is in a highly activated
state. As λi is increased the steady state voltage decreases. In the mid-range of
λi there is a discontinuity between the high and low steady states voltages range
where a jump transition may occur; similarly for decreasing λi from a quiescent
state. Where and how quickly this switching can take place is determined by the
system stability.

The system is stable at the extremes of the chosen λi range. This is shown by
the negative dominant eigenvalues in Fig.4.10b.

Approaching the multiple steady state region from either side, the system looses
stability until it is barely stable before the Hopf points. After these critical points
the system becomes increasingly unstable up to the turning points (TP1 and TP2).
The less stable it is, the longer the system takes to return to the steady states from
a given perturbations. The more unstable the system is the sooner the perturbation
becomes a large scale event.

Fig.4.10b shows that the upper branch generally has higher oscillation frequency
than the lower branch (the magnitude of the imaginary part of the dominant eigen-
value is directly proportional to oscillation frequency). The Hopf point (H1) be-
longing to the upper branch has approximate frequency of 2.4 Hz, while the lower
branch Hopf (H1) has a frequency of approximately 1.3 Hz.
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4.7.2 Stability changes with subcortical driving, s

The parameters λi, λe and C were kept at default values and s was varied. The
negative values of s are unphysical, we use them as we mentioned before just to
show the whole shape of the S-bend. From 0 to H2 only the bottom branch is
stable. There are no stable steady states between s = 1.196 and s = 4.244. These
are the Hopf points (H1 and H2). Comparing the S-bend in this case with the other
S-bends, we note that there is no overlap between the stable states.

4.7.3 Stability changes with NMDA effect, λe and C

λe and C are the excitatory and inhibitory influences respectively and so λe produces
an S-bend and C produces a reverse S-bend very similar to that obtained for λi.
Apart from the range and direction the graphs are almost the same. The Hopf
frequencies on the top branch are 1.36 Hz for both NMDA effects. The bottom
branch is similar at 2.45 Hz and 2.44 Hz respectively. The maximum frequency is 4
Hz.

4.8 Predicted effect of NMDA on cortical stability

For plots of λi (such as Fig.4.14), increasing λe has the effect of shifting the graph to
the right. The λe excites the system therefore a larger fixed λe will require greater
λi before the system quietens. On the other hand, the magnesium concentration C

has the opposite effect of aiding the inhibition of λi and therefore increasing C will
have the effect of shifting the λi graph to the left (i.e., quiet states are more easily
achieved with lower value of λi).

The effects of C and λe are opposite to each other (see Fig.4.15). Increased λe

will require less subcortical drive s to reach a high firing state and increased C will
cancel out some of the effects of s and therefore needing more s to reach a high
state.

We discussed above the effect of increasing C and λe, and now we will show what
would happen if we decrease these C and λe. Fig.4.14 (for λi) and Fig.4.15 (for s)
indicate how the steady-state stability changes with decreasing C and λe. It can be
seen that decreasing C shifts the λi S-bend to the right and s S-bend to the left. In
contrast, decreasing λe shifts the S-bends to the opposite direction of C effect.
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Figure 4.10: (a) Stability prediction for small perturbation on the S-bend for the
anaesthetic effect λi. The system will be stable in the upper left and lower right
branches (top and bottom black curves). It is predicted to be unstable between
the two Hopf points H1 and H2 (dashed curve). The labels x1 and x2 mark the
points where the system changes from being unstable oscillatory to unstable non-
oscillatory and vice versa. The unstable mid-branch is located between the turning
points TP1 and TP2. (b) Variation of stability for the anaesthetic effect λi. The
upper figure shows the real part of the dominant eigenvalue and the lower graph
shows the imaginary part. Here we vary λi while fixing [C, λe, s] = [0.78, 9.0, 0.25].
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Chapter 5

Numerical simulation

The aim of this chapter is to verify the stability results found in Chapter 4 using
numerical simulation of the macrocolumn stochastic differential equations. This will
be calculated by adding white noise to the system and then simulating it using a
stochastic one-step Euler method.

5.1 Discrete approximation for white noise

The continuous-time stochastic differential equation Eq.(3.45) contains two inde-
pendent zero-mean delta-correlated noise inputs ξ(t). The aim is to transform the
random term ξ(t) to a discrete-time numerical simulation ηn which can be achieved
by following the method presented by Murthy (1983) in mapping for the random
noise component. The zero-mean delta-correlated ξ(t) is modelled as a white noise
as following:

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = A2δ(t− t′) (5.1)

where A = root-mean-square (rms) value of ξ(t).

The white noise has a pathological feature of infinite variance and therefore
cannot be precisely represented by any real signal. The continuous-time random
time-series ξ(t) is simulated by an equivalent discrete random sequence ηn at time
values tn = n∆t, having 0 mean and variance = σ2.

〈ηn〉 = 0, 〈ηnηm〉 = σ2δnm; (5.2)

where δnm is the unit impulse response.

Following Steyn-Ross (2002), the product ξ(t)ξ(t′), the expected value of the
integral over all time is

〈 lim
T→∞

∫ T

−T
ξ(t)ξ(t′)dt〉 =

∫ ∞
−∞
〈ξ(t)ξ(t′)dt〉dt = 1; (5.3)

59
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and the expected value for the summation of the discrete products ηnηm, is,

〈 lim
N→∞

N∑
n=1

ηnηm∆t〉 = lim
N→∞

N∑
n=1

〈ηnηm〉∆t = σ2∆t. (5.4)

These two expected vales must be equivalent, hence standard deviation for the
discrete sequence is

σ =
1√
∆t

(5.5)

The built in Matlab randn function is used to generate the Gaussian-distributed
random numbers Rn of zero mean used in the stochastic simulations later.

〈Rn〉 = 0, 〈RnRm〉 = δn,m (5.6)

The stochastic sequence ηn required for the numerical simulation are calculated
using the generated numbers Rn

ηn =
Rn√
∆t

(5.7)

The result of the previous step makes the mapping from continuous-time white
noise ξ(t) to its discrete-time approximation ηn

ξ(t)→ ηn =
Rn√
∆t

, t = n∆t (5.8)

The discrete sequence gives a better approximation of white noise as ηn →∞ in the
limit ξ(t)→ 0. Overall, the accuracy of the stochastic simulation is enhanced as the
time-step is decreased.

5.2 Difference equations

As mentioned earlier, the aim of this chapter is to verify the predicted stability
properties of the soma voltage Ve,i using a stochastic one-step Euler method. This
is done by a simple iteration scheme at a time step n+ 1 (at a time t = (n+ 1)∆t)
via linear extrapolation from the previous time step n:

xn+1 = xn + [
dx

dt
]∆t (5.9)

where xn is the value of x at t = n∆t. The random component of the derivative
term is a function of the time step ∆t used in the simulation as these system of
differential equations are stochastic.

Now the simple iteration scheme of the Euler method will be applied in the
full-equations (4.31)–(4.38) .

V n+1
e = V n

e +
1
τe

[V rest
e − V n

e + ρneψ
n
eeΦ

n
e + ρiψ

n
ieΦ

n
i ]∆t (5.10)
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V n+1
i = V n

i +
1
τi

[V rest
i − V n

i + ρneψ
n
eiΦ

n
e + ρiψ

n
iiΦ

n
i ]∆t (5.11)

Φn+1
e = Φn

e + [Me]n∆t (5.12)

Mn+1
e = Mn

e + [−2γeMn
e + [−Φn

e +Nα
e (φαe )n +Nβ

e Q
n
e + s(φsc

e )n]γ2
e ]∆t (5.13)

Φn+1
i = Φn

i + [Mi]n∆t (5.14)

Mn+1
i = Mn

i + [−2γiMn
i + [−Φn

i +Nα
i (φαi )n +Nβ

i Q
n
i ]γ2

i ]∆t (5.15)

φn+1
e = φne + [Ωe]n∆t (5.16)

Ωn+1
e = Ωn

e + [−2υΛeΩn
e + [υ2(−q)2 − υ2Λ2

e](φ
α
e )n + υ2Λ2

eQ
n
e ]∆t (5.17)

where
(φsc
e )n = 〈φsc

e 〉+
√
φsc
e

Rn√
∆t

(5.18)

5.3 Verification of macrocolumn steady states

The focus of this section is to verify the theoretical distribution of macrocolumn
steady states found in Chapter 4 by running the numerical simulation defined in
Eq.(5.10)–(5.17). Due to the fact that the equations were strongly non-linear, the
choice of time step had to be small in order for the Euler method to work (remains
stable). It was found that the simulation’s deterministic behaviour was unaffected
when running the simulation with a range of time steps up to 10−3, therefore the
choice of ∆t = 10−3 s was decided to be safe enough for the simulation.

5.4 Validation of the stable branches

In order to demonstrate the stability of the steady states on the stable region of
the cortical model, we choose some values on the upper and lower branches of the
S-bend (Fig. 4.5). Several experiments were carried out to observe the behaviour
of the steady states on the stable branches, and the finding was: the fluctuations
can be seen about the stationary states, and the system never moves far from these
stationary states. This is true for all steady states along the stable region (upper
and lower branches). To confirm the above results, two values of stationary states
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on the upper branch were selected, (λi = 0.8) and (λi = 0.9), where the first one is
far from the Hopf point while the second one is much closer to it.

It was found that the displacement of the steady state from the Hopf point
affects its stability. This is indicated in Fig.5.1 where the noise was turned off after
4 seconds. For λi = 0.8 (far from the Hopf point) the system decays quickly to the
steady state. But for λi = 0.9 (close to the Hopf) it remains oscillating and decaying
slowly to the stationary state. Similar results were found for the points of stable
lower branch.
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time [s]
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Euler simulation: stable stationary state, !i = 0.8

simulation noise turned 
off after time = 4 s

simulation noise turned 
off after time = 4 s

Figure 5.1: Simulation on the stable region, (varying λi, default values for the other
inputs): after turning the noise off (4 s), the voltage remains oscillating and decaying
slowly when λi = 0.9 (close to the Hopf), while it decays quickly when λi = 0.8 (far
from the Hopf). [C, λe, s] = [0.78, 9.0, 0.25].

5.5 Examination of the Hopf bifurcation

Starting the simulation at the Hopf points enable us to understand the macrocolumn
stability there. Figure 5.2 shows the simulation of the two Hopf points: when λi =
0.9415 on the upper branch and λi = 0.8817 on the lower branch, turning off the
noise after 10 seconds. The system oscillates with a frequency of approximately 2.40
Hz for the upper Hopf and 1.33 Hz for the lower Hopf. This is in agreement with
predicted Hopf oscillation frequency of 2.417 Hz (H1) and 1.297 Hz (H2) respectively
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discussed in Chapter 4. The start of the instability of the system corresponds to the
Hopf bifurcation points. For longer simulations at the Hopf values the oscillations
were seen slowly diverging from the steady state. This behaviour was exhibited
by the system after the noise was turned off after some time in the simulation.
Theoretically the oscillation magnitude should be constant at the Hopf point. The
slow growth is likely to be due to inaccuracies in the numerical simulation arising
from accumulation of round-off and Euler truncation errors.
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Figure 5.2: Simulating the Hopf points. When the noise was turned off (10 s) the
oscillations were growing slowly for both Hopf points at λi = 0.9415 (upper branch)
and λi = 0.8817 (lower branch). [C, λe, s] = [0.78, 9.0, 0.25].

5.6 Simulation on the unstable region

There are two main behaviours seen in the simulation of the unstable region. These
are either a transition between states, or emergence of limit cycle oscillations. The
noise-stimulated system never remains at these unstable steady states, in agreement
with stability prediction in Chapter 4. For the case of limit cycles, we see large
amplitude oscillations that are insensitive to noise.

In the simulation the system diverges from an unstable steady state and attempts
to make a transition to a stable steady state if one is available. If that destination
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stable steady state is too close to the Hopf point it cannot attract the system strongly
enough to capture it. Instead the system enters a limit cycle doing flybys past the
steady states.

In contrast, if the stable destination is far enough from the Hopf the system make
a transition and settles into the new equilibrium state with decreasing oscillations
as shown in Fig 5.3. The system diverges where there is only unstable steady states
until it goes into a limit cycle which agrees with a physical limitation preventing
unbounded growth. This only happens for the case of subcortical drive s (see Fig
5.4).
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Figure 5.3: Transition between states. When λi=1.0 a transition from unstable part
of top branch to stable lower branch; when λi=0.85 a transition from unstable part
of bottom branch to stable upper branch. [C, λe, s] = [0.78, 9.0, 0.25].

In the case where there are steady states above and below the point where
the simulation is begun, the initial displacement from the unstable steady state
may be important in determining the final evaluation of the system. Usually such
starting points lie on the mid branch which are non oscillatory. When the system is
displaced far enough from the stationary states by the noise addition, the exponential
divergence suppresses the ability of the noise fluctuations to return the system to
the neutral state. At this point the two possible paths are separated.

For certain starting points one path led to a transition while the other path
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Figure 5.4: For the case of subcortical drive s only, a region of only unstable steady
state is found (s = 2.7) in which the system goes into a limit cycle. Here [C, λe, λi]
= [0.78, 9.0, 1.0].

resulted in limit cycles shown in Fig.5.5. Other starting points showed that the two
directions of initial divergence both resulted in the same long term evolution of the
system, a limit cycle shown in Fig.5.7 or a transition to another steady state as in
Fig.5.6. The case of two separate transition states from one unstable point was not
observed among the simulations.
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Figure 5.5: For certain points in the min-branch we get two distinct outcomes. One
outcome leads to transition (upper to lower (λi=0.94)), lower to upper (λi=0.924)
and the other leads to limit cycling. [C, λe, s] = [0.78, 9.0, 0.25].
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Figure 5.6: In some cases in the mid-branch, the initial divergence all resulted in a
transition to another steady state, upper to lower when λi = 1.0, and lower to upper
when λi = 0.85. Here [C, λe, s] = [0.78, 9.0, 0.25]
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Figure 5.7: For some points in the mid-branch, the initial divergence all resulted in
a limit cycle (λi = 0.927). [C, λe, s] = [0.78, 9.0, 0.25].





Chapter 6

Conclusions and further work

6.1 Overview

The main goal of this thesis was to investigate the behaviour of an electrodynamic
model of the cortex, including the effect NMDA effects (an excitatory neurotransmit-
ter). This was achieved by adopting the mean-field model developed by Steyn-Ross
et al. (2005) which models the average behaviour of populations of neurons (neural
mass). The effects of NMDA were introduced in our model by following Jahr and
Stevens (1990). The main four input parameters used to define the neurotransmit-
ter effect are: inhibitory neurotransmitter λi, subcortical drive s, NMDA excitatory
neurotransmitters (λe and magnesium concentration C). The theoretical stability
predictions (Chapter 4) showed an agreement with the numerical simulations of the
macrocolumn stochastic differential equations (Chapter 5).

6.1.1 Equilibrium solutions

Our method relies on the investigation of the behaviour of small perturbations
around the stationary states of the cortex. The stationary states were found by
setting all time and space derivatives of the eight ODEs (3.48) to (3.54) equal to
zero (d/dt = d/dx = 0) and also the noise = 0. Since it was impossible to analyti-
cally solve for Ve and Vi, a numerical method was adopted. Two methods were used
to determine the stationary states of the cortex: isocline method and root finding
method (following Steyn-Ross (2002)).

It was found that the system can either have three or one stationary states
depending on the NMDA concentration where the default values for [C, λe, λi, s] are
[0.78, 9.0, 1.0, 0.25]. By varying each input parameter in turn, the distribution of the
steady states was plotted resulting in S-bend shapes. Each S-bend has three distinct
regions as shown in Fig.4.9: region I has a single low-firing state (“quiescent”); region
II with multiple steady states; region III where a strong firing rate state (“highly
activated”) can be found.

69
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6.1.2 Theoretical stability predictions of the steady states

We computed the Jacobians to derive the stability of the system and found that the
upper and lower branches are mostly stable. However, unlike the adiabatic anaes-
thesia modelling reported by Steyn-Ross (2002), the middle unstable region extends
into the upper and lower branches, terminated by a pair distinct Hopf bifurcation
points (where the real part of the dominant eigenvalue is equal to zero) because of
the NMDA effect. Since the dominant eigenvalue (most positive or least negative)
determines the stability of the steady states, the distribution of dominant eigen-
values was plotted for each input parameter (Figs.4.10, 4.11, 4.12 and 4.13). The
previous stability classification was confirmed by the real-part dominant eigenvalue
graphs where the stable branches (upper and lower) always have a negative domi-
nant eigenvalue while the unstable branch has a dominant eigenvalue that is positive.
The Hopf bifurcation (has no real part) is the point where the transition between
the stable and unstable regions occur. The graph of the imaginary-part dominant
eigenvalue(s) represents the oscillation component. Only the mid-branch of the un-
stable region has no oscillatory behaviour. The frequency of the upper branch is
generally higher than that of the lower branch. For example, the Hopf point (H1)
belonging to the upper branch has approximate frequency of 2.4 Hz which is higher
than the frequency of the lower branch Hopf (H2) that was approximately 1.3 Hz.

The NMDA effect (C and λe) on the macrocolumn stability was studied by com-
paring different values of C and λe in the S-bend plots of both λi and s (Figs.(4.14)
and (4.15)). For the plot of λi, increasing the value of λe has the effect of shifting
the graph to the right (excites the system), while increasing C result in shifting the
graph to the left (aiding the inhibition). Increased λe will require less s to reach a
high firing state and increased C will cancel out some of the effects of s and therefore
needing more s to reach a high state. Overall, it can be seen that λe and C have
opposite effect on steady-state stability.

6.1.3 Numerical simulation of the steady states

The system was simulated using a stochastic one-step Euler method with some noise
added to the system in order to verify the stability results found by the theoretical
stability predictions. Since the equations were strongly non-linear, the choice of time
step had to be small in order for the Euler method to work (∆t = 10−3).

Many numerical experiments were carried out to study the behaviour of the
steady states in stable and unstable regions, and the following was found:
• for the stable region on the upper and lower branches, the system fluctuates around
the steady states and never moves far away. However, the closer the steady state to
the Hopf point, the longer it takes for the system to decay back to the stationary
state when the noise is turned off;
• at the Hopf points, when the noise was turned off, the oscillations were seen slowly
diverging from the steady state, where theoretically the oscillation magnitude should
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be constant;
• for the unstable region, the system either makes a transition between states or
exhibits a limit cycle behaviour. If the stable destination is far enough from the
Hopf the system make a transition and settles into the new equilibrium state. For
certain starting points a divergence behaviour was found where in some cases one
path led to a transition while the other path resulted in limit cycles. In other cases,
the two direction of initial divergence both resulted in the same long term evolution
of the system either to a limit cycle or to a transition between states. A final case
occurs at the critical value of subcortical drive s where a region of only unstable
steady state is found, in which the system goes into a limit cycle.

The listed results of the numerical simulation agree with the results of the sta-
bility predictions. The oscillations that are seen in our results might be caused by
the instability in the stationary states. Traditionally the cortical oscillations have
been interpreted by neuroscientists as being caused by either delay reverberation in
subcortical-cortical circuits, or at the level of individual neurons, oscillations in var-
ious membrane currents. These situations may be sufficient, but are not necessary,
for the production of the cortical rhythms.

6.1.4 Further work

This thesis assumed a homogenous cortex in the stability analysis and simulations
(i.e., q = 0). Hence it would be worthwhile demonstrating the results of adding
space to the system.

The case of subcortical drive (s) is slightly different than the other three param-
eters (λi, λe, C). Therefore, it might be beneficial if it would be studied in more
detail. Finally, the different oscillatory behaviours of the steady states need to be
physiologically explained.





Appendix A

Matlab code

A.1 Sigmoid functions and their derivatives

% sigmoid.m

% Drawing the graphs of Sigmoid and its derivative

dV = 0.01;

V = [-100: dV: -20]; % values of V [mV]

ge = .30; gi = .18;

the = -60; thi = -60;

%define smooth Sigmoid curve and its gradient

Qe = 100./(1 + exp(-ge.*(V - the)));

Qi = 100./(1 + exp(-gi.*(V - thi)));

dqe = 100*ge.*exp(-ge*(V - the))./(1 + exp(-ge*(V - the))).^2;

dqi = 100*gi.*exp(-gi*(V - thi))./(1 + exp(-gi*(V - thi))).^2;

figure(1); clf;

subplot (121);

plot(V, Qe, ’k’);

hold on;

plot(V,Qi, ’k’, ’linewidth’, 2);

hold on;

xlabel (’Soma Potential [mV]’, ’fontsize’, 18);

title ( ’(a) Firing rate vs Voltage’, ’fontsize’, 20);

legend (’\it{Q_e} ’,’\it{Q_i}’, ’Location’, ’NW’)

hold on; grid on; zoom on;
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subplot (122);

plot(V, dqe, ’k’);

hold on;

plot(V,dqi, ’k’,’linewidth’, 2);

hold on;

xlabel (’Soma Potential [mV]’, ’fontsize’, 18);

title ( ’(b) First-derivative’, ’fontsize’, 20);

legend (’d{\itQ_{e}} /d{\itV_{e}} ’,’d{\itQ_{i}} /d{\itV{_i}}’,...

’Location’, ’NW’);

hold on; grid on; zoom on;

% Using the numerical differentiation to verify that the analytic

% derivative curves are correct.

deltaV = 0.001;

% we choose this size of deltaV because when the step is small we get

% better result but we try not to make it very small because it will

% take long time to run.

V = [-100: deltaV: -20];

% define sampled Sigmoid and its gradient

Se = 100./(1 + exp(-ge.*(V - the)));

Si = 100./(1 + exp(-gi.*(V - thi)));

dse = 100*ge.*exp(-ge*(V - the))./(1 + exp(-ge*(V - the))).^2;

dsi = 100*gi.*exp(-gi*(V - thi))./(1 + exp(-gi*(V - thi))).^2;

% we choose the centred-derivative because it gives better estimation for

% the gradient.

% estimate the gradient via r centred-derivative

cd_Se = (Se(3:end) - Se(1:end-2))/(2*deltaV);

cd_Se = [NaN cd_Se NaN];

cd_Si = (Si(3:end) - Si(1:end-2))/(2*deltaV);

cd_Si = [NaN cd_Si NaN];

% compute discrepncy between numerical and true derivatives

err_e = cd_Se - dse;

err_i = cd_Si - dsi;
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figure (2); clf;

hold on;

plot (V,err_e,’k’,’linewidth’, 2);

plot (V,err_i,’k’);

xlabel(’Increment,V’); ylabel(’ Error’);

title(’Numerical Error vs V’);

legend(’SeError’, ’SiError’);

hold on; grid on; zoom on;

A.2 Normalised conductance for NMDA

% function g_NMDA = JS_NMDA(V,C)

% Plotting the normalized conductance for NMDA receptor using ...

% Jahr & Stevens (1990).

% g_NMDA = 1 ./ (1 + k*C*exp(-a*V)).

% Inputs: V = excitatory voltage (mV), C = Mg concentration (mMol)

clf;

[k a] = deal(1/3.57, 0.062); % Experimental constants [1/mM, 1/mV]

for c = 1:10; % [mM]

V = [-70: 0.05: 100]; % [mv]

g_NMDA = (1 + k*c*exp(-a*V)).^-1;

figure(555);

plot (V,g_NMDA, ’k’, ’linewidth’, 1); hold on;

end

title(’Conductance of NMDA-receptor (g) vs Excitatory Voltage (V_e)’,...

’fontsize’, 18);

xlabel(’V_e [mV]’,’fontsize’, 18);

ylabel(’g [\Omega^{-1}]’ ,’fontsize’, 18);

axis([-75 100 0 1.1]);

grid on;

A.3 Global initial constants of the cortical model

function W = nmda_init_globs
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% Version of init_conformal_globs() customized for

% Waleed’s NMDA thesis project

% We initialize a global structure named ’W’

% (previously ’H’ for Hasselmo)

% ASR: 24-Aug-2007

% membrane rate-constants ("Sleep Cycle" J.Biol.Px [2005] values)

[W.tau_e, W.tau_i] = deal(50/1000, 50/1000); % (sec)

% sigmoid characteristics

[W.Qe_max, W.Qi_max] = deal(30, 60); % sigmoid maximum (s^-1)

[W.theta_e, W.theta_i] = deal(-58.5, -58.5); % sigmoid threshold (mV)

[W.sigma_e, W.sigma_i] = deal(4.0, 6.0);

% gain per synapse at resting voltage (millivolt.sec)

[W.rho_e, W.rho_i] = deal(1.00e-3, -1.05e-3);

% voltage limits

[W.Ve_rev, W.Vi_rev] = deal(0, -70); % reversal potential (mV)

[W.Ve_rest, W.Vi_rest] = deal(-64, -64); % resting potential (mV)

% connectivities: j2k convention (dimensionless)

% cortico-cortical

[W.Nee_a, W.Nei_a] = deal(3710, 3710);

% intracortical

[W.Nee_b, W.Nei_b, W.Nie_b, W.Nii_b] = deal(410, 410, 800, 800);

% subcortical

[W.Nee_sc, W.Nei_sc, W.Nie_sc, W.Nii_sc] = deal(50, 50, 0, 0);

% Nee and Nie totals for cortico-cortical plus intracortical

W.Nee_ab = W.Nee_a + W.Nee_b;

W.Nei_ab = W.Nei_a + W.Nei_b;

% default subcortical fluxes

W.phi_ee_sc = W.Nee_sc * W.Qe_max;

W.phi_ei_sc = W.Nei_sc * W.Qe_max;

W.phi_ie_sc = 0; % no inhibitory subcortical flux!

W.phi_ii_sc = 0;

% d/dV derivatives of psi_ij weighting functions

W.d_psi_ee = -1/(W.Ve_rev - W.Ve_rest);
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W.d_psi_ei = -1/(W.Ve_rev - W.Vi_rest);

W.d_psi_ie = -1/(W.Vi_rev - W.Ve_rest);

W.d_psi_ii = -1/(W.Vi_rev - W.Vi_rest);

% derived AMPA/GABA rate-constants (sec^-1) for Wright model (j2k)

% [gamma_ee, gamma_ei, gamma_ie, gamma_ii] = deal(57.4, 82.5, 51.3, 65.8);

% simplified rate constants for MSR’s model

W.gamma_e = 70.0; % mean([57.4, 82.5])

%W.gamma_i = 58.6; % mean([51.3, 65.8])

W.gamma_i = 15;

% velocity and space-constant

% W.Lambda = 40; % inverse-length scale for connectivity (metre^-1)

% W.v = 9; % axonal conduction velocity (m/s)

W.Lambda = 0.4; % inverse-length scale for connectivity (/cm)

W.v = 900; % axonal conduction velocity (cm/s)

return

%------------------------------------------------------------------------

A.4 NMDA steady states finder

function [Qe_root, Qi_root, Ve_root, Vi_root] = nmda_ss_finder(...

Mg_conc, lambda_e, lambda_i, sc, graphFlag, Nsearch)

% Find steady states for Waleed’s NMDA project.

% Inputs:

% Mg_conc (in mM) determines NMDA scaling of rho_e (EPSP area)

% lambda_e gives independent scaling of rho_e (EPSP area)

% lambda_i scales rho_i (IPSP area)

% sc scales ee and ei subcortical flux

%

% This code based on conformal_ss_finder().

% This finder assumes full ’conformal’ symmetry,

% thus at steady state, Ve = Vi (but Qe is not equal to Qi).

% 25-Aug-2007: (ASR) First version

if nargin == 0

% These are the default values of the four parameters controlling

% the cortical model.

[Mg_conc, lambda_e, lambda_i, sc] = deal(0.78, 9.0, 1.0, 0.25);
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graphFlag = 1;

Nsearch = 8000;

end

global W

W = nmda_init_globs;

n_roots = 0;

Nsearch_max = 8*128000;

% if no roots found, keep increasing search density until

% Nsearch_max reached

% NB: We treat zero roots or 2 roots as error condition

% (expect odd number of roots)

while ((n_roots == 0 | n_roots == 2) & Nsearch <= Nsearch_max)

% zeros of F1 give the steady states

%(expect F2 zeros to be identical)

Qe = linspace(0, W.Qe_max, Nsearch)’;

[Ve, Vi] = deal(invQsige(Qe));

g_NMDA = JS_NMDA(Ve, Mg_conc);

term1 = W.Ve_rest - Ve;

term2 = lambda_e*g_NMDA*W.rho_e .* Psi_ee(Ve) .* ...

(W.Nee_ab * Qsige(Ve) + sc*W.phi_ee_sc);

term3 = lambda_i*W.rho_i * Psi_ie(Ve) .* W.Nie_b .* Qsigi(Vi);

F1 = (term1 + term2 + term3)/W.tau_e;

% plot F2 residuals (should be identical to F1!)

% term1_i = W.Vi_rest - Vi;

% term2_i = lambda_e*(1 + g_NMDA)*W.rho_e .* Psi_ei(Vi) .* ...

% (W.Nei_ab * Qsige(Ve) + sc*W.phi_ei_sc);

% term3_i = lambda_i*W.rho_i * Psi_ii(Vi) .* W.Nii_b .* Qsigi(Vi);

%

% F2 = (term1_i + term2_i + term3_i)/W.tau_i;

% Count the number of F1 roots (look for sign-changes)

chs_F1 = F1(1:end-1) .* F1(2:end);
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chs_F1_index = find(chs_F1 < 0);

n_roots = length(chs_F1_index);

if (n_roots == 0 | n_roots == 2)

Nsearch = 2*Nsearch;

%disp([’Doubling Nsearch to ’ num2str(Nsearch)]);

end

end

if n_roots == 0

disp([’...failed to find a root at [Mg_conc lambda_e lambda_i sc]=[’...

num2str([Mg_conc, lambda_e, lambda_i, sc]) ’] ---skipped! ’])

end

% chs_F1_index

% Form a bracketting interval for each root

if n_roots >= 1

brack_Ve = [Ve(chs_F1_index) Ve(chs_F1_index + 1)];

% Check for NaN at either end of bracket

if any(isnan(brack_Ve(:)))

error(’Detected NaN in a bracket!’);

end

end

% Polish each Ve root

Qe_root = NaN*ones(n_roots, 1);

Qi_root = NaN*ones(n_roots, 1);

Ve_root = NaN*ones(n_roots, 1);

Vi_root = NaN*ones(n_roots, 1);

for i = 1: n_roots

Ve_root(i) = fzero(’F1_resid’, brack_Ve(i,:), [], [], ...

Mg_conc, lambda_e, lambda_i, sc);

Qe_root(i) = Qsige(Ve_root(i));

Vi_root(i) = Ve_root(i);

Qi_root(i) = Qsigi(Vi_root(i));

end

if nargin == 0

disp([n_roots*ones(size(Qe_root)) Qe_root Qi_root Ve_root Vi_root]);

disp([Mg_conc lambda_e lambda_i sc]);
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end

%--------------------

if ~graphFlag

return

end

% plot graphs of steady-state error residuals

figure(2); clf;

subplot(121);

plot(Qsige(Ve), F1, ’color’,[0.7 0.7 0.7], ’linewidth’, 3); hold on;

plot(Qsigi(Ve), F1, ’K-’, ’linewidth’, 3);

legend(’Q_{e}’,’Q_{i}’,’fontsize’,18);

plot(Qe_root(:,1), 0*Qe_root(:,1), ’ko’, ’linewidth’, 1,...

’markersize’, 10);

plot(Qi_root(:,1), 0*Qi_root(:,1), ’ks’, ’linewidth’, 1,...

’markersize’, 10);

ax = axis;

plot(ax([1 2]),[0 0],’k-’);hold off;

title(’F1 vs Q_{e,i}’, ’fontsize’, 26);

ylabel(’F1 [mV/s]’, ’fontsize’, 22);

xlabel(’Q_{e,i} [s^{-1}]’, ’fontsize’, 22);

zoom on;

subplot(122);

plot(Ve, F1, ’K-’, ’linewidth’, 3); zoom on; hold on;

plot(Ve_root(:,1), 0*Ve_root(:,1), ’ko’, ’linewidth’, 1,...

’markersize’, 10); zoom on;

%plot(Vi_root(:,1), 0*Vi_root(:,1), ’kx’, ’linewidth’, 1,...

% ’markersize’, 15); zoom on; grid on;

ax = axis;

plot(ax([1 2]),[0 0],’k-’);hold off;

hold off;

title(’F1 vs V_{e,i}’, ’fontsize’, 26);

ylabel(’F1 [mV/s]’, ’fontsize’, 22);

xlabel(’V_{e,i} [s^{-1}]’, ’fontsize’, 22);

if graphFlag, drawnow, end

return

%------------------------------------------------------------------------
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%------------------------------------------------------------------------

function err_F1 = F1_resid(Ve, Mg_conc, lambda_e, lambda_i, sc)

% Compute F1 = dVe/dt. Assuming conformal symmetry, the zeros of F1 will

% be identical to the zeros of F2 = dVi/dt. This vastly simplifies the

% search for steady states.

global W

Vi = Ve;

g_NMDA = JS_NMDA(Ve, Mg_conc);

term1 = W.Ve_rest - Ve;

term2 = lambda_e*g_NMDA*W.rho_e .* Psi_ee(Ve) .* ...

(W.Nee_ab * Qsige(Ve) + sc*W.phi_ee_sc);

term3 = lambda_i*W.rho_i * Psi_ie(Ve) .* W.Nie_b .* Qsigi(Vi);

err_F1 = (term1 + term2 + term3)/W.tau_e;

return

%------------------------------------------------------------------------

function [x_clean, y_clean] = filterNaN(x, y)

% Given vectors x and y, return the subset vectors than contain no NaN

% elements. We treat the (x,y) as ordered pairs, and require that neither

% element of a pair contain an NaN.

valids = isfinite(x .* y);

[x_clean y_clean] = deal(x(valids), y(valids));

return

%------------------------------------------------------------------------

function g_NMDA = JS_NMDA(V,C)

% Compute normalized conductance for NMDA receptor using

% Jahr & Stevens (1990)

% Inputs: V = excitatory voltage (mV), C = Mg concentration (mMol)

[k a] = deal(1/3.57, 0.062); % 1/mM, 1/mV

g_NMDA = 1 ./ (1 + k*C*exp(-a*V));

return
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%------------------------------------------------------------------------

function QC_plot_JS_NMDA

% Plot the Jahr & Stevens (1990) NMDA conductance

% curves for stepped Mg conc

V = linspace(-100, 100, 500); % mV

conc_set = logspace(0, 2, 5); % mM concentration for extracellular Mg

figure(1); clf;

for i = 1: length(conc_set);

C = conc_set(i);

g = JS_NMDA(V, C);

plot(V, g); hold on; zoom on; grid on;

end

return

%------------------------------------------------------------------------

function Qe = Qsige(V)

% Excitatory sigmoid function for Wright model; input V in millivolts

% Previous Liley defn:

% sig = Se_max./(1 + exp(-ge*(h - theta_e)) );

global W

gain = pi/(sqrt(3) * W.sigma_e);

temp = 1./(1 + exp(-gain*(V - W.theta_e)));

Qe = W.Qe_max * temp;

return

%------------------------------------------------------------------------

function Qi = Qsigi(V)

% Inhibitory sigmoid function for Wright model

% Previous Liley defn:

% sig = Si_max./(1 + exp(-gi*(h - theta_i)) );

global W

gain = pi/(sqrt(3) * W.sigma_i);

temp = 1./(1 + exp(-gain*(V - W.theta_i)));

Qi = W.Qi_max * temp;

return
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%------------------------------------------------------------------------

function d_Qe = d_Qsige(V)

% d/dV derivative of excitatory sigmoid function for Wright model;

% input V in millivolts

global W

gain = pi/(sqrt(3) * W.sigma_e);

E = exp(-gain*(V - W.theta_e));

d_Qe = gain * W.Qe_max * E ./ (1 + E).^2;

return

%------------------------------------------------------------------------

function d_Qi = d_Qsigi(V)

% d/dV derivative of inhibitory sigmoid function for Wright model

global W

gain = pi/(sqrt(3) * W.sigma_i);

E = exp(-gain*(V - W.theta_i));

d_Qi = gain * W.Qi_max * E ./ (1 + E).^2;

return

%------------------------------------------------------------------------

function invsig = invQsige(val)

% Inverse of excitatory sigmoid function; output in millivolts

global W

gain = pi/(sqrt(3) * W.sigma_e);

invsig = NaN*ones(size(val));

ok = find(val > 0 & val < W.Qe_max);

invsig(ok) = W.theta_e - (1/gain)*log(W.Qe_max./val(ok) - 1);

return

%------------------------------------------------------------------------

function invsig = invQsigi(val)

% Inverse of inhibitory sigmoid function

global W

gain = pi/(sqrt(3) * W.sigma_i);

invsig = NaN*ones(size(val));
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ok = find(val > 0 & val < W.Qi_max);

invsig(ok) = W.theta_i - (1/gain)*log(W.Qi_max./val(ok) - 1);

return

%------------------------------------------------------------------------

function weight = Psi_ee(V)

% Wright form for weighting function, but note use of i2j notation

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Ve_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ei(V)

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Vi_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ie(V)

global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Ve_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ii(V)

global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Vi_rest);

return

%------------------------------------------------------------------------

function QC_plot_sigmoids

% Quality control check: Plot sigmoids

global W

W = nmda_init_globs;

num_pts = 1e3;
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Ve = linspace(invQsige(1e-10), invQsige(W.Qe_max - 1e-10), num_pts)’;

Qe = Qsige(Ve);

Vi = linspace(invQsigi(1e-10), invQsigi(W.Qi_max - 1e-10), num_pts)’;

Qi = Qsigi(Vi);

figure(1);

subplot(111);

plot(Ve, Qe, ’-r’, Vi, Qi, ’-b’); zoom on; grid on;

title(’Sigmoids: Firing rate vs Soma voltage (mV)’, ’fontsize’, 16);

legend(’Qe’, ’Qi’);

return

%------------------------------------------------------------------------

function QC_deriv_sigmoids

% Quality control check for d_Qsige() and d_Qsigi()

global W

W = nmda_init_globs;

num_pts = 1e3;

Ve = linspace(invQsige(1e-10), invQsige(W.Qe_max - 1e-10), num_pts)’;

Qe = Qsige(Ve);

dQe = d_Qsige(Ve); % analytic derivative

dQe_2 = cdiff(Qe)/(Ve(2) - Ve(1)); % numerical derivative

Vi = linspace(invQsigi(1e-10), invQsigi(W.Qi_max - 1e-10), num_pts)’;

Qi = Qsigi(Vi);

dQi = d_Qsigi(Vi); % analytic derivative

dQi_2 = cdiff(Qi)/(Vi(2) - Vi(1)); % numerical derivative

% compare derivative curves with Gaussian approximation

scale = max(dQe);

z = (Ve - W.theta_e)/W.sigma_e;

gauss_e = 1/(W.sigma_e*sqrt(2*pi))*exp(-z.^2/2);

figure(2); clf;

% plot(Ve, gauss_e, Ve, dQe/W.Qe_max); zoom on; grid on;

plot(Ve, cdiff(gauss_e), Ve, cdiff(dQe/W.Qe_max)); zoom on; grid on;
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figure(1);

subplot(221);

plot(Ve, dQe, ’-r’, Ve, dQe_2, ’-b’); zoom on; grid on;

title(’Q_e deriv: analytic (red) vs numerical (blue)’, ’fontsize’, 16);

subplot(222);

plot(Ve, dQe - dQe_2, ’-r’); zoom on; grid on;

title(’Q_e deriv: Error residual’, ’fontsize’, 16);

subplot(223);

plot(Vi, dQi, ’-r’, Vi, dQi_2, ’-b’); zoom on; grid on;

title(’Q_i deriv: analytic (red) vs numerical (blue)’, ’fontsize’, 16);

subplot(224);

plot(Vi, dQi - dQi_2, ’-b’); zoom on; grid on;

title(’Q_i deriv: Error residual’, ’fontsize’, 16);

return

%------------------------------------------------------------------------

function b = fzero(FunFcn,x,tol,trace,varargin)

%FZERO Find zero of function of one variable.

% FZERO(F,X) tries to find a zero of F. F is a string containing

% the name of a real-valued function of a single real variable.

% The value returned is near a point where F changes sign, or NaN

% if the search fails.

%

% FZERO(F,X), where X is a vector of length 2, assumes X is an

% interval where the sign of F(X(1)) differs from the sign of F(X(2)).

% An error occurs if this is not true. Calling FZERO with an interval

% guarantees FZERO will return a value near a point where F changes

% sign.

%

% FZERO(F,X), where X is a scalar value, uses X as a starting guess.

% FZERO looks for an interval containing a sign change for F and

% containing X. If no such interval is found, NaN is returned.

% In this case, the search terminates when the search interval

% is expanded until an Inf, NaN, or complex value is found.

%

% FZERO(F,X,TOL) sets the relative tolerance for the convergence test.

% FZERO(F,X,TOL,TRACE) displays information at each iteration when

% TRACE is nonzero.

% FZERO(F,X,TOL,TRACE,P1,P2,...) allows for additional arguments

% which are passed to the function, F(X,P1,P2,...). Pass an empty

% matrix for TOL or TRACE to use the default value.
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%

% Examples

% fzero(’sin’, 3) returns pi. Note the quotes around sin.

% Ordinarily, functions are defined in M-files.

% fzero(’abs(x)+1’, 1) returns NaN since this function does

% not change sign anywhere on the real axis (and does not have

% a zero as well).

% fzero(’sin’, 3, [], 1) returns pi, uses the default tolerance,

% and displays iteration information.

%

% See also ROOTS.

% Copyright (c) 1984-96 by The MathWorks, Inc.

% $Revision: 5.10 $ $Date: 1996/10/28 22:13:28 $

% This algorithm was originated by T. Dekker. An Algol 60 version,

% with some improvements, is given by Richard Brent in "Algorithms for

% Minimization Without Derivatives", Prentice-Hall, 1973. A Fortran

% version is in Forsythe, Malcolm and Moler, "Computer Methods

% for Mathematical Computations", Prentice-Hall, 1976.

% Initialization

if nargin < 3 | isempty(tol), tol = eps; end

if nargin < 4 | isempty(trace), trace = 0; end

if trace

header = ’ Func evals x f(x) Procedure’;

step=’ ’;

count = 0;

end

if (~isfinite(x))

error(’Second argument must be finite.’)

end

% Convert to inline function as needed.

FunFcn = fcnchk(FunFcn,length(varargin));

% Interval input

if (length(x) == 2)

a = x(1);

b = x(2);

fa = feval(FunFcn,a,varargin{:});
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fb = feval(FunFcn,b,varargin{:});

if any(~isfinite([fa fb])) | any(~isreal([fa fb]))

error(’Function values at interval endpoints must be finite and real.’)

end

if trace

disp(header)

data = [a fa]; step=’ initial’;

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

data = [b fb]; step = ’ initial’;

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

end

if (fa > 0) == (fb > 0)

error([’The function values at the’ ...

’interval endpoints must differ in sign.’])

end

% Starting guess scalar input

elseif (length(x) == 1)

fx = feval(FunFcn,x,varargin{:});

if fx == 0

b = x;

return

elseif ~isfinite(fx) | ~isreal(fx)

error(’Function value at starting guess must be finite and real.’);

end

if trace

disp(header)

data = [x fx]; step=’ initial’;

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

end

if x ~= 0,

dx = x/50;

else,

dx = 1/50;

end

% Find change of sign.

twosqrt = sqrt(2);

a = x; fa = fx; b = x; fb = fx;
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while (fa > 0) == (fb > 0)

dx = twosqrt*dx;

a = x - dx; fa = feval(FunFcn,a,varargin{:});

if ~isfinite(fa) | ~isreal(fa)

disperr(a,fa);

b = NaN;

return

end

if trace

data = [a fa]; step=’ search’;

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

end

if (fa > 0) ~= (fb > 0)

break

end

b = x + dx; fb = feval(FunFcn,b,varargin{:});

if ~isfinite(fb) | ~isreal(fb)

disperr(b,fb);

b = NaN;

return

end

if trace

data = [b fb]; step=’ search’;

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

end

end % while

if trace

disp(’ ’)

disp([’ Looking for a zero in the interval [’, ...

num2str(a) , ’, ’, num2str(b), ’]’]);

disp(’ ’)

end

else

error(’Second argument must be of length 1 or 2.’);

end % if (length(x) == 2

fc = fb;

% Main loop, exit from middle of the loop

while fb ~= 0
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% Insure that b is the best result so far, a is the previous

% value of b, and c is on the opposite of the zero from b.

if (fb > 0) == (fc > 0)

c = a; fc = fa;

d = b - a; e = d;

end

if abs(fc) < abs(fb)

a = b; b = c; c = a;

fa = fb; fb = fc; fc = fa;

end

% Convergence test and possible exit

m = 0.5*(c - b);

toler = 2.0*tol*max(abs(b),1.0);

if (abs(m) <= toler) + (fb == 0.0), break, end

% Choose bisection or interpolation

if (abs(e) < toler) + (abs(fa) <= abs(fb))

% Bisection

d = m; e = m;

step=’ bisection’;

else

% Interpolation

s = fb/fa;

if (a == c)

% Linear interpolation

p = 2.0*m*s;

q = 1.0 - s;

else

% Inverse quadratic interpolation

q = fa/fc;

r = fb/fc;

p = s*(2.0*m*q*(q - r) - (b - a)*(r - 1.0));

q = (q - 1.0)*(r - 1.0)*(s - 1.0);

end;

if p > 0, q = -q; else p = -p; end;

% Is interpolated point acceptable

if (2.0*p < 3.0*m*q - abs(toler*q)) * (p < abs(0.5*e*q))

e = d; d = p/q;

step=’ interpolation’;

else

d = m; e = m;
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step=’ bisection’;

end;

end % Interpolation

% Next point

a = b;

fa = fb;

if abs(d) > toler, b = b + d;

else if b > c, b = b - toler;

else b = b + toler;

end

end

fb = feval(FunFcn,b,varargin{:});

if trace

data = [b fb];

count = count + 1;

disp([sprintf(’%5.0f %13.6g %13.6g ’,count, data), step])

end

end % Main loop

return

%------------------------------------------------------------------

function [f,msg] = fcnchk(fun,varargin)

%FCNCHK Check FUNFUN function argument.

% FCNCHK(FUN,...) returns either a function name string or an

% inline object depending on whether the string contains an expression

% involving paretheses, variables, and math operators.

%

% FCNCHK is a helper function for FMIN, FMINS, FZERO, etc. so they

% can compute with string expressions in addition to m-file functions.

%

% FCNCHK(FUN,...,’vectorized’) processes the string (e.g., replacing

% ’*’ with ’.*’) to produce a vectorized function.

%

% When FUN contains an expression then FCNCHK(FUN,...) is the same as

% INLINE(FUN,...) except that the optional trailing argument ’vectorized’

% can be used to produce a vectorized function.

%

% [F,MSG] = FCNCHK(...) returns an empty string in MSG if successful

% or an error message string if not.

%

% See also INLINE.
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% Copyright (c) 1984-98 by The MathWorks, Inc.

% $Revision: 1.8 $ $Date: 1997/11/21 23:30:42 $

msg = ’’;

nin = nargin;

if (nin>1) & strcmp(varargin{end},’vectorized’)

vectorizing = 1;

nin = nin-1;

else

vectorizing = 0;

end

if isstr(fun)

fun = strtrim(fun);

% Check for non-alphanumeric characters that must be part of an

% expression.

if isempty(fun),

f = inline(’[]’);

elseif ~vectorizing & isidentifier(fun)

f = fun; % Must be a function name only

else

if vectorizing

f = inline(vectorize(fun),varargin{1:nin-1});

var = argnames(f);

f = inline([formula(f) ’.*ones(size(’ var{1} ’))’],var{1:end});

else

f = inline(fun,varargin{1:nin-1});

end

end

elseif isa(fun,’inline’)

f = fun;

else

f = ’’;

msg = ’FUN must be a function name or inline function object.’;

end

return

%-----------------------------

function F = vectorize(F)

%VECTORIZE Vectorize a symbolic expression.
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% VECTORIZE(F) inserts a ’.’ before any ’^’, ’*’ and ’/’ in F.

l = length(F);

for k = fliplr(find((F==’^’) | (F==’*’) | (F==’/’)))

F = [F(1:k-1) ’.’ F(k:l)];

l = l+1;

end

F(findstr(F,’..’)) = []; % Remove any possible ..*, ../, etc.

return

%------------------------------------------

function s1 = strtrim(s)

%STRTRIM Trim spaces from string.

if ~isempty(s) & ~isstr(s)

warning(’Input must be a string.’)

end

if isempty(s)

s1 = s;

else

% remove leading and trailing blanks (including nulls)

c = find(s ~= ’ ’ & s ~= 0);

s1 = s(min(c):max(c));

end

return

%-------------------------------------------

function tf = isidentifier(str)

tf = 0;

if ~isempty(str)

first = str(1);

if (isletter(first))

letters = isletter(str);

numerals = (48 <= str) & (str <= 57);

underscore = (95 == str);

if (all(letters | numerals | underscore))

tf = 1;

end

end



94 Matlab code

end

tf = logical(tf);

return

%------------------------------------------------------------------

function disperr(y, fy)

%DISPERR Display an appropriate error message when FY is Inf,

% NaN, or complex. Assumes Y is the value and FY is the function

% value at Y. If FY is neither Inf, NaN, or complex, it generates

% an error message.

if ~isfinite(fy) % NaN or Inf detected

disp(’NaN or Inf function value encountered during ’);

disp(’ search for an interval containing a sign change.’);

disp([’Function value at ’, num2str(y),’ is ’,num2str(fy)]);

disp(’Aborting since no such interval was found.’)

disp(’Check function or try again with a different starting value.’)

elseif ~isreal(fy) % Complex value detected

disp(’Complex function value encountered during ’);

disp(’ search for an interval containing a sign change.’);

disp([’Function value at ’, num2str(y),’ is ’,num2str(fy)]);

disp(’Aborting since no such interval was found.’)

disp(’Check function or try again with a different starting value.’)

else

error(’Disperr called with invalid argument.’)

end

%---------------------------------------------------------------------------------

A.5 Locus of equilibrium states

function [V_ss, Var_ss, Q_e_ss, Q_i_ss] = variable_ss_finder...

(varname,params, npoints,startval,endval,graphflag,Nsearch)

%[V_ss, Var_ss, Q_e_ss, Q_i_ss] = variable_ss_finder...

% (varname,params,npoints,startval,endval,graphflag,Nsearch)

%INPUTS

% varname - the varying parameter

% params = [mg_conc, lambda_e, lambda_i, sc]

% npoints - number of points

% startval, endval of parameter being varied

% graphflag - to graph or not, 0/1
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%OUTPUTS

% V_ss - steadystate voltages Ve = Vi = V_ss

% Var_ss - parameter being varied corresponding to V_ss, contains multiple

% values if multiple roots exist at that point.

% Q_e_ss, Q_i_ss - steadystate Qe, Qi values.

%

%Plots the locus of steady states for the cortical model controlled by the

% parameter [varname].

if nargin >=2 % if input is given then use them

[mg_conc, lambda_e, lambda_i, sc] = ...

deal(params(1),params(2),params(3),params(4));

else % else if input parameters are not defined then use default values

[mg_conc, lambda_e, lambda_i, sc] = deal(0.78, 9.0, 1.0, 0.25);

end

if nargin < 7

Nsearch = 8000;

if nargin < 5

graphflag = 0;

if nargin <= 2

npoints = 2000;

if nargin < 1

varname = ’mg_conc’;

graphflag = 1;

end

end

end

end

% if endpoints are not given then set to default range

endpoints_on = (nargin <= 3);

if strcmp(varname,’mg_conc’)

variablename = ’Magnesium Concentration,C [mM]’;

if endpoints_on

startval = 0.6;

endval = 1.00;

end

elseif strcmp(varname,’lambda_e’)

variablename = ’{\lambda}_{e}’;
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if endpoints_on

startval = 8.00;

endval = 12.00;

end

elseif strcmp(varname, ’lambda_i’)

variablename = ’{\lambda}_{i}’;

if endpoints_on

startval = 0.65;

endval = 1.10;

end

elseif strcmp(varname, ’sc’)

variablename = ’Subcortical drive, s’;

if endpoints_on

startval = -5.00;

endval = 5.00;

end

end

vari = linspace(startval,endval,npoints);

% Approximately over-allocate and then shorten length later

V_ss = zeros(3*npoints,1);

Var_ss = zeros(3*npoints,1);

Q_e_ss = zeros(3*npoints,1);

Q_i_ss = zeros(3*npoints,1);

% exact preallocation

if graphflag

v_max = zeros(size(vari));

v_min = zeros(size(vari));

q_e_max = zeros(size(vari));

q_e_min = zeros(size(vari));

q_i_max = zeros(size(vari));

q_i_min = zeros(size(vari));

end

lengthcounter = 0;
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for i = 1:length(vari)

switch varname

case ’mg_conc’

mg_conc = vari(i);

case ’lambda_e’

lambda_e = vari(i);

case ’lambda_i’

lambda_i = vari(i);

case ’sc’

sc = vari(i);

otherwise

error(’Unknown variable’)

end

[Qe_root, Qi_root, Ve_root] = nmda_ss_finder...

(mg_conc, lambda_e, lambda_i, sc, 0, Nsearch);

lgthadd = length(Qe_root);

if lgthadd == 0;

Ve_root = NaN;

Qe_root = NaN;

Qi_root = NaN;

lgthadd = 1;

end

% concatenates Ve_root(:) onto v vertically

V_ss (lengthcounter+(1:lgthadd)) = Ve_root(:);

Q_e_ss(lengthcounter+(1:lgthadd)) = Qe_root(:);

Q_i_ss(lengthcounter+(1:lgthadd)) = Qi_root(:);

Var_ss(lengthcounter+(1:lgthadd)) = vari(i);

if graphflag

v_max(i) = max(Ve_root);

v_min(i) = min(Ve_root);

q_e_max(i)= max(Qe_root);

q_e_min(i)= min(Qe_root);

q_i_max(i)= max(Qi_root);

q_i_min(i)= min(Qi_root);

end
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lengthcounter = lengthcounter + lgthadd;

end

lengthcounter = lengthcounter + 1;

% remove overallocated space

V_ss (lengthcounter:end) = [];

Q_e_ss(lengthcounter:end) = [];

Q_i_ss(lengthcounter:end) = [];

Var_ss(lengthcounter:end) = [];

% sort into V order

[V_ss, ind] = sort(V_ss);

Var_ss = Var_ss(ind);

Q_e_ss = sort(Q_e_ss);

Q_i_ss = sort(Q_i_ss);

%--------------------------------------------------------------------------

if graphflag

figure(2003)

subplot(121)

plot(Var_ss, V_ss,’k’, ’linewidth’, 3);hold on;

hold off; grid on; zoom on;

xlabel(variablename, ’fontsize’, 18);

ylabel(’V_{e,i} [mV]’, ’fontsize’, 22);

title([’(a) Stationary States (V_{e,i} vs ’ variablename ’)’],...

’fontsize’, 22);

ax = axis; axis([startval, endval,ax([3 4])])

subplot(122)

plot(Var_ss, Q_e_ss,’color’,[0.7 0.7 0.7], ’linewidth’, 3);hold on;

plot(Var_ss, Q_i_ss,’k’, ’linewidth’, 3);

xlabel(variablename, ’fontsize’, 18);

ylabel(’Q_{e},Q_{i} [s^{-1}]’, ’fontsize’, 22);

title([’(b) Stationary States (Q_{e,i} vs ’ variablename ’)’],...

’fontsize’, 22);

legend(’Q_{e}’,’Q_{i}’);

ax = axis; axis([startval, endval,ax([3 4])])

hold off; grid on; zoom on;
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set(gcf,’Color’,[1,1,1]);

end

%--------------------------------------------------------------------------

A.6 Eigenvalues of the cortical model

function [Lm, Var_ss] = eigenvalues...

(params, varname, qwavenum, n, startval, endval, graphflag2)

%function [Lm, Var_ss] = eigenvalues...

% (params, varname, qwavenum, n, startval, endval, graphflag2)

%

% Computes the eigenvalues of steadystates specified by the PARAMS input.

% The steadystates are found for a range of values of the VARNAME variable

% VARNAME is one of [’mg_conc’,’lambda_e’,’lambda_i’,’sc’,’qwavenum’].

% N - number of eigenvalues to compute within the range STARTVAL to ENDVAL.

% GRAPHFLAG2 - 0 or 1 to graph or not. Passed to variable_ss_finder

% function.

%

% Outputs

% Lm - an array of eigenvalues [8 x n]

% Var_ss - corresponding series of VARNAME variable.

%

% Eigenvalues can be used to determine the stability of the steady states.

% Computed from jacobian matrix partial derivative elements

%

% Created: Sept 2007

if nargin < 4

n = 2001;

if nargin < 3

qwavenum = 0;

if nargin < 2

varname = ’lambda_i’;

if nargin < 1

params = [0.78, 9.00, 1.0, 0.25];

end

end

end

end
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[mg_conc, lambda_e, lambda_i, sc] = ...

deal(params(1),params(2),params(3),params(4));

W = nmda_init_globs;

%---------------------------

if nargin < 7

graphflag2 = 0;

if nargin <= 5;

if strcmp(varname,’mg_conc’)

startval = 0.00;

endval = 1.00;

elseif strcmp(varname,’lambda_e’)

startval = 8.00;

endval = 11.00;

elseif strcmp(varname, ’lambda_i’)

startval = 0.65;

endval = 1.20;

elseif strcmp(varname, ’sc’)

startval = 0.00;

endval = .500;

end

end

end

%----------------------------

switch varname

case ’mg_conc’

[v, mg_conc] = variable_ss_finder(varname, params, n,...

startval, endval, graphflag2);

n = length(mg_conc); variablename = ’Magnesium Concentration’;

case ’lambda_e’

[v, lambda_e] = variable_ss_finder(varname, params, n,...

startval, endval, graphflag2);

n = length(lambda_e); variablename = ’{\lambda} _{e}’;

case ’lambda_i’

[v, lambda_i] = variable_ss_finder(varname, params, n,...

startval, endval, graphflag2);

n = length(lambda_i); variablename = ’{\lambda} _{i}’;

case ’sc’

[v, sc] = variable_ss_finder(varname, params, n,...

startval, endval, graphflag2);
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n = length(sc); variablename = ’Subcortical drive’;

case ’qwavenum’

[Qe_root, Qi_root, v] = nmda_ss_finder(mg_conc, lambda_e,...

lambda_i, sc, 0, 8000);

qwavenum = linspace(0,0.2,n)*2*pi;

end

%--------------------------------------------------------------------------

% define some quantities to be used in calculating the Jacobian entries J##

v = v(:);

[k a] = deal(1/3.57, 0.062);

g_NMDA = JS_NMDA(v,mg_conc);

Qe = Qsige(v);

Qi = Qsigi(v);

weight_ee = Psi_ee(v);

weight_ei = Psi_ei(v);

weight_ie = Psi_ie(v);

weight_ii = Psi_ii(v);

Phi_e = W.Nee_ab .* Qe + sc .* W.phi_ee_sc;

Phi_i = W.Nie_b .* Qi;

%--------------------------------------------------------------------------

% List of entries in the 8x8 Jacobian begins here

J11 = (1/W.tau_e).* ...

(-1 + (lambda_e*W.rho_e) .* (g_NMDA) .* W.d_psi_ee .* Phi_e ...

+ (lambda_i*W.rho_i) .* W.d_psi_ie .* Phi_i ...

+ (lambda_e*W.rho_e) .* (g_NMDA).^2 .* Phi_e ...

.* a .* k .* mg_conc .* exp(-a*v) .* weight_ee);

% J12 = 0;

J13 = (1/W.tau_e) .* (lambda_e.*W.rho_e) .* g_NMDA .* weight_ee;

% J14 = 0;

J15 = (1/W.tau_e) .* (lambda_i.*W.rho_i) .* weight_ie;

% J16 = 0;
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% J17 = 0;

% J18 = 0;

J21 = (1/W.tau_i) .* ...

((lambda_e*W.rho_e) .* (g_NMDA).^2 .* Phi_e ...

.* a .* k .* mg_conc .* exp(-a*v) .* weight_ei );

J22 = (1/W.tau_i) .* ...

(-1 + (lambda_e.*W.rho_e) .* g_NMDA .* Phi_e .* W.d_psi_ei ...

+ (lambda_i.*W.rho_i) .* Phi_i .* W.d_psi_ii);

J23 = (1/W.tau_i) .* (lambda_e.*W.rho_e) .* g_NMDA .* weight_ei;

% J24 = 0;

J25 = (1/W.tau_i) .* (lambda_i.*W.rho_i) .* weight_ii;

% J26 = 0;

% J27 = 0;

% J28 = 0;

% J31 = 0;

% J32 = 0;

% J33 = 0;

J34 = 1;

% J35 = 0;

% J36 = 0;

% J37 = 0;

% J38 = 0;

J41 = (W.gamma_e)^2 .* W.Nee_b .* d_Qsige(v);

% J42 = 0;

J43 = - (W.gamma_e)^2;

J44 = -2*W.gamma_e;

% J45 = 0;

% J46 = 0;

J47 = (W.gamma_e)^2 .* W.Nee_a;

% J48 = 0;

% J51 = 0;

% J52 = 0;

% J53 = 0;

% J54 = 0;

% J55 = 0;

J56 = 1;

% J57 = 0;

% J58 = 0;
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% J61 = 0;

J62 = (W.gamma_i)^2 .* W.Nii_b .* d_Qsigi(v);

% J63 = 0;

% J64 = 0;

J65 = -(W.gamma_i)^2;

J66 = -2*W.gamma_i;

% J67 = 0;

% J68 = 0;

% J71 = 0;

% J72 = 0;

% J73 = 0;

% J74 = 0;

% J75 = 0;

% J76 = 0;

% J77 = 0;

J78 = 1;

J81 = W.v^2 .* W.Lambda^2 .*d_Qsige(v);

% J82 = 0;

% J83 = 0;

% J84 = 0;

% J85 = 0;

% J86 = 0;

J87 = W.v^2 .*(-qwavenum.^2 - W.Lambda^2);

J88 = -2 .* W.v .* W.Lambda;

% J = [J11 J12 J13 J14 J15 J16 J17 J18;...

% J21 J22 J23 J24 J25 J26 J27 J28;...

% J31 J32 J33 J34 J35 J36 J37 J38;...

% J41 J42 J43 J44 J45 J46 J47 J48;...

% J51 J52 J53 J54 J55 J56 J57 J58;...

% J61 J62 J63 J64 J65 J66 J67 J68;...

% J71 J72 J73 J74 J75 J76 J77 J78;...

% J81 J82 J83 J84 J85 J86 J87 J88];

% end of Jacobian entries list

%--------------------------------------------------------------------------

% assign values from a specific steadystate to the Jacobian J and calculate
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% the eigenvalues at this state. Repeat for all values in the range.

J = zeros(8,8); % the Jacobian, most of it is zero

% nonzero constants - these values in the Jacobian do not change

J(3,4) = J34;

J(4,3) = J43;

J(4,4) = J44;

J(4,7) = J47;

J(5,6) = J56;

J(6,5) = J65;

J(6,6) = J66;

J(7,8) = J78;

J(8,8) = J88;

switch varname

%---------------------------------------------

case ’qwavenum’

for branch = 1:length(v)

Lm = zeros(8,n);

J(1,1) = J11(branch);

J(1,3) = J13(branch);

J(1,5) = J15(branch);

J(2,1) = J21(branch);

J(2,2) = J22(branch);

J(2,3) = J23(branch);

J(2,5) = J25(branch);

J(4,1) = J41(branch);

J(6,2) = J62(branch);

J(8,1) = J81(branch);

for p = 1:n % the entry containing qwavenum will change.

J(8,7) = J87(p);

%-------------------------------------------------------------

% if there are infinities or Non-numbers in the Jacobian

% then don’t calculate eigenvalues

infnan = sum(J(:));
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if isnan(infnan)||isinf(infnan)

Lm(:,p) = NaN;

else

Lm(:,p) = eig(J);

end

%-------------------------------------------------------------

end

%------------

% dominant (real) eigenvalue

LM_real_dominant = max(real(Lm));

figure(branch+300)

Var_ss = qwavenum/(2*pi);

if branch == 1, br = ’Bottom Branch’;

elseif branch == 2, br = ’Middle Branch’;

elseif branch == 3, br = ’Top Branch’;

end

plot(Var_ss,LM_real_dominant,’b-’,’linewidth’,2); %hold on;

%plot(qwavenum/(2*pi),real(Lm)); hold off

xlabel(’q/2{\pi}’,’fontsize’,20)

ylabel(’dominant (real part of) eigenvalue’,’fontsize’,20)

title([’real eigs vs qwavenumber, ’ br],’fontsize’,20)

grid on

zoom on

legend(’dominant eigenvalue’)

% figure

% plot(qwavenum/(2*pi),imag(Lm));

% title(’imag eigs’)

%------------

end

otherwise % ie mg_conc or lambda_e/i or sc

Lm = zeros(8,n);
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J(8,7) = J87; % Jacobian entry with qwavenum constant in this case

for p = 1:n % the entries depending parameter being changed

J(1,1) = J11(p);

J(1,3) = J13(p);

J(1,5) = J15(p);

J(2,1) = J21(p);

J(2,2) = J22(p);

J(2,3) = J23(p);

J(2,5) = J25(p);

J(4,1) = J41(p);

J(6,2) = J62(p);

J(8,1) = J81(p);

%-------------------------------------------------------------

% if there are infinities or Non-numbers in the Jacobian

% then don’t calculate eigenvalues

infnan = sum(J(:));

if isnan(infnan)||isinf(infnan)

Lm(:,p) = NaN;

else

Lm(:,p) = eig(J);

end

%-------------------------------------------------------------

end

%----------------------------------------------------------------------

% rename the variable being altered into the generic name Var_ss

if strcmp(varname,’mg_conc’)

Var_ss = mg_conc;

elseif strcmp(varname,’lambda_e’)

Var_ss = lambda_e;

elseif strcmp(varname,’lambda_i’)

Var_ss = lambda_i;

elseif strcmp(varname,’sc’)

Var_ss = sc;

end

%----------------------------------------------------------------------
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color = [1 0 0; 0 1 0; 0 0 1; 0 1 1; 1 0 1; 0 0.5 0.5; 1 0.5 0; 0 0 0];

%-----------

figure(202);

subplot(211)

plot(Var_ss, max(real(Lm)), ’b-’, ’linewidth’, 2); hold on

legend(’Dominant eigenvalue’,’location’,’nw’)

for i = 1:8

plot(Var_ss, real(Lm(i,:).’), ’color’, color(i,:));

end

grid on; zoom on

ax1 = axis; axis tight; ax2 = axis; axis([ax2([1 2]) ax1([3 4])])

xlabel(variablename, ’fontsize’,20);

ylabel(’Eigenvalue real part’, ’fontsize’,20)

title([’(a) Real Part Eigenvalues vs ’ variablename], ’fontsize’,20)

hold off

subplot(212)

plot(Var_ss, max(imag(Lm)), ’b-’, ’linewidth’, 2); hold on

legend(’Dominant eigenvalue’,’location’,’nw’)

for i = 1:8

plot(Var_ss, imag(Lm(i,:).’), ’color’, color(i,:));

end

hold off; grid on;

ax1 = axis; axis tight; ax2 = axis; axis([ax2([1 2]) ax1([3 4])])

xlabel(variablename, ’fontsize’,20);

ylabel(’Eigenvalue imaginary part’, ’fontsize’,20)

title([’(b) Imag Part Eigenvalues vs ’ variablename], ’fontsize’,20)

%------------

end

%------------------------------------------------------------------------

%------------------------------------------------------------------------

function g_NMDA = JS_NMDA(V,C)

% Compute normalized conductance for NMDA receptor

% using Jahr & Stevens (1990)

% Inputs: V = excitatory voltage (mV), C = Mg concentration (mMol)
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[k a] = deal(1/3.57, 0.062); % 1/mM, 1/mV

g_NMDA = 1 ./ (1 + k.*C.*exp(-a.*V));

return

%------------------------------------------------------------------------

function Qe = Qsige(V)

% Excitatory sigmoid function for Wright model; input V in millivolts

% Previous Liley defn:

% sig = Se_max./(1 + exp(-ge*(h - theta_e)) );

global W

gain = pi/(sqrt(3) * W.sigma_e);

temp = 1./(1 + exp(-gain*(V - W.theta_e)));

Qe = W.Qe_max * temp;

return

%------------------------------------------------------------------------

function Qi = Qsigi(V)

% Inhibitory sigmoid function for Wright model

% Previous Liley defn:

% sig = Si_max./(1 + exp(-gi*(h - theta_i)) );

global W

gain = pi/(sqrt(3) * W.sigma_i);

temp = 1./(1 + exp(-gain*(V - W.theta_i)));

Qi = W.Qi_max * temp;

return

%------------------------------------------------------------------------

function d_Qe = d_Qsige(V)

% d/dV derivative of excitatory sigmoid function for Wright model;

% input V in millivolts

global W

gain = pi/(sqrt(3) * W.sigma_e);
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E = exp(-gain*(V - W.theta_e));

d_Qe = gain * W.Qe_max * E ./ (1 + E).^2;

return

%------------------------------------------------------------------------

function d_Qi = d_Qsigi(V)

% d/dV derivative of inhibitory sigmoid function for Wright model

global W

gain = pi/(sqrt(3) * W.sigma_i);

E = exp(-gain*(V - W.theta_i));

d_Qi = gain * W.Qi_max * E ./ (1 + E).^2;

return

%------------------------------------------------------------------------

function weight = Psi_ee(V)

% Wright form for weighting function, but note use of i2j notation

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Ve_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ei(V)

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Vi_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ie(V)

global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Ve_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ii(V)
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global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Vi_rest);

return

%------------------------------------------------------------------------

A.7 System stability and Hopf

%HOPF.m

% Checks the eigenvalues returned by EIGENVALUES.m for hopf bifurcation

% points and plots a graph of the dominant eigenvalue showing equilibrium

% state stability.

% Also requires the VARIABLE_SS_FINDER function to plot the equilibrium

% voltage S-bend.

% Created: 24-Jan-2008

% VARNAME: choose one of [’mg_conc’, ’lambda_e’, ’lambda_i’, ’sc’]

varname = ’lambda_i’;

% PARAMS: fix values for the other variables

% value assigned to the VARNAME variable will be redundant

% params = [’mg_conc’, ’lambda_e’, ’lambda_i’, ’sc’]

params = [0.78, 9.0, 1.0, 0.25];

% STARTVAL,ENDVAL: initial and end value of the VARNAME variable

switch varname

case ’mg_conc’, startval = 0.6; endval = 1.0; % for mg_conc

case ’lambda_e’,startval = 8.0; endval = 12; % for lambda_e

case ’lambda_i’,startval = 0.7; endval = 1.3; % for lambda_i

case ’sc’, startval = -5; endval = 5; % for sc

end

% Make changes above

%------

qwavenum = 0;

npoints = 3000;

graphflag = 0; % passed to variable_ss_finder

%% computation of equilibrium voltages and eigenvalues

[Vss] = variable_ss_finder...

(varname, params, npoints,startval,endval,0,8000);
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[Lm,Var_ss] = eigenvalues...

(params, varname, qwavenum, npoints, startval, endval, graphflag);

%% Code to Classify system stability

[a b] = max(real(Lm));

DomEig = Lm(b+(1:length(Lm))*8-8);

rDomEig = real(DomEig);

iDomEig = abs(imag(DomEig)); % abs because +ve/-ve imag parts

% occur in conjugate pairs

stability = zeros(1,length(Var_ss));

stability((rDomEig > 0)&(iDomEig == 0)) = 1; % Unstable non-oscillatory.

stability((rDomEig > 0)&(iDomEig ~= 0)) = 2; % Unstable oscillatory.

stability((rDomEig < 0)&(iDomEig ~= 0)) = 3; % Stable oscillatory.

stability((rDomEig < 0)&(iDomEig == 0)) = 4; % Stable non-oscillatory

%% Approximate hopf values by linear interpolation

x = Var_ss(:);

V = Vss(:);

yreal = rDomEig(:);

yimag = iDomEig(:);

idx = stability == 2;

x0 = find((diff(stability) == -1)&(idx(2:end))); % index

x1 = find((diff(stability) == 1)&(idx(1:end-1))); % index

Vhopf = V([x0;x1]) + (V([x0;x1]+1)-V([x0;x1])).*...

(xhopf - x([x0;x1]))./(x([x0;x1]+1)-x([x0;x1]));

xhopf = x([x0;x1]) - yreal([x0;x1]).*...

(x([x0;x1]+1)-x([x0;x1]))./...

(yreal([x0;x1]+1)-yreal([x0;x1]));

yhopfimag = yimag([x0;x1]) + (yimag([x0;x1]+1)-yimag([x0;x1])).*...

(xhopf - x([x0;x1]))./(x([x0;x1]+1)-x([x0;x1]));

lg = [false(1,4), any(xhopf)];

%% Plotting
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figure(67)

% run once for each of the four stability types: unstable non-oscillatory,

% unstable oscillatory, stable oscillatory, stable non-oscillatory.

% The stable non-oscillatory is not found in the examined cases.

for k = 1:4

x = Var_ss(:);

yreal = rDomEig(:);

yimag = iDomEig(:);

V = Vss(:);

x((x == startval)|(x == endval)) = NaN;

% NaN to break spurious connections at endvalues

idx = (stability == k);

if k == 1, % Unstable non osc.

idx = idx + [0, idx(1:end-1)] + [idx(2:end), 0];

color = [0 0 0]; linestyle = ’--’;

elseif k == 2, % Unstable osc.

idx([x0; x1+1]) = 1;

x([x0; x1+1]) = xhopf; V([x0; x1+1]) = Vhopf;

yreal([x0; x1+1]) = 0; yimag([x0; x1+1]) = yhopfimag;

color = 0.7*[1 1 1]; linestyle = ’--’;

elseif k == 3, % Stable osc.

idx([x0+1; x1]) = 1;

x([x0+1; x1]) = xhopf; V([x0+1; x1]) = Vhopf;

yreal([x0+1; x1]) = 0; yimag([x0+1; x1]) = yhopfimag;

color = [0 0 0]; linestyle = ’-’;

else % Stable non osc.

color = 0.7*[1 1 1]; linestyle = ’-’;

end

if any(idx)

yreal(idx == 0) = NaN;

yimag(idx == 0) = NaN;

V(idx == 0) = NaN;

subplot(311)

plot(x,V,’color’,color,...

’linestyle’,linestyle,’linewidth’,2); hold on;

subplot(312)

plot(x,yreal,’color’,color,...

’linestyle’,linestyle,’linewidth’,2); hold on;
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subplot(313)

plot(x,yimag*[-1 1],’color’,color,...

’linestyle’,linestyle,’linewidth’,2); hold on;

lg(k) = true; % for graph legend

end

end

if any(xhopf),

subplot(311), hold on

plot(xhopf,Vhopf,’ok’,’markersize’,12,’linewidth’,1.5)

plot(xhopf,Vhopf,’.k’,’markersize’,12,’linewidth’,1)

subplot(312), hold on

plot(xhopf,zeros(size(xhopf)),’ok’,’markersize’,12,’linewidth’,1.5)

plot(xhopf,zeros(size(xhopf)),’.k’,’markersize’,12,’linewidth’,1)

subplot(313), hold on

plot(xhopf,yhopfimag*[-1 1],’ok’,’markersize’,12,’linewidth’,1.5)

plot(xhopf,yhopfimag*[-1 1],’.k’,’markersize’,12,’linewidth’,1)

end

hold off

%% Graph Labels

switch varname

case ’lambda_i’, titlevar = ’\lambda_{i}’;

case ’lambda_e’, titlevar = ’\lambda_{e}’;

case ’mg_conc’, titlevar = ’Magnesium Concentration, C [mM]’;

case ’sc’, titlevar = ’Subcortical driving, s’;

end

subplot(311)

ax = axis; axis([startval, endval,ax([3 4])])

lgnd = {’Unstable non oscillatory’; ’Unstable oscillatory’;...

’Stable oscillatory’; ’Stable non oscillatory’;...

’Hopf bifurcation’};

legend(lgnd(lg)); hold off

ylabel(’V_{e,i} [mV]’, ’fontsize’, 16);

title([’(a) Stationary States (V_{e,i} vs ’ titlevar ’)’ ],...
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’fontsize’, 18);

subplot(312)

ax = axis; axis([startval, endval,ax([3 4])])

title(’(b) Dominant eigenvalue’, ’fontsize’,18);

ylabel(’Real part’,’fontsize’,16); hold off

subplot(313)

ax = axis; axis([startval, endval,ax([3 4])])

ylabel(’Imag part’,’fontsize’,16)

xlabel(titlevar,’fontsize’,18); hold off

%% End of code

A.8 Euler numerical simulation of the cortical model

function Euler_simulation

% Euler Simulation

% The basic principle:

% we are given a differential equation governing the system Y(t) = dy/dt

% we wish to solve for y(t) using the euler method

% knowing a given starting point y0 = y(t = t0), the state of the system at

% t = t0 + dt where dt is a finite time step is given by

% y(t0 + dt) ~ y(t0) + Y(t0)*dt

% This is done recursively further using the approximations obtained in the

% earlier step as new starting points.

global W

for i = 1:3 % Run several times because the simulation is stochastic.

W = nmda_init_globs;

% Mg_conc, lambda e & i, sc and q

% Arbitrary values for starting point - but based

% on clinical experimental values

Mg_conc = 0.78; % adjust these four values

lambda_e = 9.0; % they will decide the ss V value(s)

% chosen values of lambda_i for the mid-branch [V(2)]:
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lambda_i = 1;

%lambda_i = 0.9416; % hopf

%lambda_i = 0.8817;

sc = 4;

q = 0;

which_root = 1; % set to one of 1,2 or 3

% where there are 3 steady state branches, to pick the

% right starting point: 1-bottom, 2-mid and 3-top

% otherwise which_root doesn’t matter.

% Using the above values, find the steady state (S.S.) voltages,the ...

% function mayreturn up to 3 steady states, only one of these is chosen.

[Qe_root, Qi_root, V_e, V_i] = nmda_ss_finder...

(Mg_conc, lambda_e, lambda_i, sc, 0, 8000);

% Continue with determining the initial state of the other system variables

% using the clinical values and the chosen S.S. voltage set by them.

% Expressions for the initial values are derived from S.S. eqns dY/dt = 0.

% S.S. implies time independence. Therefore initial values are determined

% solely by mg, lambda,... , and thereby V

% initial values

V_e = V_e(rem(which_root-1,length(V_e))+1);

V_i = V_i(rem(which_root-1,length(V_i))+1);

Me = 0;

Phi_e = W.Nee_ab*Qsige(V_e) + sc*W.phi_ee_sc;

Mi = 0;

Phi_i = W.Nii_b*Qsigi(V_i);

omega_e = 0;

phi_e_a = Qsige(V_e);

y_0 = [V_e; V_i; Phi_e; Me; Phi_i; Mi; phi_e_a; omega_e];

nend = 8000; % number of simulation steps

y = zeros(8, nend+1); % (8 x length of number of steps of simulation)

y(:,1) = y_0; % initial values evaluated earlier

dt = 0.001; % step size, [s]

Noise_amplitude = 0.01 ;

for n = 1:nend
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% % This is for when noise is turned off some way into the simulation

% time = n*dt;

% if time > 3

% Noise_amplitude = 0;

% end

g_NMDA = JS_NMDA(V_e, Mg_conc);

[V_e, V_i, Phi_e, Me, Phi_i, Mi, phi_e_a, omega_e] = ...

deal(y_0(1),y_0(2),y_0(3),y_0(4),y_0(5),y_0(6),y_0(7),y_0(8) );

dVedt = (...

W.Ve_rest - V_e ...

+ lambda_e*g_NMDA * W.rho_e * Psi_ee(V_e) * Phi_e ...

+ lambda_i * W.rho_i * Psi_ie(V_e) * Phi_i) / W.tau_e;

dVidt = (...

W.Vi_rest - V_i ...

+ lambda_e * g_NMDA * W.rho_e * Psi_ei(V_i) * Phi_e ...

+ lambda_i * W.rho_i * Psi_ii(V_i) * Phi_i) / W.tau_i;

dPhi_edt = Me;

dMedt = -2*W.gamma_e * Me + (W.gamma_e)^2 * ...

(- Phi_e + W.Nee_a * phi_e_a + W.Nee_b * Qsige(V_e) ...

+ sc*W.phi_ee_sc ...

+ sqrt(sc*W.phi_ee_sc)*Noise_amplitude*randn/sqrt(dt));

dPhi_idt = Mi;

dMidt = -2*W.gamma_i * Mi + (W.gamma_i)^2 * ...

(-Phi_i + W.Nii_b.*Qsigi(V_i));

dphi_e_adt = omega_e;

domega_edt = W.v*W.Lambda * ...

(-2*omega_e + W.v*W.Lambda * (Qsige(V_e)- phi_e_a));

dydt = [dVedt; dVidt; dPhi_edt; dMedt; dPhi_idt; dMidt; dphi_e_adt;...

domega_edt] ;
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% Euler step

y_0 = y_0 + dydt*dt; % <<== This is the euler step!!

% set the Euler simulated (n+1)th values in the appropriate position

% in the preallocated time series

y(:, n+1) = y_0;

end

figure(64); % plot of Ve-vs-t

time = (0:nend)*dt; % Simulation time from 0 to n_end*dt, [s]

Vsim = y(1,:); % The 1st and 2nd rows contain the voltage values

plot(time(1:2:end),Vsim(1:2:end),’k-’ , ’linewidth’, 2); hold on;

title(’Euler Simulation of V_{e} vs time’)

xlabel(’time [s]’)

ylabel(’V_{e} [mV]’)

% % phase plot of Phi_i(t)-vs-Phi_e(t)

% figure(65);

% plot(y(5,1:2:end),y(3,1:2:end), ’k-’ )

% title(’Phase plot of Euler Simulation ’)

% xlabel(’\Phi_e(t) [s^{-1}]’)

% ylabel(’\Phi_i(t) [s^{-1}]’)

end

%------------------------------------------------------------------------

function g_NMDA = JS_NMDA(V,C)

% Compute normalized conductance for NMDA receptor

% using Jahr & Stevens (1990)

% Inputs: V = excitatory voltage (mV), C = Mg concentration (mMol)

[k a] = deal(1/3.57, 0.062); % 1/mM, 1/mV

g_NMDA = 1 ./ (1 + k*C*exp(-a*V));

return

%------------------------------------------------------------------------

function Qe = Qsige(V)

% Excitatory sigmoid function for Wright model; input V in millivolts

% Previous Liley defn:

% sig = Se_max./(1 + exp(-ge*(h - theta_e)) );

global W
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gain = pi/(sqrt(3) * W.sigma_e);

temp = 1./(1 + exp(-gain*(V - W.theta_e)));

Qe = W.Qe_max * temp;

return

%------------------------------------------------------------------------

function Qi = Qsigi(V)

% Inhibitory sigmoid function for Wright model

% Previous Liley defn:

% sig = Si_max./(1 + exp(-gi*(h - theta_i)) );

global W

gain = pi/(sqrt(3) * W.sigma_i);

temp = 1./(1 + exp(-gain*(V - W.theta_i)));

Qi = W.Qi_max * temp;

return

%------------------------------------------------------------------------

function weight = Psi_ee(V)

% Wright form for weighting function, but note use of i2j notation

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Ve_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ei(V)

global W

weight = (W.Ve_rev - V)/(W.Ve_rev - W.Vi_rest);

return

%------------------------------------------------------------------------

function weight = Psi_ie(V)

global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Ve_rest);

return

%------------------------------------------------------------------------
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function weight = Psi_ii(V)

global W

weight = (W.Vi_rev - V)/(W.Vi_rev - W.Vi_rest);

return

%------------------------------------------------------------------------
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