Working Paper Series
ISSN 1177-777X

Linear-Time Graph Triples Census Algorithm Under Assumptions Typical of Social Networks

Daniel McEnnis

Working Paper: 06/2009
August 20, 2009
© Daniel McEnnis
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Linear-Time Graph Triples Census Algorithm Under Assumptions Typical of Social Networks

Daniel McEnnis
University of Waikato, Hamilton, New Zealand
dm75@waikato.ac.nz

1. Introduction

A graph triples census is a histogram of all possible sets of three vertici (called a triple) from a graph. Graph triples census have been in active use in sociology for over 50 years. The earliest paper using this approach is by Holland and Leinhardt [1]. This gives a general description of the structure of directed graphs in a fixed length vector. Since this time, this analytic tool has been widely used in social network analysis. A summary of important papers using this approach, both as end product and as a component of further analysis, are in [2].

Graph Triples Census is also an important tool in machine learning for capturing information about relational structure of a data set in a form that can be fed to non-relational machine learning algorithms. These approaches are still in their infancy largely because of a lack of effective, time efficient algorithms for describing large scale structure - especially for large networks such as on-line friendship networks and the structure of the Internet with its underlying communities. . All of these graphs have the property that the average number of links per node is small compared to the number of vertices and, likewise, the max degree is small compared to the number of vertices. In many cases, both average and max degree are explicitly limited to a small constant by the structure of the source data. One example of this is the sociological data collected by Harris et al. [3]-widely used in social network analysis. Similar patterns have been identified by the author in LiveJournal and LastFM friendship networks.

Existing algorithms are discussed in related work. This followed by definitions, the algorithm description, proof of correctness, proof of time complexity, and proof of space complexity.

2. Definitions

Throughout this paper, we are concerned with a graph $G=(V, E)$ with a finite set V of vertices and a finite set E of ordered pairs of distinct vertices
called edges denoted $e\left(v_{i}, v_{f}\right)$. Vertex w is considered a neighbor of vertex v iff $(v, w) \in E$

1. Let v_{i} denote an arbitrary ordering of vertices in V from 0 to $|V|-1$
2. Let $N\left(v_{i}\right)$ denote the set of all neighbors of v_{i}.
3. Let $G N\left(v_{i}\right)$ denote the set of all $v_{f} \in N\left(v_{i}\right)$ such that $v_{f}>v_{i}$
4. Let $\mathrm{G} 3(\mathrm{G})$ denote a graph of three ordered vertices $i, j, k \in G$ where $i<j<k$ with undirected edges present if $e\left(v_{l}, v_{m}\right)$ exists $\forall l, m \in i, j, k$.
5. Let LG3(G) denote a graph of three ordered vertices $i, j, k \in G$ where $i<j$ and $k \neq i, j$ with undirected edges present if $e\left(v_{l}, v_{m}\right)$ exists $\forall l, m \in i, j, k$.
6. Let $\mathrm{A}(\mathrm{G})$ be the set of all G3 such that $\forall v_{i}, v_{j}, v_{k} \in G$ where $i<f<g$ $G 3\left(v_{i}, v_{j}, v_{k}\right) \in A$
7. Let $E_{n}(G)$ be the subset of $\mathrm{A}(\mathrm{G})$ such that $\forall G 3 \in A$ where there are n edges present.
8. Let $E_{2} a(G)$ be the subset of $\mathrm{A}(\mathrm{G})$ such that $\forall G 3 \in A$ with 2 edges present and $e\left(v_{i}, v_{j}\right)$ or $e\left(v_{j}, v_{i}\right)$ exists.
9. Let $E_{2} b(G)$ be the subset of $\mathrm{A}(\mathrm{G})$ such that $\forall G 3 \in A$ with 2 edges present and $e\left(v_{i}, v_{j}\right)$ and $e\left(v_{j}, v_{i}\right)$ does not exist.
10. Let addToCensus $\left(e_{1}, e_{2}, e_{3}, x\right)$ define a procedure that increments the graph triple equivalence class that corresponds to this combination of link types by value x in $\mathrm{O}(4)$ time and $\mathrm{O}(0)$ space.
11. Let linkType $\left(v_{1}, v_{2}\right)$ define a procedure that returns one of the four link types (0-4: no link, lesser to greater, greater to lesser, bidirectional) in $\mathrm{O}(6)$ time and $\mathrm{O}(1)$ space.

3. Algorithm

The algorithm enumerates smaller census entries first, then calculates the remainder of the census entries using set compliments to avoid counting their entries individually.
let count $=0$
for $v_{i} \in V(G) / /$ loop 1
$G N_{i}, N_{i}=\operatorname{get} \operatorname{Links}\left(V_{i}, V_{i}\right) / / \operatorname{link} 1$
for $v_{j} \in G N_{i} / /$ loop 2
count ++
// enumerate $E_{3}(G)$
$G N_{j}, N_{j}=\operatorname{getLinks}\left(V_{j}\right) / / \operatorname{link} 2$
for $v_{k} \in\left(G N_{i} \cap G N_{j}\right) / /$ loop 3a
addToCensus(linkType $\left.\left(v_{i}, v_{j}\right), \operatorname{linkType}\left(v_{j}, v_{k}\right), \operatorname{linkType}\left(v_{i}, v_{k}\right), 1\right)$
rof
// enumerate $E_{2}(G)$
for $v_{k} \in\left(N_{j} \neg \cap N_{i}\right) / /$ loop 3 b
$\operatorname{addToCensus}\left(\operatorname{linkType}\left(v_{i}, v_{j}\right), \operatorname{linkType}\left(v_{j}, v_{k}\right), 0\right)$
rof
$\operatorname{addToCensus}\left(\operatorname{linkType}\left(v_{i}, v_{j}\right), 0,0,|V(G)|-\left|N_{i} \cup N_{j}\right|\right) / / \operatorname{link} 3$

```
rof
rof
addToCensus(0,0,0,(\begin{array}{c}{|V(G)|}\\{3}\end{array})-\operatorname{count}(|V(G)|-2)// link 4
```


4. Proof of Correctness

Theorem 1. The census of triples of G can be calculated using neighbor properties and set compliments.

Proof of Theorem. By definition of graph triple census, the census is a count of the size of the set of each equivalence class of G3 $\in G$. Subdivide the set of all G3 into the subsets E_{n} and prove that each member of each subset is counted.

Note 1. the sum of all entries in the graph triple census is $|V(G)|^{3} / 6$
Definition 1. $\forall v_{i}, v_{j} \in G$ such that $i<j$ define $A_{i j}$ as the set of all LG3(G) where $i=v_{i}$ and $j=v_{j}$

Note 2. $|A|=|V(G)-2|$
consider E_{0}
Note 3. $\forall e d g e \in G, \exists \operatorname{exactl}| | V(G)-2 \mid$ triples $\notin E_{0}$
$\Rightarrow\left|E_{0}\right|=|E(G)|(|V(G)|-2)$ as in Link 4, enumerating E_{0} consider E_{3}

Definition 2. The set Triple as the set of all i, j such that Triple contains the members of all $A_{i j}$ where $k \in G N\left(v_{i}\right) \cap G N\left(v_{j}\right)$

Note 4. Triple is equivalent to E_{3}
Note 5. Triple is enumerated by Loop 3a
Definition 3. define the set Double as the set of all i, j such that Double contains the members of all $A_{i j}$ where $k \in N\left(v_{j}\right)$ and $k \notin N\left(v_{i}\right)$

Note 6. Double is enumerated by Loop 3b
Definition 4. The set Double $_{a}$ as the subset of Double such that $i<k, j<k$
Note 7. Note that this set enumerates $E_{2} a$
Definition 5. The set Double $_{b} 1$ as the subset of Double such that $i<k<j$
Definition 6. The set Double $_{b} 2$ is the subset of Double such that $k<i<j$
Note 8. Double $_{b} 1 \cup$ Double $_{b} 2=E_{2} b(G)$ and Double $_{b} 1 \cap$ Double $_{b} 2=\{ \} x 1$
\Rightarrow Loop 3b enumerates $E_{2}(G)$
Consider $E_{1}(G)$
Note 9. Given $i, j \in G$ with an edge between them, the size of the subset of $A_{i j}$ with $k>j$ and $\in E_{3}(G)$ or $\in E_{2}(G)=N_{i} \cup N_{j}$

Note 10. $\forall v_{i}, v_{j} \in G$ with an edge between them, there exists $|V(G)|-j$ G3 containing v_{i}, v_{j}.
$\Rightarrow \forall i, j \in G$ where $e(i, j)$ exists or $e(j, i)$ exists $\sum_{i=1}^{|E(G)|} \sum_{j=1}^{\left|N_{i}\right|}|V(G)|-N_{i} \cup N_{j}=$ $\left|E_{1}(G)\right|$
\Rightarrow Link 3 enumerates $E_{1}(G)$
\Rightarrow the algorithm enumerates all graph triples of G.

5. Worst-Case Time Complexity Under Assumptions

Theorem 2. The time complexity is $|V(G)|$ for all G where the assumptions hold.

Proof of Theorem. Consider the time complexity of each statement as the time-complexity of the operation times the maximum number of times the statement could be executed.

Assumption 1. G has a vertices index with $\mathrm{O}(3)$ access time using hashtables
Assumption 2. G has two edge indeci by both source and destination with $\mathrm{O}(3)$ access time using hashtables

Assumption 3. $|E(G)|=m|V(G)|$ where $m \in R$ is a small constant.
Assumption 4. $\max \left(\left|N_{i}\right|\right)=n$ where $n \in N$ is a small constant.
Note 11. $\forall i G N_{i}$ is at most $\mathrm{O}\left(3\left|N_{i}\right|\right)$
Note 12. $\forall i N_{i}$ is at most $\mathrm{O}\left(3\left|N_{i}\right|\right)$
Note 13. 3 executes $|V(G)|$ times
$\Rightarrow G N_{i}$ and N_{i} are $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} 3\left|N_{i}\right|\right)$
$\Rightarrow G N_{i}$ and N_{i} are $\mathrm{O}(3|E(G)|)$
$\Rightarrow G N_{i}$ and N_{i} are $\mathrm{O}(3 m|V(G)|)$
Note 14. 3 is executed $|E(G)|$ times which is $\sum_{i=1}^{|V(G)|}\left|N_{i}\right|$
by Lemma $1 G N_{j}$ and $N_{j}=\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{j}\right|\right)$
Note 15. addToCensus(linkType $\left(v_{i}, v_{j}\right)$, $\left.\operatorname{linkType}\left(v_{j}, v_{k}\right), \operatorname{linkType}\left(v_{i}, v_{k}\right), x\right)=$ $O(9) \forall x \in N$

Note 16. The number of iterations of Loop 3a are $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{i} \cap N_{j}\right|\right)$
by Lemma 2 Loop 3a has $\mathrm{O}(m n|V(G)|)$ iterations
by definition of addToCensus and linkType, Loop 3a has $\mathrm{O}(9 m n|V(G)|)$
Note 17. The number of iterations of Loop 3b are $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{j} n o t \cap N_{i}\right|\right)$
by Lemma 3 , the number of iterations of Loop 3 b; $\mathrm{O}\left(9 / 4 m^{3 / 2} \sqrt{c}|V(G)|\right)$ by definition of addToCensus and linkType, Loop3b is less than $\mathrm{O}(9 / 4 m n|V(G)|)$
Note 18. the time complexity of $\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|}\left|N_{i} \cup N_{j}\right| ; \mathrm{O}(2 n|E(G)|)=\mathrm{O}(m n|V(G)|)$
\Rightarrow time complexity of the algorithm is $\mathrm{O}(3 m|V(G)|+3 m|V(G)|+9 m n|V(G)|+$ $9 / 4 m n|V(G)|+m n|9 V(G)|+9)$

Lemma 1. time complexity to create N_{i} is $\mathrm{O}(m|V(G)|)$
Note 19. $\sum_{i=1}^{|V(G)|}\left|N_{i}\right|$ is maximized, within assumptions of maximum degree and $-\mathrm{E}(\mathrm{G})-$, by the graph g where there are x cliques of degree n .
$\Rightarrow x=|E(G)| / n^{2}$
$\Rightarrow \forall v_{i} \in$ cliques of g , time complexity of the clique is $\sum_{i=1}^{n} 3\left|N_{j}\right|=3 c^{2}$
$\Rightarrow \forall v_{i} \notin$ cliques of g , time complexity is $\mathrm{O}(0)$
\Rightarrow time complexity to create $\left|N_{j}\right|<\mathrm{O}\left(3 x c^{2}+0\right)$
\Rightarrow time complexity to create $\left|N_{j}\right|<\mathrm{O}(3|E(G)|)$
\Rightarrow time complexity to create $\left|N_{j}\right|<\mathrm{O}(3 m|V(G)|)$
Lemma 2. $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{i} \cap N_{j}\right|\right)=\mathrm{O}(m n|V(G)|)$
Note 20. $\sum_{i=1}^{|V(G)|}\left|N_{i} \cap N_{j}\right|$ is maximized, within assumptions of maximum degree and $-\mathrm{E}(\mathrm{G})-$, by the graph g where there are x cliques of degree n .
$\Rightarrow \forall v_{i} \in$ cliques of $\mathrm{g} \sum_{i=1}^{|V(G)|}\left|N_{i} \cap N_{j}\right|$ is $\mathrm{O}\left(3 n^{2}\right)$
$\Rightarrow \forall v_{i} \notin$ cliques of g is $\mathrm{O}(0)$
Note 21. $\mid v_{i} \in$ cliquesof $g \mid=x n$

$$
\Rightarrow \mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{i} \cap N_{j}\right|\right)=x n\left(3 n^{2}\right)=\left(|E(G)| / n^{2}\right) n^{3}=m n|V(G)|
$$

Lemma 3. $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{j} \neg \cap N_{i}\right|\right)=\mathrm{O}(9 / 4 m n|V(G)|)$
Note 22. a graph consisting of x subgraphs containing only $E_{2}(G)$ triples maximizes $\mathrm{O}\left(\sum_{i=1}^{|V(G)|} \sum_{j=1}^{\left|N_{i}\right|} 3\left|N_{j} \not \backslash N_{i}\right|\right)$.

Definition 7. Let H be the set of all subgraphs of G.
find $-\mathrm{E}(\mathrm{h})-$
$\forall h \in H, \exists\binom{V(h)}{3}$ unordered triples

Note 23. $\exists \frac{|V(h)|-2}{2}$ repetitions of an edge in unordered triples
Note 24. $\forall G 3 \in h, \exists 2$ edges

$$
\begin{aligned}
& \Rightarrow|E(h)|=\left(2\binom{|V(h)|}{3}\right) /\left(\frac{|V(h)|-2}{2}\right) \\
& \Rightarrow|E(h)|=\frac{2}{3}|V(h)|(|V(h)|-1) \approx \frac{2}{3}|V(h)|^{2} \\
& \Rightarrow \operatorname{given} \max \operatorname{degree} \mathrm{n}, \max \left(\frac{2}{3}|V(h)|^{2}\right)=n|V(h)| \\
& \Rightarrow \max (|V(h)|)=\frac{3}{2} n \\
& x=|E(G)| /|E(h)| \\
& \Rightarrow x=m|V(G)| / \frac{2}{3}\left(\frac{3}{2} n\right)^{2} \\
& \Rightarrow x=m|V(G)| / \frac{3}{2} n^{2} \\
& \Rightarrow \max \left(\left|E_{2}(G)\right|\right)<x\left(\binom{|V(h)|}{3}\right) \\
& \Rightarrow \max \left(\left|E_{2}(G)\right|\right)<\frac{m|V(G)|}{3 n^{2} / 2}\left(\frac{3}{2}\right)^{3} n^{3} \\
& \Rightarrow \max \left(\left|E_{2}(G)\right|\right)<9 / 4 m n|V(G)|
\end{aligned}
$$

6. Worst-Case Space Complexity Under Assumptions

Theorem 3. Worst case indexing is a small multiple of the total number of edges while the total space complexity excluding indeci is $O(n)$

Proof of Theorem. Assumption 5. maximum size of a hashmap is 8 times the number of entries (see Sun Java 1.6 specifications)
\Rightarrow size of vertices hashtable is $\mathrm{O}(8|V(G)|)$
\Rightarrow size of edge hashtable is $\mathrm{O}(16|V(G)|+16|E(G)|)$
\Rightarrow size of all indexing is $\mathrm{O}(24|V(G)|+16 m|V(G)|)$
\Rightarrow space complexity is $\mathrm{O}(24|V(G)|+16 m|V(G)|+6 n)$

7. Conclusion

This algorithm enumerates all triple of a graph in linear time when the graph meets the assumptions of small average number of edges per vertices and small maximum degree.

8. Acknowledgements

This research has been funded by the Waikato Doctoral Scholarship.

References

[1] P. W. Hollard, S. Leinhardt, A method for detecting structure in sociometric data, American Sociological Journal 76 (3) (1970) 492-513.
[2] S. Wasserman, K. Faust, Social Network Analysis, Structural Analysis in the Social Sciences, Cambridge University Press, New York, New York, 1994.
[3] K. M. Harris, F. Florey, J. Tabor, P. S. Bearman, J. Jones, J. R. Udry, The national longitudinal study of adolescent health: Research design, WWW document, http://www.cpc.unc.edu/projects/addhealth/design (2003).

