
Working Paper Series
ISSN 1177-777X

Linear-Time Graph Triples Census Algorithm
Under Assumptions Typical of Social Networks

Daniel McEnnis

Working Paper: 06/2009
August 20, 2009

c©Daniel McEnnis
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Linear-Time Graph Triples Census Algorithm Under
Assumptions Typical of Social Networks

Daniel McEnnis
University of Waikato, Hamilton, New Zealand

dm75@waikato.ac.nz

1. Introduction

A graph triples census is a histogram of all possible sets of three vertici
(called a triple) from a graph. Graph triples census have been in active use in
sociology for over 50 years. The earliest paper using this approach is by Holland
and Leinhardt [1]. This gives a general description of the structure of directed
graphs in a fixed length vector. Since this time, this analytic tool has been
widely used in social network analysis. A summary of important papers using
this approach, both as end product and as a component of further analysis, are
in [2].

Graph Triples Census is also an important tool in machine learning for cap-
turing information about relational structure of a data set in a form that can be
fed to non-relational machine learning algorithms. These approaches are still in
their infancy largely because of a lack of effective, time efficient algorithms for
describing large scale structure—especially for large networks such as on-line
friendship networks and the structure of the Internet with its underlying com-
munities. . All of these graphs have the property that the average number of
links per node is small compared to the number of vertices and, likewise, the
max degree is small compared to the number of vertices. In many cases, both
average and max degree are explicitly limited to a small constant by the struc-
ture of the source data. One example of this is the sociological data collected by
Harris et al. [3]—widely used in social network analysis. Similar patterns have
been identified by the author in LiveJournal and LastFM friendship networks.

Existing algorithms are discussed in related work. This followed by defini-
tions, the algorithm description, proof of correctness, proof of time complexity,
and proof of space complexity.

2. Definitions

Throughout this paper, we are concerned with a graph G = (V,E) with a
finite set V of vertices and a finite set E of ordered pairs of distinct vertices

Preprint submitted to Elsevier August 20, 2009

called edges denoted e(vi, vf). Vertex w is considered a neighbor of vertex v iff
(v, w) ∈ E

1. Let vi denote an arbitrary ordering of vertices in V from 0 to |V | − 1
2. Let N(vi) denote the set of all neighbors of vi.
3. Let GN(vi) denote the set of all vf ∈ N(vi) such that vf > vi

4. Let G3(G) denote a graph of three ordered vertices i, j, k ∈ G where
i < j < k with undirected edges present if e(vl, vm) exists ∀l,m ∈ i, j, k.

5. Let LG3(G) denote a graph of three ordered vertices i, j, k ∈ G where i < j
and k 6= i, j with undirected edges present if e(vl, vm) exists ∀l,m ∈ i, j, k.

6. Let A(G) be the set of all G3 such that ∀vi, vj , vk ∈ G where i < f < g
G3(vi, vj , vk) ∈ A

7. Let En(G) be the subset of A(G) such that ∀G3 ∈ A where there are n
edges present.

8. Let E2a(G) be the subset of A(G) such that ∀G3 ∈ A with 2 edges present
and e(vi, vj) or e(vj , vi) exists.

9. Let E2b(G) be the subset of A(G) such that ∀G3 ∈ A with 2 edges present
and e(vi, vj) and e(vj , vi) does not exist.

10. Let addToCensus(e1, e2, e3, x) define a procedure that increments the
graph triple equivalence class that corresponds to this combination of link
types by value x in O(4) time and O(0) space.

11. Let linkType(v1, v2) define a procedure that returns one of the four link
types (0-4: no link, lesser to greater, greater to lesser, bidirectional) in
O(6) time and O(1) space.

3. Algorithm

The algorithm enumerates smaller census entries first, then calculates the
remainder of the census entries using set compliments to avoid counting their
entries individually.

let count = 0
for vi ∈ V (G) // loop 1
GNi, Ni = getLinks(Vi, Vi) // link 1
for vj ∈ GNi // loop 2
count + +
// enumerate E3(G)
GNj , Nj = getLinks(Vj) // link 2
for vk ∈ (GNi ∩GNj) // loop 3a
addToCensus(linkType(vi, vj), linkType(vj , vk), linkType(vi, vk), 1)
rof
// enumerate E2(G)
for vk ∈ (Nj¬ ∩Ni) // loop 3b
addToCensus(linkType(vi, vj), linkType(vj , vk), 0)
rof
addToCensus(linkType(vi, vj), 0, 0, |V (G)| − |Ni ∪Nj |) // link 3

2

rof
rof

addToCensus(0, 0, 0,

(
|V (G)|

3

)
− count(|V (G)| − 2) // link 4

4. Proof of Correctness

Theorem 1. The census of triples of G can be calculated using neighbor prop-
erties and set compliments.

Proof of Theorem. By definition of graph triple census, the census is a count
of the size of the set of each equivalence class of G3 ∈ G. Subdivide the set of all
G3 into the subsets En and prove that each member of each subset is counted.

Note 1. the sum of all entries in the graph triple census is |V (G)|3/6

Definition 1. ∀vi, vj ∈ G such that i < j define Aij as the set of all LG3(G)
where i = vi and j = vj

Note 2. |A| = |V (G)− 2|

consider E0

Note 3. ∀edge ∈ G,∃exactly|V (G)− 2|triples /∈ E0

⇒ |E0| = |E(G)|(|V (G)| − 2) as in Link 4 , enumerating E0

consider E3

Definition 2. The set Triple as the set of all i, j such that Triple contains the
members of all Aij where k ∈ GN(vi) ∩GN(vj)

Note 4. Triple is equivalent to E3

Note 5. Triple is enumerated by Loop 3a

Definition 3. define the set Double as the set of all i, j such that Double
contains the members of all Aij where k ∈ N(vj) and k /∈ N(vi)

Note 6. Double is enumerated by Loop 3b

Definition 4. The set Doublea as the subset of Double such that i < k, j < k

Note 7. Note that this set enumerates E2a

Definition 5. The set Doubleb1 as the subset of Double such that i < k < j

Definition 6. The set Doubleb2 is the subset of Double such that k < i < j

Note 8. Doubleb1 ∪Doubleb2 = E2b(G) and Doubleb1 ∩Doubleb2 = {}x1

3

⇒ Loop 3b enumerates E2(G)
Consider E1(G)

Note 9. Given i, j ∈ G with an edge between them, the size of the subset of
Aij with k > j and ∈ E3(G) or ∈ E2(G) = Ni ∪Nj

Note 10. ∀vi, vj ∈ G with an edge between them, there exists |V (G)| − j G3
containing vi, vj .

⇒ ∀i, j ∈ G where e(i, j) exists or e(j, i) exists
∑|E(G)|

i=1

∑|Ni|
j=1 |V (G)| −Ni ∪Nj =

|E1(G)|
⇒ Link 3 enumerates E1(G)
⇒ the algorithm enumerates all graph triples of G.

5. Worst-Case Time Complexity Under Assumptions

Theorem 2. The time complexity is |V (G)| for all G where the assumptions
hold.

Proof of Theorem. Consider the time complexity of each statement as the
time-complexity of the operation times the maximum number of times the state-
ment could be executed.

Assumption 1. G has a vertices index with O(3) access time using hashtables

Assumption 2. G has two edge indeci by both source and destination with
O(3) access time using hashtables

Assumption 3. |E(G)| = m|V (G)| where m ∈ R is a small constant.

Assumption 4. max(|Ni|) = n where n ∈ N is a small constant.

Note 11. ∀iGNi is at most O(3|Ni|)

Note 12. ∀iNi is at most O(3|Ni|)

Note 13. 3 executes |V (G)| times

⇒ GNi and Ni are O(
∑|V (G)|

i=1 3|Ni|)
⇒ GNi and Ni are O(3|E(G)|)
⇒ GNi and Ni are O(3m|V (G)|)

Note 14. 3 is executed |E(G)| times which is
∑|V (G)|

i=1 |Ni|

by Lemma 1 GNj and Nj = O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Nj |)

Note 15. addToCensus(linkType(vi, vj), linkType(vj , vk), linkType(vi, vk), x) =
O(9)∀x ∈ N

4

Note 16. The number of iterations of Loop 3a are O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Ni ∩Nj |)

by Lemma 2 Loop 3a has O(mn|V (G)|) iterations
by definition of addToCensus and linkType, Loop 3a has O(9mn|V (G)|)

Note 17. The number of iterations of Loop 3b are O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Njnot ∩Ni|)

by Lemma 3, the number of iterations of Loop 3b ¡ O(9/4m3/2
√

c|V (G)|)
by definition of addToCensus and linkType, Loop3b is less than O(9/4mn|V (G)|)

Note 18. the time complexity of
∑|V (G)|

i=1

∑|Ni|
j=1 |Ni ∪Nj | ¡ O(2n|E(G)|) = O(mn|V (G)|)

⇒ time complexity of the algorithm is O(3m|V (G)|+3m|V (G)|+9mn|V (G)|+
9/4mn|V (G)|+ mn|9V (G)|+ 9)

Lemma 1. time complexity to create Ni is O(m|V (G)|)

Note 19.
∑|V (G)|

i=1 |Ni| is maximized, within assumptions of maximum degree
and —E(G)—, by the graph g where there are x cliques of degree n.

⇒ x = |E(G)|/n2

⇒ ∀vi ∈ cliques of g, time complexity of the clique is
∑n

i=1 3|Nj | = 3c2

⇒ ∀vi /∈ cliques of g, time complexity is O(0)
⇒ time complexity to create |Nj | <O(3xc2 + 0)
⇒ time complexity to create |Nj | <O(3|E(G)|)
⇒ time complexity to create |Nj | <O(3m|V (G)|)

Lemma 2. O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Ni ∩Nj |) = O(mn|V (G)|)

Note 20.
∑|V (G)|

i=1 |Ni ∩Nj | is maximized, within assumptions of maximum de-
gree and —E(G)—, by the graph g where there are x cliques of degree n.

⇒ ∀vi ∈ cliques of g
∑|V (G)|

i=1 |Ni ∩Nj | is O(3n2)
⇒ ∀vi /∈ cliques of g is O(0)

Note 21. |vi ∈ cliquesofg| = xn

⇒ O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Ni ∩Nj |)= xn(3n2) = (|E(G)|/n2)n3 = mn|V (G)|

Lemma 3. O(
∑|V (G)|

i=1

∑|Ni|
j=1 3|Nj¬ ∩Ni|) = O(9/4mn|V (G)|)

Note 22. a graph consisting of x subgraphs containing only E2(G) triples max-
imizes O(

∑|V (G)|
i=1

∑|Ni|
j=1 3|Nj 6 ∩Ni|).

Definition 7. Let H be the set of all subgraphs of G.

find —E(h)—

∀h ∈ H,∃
(

V (h)
3

)
unordered triples

5

Note 23. ∃ |V (h)|−2
2 repetitions of an edge in unordered triples

Note 24. ∀G3 ∈ h,∃2 edges

⇒ |E(h)| = (2
(
|V (h)|

3

)
)/(|V (h)|−2

2)

⇒ |E(h)| = 2
3 |V (h)|(|V (h)| − 1) u 2

3 |V (h)|2
⇒ given max degree n, max(2

3 |V (h)|2) = n|V (h)|
⇒ max(|V (h)|) = 3

2n
x = |E(G)|/|E(h)|
⇒ x = m|V (G)|/ 2

3 (3
2n)2

⇒ x = m|V (G)|/ 3
2n2

⇒ max(|E2(G)|) < x(
(
|V (h)|

3

)
)

⇒ max(|E2(G)|) < m|V (G)|
3n2/2 (3

2)3n3

⇒ max(|E2(G)|) < 9/4mn|V (G)|

6. Worst-Case Space Complexity Under Assumptions

Theorem 3. Worst case indexing is a small multiple of the total number of
edges while the total space complexity excluding indeci is O(n)

Proof of Theorem. Assumption 5. maximum size of a hashmap is 8 times
the number of entries (see Sun Java 1.6 specifications)

⇒ size of vertices hashtable is O(8|V (G)|)
⇒ size of edge hashtable is O(16|V (G)|+ 16|E(G)|)
⇒ size of all indexing is O(24|V (G)|+ 16m|V (G)|)
⇒ space complexity is O(24|V (G)|+ 16m|V (G)|+ 6n)

7. Conclusion

This algorithm enumerates all triple of a graph in linear time when the graph
meets the assumptions of small average number of edges per vertices and small
maximum degree.

8. Acknowledgements

This research has been funded by the Waikato Doctoral Scholarship.

6

References

[1] P. W. Hollard, S. Leinhardt, A method for detecting structure in sociometric
data, American Sociological Journal 76 (3) (1970) 492–513.

[2] S. Wasserman, K. Faust, Social Network Analysis, Structural Analysis in the
Social Sciences, Cambridge University Press, New York, New York, 1994.

[3] K. M. Harris, F. Florey, J. Tabor, P. S. Bearman, J. Jones, J. R. Udry, The
national longitudinal study of adolescent health: Research design, WWW
document, http://www.cpc.unc.edu/projects/addhealth/design (2003).

7

