

Exploring Usability Discussions in Open Source Development

Michael B. Twidale
1
 David M. Nichols

2

1
Graduate School of Library and Information Science,

University of Illinois at Urbana-Champaign, IL, USA

twidale@uiuc.edu
2
Department of Computer Science, University of Waikato,

Hamilton, New Zealand

dmn@cs.waikato.ac.nz

Abstract

The public nature of discussion in open source projects

provides a valuable resource for understanding the
mechanisms of open source software development. In this

paper we explore how open source projects address

issues of usability. We examine bug reports of several

projects to characterise how developers address and

resolve issues concerning user interfaces and interaction
design. We discuss how bug reporting and discussion

systems can be improved to better support bug reporters

and open source developers.

1. Introduction

In contrast to the strong claims for the power,

flexibility and robustness of open source software (OSS),

its usability has at times been considered relatively weak

[7,15,17]. In previous work we have considered this issue

and explored reasons why it may be so, and how it can be

alleviated [14,15]. In this paper we describe the first

stages of an analysis of discussions about usability issues

within current OSS projects. Even though our work is

preliminary, the wealth of data available allows us to

sketch out some aspects of how distributed design teams

currently discuss interface design problems and solutions,

and some of the problems that they encounter. We note

how the text-centric design of bug reporting tools such as

Bugzilla impose challenges to discussions about dynamic

interactions with graphical user interfaces, and explore

some of different ways that people cope with this. From

an examination of a sampling of interface bugs, we have

examined the usability discussions and contrasted them

with the idealizations of interface design proposed in

textbooks and with our own experiences of interface

design and testing. This has led us to consider how

aspects of complexity management and available

technologies affect interface design discussions.

In Section 2 we describe previous work on analysing

bug repositories. We then describe our analysis of

interface issues in the context of several open source

projects (Section 3) and discuss how these issues are

reported, discussed and resolved (Section 4). In Section 5

we identify areas for further investigation and possible

tool support.

2. Background

Research on OSS development has recently started to

address the wealth of data available in public software

repositories and bug databases, (e.g.

[3,6,9,11,13,15,18,19,20]. The issue of bug management

has received relatively little attention in the research

community and detailed studies using ethnographic

observational techniques, such as [5,21], are rare. The

proprietary nature of much software undoubtedly leads to

a reluctance on the part of software companies to allow

access to their (potentially embarrassing) bugs. In

contrast, open access to the records of OSS projects

allows investigations to be performed on a range of

issues, from high level functionality to the text on a

particular button.

Crowston and Scozzi [6] observe that the literature

doesn't contain much detail on the processes involved in

distributed bug-fixing; recent work such as [6,9,19,20]

provides a valuable basis for a detailed analysis. In this

paper we follow this strand of work but concentrate our

attention on issues of interfaces and usability.

Previous work [1,7,14,15,17,22] has suggested that

issues involving usability and user interfaces are not

easily dealt (compared to 'code' issues) within OSS

projects. Indeed, Wilson & Coyne [23] debate whether

usability bugs even belong in the same database as

'mainstream' functional bugs. Recent evidence suggests

that some OSS projects are adopting hybrid techniques

that combine commercial approaches with the

responsiveness and community involvement typical of

open source [2].

Although some recent work touches on how OSS user

interface (UI) bugs are processed [18,19,20] there is little

detail in the literature [6,15]. In this paper we work

towards determining whether interface design issues in

OSS are different from other design issues and clarifying

previously presented hypotheses as to the nature of

usability in OSS projects [15].

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scacchi [20] takes as a starting point the conventional

software engineering (SE) approach to requirements

capture and specification, and then examines four diverse

OSS projects in the light of that approach. He finds that

the projects do not use the preferred SE approach of

formal specifications, but that they do use ‘informalisms’

as lightweight mechanisms to help orchestrate

development activity. In a similar way, we can take the

conventional approaches to user interface design and

development, and resource constrained variants (e.g.

[16]), and examine aspects of OSS interface design and

development in their light.

Open source bug reports allow a fascinating insight

into the software design process, and into the aspects of

usability analysis and design that we focus on. For

researchers interested in any aspect of software

development, this creates great opportunities, not just to

study usability in OSS as a potentially problematic issue

that can benefit from analysis and recommendations, but

also for informing interaction design in all kinds of

software development. The openness of OSS

development allows access to the design process that can

normally only be achieved in proprietary development by

detailed, time-consuming ethnographic observation. The

potential value of studying OSS and usability extends

beyond OSS projects to the general HCI research

community - as a real world laboratory of the acceptance,

process and discussion of usability.

3. Method

Several approaches to analyzing OSS development

have taken a quantitative approach (e.g. [11,13]) and only

recently has a more detailed qualitative methodology

started to appear (e.g. [6,9,18,19,20]). We follow this

second strand of a more ethnographic-style low-level

investigation which we intend to complement studies such

as [13]. We use three sources: the Greenstone mailing

lists and the Bugzilla [4] instances at Mozilla and

GNOME.

The work reported here is a preliminary investigation

of usability bug reports undertaken to gain a sense of the

scope of how discussions about usability are undertaken.

At this stage we are not ready to do a quantitative analysis

of the amounts of each kind of action, but rather we aim

for a qualitative sense of the kinds of discourse present, in

order to understand how interface analysis and design

occurs. In order to guide this exploration we focus both

on what we see and what we do not see, that is in some

sense ‘surprising’ in the light of other practices in

usability design, such as standard HCI research and

textbook presentations. This parallels the analysis of

software engineering practice in OSS projects contrasted

to the textbook norms undertaken by Scacchi [20] and

Massey [12]. Such an approach leads us to ask questions

such as:

• What is the nature of usability discussions in OSS

projects?

• Is it different from what might be expected from the

textbooks on how to do interface design?

• Is it different from commercial software design?

• What are the patterns of discourse and process that

emerge within and across projects?

We are aware that in the bug reports we only have a

partial record of the work done and the discussions that

occur; as work also happens on mailing lists, face-to-face

meetings, newsgroups, blogs, instant messaging sessions

(and their logs) etc . [3].

Our sampling for this approach was extremely ad hoc.

We were not at the stage to make undertaking a

systematic random or theoretical sampling sensible. The

best analogy might be a usability analyst clicking around

with a new application in order to get a rough sense of

what it is about and what it offers before undertaking a

more systematic investigation. One aim is to generate

some hypotheses that can then be tested in a more

systematic study; focusing on issues that are surprising, or

seemingly counter-intuitive, and that will need stronger

evidence to substantiate than those aspects that are widely

expected.

Our exploration involved searches of bug databases for

terms such as ‘usability’, ‘human computer interaction’,

‘interface’ etc. Bug reports that contained those words

and were determined to be indeed about usability were

investigated in more depth, with a particular focus on how

usability discussions use different kinds of evidence to

support their claims.

In the following sections we take one extended

example and several fragments to illustrate our findings.

The example happens to be the first bug we chose to

examine in depth for this paper. Its richness reinforced

our realisation of the wealth of the data in OSS projects.

The quantity and quality is almost overwhelming. We

believe that by attending to a few bug reports in depth, we

can gain a rich understanding of the process of usability

analysis and interface design as currently practiced. Our

aims are to inform a more systematic study and to lead to

suggestions, system enhancements and process changes

for OSS interface design.

4. Results

In this section we discuss some of the components of

usability dialogues that we found and note some aspects

of the nature of the bugs and the discussion process that

may lead to a bias towards certain kinds of activity. We

begin with a somewhat extended example of a single bug

that connects with many other bugs. This serves as an

illustration of how interface discussions can have many

complex interrelated components. The rest of the section

looks at aspects of the causes and consequences of this

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

complexity. In our examples we have removed the

identification numbers of the bugs we quote and do not

note the authors of comments. However, all the

information is publicly available.

4.1. Extended example: dialog box sizing

Bug A opens with the description:

The preferences dialog size should be fixed
at a smaller size (closer to 4.x), this
size should be specified in ems and the
dialog should be made non-resizable
(Preferences is a dialog, not a window).

Comment 1 includes a patch as an attachment

Comment 2 reviews it

Comment 3 approves the patch but notes:

I think the patch is ok, but this is going
to cause a world of hurt. ;-)

Comment 4 records the bug as being fixed, less than

26 hours after its filing.

Note how the bug description includes somewhat

implicit usability design criteria that the current interface

violates, namely that dialog boxes should not be resizable,

unlike windows which should be. This is an example of

the larger interface design criterion of maintaining

internal (within-application) and external (between-

application) design consistency [16], a norm that we

found frequent reference to in bugs we examined. Using

Scacchi’s term [20], we would categorise this claim that

dialog boxes should be non-resizable as a 'usability

informalism'.

However the bug does not end after being marked

fixed at comment 4. In comment 6 the rule (dialog boxes

should not be resizable) is challenged on two counts: i)

don’t constrain the user unnecessarily, and ii) resizable

windows are a useful workaround for some dialogue

boxes where the content does not fit the available area:

I'm not sure we need to constrain the user
like this. Maybe a minimum
size, but ? why a maximum? Some content
doesn't fit in this area,
that's been an on-going problem, and
resizing the window -> larger
is a workaround. reopening for
explaination.

This widens the discussion to the problem of non-

fitting dialog boxes, including references to other bugs.

The desirability of permitting the workaround to exist

instead of forcing a redesign of all the problematic dialog

panes is debated.

A new point is raised, relating to the redesign of

preferences dialogues to save some space (thus partially

addressing the text-overflow problem), acknowledging

that this point is a separate bug and asking whether it is

worth filing. The advantages and disadvantages of

creating this bug are discussed. Next, the creation of meta

bug B is noted:

to keep myself sane, i've created a meta
bug to track pref panels whose content
needs readjusting in order to fit: bug B .
feel free to add bugs as blockers to B.
thx!

The non-resizable dialog boxes rule is further

challenged, by citing the existence of other resizable

dialog boxes. It is noted that the Linux window manager

makes all dialog boxes resizable, rendering the issue moot

in that context. Eventually the bug is labeled 'fixed' (for

the third time) and verified, 5 days after the initial report.

In total, bug A has references to 8 other bugs,

including meta bug B which tracks panels whose contents

need to fit. Meta bug B lasts for 22 months, contains 58

comments and references to 17 bugs (none of which were

mentioned in bug A) before being marked as a duplicate

in favour of another meta bug: C. This bug, entitled

“Ensure all Preferences panes fit entirely within the pane

area using all bundled themes“ was created 26 months

ago and is still active at the time of writing, currently with

66 comments and references to 25 bugs in the comments

and with 43 bugs marked as blocking it. In the light of

this complexity, Bug A’s comment 3 about ‘a world of

hurt’ seems most apposite!

4.2. Talking about interfaces

Our investigation of usability bug reports has

concentrated on the nature of the discussion about

usability, rather than the way in which the work is

coordinated [6]. Using Crowston & Scozzi’s [6]

classification for all bugs, we are concentrating on what

happens within 'submitting', 'analyzing', 'fixing' and

'testing', and are paying far less attention to 'assigning' and

'closing'. Here we group the issues into just two broad

categories: the initial reporting of the bug and the

subsequent discussion about its analysis and possible

solutions. We are interested in how the discussions of the

use, meaning and redesign of graphical user interfaces

takes place in projects, with an eye to considering how the

process can be improved. For example, does the text-

centric nature of tools such as Bugzilla impede innovative

UI design, and if so, how can we help?

4.2.1. Initial reporting of a usability bug. Some

usability problems can easily be explained textually. For

example, a bug entitled:

Suggest change "Close Other Tabs" to "Close
All Other Tabs"

contains as part of its description:

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

Help clearly show that this closes all tabs
other than the one that you're in.

However, my initial take on seeing it was:
Oh Cool! I can close some of these other
tabs!

I thought that perhaps it would have me
click on the ones I wanted to close.

However, not all usability bugs can easily be reported

textually and graphics can be an invaluable supplement

[10]. If not included in the initial report, developers can

request reporters to provide a screenshot in order to

understand the issue:

sorry about the delay getting to this bug.
Are you still seeing this? If you are, can
you screenshot it? I'm afraid I don't quite
get the problem :/

An indication of the value of screenshots is that the

GNOME Bugzilla has added a 'screenshot' keyword to

help index bug reports. However, sometimes even a

screenshot is not sufficient to uniquely identify the

problem. Figure 1 shows a short dialogue from the

GNOME Buzgilla where a textual description and a

screenshot are not enough to locate the problem.

Figure 2 shows a screenshot attached to a bug report.

The two notable features of this screenshot are the privacy

blurring of text in the 'From' and 'Subject' lines of the

Ximian Evolution application and the annotation of the

precise area of concern for the reporter.

The blurring of text helps to maintain the privacy of

the reporter's information. It is clearly the case that bug

reports can reveal information about the reporter [14] and

the reporter here has clearly gone to significant trouble

(presumably in an external graphics program) to obscure

the text whilst still reporting the bug. The graphical

annotation in Figure 2 effectively pre-empts the type of

clarificatory dialogue in Figure 1, to concentrate attention

on the pertinent part of the interface. Figure 3 shows

similar clarification is often required in the textual context

of mailing list discussions and help requests.

4.2.2. Usability bugs: discussion and solutions. After a

bug has been reported, it is analyzed, often in terms of its

underlying causes. Understanding why a user may be

confused can help in designing a fix to minimize

confusion. Sometimes there is a debate about whether

what is reported is a bug at all, as we will consider later in

the paper. The bug may need to be categorized in terms of

its wider meaning and the appropriate level to consider it

in the project. For example, in our extended example

(Section 4.1), the individual problems with particular

dialog panes may be considered manifestations of the

broader design rule of all dialog panes fitting correctly.

Bug reporter:
Description of Problem:
The icon for the volume control is

broken.

Steps to reproduce the problem:
1. compile gnome 2.2.0
2. start gnome-panel

Actual Results:
Wrong icon

Expected Results:
the speaker icon

How often does this happen?
Always

Bug reporter:
Created an attachment
screenshot of broken volume control

icon

Developer1:
Are you talking about the icon with

the little red "x" in the upper right
panel? Is this the volume control
applet?

Bug reporter:
the icon with the little red "x" in

the upper right panel is indeed the
volume control applet where I'm talking
about.

Figure 1. Clarification dialogue over a screenshot
from bugzilla.gnome.org

Figure 2. Privacy blurring and location annotation in a screenshot from bugzilla.gnome.org

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

Meta bugs can help in creating a layer of abstraction to

address levels of detail. Accompanying the analysis, one

or more candidate solutions are proposed and these are in

turn analyzed, critiqued and refined, until a decision is

made and one solution is implemented.

The discussion in the form of posted comments is

inevitably text-centric. In some cases this is absolutely no

problem because the initial bug and the various solution

ideas revolve around the wording of interface elements

(as in the ‘close other tabs’ example above where the

problem, the solution and its debate were all handled

textually in a smooth manner). Rewording text elements

of interfaces to improve usability seems to occur

relatively frequently and we believe with good reason:

• Many usability problems can be addressed

quickly and cheaply by rewording. It is far more cost

effective to locate and change a text item in the code

than do more substantial interface redesigns.

• In our experience of teaching usability, it is a

context where relative usability novices can play a

useful role, serving an apprenticeship before moving to

more complex problems.

• Talking about the wording of interface elements

is much easier to do in a mostly text based interaction

medium such as Bugzilla than talking about graphical

elements or interaction processes.

However non-textual resources are also used. We have

already noted the power of screenshots and particularly

annotated screenshots. We also find several examples of

‘ASCII art’ where some element of a UI are laid out

within the textual discussion, see Figure 4.

The creation of ASCII art requires some effort, raising

the question of whether functionality to provide more

lightweight ways to include design ideas would help. The

presence of ASCII art has also led us to wonder about the

relative lack of digitized freehand sketches, or other

means of creating rough impressions of an interface idea.

Indeed so far we have not found any examples of such

sketches, although we feel sure that some must exist.

Their relative rarity is particularly intriguing given the

importance ascribed to the early use of paper sketching

and prototyping in the HCI literature [16], and the

presence of quite polished interface specifications:

carefully drawn faithful representations of what the

interface should look like. The discussions about a bug

and its candidate solutions draw on various kinds of

evidence; we find references to usability studies, the HCI

literature, usability concepts (such as Fitt's Law), and

various guidelines and standards. Examples (from

different bugs):

Alerts should use OK, not Close.

Figure 4. ASCII art from bugzilla.mozilla.org

User:

Greenstone developers,
I am facing a problem while putting my

html pages to the library.
The collection is creating properly

and even the search is showing the
results, but when i click the search
result link it doesnt show the actual
content of the html page.

I also tried the pages after placing
the files in the cgi-bin folder of
apache. Still this is not working.

Any help or advice is greatly
appreciated. Thanks for your time and
consideration.

Developer:

This is strange.
A few questions:
- Do you get an error message when

trying to view the documents, or just a
blank page?

- Are you using Windows or Unix? If
Windows, are you using the local
library, or do you use a separate
webserver?

- Have you made any changes to the
format statements in the collection
configuration file?

- What version of Greenstone are you
using?

If possible, the best thing would be
if you could send me a link to your
collection (so I can see the problem
myself), or, if the collection is small
enough, package the collection up and
send it to me. This would make it much
easier for me to track down the problem.

Figure 3. A report/help request and response
from the greenstone-users mailing list

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

http://developer.gnome.org/projects/gup/hig
/1.0/windows.html#alert-windows
or
http://developer.gnome.org/projects/gup/hig
/draft_hig/windows.html#alert-windows
This bug appears at least 17 times in
gnome-panel. The patch to follow
corrects those instances.

Does Apple, IBM or someone else provide any
good HIG's for context menus?

I just read an interesting chapter in a UI
Design book call "Designing for Both Sides
of the Screen"

Although we can find examples of these elements, we

suspect that their use is relatively infrequent, especially in

terms of the approaches and principles espoused in HCI

texts about how to approach interface design. This needs

more thorough investigation.

In examining a selection of usability bugs and the

discussion about reporting, analysis and designing

solutions, we have developed some concepts that we

believe are helpful in making sense of what is currently

done and why, and how approaches could be developed to

support the interface design process. We explore two of

those ideas in the following subsections.

4.3. Subjective and objective usability bugs

The example in Section 4.1 contained a discussion of

several bugs where elements did not fit within a

Preferences pane. Those individual bugs were relatively

straightforward to report. The reporter noted the pane in

question, and any actions that need to be taken to create

the situation where the text or buttons do not fit the pane.

A screenshot can be attached to illustrate the problem.

We would categorize this kind of usability bug as

having the characteristics of being ‘objective’ and static.

That is, once pointed out, most people would agree that it

is indeed a problem, all users going through the same

process would encounter this problem, and it can be

considered a deviation from some standard, even if that

standard is a set of informalisms and shared

understandings about what should be rather than a

deviation from a formal specification. The bug is static in

the sense that it can be completely described using a

single snapshot of the interface at a given point in an

interaction, rather than requiring a consideration of an

interaction sequence. In the case of dialog panes, a

screenshot of text not fitting within the pane is sufficient

to establish that there is a problem, most people would

agree that indeed something should be done to fix the

problem, and the only disagreement is about exactly how

to fix the problem (in this particular example, actually

there is substantial disagreement on the fix).

In our ad hoc sampling, we have encountered several

examples of this kind of usability bug, and by contrast,

relatively few ‘subjective’ usability bugs: aspects of an

interface that cause confusion or errors for some people,

but not everyone. An example of a subjective usability

bug is the "Close Other Tabs" bug in 4.2.1.

We note this as being of interest for further

investigation, because of a contrast with our experiences

with usability testing of websites and interactive software.

In user testing, one frequently encounters many subjective

usability bugs, where one test user has a problem, but

another does not. In some cases a single user error result

is sufficient to persuade a designer that there is indeed a

usability bug that needs fixing, but often stronger

evidence is needed before a designer will be convinced,

especially when others, perhaps a majority, encounter no

confusion. This variation in the use and hence usability of

systems has frequently been used as a justification for

frequent user testing, and as the reason that allowing

developers to observe user tests has such a dramatic

effect, showing designers how some people perceive their

designs in a completely different manner to how it was

intended [16]. In the absence of sensitivity to user testing,

a developer on being told of such a subjective usability

bug might well react “well it works for me”. The

implication is that there is no failure of functionality and

hence no bug. The fault is with the user who has failed to

understand how to use the system properly, and the

solution, if any, is with help or user training rather than

system redesign, which would add more complexity and

delay to the already complex design process.

It is worth noting that there is an explicit status within

Bugzilla called ‘WORKSFORME’ used to note that a bug

reported by one person has not been replicated by another.

As such the option is a powerful tool for complexity

management (see below), given that inevitably some bug

reports will be erroneous, or need more precise details for

replication. An unfortunate side effect of this highly

desirable complexity management mechanism may be to

generate a bias against usability bugs that don’t cause

problems for expert users or that cannot be accepted as

valid just by examining a visible failure in a single

screenshot. These bugs may require an explanation of

how some people taking some sequence through the use

of the system are confused, make mistakes or are misled

by the design of the interface, while others manage to

cope, or even find the design helpful. More substantial

evidence may be required before such a usability bug is

regarded as legitimate – a single case is insufficient, while

a formal usability test is powerful (but still contestable)

evidence.

In its more extreme manifestations, a preference for

bug objectivity may even lead to a downgrading of the

perceived ‘status’ or acceptability of certain usability

bugs. Objective usability bugs and functionality bugs may

get greater attention because of a view that it is better to

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

fix the problems that affect all users or lots of users

(especially those that affect the OSS developers

themselves), and are relatively uncontroversial in their

existence, and only then to move on to those aspects that

affect fewer people. It may be that the subjective bugs are

treated more as enhancements, by analogy to additional

pieces of functionality that will greatly benefit some but

not all or even most users.

Examples
Marking invalid, since this is as designed
and thus not a bug.

In this case a usability problem report is dismissed as

being a legitimate bug since the issue reported as

problematic performs exactly as intended. In effect this

comment states that a usability bug is not a bug if the

design was intentional. Note that we are not denying the

legitimacy of marking a usability bug 'WONTFIX', due to

the real or perceived rarity of the problem, or because all

candidate solution fixes involve undesirable trade-offs.

Rather we question the dismissing of the very existence of

a usability bug on the grounds that the functionality is not

a deviation from the specification.

This is not a bug. There's an extension
called Tabbed Browsing Extensions that does
exactly what you want.

The comment above implies that because it is possible

to download and integrate an extension to provide the

enhancement that would address the usability problem

described (a confusion about how tabbed browsers

operate), there is in fact no bug, because one can obtain

an extension that changes the interface precisely in the

way discussed in the analysis and fix discussion of the

bug report. This is indisputable if attention is only paid to

functionality, but if usability, particularly for novices is a

legitimate issue of discourse, then such a comment should

not simply dismiss the concern, given that the advocated

solution to a novice’s confusion with the default setup

involves a further, possibly confusing, installation.

This issue needs more study, but one indicator is that a

search for bug reports containing the word ‘usability’ in

any comment over all sub-projects in Mozilla's Bugzilla

yielded 1985 hits, of which 528 (27%) were in bugs

marked as enhancements, even though enhancement bugs

make up only 8% of all bugs in the database. (This is of

course a crude indication – 'usability' may not be a good

marker for actual usability issues, but it does indicate that

the issue is worth further investigation).

4.4. Complexity management

In any open source project, the management of the

complexity of the process is critical. Software

development is inherently complex. Open source

development has the added complexity of large,

heterogeneous distributed teams of volunteers. The way in

which OSS manages to achieve successful development is

a key issue in many analyses of OSS [6,18,19]. The bug

reporting and fixing process has become streamlined with

processes and norms, some just implicitly understood by

OSS project members, some articulated in supporting

documentation and some explicitly supported in software

such as Bugzilla.

One aspect of complexity management is the attempt

to create unique, clearly identified and categorised bugs.

Duplicate bug reports add to complexity and so are

undesirable. Reporters are strongly encouraged to search

the database to see whether the bug they are reporting is

already there. This can be non-trivial, as the 'vocabulary

problem' [8] means that there can be many legitimate

ways of describing the same bug. Thus duplicates

inevitably occur, and effort is expended in quickly

identifying and marking duplicates.

Similarly, it is desirable that the identity of bugs does

not change. Each bug should be in its own report rather

than having multi-bug reports, and a single report should

not morph in meaning. Deviations from these norms do

occur, but the norms appear well accepted.

In our initial explorations of usability bugs, we have

noticed that those bugs we examined are often complex,

with many comments, many duplicates and containing

references to other bugs. Our extended example illustrates

this, and is by no means exceptional. We wonder whether

usability bugs tend to show greater complexity than other

bugs, and we plan to investigate this further.

In our earlier work [15] we identified various desirable

additional activities that could be added to an OSS project

to improve usability. Many of these, such as informal and

distributed user testing of current functionality or

proposed solutions would address the more subjective and

dynamic usability problems that seem to be under-

reported. In the light of our current analysis, we have

become increasingly aware that any such additional

features and processes would need to be accompanied by

extremely careful complexity management.

The use of meta bugs such as B and C in section 4.1

allow related bugs to be collected and tracked. In the case

of interface design, within-application consistency is a

widely accepted design guideline. Hence when a report

about a particular problem occurs with one part of the

interface (in this case a dialog box pane), whatever

solution is decided upon needs to be applied to all other

related bugs. Furthermore, the solution may require

consideration of non-buggy interface elements just to

ensure that all elements maintain consistency. This means

that the wider implications of local fixes have to be

considered as alternate fix candidates are assessed, and

that this additional ripple-effect has to be monitored. The

following two comments illustrate this

This has got to be a simple fix? It is in
1.0.1 on win98 too. If I knew how to fix I
would.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

generating the response:

any single example would probably not too
much trouble to fix. but each panel needs
to be fixed to fit, on the full range of
platforms, fonts and resolutions, and as I
understand it, the various people
responsible for each of the pref settings
would need to be involved as well, to make
sure nothing got broken. So while the code
changes are probably simple, there needs to
be a lot of people interaction, and that's
a hassle...

This nicely illustrates the complexity management

problem in order to maintain interface design consistency.

It can be contrasted with bugs relating to functionality,

where for example changes in how a particular function

works should need to only consider its callers, a set that is

likely to be limited and easily identifiable. It appears that

in interface design the complexity management technique

of black boxing breaks down somewhat. One needs a ‘T’

shaped analysis: not just down through the particular

interaction sequences addressed by the functionality

associated with the fix for the buggy interface element,

but also across all interface elements for consistency,

including interface elements not functionally related to

the reported bug.

please nominate specific bugs with specific
preference panels and not metabugs like
this one. thanks.

This comment articulates a complexity management

norm, and it is clear that this norm makes a lot of sense

when applied to functionality bugs. However with

interface bugs and fixes, certain elements correlate so

closely that it is desirable to advocate for all or none.

4.5.1. Ripple effects of bugs. Bug A is filed as an inter-

application consistency violation; dialog boxes should not

be resizable. In fixing this bug, it creates or accentuates

other bugs; dialog boxes whose information no longer fits

within the pane. Resizable dialog boxes had been used as

a workaround for this problem, although one that various

commentators to bug A saw as rather clumsy. The

consequence was that fixing one bug created the need to

fix other bugs.

We call this a ripple effect of bug fixing. Clearly it

adds to complexity, and it would be highly desirable if

rigorous modularization minimized or eliminated ripple

effects. We speculate that interface bugs are particularly

susceptible to ripple effects due to the impact that one

interface element can have on a wider overall user

experience. For example, a recurrent debate throughout

the Mozilla project has been the size and complexity of

the preferences dialog box. Frequently a particular

interface or functionality bug leads to conflicting opinions

about a suitable fix, sometimes leading to the creation of

options, chosen via the preferences feature.

Unfortunately, each additional preferences option,

although in itself minor, adds to the overall complexity of

the preferences interface. This in turn may lead to a

redesign, hiding preferences or removing options to

improve usability, reduce code size, and improve

testability; at the expense of fewer choices for users.

In a similar manner, in our first example, as the

redesign process continued through the meta bugs B and

C, the initial bug A was continually challenged for

legitimacy, and current versions of the software now do

provide resizable dialog boxes.

5. Discussion

Despite the preliminary nature of our study, we believe

that it is possible to identify certain issues that may

inspire design solutions. These include: Scarcity of

expertise, Bug reporting and classification, and

Heterogeneity in usability discussions.

5.1. Scarcity of expertise

Scacchi [20] has shown similarities in the requirements

specification process of four very diverse projects

(ranging from games to astronomy). What are the

similarities and differences in usability discussions

between projects? We may find that the discourses on

usability engineering within and between OSS projects

parallel their historic equivalent in commercial software

development. Systems initially developed for use by

expert users were gradually adapted for use in more

contexts and by people less willing to learn an unduly

complex interface. Within commercial software

development, usability professionals have often noted the

importance of making the case for usability [16,23]. There

is a competition for resources and attention within

projects, and usability professionals often have to

simultaneously establish the legitimacy of their work, as

well as trying to integrate their analysis and design into

ongoing functionality development.

Are similar issues seen in the open source record? In

our small sample we do indeed see such advocacy. At

times we also see frustration in trying to manage

discussions between the two very different worldviews of

expert developers and end user advocates. This is made

harder when usability expertise is scarce in a project.

Without a certain critical mass, it can be difficult to

establish the legitimacy of usability arguments against

countervailing expert-user functionality-centric claims.

The usability advocate can feel outnumbered and give up

the fight, or be crowded out in discussions, particularly

OSS online discussions where ideally a consensus

emerges, but where consensus-based interface design may

not always be possible or even desirable.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

With limited numbers and isolation, it is likely that the

progress of usability in any given project will depend

crucially on the approach (both in analysis and design, but

also in rhetoric) of the few usability advocates involved.

This will lead to greater inter-project diversity in this

aspect than in functionality development, where there are

many OSS participants with appropriate skills and

interests. One might also expect differences due to the

nature of the software being developed. For example a

complex piece of functionality such as Apache needs to

focus on power for expert users and hardly at all on

inexperienced computer users, whereas a mail application

is aimed at a far wider user base.

5.2. Bug Reporting and classification

We have already noted how more integrated support

for annotated screenshots (including privacy tools) can

enhance the initial reporting of usability bugs. Reporting

tools that automatically provide contextual metadata

further reduce the effort required by bug reporters.

Subjective usability bugs may need a more provisional

approval process (especially when a report is from a

single anecdotal source), while more evidence is collected

of the relative incidence and severity of the bug. Use of

suitable keywords could distinguish provisional

subjective bugs from more objective established bugs.

That would enable investigation to continue without

adding undue complexity to the system, and avoid

premature discarding of a partial bug report.

Sandusky et al. [18] suggest that a duplicate

identification tool would be a valuable addition to OSS

projects. Our analysis supports this suggestion and we

note that such a tool's effectiveness is partially based on

bug metadata. Tools such as GNOME Bug Buddy and the

Bugzilla Helper promote structured textual reports but the

clarification dialogues shown in Figures 1 and 3, and in

numerous bug discussions, show that metadata is more

valuable. Bug metadata more directly supports querying

and partitioning of the bug reports, which should help to

reduce duplicates and parallel bug discussions.

Classifying any bugs is a complex process and it

would seem that classifying usability bugs is at least as

difficult as classifying functionality bugs. One approach

to classifying usability bugs may be to use the structure of

the user interface itself as a hierarchical classification

system. That is, the menus, sub-menus and dialog boxes

of the interface become nodes in the classification

hierarchy of the bug repository, so that a preferences bug

can be located directly from the system's interface.

5.3. Heterogeneity in usability discussion

If discussions about interfaces are particularly

complex, the conventional bug report design may be

insufficient. A linear temporal sequence of comments

may be perfectly adequate for cases where there are

relatively few comments or when the comments

document a straightforward temporal workflow. An

example might be: initial bug report, elaboration,

confirmation, refinement of details, allocation of work,

proposed fix, review, comments, revisions, further review

and fix. In the case of some usability bugs, the process of

describing and analyzing the bug may be much more

complex and more contested, with different kinds of

evidence proposed and debated. Alternate design

solutions may be reviewed, drawing on multiple

assessment criteria, and debates between alternate fixes

based on conflicting goals. Potential resolutions and

tradeoffs may involve revised designs which are further

reviewed, with a need to make decisions even when

consensus is not reached.

For such complexity, a linear listing of comments may

be insufficient to enable participants to keep track of all

the elements of the discussion. A form of threading within

a bug report may help in grouping discussion elements.

Explicit representations of design arguments, trade-offs

and rationales can help in clarifying the multi-aspect

nature of the more complex discussions.

Sub-arguments may be elided from the larger

discussion in alternate venues either within the discussion

area or completely outside it (forums, newsgroups, blogs

etc), but maintaining clear links to and from the main

discussion. A separate designated 'design area' may

support design brainstorming and discussion, with results

brought back to the larger discussion within the main bug

report. Likewise an area for discussing evidence from

user studies, anecdotal observations, personal

experiences, references to the HCI literature, design

guidelines and interface specifications may help in

reconciling complex argument structures before returning

a result, or a listing of contested points back to the main

discussion. This is a kind of sub-classing – breaking a

complex problem and argument structure into separate

sub-parts that are worked on separately before being

integrated. The challenge is to preserve the simplicity of

the existing system for situations where it works well,

while supporting the more complex design discussions.

6. Conclusion

As many researchers have noted, the openness of open

source projects is a highly valuable resource in revealing

much of the process of software development. We have

chosen to focus on the process of usability analysis and

interface design, based on a initial interest in the

‘problem’ of usability within some open source projects.

We believe that many of the issues arising in improving

software usability are not unique to OSS projects, but

rather that such project offer unique access for study and

comparison. By examining a small sample of usability

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

bugs, we have found a rich set of resources used in

discussing usability that can be used to inform a more

systematic investigation of the data and inspire improved

tool support. In particular we have noted the difficulty of

describing certain types of user interaction in current bug

reporting systems, the complex and contested nature of

certain kinds of usability bugs, and the challenges of

integrating richer discussions into the wider problem of

complexity management within OSS development.

References
[1] C. Benson, "Evaluations of GNOME Usability:

Expanding the Appeal of GNOME", presented at the

Fourth Annual GNOME User and Developer European

Conference (GUADEC), 2003.

[2] C. Benson, M. Muller-Prove and J. Mzourek,

"Professional usability in open source projects: GNOME,

OpenOffice.org, NetBeans", Extended Abstracts of the

Conference on Human Factors and Computing Systems.

New York, NY: ACM Press. 2004, pp. 1083-1084.

 [3] C. Boldyreff, J. Lavery, D. Nutter, and S. Rank,

"Open-Source Development Processes and Tools"

Proceedings of the 3rd Workshop on Open Source

Software Engineering, International Conference on

Software Engineering (ICSE'03). 2003, pp. 15-18.

[4] Bugzilla, The Mozilla Organization. at

http://www.buzgilla.org,

[5] P.H. Carstensen, C. Sorensen and T. Tuikka, "Lets

Talk About Bugs!" Scandinavian Journal of Information

Systems 7(1) 1995, pp. 33-54.

[6] K. Crowston, and B. Scozzi, "Coordination Practices

for Bug Fixing within FLOSS Development Teams",

Proceedings of the First International Workshop on

Computer Supported Activity Coordination (CSAC 2004)

Porto, Portugal, 2004.

[7] N. Frishberg, A.M. Dirks, C. Benson, S. Nickell, and

S. Smith, "Getting to Know You: Open Source

Development Meets Usability," Extended Abstracts of the

Conference on Human Factors in Computer Systems.

New York, NY: ACM Press, 2002, pp. 932-933.

[8] G.W. Furnas, T.K. Landauer,, L.M. Gomez. and S.T.

Dumais, "The vocabulary problem in human-system

communication." Communications of the ACM 30(11)

1987, pp. 964-971.

[9] L. Gasser and G. Ripoche, "Distributed Collective

Practices and F/OSS Problem Management: Perspective

and Methods," presented at the Conference on

Cooperation, Innovation & Technologie, (CITE 2003)

University de Technologie de Troyes, France, 2003.

[10] H.R. Hartson and J.C. Castillo, "Remote Evaluation

for Post-Deployment Usability Improvement",

Proceedings of the Conference on Advanced Visual

Interfaces. New York, NY: ACM Press, 1998, pp. 22-29.

[11] J. Howison and K. Crowston, "The perils and pitfalls

of mining SourceForge", Proceedings of the 1st

International Workshop on Mining Software Repositories

(MSR 2004).. Edinburgh, Scotland, UK. 2004, pp. 7-11.

 [12] B. Massey, "Why OSS Folks Think SE Folks Are

Clue-Impaired", Proceedings of the 3rd Workshop on

Open Source Software Engineering, International

Conference on Software Engineering. 2003, pp. 91-97.

 [13] A. Mockus, R.T. Fielding and J. Herbsleb, "A case

study of open source software development: the Apache

server", Proceedings of the 22nd International
Conference on Software Engineering, New York, NY:

ACM Press, 2000, pp. 263-272.

[14] D.M. Nichols, D. McKay and M.B. Twidale,

"Participatory Usability: supporting proactive users",

Proceedings of 4th ACM SIGCHI NZ Symposium on

Computer-Human Interaction (CHINZ'03), Dunedin, New

Zealand: SIGCHI New Zealand. 2003, pp 63-68.

[15] D.M. Nichols and M.B. Twidale, "The Usability of

Open Source Software", First Monday 8(1) 2003.

http://firstmonday.org/issues/issue8_1/nichols/

[16] J. Nielsen, Usability Engineering, Boston: Academic

Press. 1993.

[17] E.S. Raymond, "The revenge of the hackers," In M.

Stone, S. Ockman, and C. DiBona (eds.). Open Sources:

Voices from the Open Source Revolution. Sebastopol,

CA.: O'Reilly & Associates. 1999, pp. 207-219.

[18] R.J. Sandusky, L. Gasser and G. Ripoche, "Bug

Report Networks: Varieties, Strategies, and Impacts in a

F/OSS Development Community", Proceedings of the 1st

International Workshop on Mining Software Repositories

(MSR 2004), Edinburgh, Scotland, UK. 2004, pp. 80-84.

[19] R.J. Sandusky, L. Gasser and G. Ripoche, "How
Negotiation Shapes Coordination in Distributed Software

Problem Management", SQA Project Memo UIUC 2004-

07, GSLIS, UIUC, IL, USA. 2004.

[20] W. Scacchi, "Understanding the Requirements for

Developing Open Source Software Systems", IEE

Proceedings — Software 148(1) 2002, pp. 24-39.

[21] S.V. Shukla, "Hit squads & bug meisters:

discovering new artifacts for the design of software

supporting collaborative work", SIGCHI Bulletin, 30(2)

82-84.

[22] P. Trudelle, "Shall We Dance? Ten Lessons Learned

from Netscape's Flirtation with Open Source UI

Development," presented at the Open Source Meets

Usability Workshop, Conference on Human Factors in

Computer Systems (CHI 2002), Minneapolis, MN, 2002.

[23] C. Wilson and K.P. Coyne, "Tracking usability

issues: to bug or not to bug?" interactions 8(3) 2001, pp.

15-19.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10

