Correspondence to:

Professor W. Henderson, Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand e-mail w.henderson@waikato.ac.nz FAX 0064-7-838-4219

Cycloauration of pyridyl sulfonamides

Kelly J. Kilpin, William Henderson* and Brian K. Nicholson Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Received:

Synopsis

Reactions of H[AuCl₄] with pyridyl-2alkylsulfonamides

 $C_5H_4N(CH_2)_nNHSO_2R$ (n = 1,2; R = Me, Ph or $p-C_6H_4Me)$ or 8-(*p*tosylamino)quinoline in water gives high cycloaurated yields of complexes coordinated through the pyridyl (or quinolyl) nitrogen atom and the

deprotonated nitrogen of the sulfonamide group.

(use Figure 3a for graphic)

Abstract

The pyridyl-2-alkylsulfonamides $C_5H_4N(CH_2)_nNHSO_2R$ (n = 1,2; R = Me, Ph or *p*- C_6H_4Me) and 8-(*p*-tosylamino)quinoline undergo facile cycloauration reactions with H[AuCl₄] in water, giving metallacyclic complexes coordinated through the pyridyl (or quinolyl) nitrogen atom and the deprotonated nitrogen of the sulfonamide group. The complexes have been fully characterised by NMR spectroscopy, ESI mass spectrometry and elemental analysis. The X-ray crystal structures of two derivatives reveal the presence of non-planar sulfonamide nitrogen atoms. The complexes show low activity against P388 murine leukaemia cells, possibly as a result of their ease of reduction with mild reducing agents.

Keywords: Gold; Metallacycle; Sulfonamide; Cycloauration; Pyridine ligands

Introduction

Compared with the extensive chemistry of cyclometallated gold(III) complexes containing C,N donor ligands,¹ little research has been conducted on analogous cycloaurated complexes stabilised by N,N' donor ligands. Complexes derived from the primary amide picolinamide^{2,3} 1 and substituted analogues 2⁴ and 3⁵, the dinuclear complex 4⁶ and the substituted 2-(pyrrol-2-yl)pyridine ligand 5⁷ are examples of the systems prepared. In addition, the ionic species 6-8 formed by the tridentate coordination of quinoline-derived ligands have also been investigated⁸ and related gold(III) complexes containing anionic chelating N,N' ligands such as tri- and tetrakis-pyrazolylborates are

also known.⁹ A recent report has described the cycloauration of bis(2pyridylmethyl)amine, giving complex 9.¹⁰

Because C,N stabilised complexes exhibit interesting chemistry and biological activity,¹ we wished to synthesise related N,N-stabilised species and assess their chemical and biological properties. Pyridylsulfonamide compounds [of the type $C_5H_4N(CH_2)_nNHSO_2R$ (n = 1,2; R = Me, Ph or *p*-C₆H₄Me)] were attractive ligands for this study due to the ease of synthesis, the opportunity of introducing variable R groups and the possibility of variable ring sizes in the subsequent cyclometallated complexes. In addition, cyclometallated complexes of this type containing a variety of metals are also known in the literature and show interesting applications.¹¹ In this paper we describe the synthesis of six new auracyclic compounds and investigations into the reactivity and biological activity of these complexes.

Results and discussion

Syntheses

When the ligands HL¹ to HL⁶ (Scheme 1) are refluxed in aqueous H[AuCl₄] in a 1:1 mole ratio, the auracyclic compounds L¹AuCl₂ to L⁶AuCl₂ (Scheme 2) are easily isolated in excellent yields by filtration of the yellow to brown solid that is present throughout the reaction, the exception being L³AuCl₂ which required cooling to induce crystallisation. This synthetic procedure is analogous to the preparation of 1^{2,3} however, similar reactions of the secondary amines 10 and 11 only afforded the salts 12 and 13.⁷ The difference in the reactivity can be attributed to the decreased acidity of the NH protons in the ligands 10 and 11 relative to the sulfonamide counterparts. NMR and IR spectroscopy, along with ESI mass spectrometry indicate the nitrogen donor ligands are coordinated to gold through the neutral pyridyl donor and the anionic amido group. The formulation was confirmed by X-ray crystal structures of the complexes L^3AuCl_2 and L^6AuCl_2 .

Attempted preparation of the analogous four-membered auracyclic system L^7AuCl_2 from HL^7 proved unsuccessful. When HL^7 was refluxed with $H[AuCl_4]$ in either an aqueous or an acetonitrile/water (1:1) solution, or alternatively mixed with HL^7 in an aqueous acetonitrile solution of $H[AuCl_4]$ at room temperature, the only product was the salt $[H_2L^7][AuCl_4]$. This was identified by ¹H and ¹³C NMR spectroscopy and the presence of both the $[H_2L^7]^+$ and $[AuCl_4]^-$ ions in positive- and negative-ion ESI mass spectra respectively.

X-ray crystal structures of L³AuCl₂ and L⁶AuCl₂

Single crystal X-ray structure analyses of L³AuCl₂ and L⁶AuCl₂ were carried out in order to confirm the bonding of the ligand to the gold. In both cases, the ligands are deprotonated at the sulfonamide nitrogen and bonded to the gold through the two nitrogen atoms, with the remaining sites on the metal occupied by two chloride ligands. L³AuCl₂ crystallises with two independent molecules per unit cell. Diagrams of the molecular structures of L³AuCl₂ and L⁶AuCl₂, along with the atom numbering schemes, are shown in Figures 1 and 2 respectively. Important bond lengths and angles are presented in Tables 1 and 2.

For both L^3AuCl_2 and L^6AuCl_2 , the geometry around the d⁸ gold centre is essentially square planar, with the bite angle of the sulfonamide ligand less than 90° in

both cases (Table 2). In L^3AuCl_2 , the atom with the greatest deviation from the metal coordination plane [defined by Au(1), N(1), N(2), Cl(1) and Cl(2)] is N(1) [0.0817(15) Å] and Au(1) [0.0280(10) Å] for molecules 1 and 2 respectively. For L^6AuCl_2 , the gold atom shows the greatest deviation from the coordination plane [defined by Au(1), N(1), N(2), Cl(1) and Cl(2)], sitting 0.0514(8) Å above the plane.

In all cases, the coordination around the deprotonated sulfonamide nitrogen N(2) is not planar, and is slightly distorted towards tetrahedral geometry, with the angles around the nitrogen adding to 358.6° (molecule 1) and 344.2° (molecule 2) for L³AuCl₂, and 353.7° for L⁶AuCl₂. Such distortion has previously been observed and discussed by Otter *et al* for copper(II), cobalt(II) and palladium(II) compounds of the type ML₂ (L = N-(2-pyridin-2-yl-phenyl)-*p*-toluenesulfonamide).¹² In addition, similar cyclometallated gold(III)¹³ and platinum(II)¹⁴ compounds also show this type of behaviour.

In both molecules of L^3AuCl_2 , the cycloaurated ring [defined by Au(1), C(1), C(5), N(1) and N(2)] is in a envelope conformation with N(2) sitting above the ring (by 0.286(2) Å and 0.206(2) Å for molecules 1 and 2 respectively). Due to the increased rigidity imposed by the aromatic ring system, in L^6AuCl_2 it is Au(1) that shows the greatest deviation from the plane [defined by C(1)-C(9), N(1) and N(2)], sitting 0.339(3) Å above the plane of the quinoline ring system (Figure 3).

For L^3AuCl_2 the gold-sulfonamide nitrogen bond length is shorter than the goldpyridyl nitrogen bond length, but the opposite is observed in the structure of L^6AuCl_2 . The rigidity imposed on the system by the quinoline moiety in L^6AuCl_2 , in comparison to the flexibility of L^3AuCl_2 system, is the probable cause of this discrepancy.

NMR and IR spectroscopic characterisation

Compounds of the type $LAuCl_2$ were most suited to analysis by NMR spectroscopy. The effect of coordination of the gold to the ligand through the deprotonated sulfonamide nitrogen and pyridyl nitrogen could clearly be seen. The methylene protons of the ligands HL^1 - HL^3 appear as a doublet due to coupling to the NH proton of the sulfonamide group, whereas for HL^4 and HL^5 a triplet and an apparent quartet arise from the two methylene groups. Upon coordination to the gold, the methylene signals become either a singlet (for the five-membered ring systems) or two triplets (for the six-membered ring systems) providing unambiguous evidence for loss of the sulfonamide proton.

Coordination to the gold can clearly be seen in compounds L^1AuCl_2 (Figure 4) and L^2AuCl_2 . A downfield shift of approximately 0.7 ppm is seen for H-1 (the proton adjacent to the coordinated pyridyl nitrogen) upon coordination to the gold, due to the proximity of the gold atom and the increased deshielding produced by the electronwithdrawing metal centre.

For the complexes L^4AuCl_2 and L^5AuCl_2 there appears to be fluxionality in the six-membered auracyclic rings at 30 °C, though contribution from inversion of an amide nitrogen which is distorted from planarity, although unlikely, cannot be discounted. The two methylene signals are seen as broad triplets; presumably if the system was not fluxional the multiplets would be much more complex due to the different stereochemical environment each proton inhabits.

The main points of interest in the IR spectra of the complexes are the loss of NH stretching frequencies (~3100 cm⁻¹) of the free ligands and a shift to lower wavenumbers for the SO₂ stretching modes, consistent with lengthening of the S=O bonds through movement of electrons onto the sulfonyl oxygen atoms. For example, the SO₂ stretches shift from 1164 cm⁻¹ and 1327 cm⁻¹ (for the asymmetric and symmetric stretches respectively) in HL¹ to 1146 cm⁻¹ and 1306 cm⁻¹ in the cycloaurated complex L¹AuCl₂.

ESI mass spectrometry

Analysis of the compounds $L^1AuCl_2 - L^6AuCl_2$ by ESI-MS was not overly effective for two reasons. Firstly, the compounds are neutral so must either pick up an ion (e.g. H^+ or Na^+) to be easily observed in the spectra or alternatively, coordination of a neutral species (e.g. pyridine) produces an easily detectable cation through displacement of Cl^{-,15} Secondly, because of the low ionisation ability of the neutral species, cationic impurity ions, namely the bis(cycloaurated) species such as $[(L^2)_2Au]^+$, dominate the spectra as a result of their high ionisation efficiency, a phenomenon observed previously in cyclometallated gold(III) dichoride species.¹⁶ For example, when L²AuCl₂ is analysed without ionisation aids (Figure 5a), the spectrum is dominated by the ion at m/z 691 due to $[(L^2)_2Au]^+$, although there is no evidence for the presence of this species in either the ¹H NMR spectrum or microanalytical results. Addition of NaCl to the sample before analysis produces ions at m/z 537 (21%) and 1051 (10%) corresponding to [L²AuCl₂ + Na]⁺ and $[2(L^2AuCl_2) + Na]^+$ respectively, however $[(L^2)_2Au]^+$ is still the dominant peak. Addition of strongly coordinating pyridine (py) to a solution of the compound in methanol forms species identified as $[L^2AuCl(py)]^+$ and $[L^2Au(OMe)(py)]^+$ at m/z 558

and 554 respectively, however the ion at m/z 691 (40%) is still present. Identification and confirmation of these ions is aided by the presence of chlorine(s) and thus unique isotope patterns. A similar pattern of behaviour was seen for all members of this family of compounds.

Biological activity

Previously, *C*,*N* cycloaurated complexes, in particular the compound (damp)AuCl₂, (damp = 2-[(dimethylamino)methyl]phenyl) and its derivatives have shown promising antitumour activity.¹⁷ Little data exist on *N*,*N*²-stabilised cycloaurated complexes and for this reason complexes $L^1AuCl_2 - L^5AuCl_2$ were screened for antitumour activity against the P388 Murine Leukemia cell line. Results indicate an IC₅₀ value of greater than 12500 ng mL⁻¹ for all compounds, indicating little activity against this particular cell line.

Reactivity

When C,N cycloaurated dichloride species are reacted with tertiary phosphines, the chloride ligands may be displaced by coordination of the neutral phosphines to the gold or conversely, cleavage of the Au – N bond may occur with both Au – Cl bonds remaining intact; in each case gold(III) products are formed. Such reactions can give an indication of the strength of the gold-nitrogen bond and are dependent on the cycloaurated ligand present.¹

Reaction of L¹AuCl₂ with PPh₃ in a 1:1 molar ratio in dichloromethane resulted in lightening of the solution from yellow to pale yellow. ESI-MS of the solution showed

ions corresponding to the gold(I) species $[Au(PPh_3)_2]^+$ (*m*/*z* 721), PPh₃ and Ph₃P=O. ³¹P-{¹H} NMR spectroscopy of the solution gave peaks at δ 30 (br s) and 34 (s) ppm, the first of which arises from Ph₃P=O, and the second from an average of rapidly exchanging $[Au(PPh_3)_2]^+$ with free PPh₃.¹⁸ Likewise, when L¹AuCl₂ was reacted with PPh₃ in a 1:2 ratio, ESI-MS gave ions due to $[Au(PPh_3)_2]^+$, PPh₃ and Ph₃P=O; the ³¹P-{¹H} NMR spectrum again showed peaks at δ 30 (s) and 34 (s) ppm. Reaction of L¹AuCl₂ with thiosalicylic acid using previously established methods¹⁹ resulted in immediate reduction and decomposition of the gold species to elemental gold. These results indicate that the *N*,*N*² cycloaurated ligands are not as effective at stabilising the Au(III) centre as are *C*,*N* cycloaurated ligands, so reactions can result in reduction of the gold(III), suggesting that these complexes may have limited utility.

Conclusions

Six new cycloaurated gold(III) complexes containing N,N' cyclometallated ligands have been synthesised and fully characterised, including the X-ray crystal structures of two of these complexes. Coordination to the gold is through pyridyl and deprotonated amide nitrogen atoms. Unlike the more common analogous C,Ncyclometallated compounds, these complexes show lower stability, as reactions with reducing agents leads to reduction of Au(III) to Au(I) or elemental gold. The biological activity of these complexes against murine leukaemia cell lines is also low – possibly due to this lack of stability towards reduction.

Experimental

General

All reactions were carried out with no efforts at excluding air. 2-Picolylamine, 2-(2-aminoethyl)pyridine and 8-(*p*-tosylamino)quinoline (Aldrich) were used as supplied, as were *p*-toluenesulfonyl chloride (BDH), benzenesulfonyl chloride (BDH) and methanesulfonyl chloride (Riedel-de Haën). H[AuCl₄].4H₂O was synthesised from gold metal by the literature procedure,²⁰ and yields of the dichloride complexes $L^1AuCl_2 - L^6AuCl_2$ are calculated assuming the above formulation. The sulfonamide ligands (all previously reported compounds^{21,22,23}) were synthesised by the condensation of the appropriate sulfonyl chloride and amine, following the procedure reported for HL¹and HL⁴.²⁴

ESI mass spectra were obtained on a VG Platform II instrument operating at a cone voltage of 20 V, using methanol as the solvent after the compound was dissolved in a small amount of dichloromethane. IR spectra were recorded as KBr disks on a Digilab Scimitar FT-IR, and NMR spectra on a Bruker DRX 400 FT-NMR spectrometer, operating at 30 °C, with a series of ¹H, ¹³C, DEPT-135, ¹H-¹H COSY, HMBC, HSQC and 1D-SELNOESY experiments utilised in the assignment of the NMR spectra.

Antitumour activities against the P388 murine leukemia cell line were determined at the University of Canterbury. Methods have been described previously,²⁵ and samples were analysed as 1:1 dichloromethane/methanol solutions.

Synthesis of L¹AuCl₂

HL¹ (0.560 g, 2.13 mmol) and H[AuCl₄].4H₂O (0.877 g, 2.13 mmol) were added to water (75 mL) to give an orange suspension. This was refluxed with stirring for 3 h and cooled to room temperature. The orange precipitate that was present throughout the reaction was filtered, washed with water $(2 \times 10 \text{ mL})$ and isopropanol $(2 \times 10 \text{ mL})$ and air dried to give L¹AuCl₂ (0.918 g, 82%) as an orange solid. Found: C 29.6, H 2.5, N 5.3; C₁₃H₁₃N₂SO₂AuCl₂ requires C 29.6, H 2.5, N 5.3 %. NMR (CDCl₃): ¹H δ 2.40 (s, 3H, H-11), 4.88 (s, 2H, H-6), 7.26 (d, ${}^{3}J_{9,8} = 8.5$ Hz, 2H, H-9), 7.62 (ddd, ${}^{3}J_{2,1} = 6.1$ Hz, ${}^{3}J_{2,3} =$ 7.7 Hz, ${}^{4}J_{2,4} = 1.6$ Hz, 1H, H-2), 7.73 (dd, ${}^{3}J_{4,3} = 7.8$ Hz, ${}^{4}J_{4,2} = 1.6$ Hz, 1H, H-4), 7.87 (d, ${}^{3}J_{8,9} = 8.5$ Hz, 2H, H-8), 8.13 (td, ${}^{3}J_{3,2} = 7.7$ Hz, ${}^{3}J_{3,4} = 7.8$ Hz, ${}^{4}J_{3,1} = 1.5$ Hz, 1H, H-3), 9.22 (dd, ${}^{3}J_{1,2} = 6.1 \text{ Hz}$, ${}^{4}J_{1,3} = 1.5 \text{ Hz}$, 1H, H-1); ${}^{13}C-\{{}^{1}H\}$ δ 21.7 (C-11), 61.6 (C-6), 121.7 (C-4), 125.5 (C-2), 127.8 (C-8), 129.7 (C-9), 138.0 (C-7), 143.2 (C-3), 143.6 (C-10), 147.5 (C-1), 166.9 (C-5) (See Scheme 3 for NMR numbering scheme). ESI-MS: (NaCl added) m/z 551 (32%, $[L^1AuCl_2+Na]^+$), 719 (100%, $[(L^1)_2Au]^+$), 1079 (10%, $[2(L^{1}AuCl_{2})+Na]^{+});$ (pyridine added) m/z 568 (28%, $[L^{1}Au(OMe)(py)]^{+}),$ 572 (100%, $[L^{1}AuCl(py)]^{+}$, 719 (25%, $[(L^{1})_{2}Au]^{+}$). IR: $v(SO_{2})_{svm}$ 1306 (s), $v(SO_{2})_{asvm}$ 1146 (vs) cm⁻ 1

Synthesis of L²AuCl₂

As for the synthesis of L^1AuCl_2 , HL^2 (0.566 g, 2.28 mmol) was suspended in an aqueous (50 mL) solution of H[AuCl_4].4H_2O (0.939 g, 2.28 mmol) and refluxed with stirring for 3 h. The precipitate that was present throughout was filtered and washed with water (2 × 10 mL) and isopropanol (2 × 10 mL). The yellow/brown solid was air dried to give L^2AuCl_2

(0.964 g, 82%). Found: C 27.9, H 2.1, N 5.4; $C_{12}H_{11}N_2SO_2AuCl_2$ requires C 28.0, H 2.2, N 5.5 %. NMR (CDCl₃): ¹H δ 4.91 (s, 2H, H-6), 7.47 (t, ³J_{9,10} = 8.0 Hz, ³J_{9,8} = 7.2 Hz, 2H, H-9), 7.53 (t, ³J_{10,9} = 8.0 Hz, 1H, H-10), 7.63 (ddd, ³J_{2,1} = 6.1 Hz, ³J_{2,3} = 7.6 Hz, ⁴J_{2,4} = 1.6 Hz, 1H, H-2), 7.74 (dd, ³J_{4,3} = 7.8 Hz, ⁴J_{4,2} = 1.6 Hz, 1H, H-4), 7.99 (d, ³J_{8,9} = 7.2 Hz, 2H, H-8), 8.13 (td, ³J_{3,2} = 7.6 Hz, ³J_{3,4} = 7.8 Hz, ⁴J_{3,1} = 1.5 Hz, 1H, H-3), 9.22 (dd, ³J_{1,2} = 6.1 Hz, ⁴J_{1,3} = 1.5 Hz, 1H, H-1); ¹³C-{¹H} δ 61.6 (C-6), 121.7 (C-4), 125.5 (C-2), 127.7 (C-8), 129.0 (C-9), 141.2 (C-7), 143.2 (C-3), 132.7 (C-10), 147.5 (C-1), 166.7 (C-5) (See Scheme 3 for NMR numbering scheme). ESI-MS: (NaCl added) *m/z* 537 (21%, [L²AuCl₂+Na]⁺), 691 (100 %, [(L²)₂Au]⁺), 1051 (10% [2(L²AuCl₂)+Na]⁺; (pyridine added) *m/z* 554 (40%, [L²Au(OMe)(py)]⁺), 558 (100% [L²AuCl(py)]⁺), 691 (40%, [(L²)₂Au]⁺). IR: ν (SO₂)_{sym} 1313 (s), ν (SO₂)_{asym} 1155 (vs) cm⁻¹.

Synthesis of L³AuCl₂

HL³ (0.200 g, 1.07 mmol) was dissolved in a solution of H[AuCl₄].4H₂O (0.441 g, 1.07 mmol) in water (30 mL). Upon reaching reflux temperature, the yellow solution turned deep orange and remained this colour for the duration of the reflux (2 h). The clear solution was cooled in an ice bath which resulted in the deposition of orange/red microcrystals. These were filtered and washed with water (2 × 10 mL) and isopropanol (2 × 10 mL) and air dried to give L³AuCl₂ (0.266 g, 55%). Found: C 18.1, H 1.9, N 6.0; C₇H₉N₂SO₂AuCl₂ requires C 18.6, H 2.0, N 6.2 %. NMR (d₆-DMSO): ¹H δ 3.10 (s, 3H, H-7), 4.96 (s, 2H, H-6), 7.80 (ddd, ³J_{2,1} = 6.2 Hz, ³J_{2,3} = 7.6 Hz, ⁴J_{2,4} = 1.2 Hz, 1H, H-2), 8.05 (dd, ³J_{4,3} = 7.7 Hz, ⁴J_{4,2} = 1.2 Hz, 1H, H-4), 8.33 (td, ³J_{3,2} = 7.6 Hz, ³J_{3,4} = 7.7 Hz, ⁴J_{3,1} = 1.4 Hz, 1H, H-3), 9.04 (dd, ³J_{1,2} = 6.2 Hz, ⁴J_{1,3} = 1.4 Hz, 1H, H-1); ¹³C-{¹H} δ 41.9 (C-7), 61.1 (C-6), 122.1 (C-4), 125.6 (C-2), 143.8 (C-3), 146.5 (C-1), 166.2 (C-5)

(See Scheme 3 for NMR numbering scheme). ESI-MS: (NaCl added) m/z 475 (100%, $[L^{3}AuCl_{2}+Na]^{+}$), 567 (84%, $[(L^{3})_{2}Au]^{+}$), 927 (56%, $[2(L^{3}AuCl_{2})+Na]^{+}$); (pyridine added) m/z 492 (45%, $[L^{3}Au(OMe)(py)]^{+}$), 496 (100%, $[L^{3}AuCl(py)]^{+}$). IR: $v(SO_{2})_{sym}$ 1306 (s), $v(SO_{2})_{asym}$ 1132 (vs) cm⁻¹.

Scheme 3: NMR numbering scheme for L¹AuCl₂ – L³AuCl₂. For complex L³AuCl₂, the methyl carbon is labelled C-7. Hydrogens are labelled according to the carbon they are directly bonded to.

Synthesis of L⁴AuCl₂

To an aqueous (30 mL) solution of H[AuCl₄].4H₂O (0.531 g, 1.29 mmol), HL⁴ (0.357 g, 1.29 mmol) was added and the yellow solution refluxed with stirring for 3.5 h. During this time a brown solid formed, which after cooling was filtered, dried and washed with water (2 × 10 mL) and ether (10 mL) to give L⁴AuCl₄ (0.542 g, 78%). Found: C 31.1, H 2.9, N 5.3; C₁₄H₁₅N₂SO₂AuCl₂ requires C 31.0, H 2.8, N 5.2 %. NMR (d₆-DMSO): ¹H δ 2.31 (s, 3H, H-12), 3.23 (br t, 2H, H-7), 3.47 (t, ³J_{6,7} = 6.3 Hz, 2H, H-6), 7.19 (d, ³J_{10,9} = 8.2 Hz, 2H, H-10), 7.57 (d, ³J_{9,10} = 8.2 Hz, 2H, H-9), 7.74 (ddd, ³J_{2,1} = 6.0 Hz, ³J_{2,3} = 7.7 Hz, ⁴J_{2,4} = 1.5 Hz, 1H, H-2), 7.77 (dd, ³J_{4,3} = 7.8 Hz, ⁴J_{4,2} = 1.5 Hz, 1H, H-4), 8.26 (td, 1H, ³J_{3,2} = 7.7 Hz, ³J_{3,4} = 7.8 Hz, ⁴J_{3,1} = 1.4 Hz, 1H, H-3), 8.91 (dd, ³J_{1,2} = 6.0 Hz, ⁴J_{1,3} = 1.4 Hz, 1H, H-1); ¹³C-{¹H} δ 20.8 (C-12), 37.6 (C-6), 42.4 (C-7), 126.0 (C-2), 126.8 (C-12))

9), 127.7 (C-4), 129.4 (C-10), 137.8 (C-8), 142.2 (C-11), 143.8 (C-3), 149.7 (C-1), 155.5
(C-5) (See Scheme 4 for NMR numbering scheme). ESI-MS: (NaCl added) *m/z* 565
(100%, [L⁴AuCl₂+Na]⁺), 747 (91%, [(L⁴)₂Au]⁺), 1107 (19%, [2(L⁴AuCl₂)+Na]⁺);
(pyridine added) *m/z* 582 (50%, [L⁴Au(OMe)(py)]⁺), 586 (100%, [L⁴AuCl(py)]⁺). IR: υ(SO₂)_{sym} 1311 (s), υ(SO₂)_{asym} 1148 (vs) cm⁻¹.

Synthesis of L⁵AuCl₂

HL⁵ (0.329 g, 1.25 mmol) and aqueous (30 mL) H[AuCl₄].4H₂O (0.515 g, 1.25 mmol) were refluxed with stirring for 3 h, resulting in the formation of a red/orange precipitate. This was filtered, washed with water $(2 \times 10 \text{ mL})$ and isopropanol (10 mL). The crude product was recrystallised by dissolving in minimum dichloromethane, filtering off the insoluble yellow precipitate, and adding diethyl ether to the filtrate until the solution went cloudy. The resulting dark red crystals were filtered and washed with diethyl ether (2 \times 10 mL) and dried to give L⁵AuCl₂ (0.436 g, 66%). Found: C 29.7, H 2.6, N 5.4; $C_{13}H_{13}N_2SO_2AuCl_2$ requires C 29.5, H 2.5, N 5.3 %. NMR (d₆-DMSO): ¹H δ 3.25 (br t, 2H, H-7), 3.48 (t, ${}^{3}J_{67} = 6.4$ Hz, 2H, H-6), 7.41 (t, ${}^{3}J_{10,11} = 7.5$ Hz, ${}^{3}J_{10,9} = 7.0$ Hz, 2H, H-10), 7.48 (t, ${}^{3}J_{11,10} = 7.5$ Hz, 1H, H-11), 7.70 (d, ${}^{3}J_{9,10} = 7.0$ Hz, 2H, H-9), 7.75 (ddd, ${}^{3}J_{2,1}$ $= 6.0 \text{ Hz}, {}^{3}\text{J}_{2.3} = 7.8 \text{ Hz}, {}^{4}\text{J}_{2.4} = 1.7 \text{ Hz}, 1\text{H}, \text{H-2}), 7.77 \text{ (dd, }{}^{3}\text{J}_{4.3} = 7.7 \text{ Hz}, {}^{4}\text{J}_{4.2} = 1.7 \text{ Hz},$ 1H, H-4), 8.25 (td, ${}^{3}J_{3,2} = 7.8$ Hz, ${}^{3}J_{3,4} = 7.7$ Hz, ${}^{4}J_{3,1} = 1.4$ Hz, 1H, H-3), 8.95 (dd, ${}^{3}J_{1,2} =$ 6.0 Hz, ${}^{4}J_{1,3} = 1.4$ Hz, 1H, H-1); ${}^{13}C-\{{}^{1}H\}$ δ 37.6 (C-6), 42.4 (C-7), 126.0 (C-2), 126.7 (C-9), 127.7 (C-4), 128.9 (C-10), 131.9 (C-11), 140.6 (C-8), 143.9 (C-3), 149.7 (C-1), 155.5 (C-5) (See Scheme 4 for NMR numbering scheme). ESI-MS: (NaCl added) m/z547 (55%, $[L^5Au(OMe)Cl+Na]^+$), 551 (100%, $[L^5AuCl_2+Na]^+$), 1079 (25%, $[2(L^{5}AuCl_{2})+Na]^{+});$ (pyridine added) m/z 568 (100%, $[L^{5}Au(OMe)(py)]^{+}),$ 572 (78%, $[L^{5}AuCl(py)]^{+}).$ IR: $v(SO_{2})_{sym}$ 1320 (s), $v(SO_{2})_{asym}$ 1149 (vs) cm⁻¹.

Scheme 4: NMR numbering scheme for L⁴AuCl₂ and L⁵AuCl₂. Hydrogens are labelled according to the carbon they are directly bonded to.

Synthesis of L⁶AuCl₂

8-(*p*-Tosylamino)quinoline (0.176 g, 0.590 mmol) was suspended in aqueous (30 mL) H[AuCl₄].4H₂O (0.243 g, 0.590 mmol) and refluxed with stirring for 8 h. When the mixture reached reflux temperature, a brown solid formed that remained present throughout the duration of the reaction. The mixture was allowed to cool before being filtered, washed with H₂O (2 × 10 mL) and isopropanol (2 × 10 mL) and dried under vacuum, to give L⁶AuCl₂ as a brown solid (0.241 g, 72 %). Found: C 33.9, H 2.3, N 5.0; C₁₆H₁₃N₂SO₂AuCl₂ requires C 34.0, H 2.3, N 5.0 %. NMR (d₆-DMSO): ¹H δ 2.30 (s, 3H, H-14), 7.26 (d, ³J_{11,10} = 8.3 Hz, 2H, H-12), 7.67 (d, ³J_{10,11} = 8.3 Hz 2H, H-11), 7.76 (t, ³J_{6,7/5} = 7.7 Hz, 1H, H-6), 7.81 (dd, ³J_{7,6} = 7.7 Hz, ⁴J_{7,5} = 1.6 Hz, 1H, H-7), 7.86 (dd, ³J_{5,6} = 7.7 Hz, ⁴J_{5,7} = 1.6 Hz, 1H, H-5), 7.93 (dd, ³J_{2,1} = 5.6 Hz, ³J_{2,3} = 8.3 Hz, 1H, H-2), 8.92 (dd, ³J_{3,2} = 8.3 Hz, ⁴J_{3,1} = 1.1 Hz, 1H, H-3), 9.21 (dd, ³J_{1,2} = 5.6 Hz, ⁴J_{1,3} = 1.1 Hz, 1H, H-1); ¹³C-{¹H} δ 21.1 (C-14), 123.5 (C-2), 124.3 (C-5), 125.9 (C-7), 126.8 (C-11), 129.7

(C-12), 130.0 (C-6), 130.7 (C-4), 138.8 (C-10), 143.3 (C-13), 143.7 (C-9), 144.0 (C-3), 146.0 (C-8), 148.1 (C-1) (see Scheme 5 for NMR numbering scheme). ESI-MS: (NaCl added) m/z 587 (100%, $[L^{6}AuCl_{2}+Na]^{+}$); (pyridine added) m/z 608 (100%, $[L^{6}AuCl(py)]^{+}$), 604 (35%, $[L^{5}Au(OMe)(py)]^{+}$). IR: $v(SO_{2})_{sym}$ 1326 (s), $v(SO_{2})_{asym}$ 1158 (vs) cm⁻¹.

Scheme 5: NMR numbering scheme for L⁶AuCl₂. Hydrogens are labelled according to the carbon they are directly bonded to.

Attempted preparation of L⁷AuCl₂

(i) Reflux with $H[AuCl_4]$ in water

HL⁷ (0.310 g, 1.25 mmol) was refluxed with stirring in aqueous (30 mL) H[AuCl₄].4H₂O (0.515 g, 1.25 mmol) for 1 h, after which a brown solid had formed. When cool, the solution was filtered and the solid washed with water (2 × 10 mL) and isopropanol (10 mL) to give 0.188 g (26%) of a brown solid, which was identified as the salt [H₂L⁷][AuCl₄]. NMR (CDCl₃): ¹H δ (ppm) 2.38 (s, 3H, H-10), 6.80 (ddd, ³J_{2,1} = 5.9 Hz, ³J_{2,3} = 7.1 Hz, ⁴J_{2,4} = 1.1Hz, 1H, H-2), 7.24 (d, ³J_{8,7} = 8.1 Hz, 2H, H-8), 7.40 (dd, ³J_{4,3} = 8.9 Hz, ⁴J_{4,2} = 1.1 Hz, 1H, H-4), 7.64 (ddd, ³J_{3,2} = 7.1 Hz, ³J_{3,4} = 8.9 Hz, ${}^{4}J_{3,1} = 1.9$ Hz, 1H, H-3), 7.79 (d, ${}^{3}J_{7,8} = 8.1$ Hz, 2H, H-7), 8.34 (dd, ${}^{3}J_{1,2} = 5.9$ Hz, ${}^{4}J_{1,3} = 1.9$ Hz, 1H, H-1), NH not observed; ${}^{13}C-\{{}^{1}H\}\ \delta\ 21.6$ (C-10), 114.7 (C-2), 115.1 (C-4), 127.0 (C-7), 129.7 (C-8), 138.8 (C-6), 141.5 (C-1), 141.9 (C-3), 143.1 (C-9), 155.0 (C-5) (see Scheme 6 for NMR numbering scheme). ESI-MS: (positive ion, cone voltage 20V): $m/z\ 249\ (100\%,\ [H_2L^7]^+)$; (negative ion, cone voltage 20V): $m/z\ 339\ (100\%,\ [AuCl_4]^-)$.

(ii) Standing with H[AuCl₄] in MeCN/H₂O solution

 HL^{7} (0.108 g, 0.43 mmol) was dissolved in MeCN (5 mL) and added dropwise to aqueous (20 mL) H[AuCl₄].4H₂O (0.177 g, 0.43 mmol). The solution was left to stand and after 2 weeks a light brown solid had formed. This was filtered and washed with water (2 × 10 mL) and ether (1 × 10 mL), to give 0.078 g (31%) of [H₂L⁷][AuCl₄], which was identified by ESI-MS and ¹H NMR spectroscopy.

(iii) Refluxing in 1:1 MeCN/H₂O

 HL^{7} (0.050 g, 0.20 mmol) and $H[AuCl_4].4H_2O$ (0.082 g, 0.20 mmol) were refluxed in aqueous (20 mL) MeCN (1:1) with stirring for 3 h. The solution was left to stand overnight and brown crystals were formed. These were subsequently identified as $[H_2L^{7}][AuCl_4]$ (0.037g, 31%).

Scheme 6: NMR numbering scheme for [H₂L⁷][AuCl₄]. Hydrogens are labelled according to the carbon they are directly bonded to.

X-ray crystal structure determinations of L³AuCl₂ and L⁶AuCl₂

Single crystals of L^3AuCl_2 and L^6AuCl_2 suitable for X-ray structure analysis were obtained by slow diffusion of diethyl ether into a dichloromethane solution of the compounds, at room temperature and -20 °C respectively. L^3AuCl_2 crystallised as orange prisms with two independent molecules per unit cell, and L^6AuCl_2 as brown cubes as a CH₂Cl₂ solvate.

Intensity data and unit cell dimensions were obtained at the University of Auckland on a Bruker Smart CCD Diffractometer (L³AuCl₂) and at the University of Canterbury on a Bruker Apex II Diffractometer (L⁶AuCl₂). The data were corrected for absorption using SADABS.²⁶

The structures of L^3AuCl_2 and L^6AuCl_2 were solved using the Patterson and Direct methods options of SHELXS-97²⁷ respectively. The gold atom was initially located, followed by the location of all other non-hydrogen atoms by a series of difference maps. Full-matrix least-squares refinement (SHELXL-97)²⁸ was based upon F_0^2 with all nonhydrogen atoms anisotropic, and hydrogen atoms in calculated positions.

Crystal and refinement data for the complexes are presented in Table 3. CCDC reference numbers 676314 and 676315 for L^3AuCl_2 and L^6AuCl_2 respectively.

Acknowledgements

We thank the University of Waikato for financial support of this work and the Tertiary Education Commission for a Top Achievers Doctoral Scholarship (KJK). We also thank Dr. Tania Groutso (University of Auckland) and Dr. Jan Wikaira (University of Canterbury) for collection of X-ray intensity data and Gill Ellis (University of Canterbury) for biological assay data. Mr. Bevan Jarman is also thanked for helpful discussions.

Table 1: A comparison of selected bond lengths (Å) for the crystal structures of L^3AuCl_2 (two independent molecules) and L^6AuCl_2

	L ³ AuCl ₂		I ⁶ ACl
	Molecule 1	Molecule 2	L AUCI ₂
$\operatorname{Au}(1) - \operatorname{Cl}(1)$	2.2872(10)	2.2807(10)	2.2789(8)
Au - Cl(2)	2.2720(10)	2.2800(10)	2.2637(9)
Au – N (ex py)	2.046(3)	2.037(3)	2.026(3)
Au – N (ex NH)	2.006(3)	2.021(3)	2.038(3)

Table 2: A comparison of selected bond angles (°) for the crystal structures of $L^{3}AuCl_{2}$ (including the two independent molecules) and $L^{6}AuCl_{2}$

	L ³ AuCl ₂		
	Molecule 1	Molecule 2	L AUCI ₂
Cl(1) - Au(1) - Cl(2)	89.09(4)	90.17(4)	88.13(3)
Cl(1) - Au(1) - N(ex. py)	94.08(10)	93.89(10)	94.36(8)
N(ex py) - Au(1) - N(ex NH)	78.98(13)	82.09(13)	81.48(11)
N(ex NH) - Au(1) - Cl(2)	98.02(10)	93.79(10)	95.88(8)

Complex	L ³ AuCl ₂	L ⁶ AuCl ₂
Formula	C7H9AuCl2N2O2S	$C_{16}H_{13}AuCl_2N_2O_2S\cdot CH_2Cl_2$
M _r	453.09	650.14
T/K	89	93
Crystal system	Triclinic	Monoclinic
Space group	P(-1)	$P2_1/n$
a (Å)	7.3424(1)	14.1782(6)
b (Å)	9.2813(1)	10.6792(5)
c (Å)	17.2700(2)	14.4771(6)
α (°)	99.383(1)	90
β (°)	95.785(1)	115.147(2)
γ (°)	102.127(1)	90
V (Å ³)	1124.06(2)	1984.2(2)
Z	4	4
$D_{calc} (g \text{ cm}^{-3})$	2.677	2.176
T _{max,min}	0.1699, 0.1138	0.2950, 0.0597
Number of unique reflections	4562	6252
Number of observed reflections $[I \ge 2\sigma(I)]$	4360	5476
$R [I > 2\sigma(I)]$	0.0203	0.0293
wR ₂ (all data)	0.0512	0.0868
Goodness of Fit	1.117	1.046

Table 3: Crystal and refinement data for the complexes L^3AuCl_2 and L^6AuCl_2

ł

+

10 n = 1 **11** n = 2

7 R = H 8 R = Me

12 n = 1 **13** n = 2

 $HL^{1} R = p - C_{6}H_{4}CH_{3}$ $HL^{2} R = C_{6}H_{5}$ $HL^{3} R = CH_{3}$

 $HL^{4}R = p-C_{6}H_{4}CH_{3}$ $HL^{5}R = C_{6}H_{5}$

HL⁷

Scheme 1

 $L^{1}AuCl_{2}R = p-C_{6}H_{4}CH_{3}$ $L^{2}AuCl_{2}R = C_{6}H_{5}$ $L^{3}AuCl_{2}R = CH_{3}$

 $L^{4}AuCl_{2} R = p-C_{6}H_{4}CH_{3}$ $L^{5}AuCl_{2} R = C_{6}H_{5}$

L⁶AuCl₂

L⁷AuCl₂

Figure 1: Molecular structure of L³AuCl₂, showing one of the independent molecules present in the unit cell, and the atom numbering scheme.

Figure 2: Molecular structure of L⁶AuCl₂, showing the atom numbering scheme, with the dichloromethane solvent omitted for clarity.

Figure 3: a) Structure of L^3AuCl_2 (molecule 1) showing the envelope conformation of the cycloaurated ring with N(2) sitting above the plane of the ring; b) crystal structure of L^6AuCl_2 showing the planarity of the quinoline group, with Au(1) sitting below the plane. For clarity, only the *ipso* carbon of the *p*-tolyl group of L^6AuCl_2 is shown and hydrogen atoms are omitted.

Figure 4: ¹H NMR spectra (CDCl₃, 300 MHz) of a) HL^1 and b) L^1AuCl_2 , showing changes in spectra upon coordination of the ligand to gold.

Figure 5: Positive ion ESI mass spectra (cone voltage 20 V, MeOH solvent) of L²AuCl₂ showing the observed ions under different ionisation conditions: a) neat solution; b) with addition of NaCl; c) with addition of pyridine (py).

References

- ¹ W. Henderson, Adv. Organomet. Chem., 2006, 54, 207.
- ² D. T. Hill, K. Burns, D. D. Titus, G. R. Girard, W. M. Reiff and L. M. Mascavage, *Inorg. Chim. Acta*, 2003, **346**, 1.
- ³ D. Fan, C.-T. Yang, J. D. Ranford and J. J. Vittal, J. Chem. Soc., Dalton Trans., 2003, 4749.
- ⁴ T. Yang, J.-Y. Zhang, C. Tu, J. Lin, Q. Liu and Z.-J. Guo, *Chinese J. Inorg. Chem.*, 2003, **19**, 45.
- ⁵ T.-C. Cheung, T.-F. Lai and C.-M. Che, *Polyhedron*, 1994, **13**, 2073.
- ⁶ A. Dogan, B. Schwederski, T. Schleid, F. Lissner, J. Fiedler and W. Kaim, *Inorg. Chem. Comm.*, 2004, **7**, 220.
- ⁷ S. Schouteeten, O. R. Allen, A. D. Haley, G. L. Ong, G. D. Jones and D. A. Vicic, J. *Organomet. Chem.*, 2006, **691**, 4975.
- ⁸ T. Yang, C. Tu, J. Zhang, L. Lin, X. Zhang, Q. Liu, J. Ding, Q. Xu and Z. Guo, J. Chem. Soc., Dalton Trans., 2003, 3419.
- ⁹ J. Vicente, M. T. Chicote, R. Guerrero, U. Herber and D. Bautista, *Inorg. Chem.*, 2002,
 41, 1870.
- ¹⁰ L. Cao, M. C. Jennings and R. J. Puddephatt, *Inorg. Chem.*, 2007, 46, 1361.

¹¹ For recent examples see: B. Macías, M. V. Villa, M. Salgado, J. Borrás, M. González-Álvarez and F. Sanz, *Inorg. Chim. Acta*, 2006, **359**, 1465; M. H. Lim and S. J. Lippard, *J. Am. Chem. Soc.*, 2005, **127**, 12170; B. Macías, M. V. Villa, I. García, A. Castiñeiras, J. Borrás and R. Cejudo-Marin, *Inorg. Chim. Acta*, 2003, **342**, 241; P. Jiang, L. Chen, J. Lin, Q. Liu, J. Ding, X. Gao and Z. Guo, *Chem. Comm.*, 2002, 1424.

- ¹² C. A. Otter, S. M. Couchman, J. C. Jeffery, K. L. V. Mann, E. Psillakis and M. D. Ward, *Inorg. Chim. Acta*, 1998, **278**, 178.
- ¹³ K. J. Kilpin, W. Henderson and B. K. Nicholson, *Polyhedron*, 2007, **26**, 434.
- ¹⁴ C. Evans, W. Henderson and B. K. Nicholson, *Inorg. Chim. Acta*, 2001, **314**, 42.
- ¹⁵ W. Henderson and C. Evans, *Inorg. Chim. Acta*, 1999, **294**, 183.
- ¹⁶ M. B. Dinger and W. Henderson, J. Organomet. Chem., 1998, 560, 233.
- ¹⁷ R. G. Buckley, A. M. Elsome, S. P. Fricker, G. R. Henderson, B. R. C. Theobald, R. V.
- Parish, B. P. Howe and L. R. Kelland, J. Med. Chem., 1996, 39, 5208.
- ¹⁸ B. D. Alexander, P. D. Boyle, B. J. Johnson, J. A. Casalnuovo, S. M. Johnson, A. M. Mueting and L. H. Pignolet, *Inorg. Chem.*, 1997, **26**, 2547.
- ¹⁹ W. Henderson, B. K. Nicholson, S. J. Faville, D. Fan and J. D. Ranford, *J. Organomet. Chem.*, 2001, **631**, 41.
- ²⁰ Synthetic Methods of Organometallic and Inorganic Chemistry, W. A. Herrmann, Vol
- 5, 60, Thieme, Stuttgart, 1999.
- ²¹ L. Gutierrez, G. Alzuet, J. Borrás, M. Liu-González, F. Sanz and A. Castiñeiras, *Polyhedron*, 2001, **20**, 703.
- ²² W. J. Houlihan, S. H. Cheon, D. A. Handley and D. A. Larson, *J. Lipid Mediator.*, 1991, **3**, 91.
- ²³ M. Doering, E. Mueller, E. Uhlig and B. Undeutsch, Z. Anorg. Allg. Chem., 1987, 547,
 7.
- ²⁴ M. H. Klingele, B. Moubaraki, K. S. Murray and S. Brooker, *Chem-Eur. J.*, 2005, **11**, 6962.

²⁵ W. Henderson, B. K. Nicholson and A. L. Wilkins, J. Organomet. Chem., 2005, 690, 4971.

²⁶ R. H. Blessing, *Acta Cryst.*, 1995, **A51**, 33.

²⁷ G. M. Sheldrick, SHELXS-97 - a Program for the Solution of Crystal Structures,

University of Göttingen, Germany, 1997.

²⁸ G. M. Sheldrick, SHELXL-97 - a Program for the Refinement of Crystal Structures,

University of Göttingen, Germany, 1997.