
 
 
 

http://waikato.researchgateway.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the Act 

and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right to 

be identified as the author of the thesis, and due acknowledgement will be made to 

the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://waikato.researchgateway.ac.nz/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is submitted in partial fulfillment of the requirements for the Degree of 
 Master of Science at the University of Waikato. 

 
 

March 2009 
 

© Robert L. Larkins 2009 

 

Off-line Signature Verification  
 
 

Robert L. Larkins 









Abstract

In today’s society signatures are the most accepted form of identity verification.

However, they have the unfortunate side-effect of being easily abused by those

who would feign the identification or intent of an individual. This thesis imple-

ments and tests current approaches to off-line signature verification with the goal

of determining the most beneficial techniques that are available. This investiga-

tion will also introduce novel techniques that are shown to significantly boost the

achieved classification accuracy for both person-dependent (one-class training) and

person-independent (two-class training) signature verification learning strategies.

The findings presented in this thesis show that many common techniques do

not always give any significant advantage and in some cases they actually de-

tract from the classification accuracy. Using the techniques that are proven to

be most beneficial, an effective approach to signature verification is constructed,

which achieves approximately 90% and 91% on the standard CEDAR and GPDS

signature datasets respectively. These results are significantly better than the ma-

jority of results that have been previously published. Additionally, this approach

is shown to remain relatively stable when a minimal number of training signatures

are used, representing feasibility for real-world situations.
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Chapter 1

Introduction

This thesis puts to the test automatic methods for hand-written signature verifica-

tion. Signature verification is a necessary task in society, as signatures have a well

established and accepted place as a formal means of personal verification. Due to

this, they are used in government, legal and commercial transactions, and they are

the most accepted method of identity verification (Jain et al., 2004).

An inevitable side-effect of signatures is that they can be exploited for the

purpose of feigning a document’s authenticity. Because of this, the identification of

forgeries is one of the oldest forms of forensic science, with references being made to

it in Roman Law as far back as the 3rd Century AD, and forgery being a statutory

offence in Britain in the 13th Century (Lutterbeck et al., 2000; White, 2004).

Even today, signature forgeries are still a common problem, with the total

global cost to businesses, financial institutions and individuals being untold. The

Federal Trade Commission estimated that in 2002, identity theft (in which signature

forgeries are an attributing factor) caused $53 billion in total losses to the United

States alone (Zimmerman et al., 2004) – and is only the tip of the iceberg.

Signature verification reduces the risk of a forged signature being accepted as a

genuine. The problem that arises though, is that validation of the signature often

needs to be carried out immediately, so that completion of the intended process can

be permitted. This commonly occurs when dealing with monetary transactions,

especially via credit cards and bank cheques (Ma et al., 2007; Jain et al., 2002).

The types of automatic signature verification considered in this thesis are suitable

1



2 CHAPTER 1. INTRODUCTION

for alleviating this problem, as a human examiner need only be consulted when the

authenticity of a signature is disputed (White, 2004).

1.1 Signatures as a Biometric

Signatures are a behavioural biometric, which like writing, walking and talking, is

a trait that is learnt over time. Behavioural biometrics differ from physiological

biometrics as they measure a person’s physical features, such as the face, fingerprint

or retina (Al-Shoshan, 2006), and tend to remain relatively stable over time. The

behavioural characteristics of a person tend to change over both the short and long

terms due to health, physical state and ageing, which makes them more difficult to

distinguish than the physical characteristics. This is especially true for signatures,

which can also vary depending on the signatory’s mental state, fatigue, and their

writing position (Zimmerman et al., 2004). As a result of this high variability in the

signing process, the verification of a signature is not a trivial task, for both human

experts, and especially computers, which is the focus of this thesis (Impedovo and

Pirlo, 2007).

1.2 Verification Methods

Currently, institutes that rely on signatures do not actively check the authentic-

ity of each signature. Instead, in place measures are relied upon that attempt to

restrict the occurrence of forgeries, with any suspect signatures requiring visual

confirmation in all instances (Judd, 2008). The introduction of automatic pro-

cedures have the potential of further reducing the possibility of forgeries slipping

through these measures.

In signature verification, there are two overall methods that are employed for

determining whether a signature is a genuine or a forgery. The first and most

common method is manual verification, in which a human determines the validity

of a signature. The second method involves the use of a computer for automatic
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verification, and is becoming more practicable as research advances.

1.2.1 Human Forensic Document Examination

Document examination is a forensic science that has a number of areas of expertise,

which include the identification of handwriting and signatures, and the composition

of inks, papers and materials from which documents are produced. A specialist in

this field is known as a forensic document examiner, an occupation that requires an

extensive amount of training in order to become proficient. In the United Kingdom,

the majority of forensic document examiners are employed by government labora-

tories. When graduate scientists join these laboratories, they will first work for

up to two years alongside highly experienced document examiners before handling

their own case work (White, 2004). For a properly trained examiner, the exami-

nation of a document is not carried out by merely looking at the handwriting, but

also requires an array of equipment and techniques that are developed to extract

as much information as possible from the document without damaging or altering

it. The examiner, when studying a signature, will also use a chart of elemental

characteristics such as ticks, smoothness of curves, pressure changes, spacing and

slant to help identify the signature (Srihari et al., 2008).

1.2.2 Automatic Verification

Automatic signature verification is a method that as of yet has not gained wide

acceptance, but could be used as a substitute for or a tool used by a forensic

document examiner. This is because the feasibility of using automatic methods is

more suited for activities such as boarding an aircraft, entering a secure physical

location and performing financial transactions (Zimmerman et al., 2004). For these

activities, verification of the signature class is determined algorithmically by going

through a sequence of steps. These steps transform the signature from a piece

of writing on a document into a set of features that can be used to classify the

signature. These features differ significantly from the ones used in the manual
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method. This is because a computer can not visually analyse or comprehend the

entirety of a signature the same way that a human can. Instead, a computer deals

with a signature at the pixel level, with features being produced from the pixels and

how these pixels relate to each other. The methods used in automatic verification

produce a range of results that can vary based on a number of factors related to the

choice of algorithms. Currently, the best classification accuracies being achieved

are approximately 90% – 92% on a database of 2,640 signatures for 55 subjects

(Section 15.3).

1.3 Learning Strategies

In signature verification, there are often two learning strategies that are used to

determine a signature’s class (Srihari et al., 2004, 2008). These learning strategies

are “person-dependent” and “person-independent”.

The person-dependent approach involves building a classifier using genuine sig-

natures from a single person. Essentially it measures the distance in feature space

between all genuine signatures taken from this person. These distances then con-

stitute the distribution of the genuine signatures in feature space. This distribution

can then be used to calculate a probability or similarity by finding the distance

between an unknown signature and each genuine. If this similarity is within the

bounds that is set by the known distribution, then the unknown signature is con-

sidered to be a genuine, otherwise it is classified as a forgery.

Person-independent is a more general approach to signature verification, and

accounts for all varieties of verification that involves multiple classes. It differs

from person-dependent in the fact that the classifier is built from two or more

classes, where these classes can be either genuine or forgeries from as many people

as desired. This approach at the basic level is a nearest neighbour approach that

calculates a likelihood ratio of an unknown signature belonging to a particular

class. If the likelihood is above a certain threshold, then the signature is deemed

to be a genuine, otherwise it is considered to be a forgery.
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The research that was carried out in this thesis primarily focused on the person-

dependent approach, though the effect that machine learning has on the person-

independent approach was investigated.

1.4 Signature Capture

Signature capture is the first step required in being able to determine a signature’s

authenticity, that is, whether it is genuine or a forgery. Capturing a signature is

the process of obtaining information about the signature, which can include both

spatial and dynamic information. This information is turned into a form that can

be interpreted and processed by a computer. The spatial information is the visual

aspects of a signature, such as its shape and size, while the dynamic information

relates to the writing process of the signature and defines aspects such as the speed

and pressure used. Once this has been accomplished, the defining features can then

be extracted from the signature. This section looks at the two data acquisition

methods used for capturing written signatures and the data that is extracted from

them; these are the dynamic (on-line) and static (off-line) methods. The remaining

chapters will be focusing on static signatures and the techniques that are related

to off-line signature verification.

1.4.1 Dynamic Signatures

Dynamic signatures capture both the spacial and the dynamic information of a

signature. The dynamic features that are captured include one or more of the fol-

lowing attributes as the signature is written: acceleration and velocity; the position

of the pen; the pressure that is applied; and the pen inclination (Al-Shoshan, 2006;

Impedovo and Pirlo, 2007). Dynamic information is not limited to these factors as

it can include any information that is relevant to the writing process. The capture

of a signature’s dynamic information requires the use of specialised hardware such

as a digitising tablet (Jain et al., 2002), or an electronic pen, that capture the

written attributes and converts them into processable data.
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The advantage of using dynamic signatures for verification is that they produce

a greater number of defining features than their static counterparts, making forged

signatures easier to detect. The added advantage of digitally capturing this data is

that there is typically less pre-processing required than static signatures, making

feature extraction easier.

Using this method to capture the writing process also has its associated disad-

vantages. The main disadvantage is that these tools are not very common and as

such, cannot be utilised for every situation where signature verification is required.

As well as this, their use is unnatural for the user, which could negatively affect

the writing of the signature. More recent approaches exploit the use of a video

camera which is focused on the writing of the signature and can be carried out

using ordinary pen and paper. This allows the handwriting to be recovered from

its spatio-temporal representation, which is given by the sequence of images that

are produced (Impedovo and Pirlo, 2007).

1.4.2 Static Signatures

A static signature is the visual representation of a signature that has been written

out in its entirety. Because of this, a static signature is only captured once the

writing process has been completed, allowing for visual aspects such as the size,

slope and curvature to be extracted. It is these visual aspects and their derivatives

that allow similar signatures to be grouped together and differentiated from others

that do not belong in the same group. A signature is generally written on paper

using a standard pen, meaning that the signature is not initially in a digital format.

Because of this, the signature has to be captured and transformed into a format

that can be processed by a computer. The conversion of a signature to a digital

format is carried out either by taking a photograph or scanning the signature

(Kalera et al., 2004). Both of these methods produce a digital image from which

defining features of the signature can then be extracted.

In society, a signed hardcopy of a document is the general requirement for bind-

ing that document to the signatory. For this purpose, a digitally captured signature
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is not always sufficient. As well as this, static signatures are much more prevalent

than digitising tablets and electronic pens, as they only require a standard pen

and paper. The use of static signatures does pose some disadvantages for auto-

matic verification though. One disadvantage is the fact that once a signature has

been captured, it will usually require pre-processing in order to remove unwanted

artefacts, and normalise the size and binarisation of the signature image. Another

disadvantage is that static signatures do not produce as much data as dynamic

signatures, causing the verification of the signature’s validity to be based solely on

the extracted features.

1.5 Forgery Types

In signature verification, forged signatures can be broken up into three different

categories. These categories are based on how similar a forgery is in relation to

the genuine signature and are known as random, simple and skilled (Justino et al.,

2001; Zhang, 2006). A random forgery is one in which the forger does not know the

signer’s name or signature shape. A simple forgery is produced knowing the name

of the original signer but not what their signature looks like. A skilled forgery is a

close imitation of the genuine signature and is produced by a forger who has seen

and practised writing the genuine signature. It is these skilled forgeries that this

thesis will focus on for signature verification.

1.6 Thesis Summary

Automatic verification of off-line signatures is not a new task, with many ap-

proaches having been produced. Unfortunately these approaches are under-utilised

as they do not achieve a classification accuracy that is acceptable in practise. In

this thesis each step of the verification process will be explored to determine if the

current state-of-the-art techniques can be improved upon or simplified. The goal

of this is to determine what combination of techniques has the greatest effect on
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classification accuracy, as well as attempting to automate each step as effectively

as possible. This thesis has organised each step of the classification process into

individual chapters, starting with the background of the current state-of-the-art

approaches in Chapter 2. The process that is followed through for classifying an

unknown signature has three major steps, preprocessing, feature extraction and

classification.

Chapter 3 covers the different preprocessing techniques, while Chapter 4 de-

scribes the feature extraction. Chapters 5 and 6 investigate the addition of spatial

information via the use of region sampling and spatial pyramids respectively. Hav-

ing extracted the features, the manner in which they are represented is described

in Chapter 7. Chapter 8 explores different techniques for converting between these

representations, and also introduces a new and novel approach termed adaptive

feature thresholding (Larkins and Mayo, 2008) which improves upon all previous

methods.

For the classification of signatures there were two approaches tested, one and

two class classification. One class classification is described in Chapter 9 and is

based on the person-dependent learning strategy, while Chapter 10 investigates the

use of machine learning techniques for the person-independent approach.

Each of these steps are then evaluated using two datasets which are outlined

in Chapter 11. The evaluation is divided across Chapters 12, 13, 14 and 15, where

the first three chapters evaluate the effectiveness of the preprocessing, feature ex-

traction and classification steps. The fourth classification chapter summarises this

evaluation and determines the ability of the tried methods in relation to the current

state-of-the-art approaches. The thesis is then concluded in Chapter 16.



Chapter 2

Background

Off-line signature verification is a well established field of research, with a large

variety of literature having been written; in regards to this, both Sabourin (1997)

and Impedovo and Pirlo (2007) provide literature reviews on the topic. This chapter

will briefly outline some of the more recent work that has been carried out, as well as

describing in more detail the methods that can be compared against. The methods

that can be compared against use one of two datasets (CEDAR and GPDS), which

have started to see wider acceptance for gauging classification ability. Section 15.3

compares the approaches that use these two datasets with those implemented in

this thesis.

2.1 One Class Classification

The one class approach that was implemented in this thesis is based largely on

methodologies described in previous literature, with its overall structure being

based on the approach that Kalera et al. (2004) introduced. This section will de-

scribe in detail the approaches that can be compared against and will then briefly

outline other published approaches.

The approach by Kalera et al. (2004) begins by preprocessing each signature.

This converts them from grey-scale to binary as well as performing rotation normal-

isation. The signatures are then uniquely defined by performing feature extraction

using the GSC ensemble (Favata and Srikantan, 1996), which is a collection of five

9
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features designed for hand-written text, and described in Section 4.8. The use of

a 4×4 equimass grid (Section 5.2.1) allows spatial information to be added to the

features. The frequency vector that each feature creates is then converted into

a binary vector using a threshold. Most literature that uses the GSC ensemble

does not discuss how these thresholds are chosen, but are generally found through

manual trial and error testing (Favata, 2008).

Having constructed a binary feature vector for each signature, classification was

tested using the CEDAR dataset (Section 11.1), which took 16 of the 24 genuine

signatures per subject for training, while the remaining 8 genuine and 24 forgery

signatures were used for testing. The verification of each test signature was carried

out by finding the mean similarity between it and every training signature. The

threshold that is used to determine whether it is genuine or forgery is found by first

calculating the mean similarity between each training signature, the threshold is

then found by subtracting a manually chosen offset from the mean similarity value.

The final classification accuracy of 78.1% was found as the equal error rate for the

entire dataset.

Subsequent literature increased the classification accuracy by making modifi-

cations to this approach. Chen and Srihari (2005) changed the method of prepro-

cessing by keeping the original orientation of the image, but carried out broken

stroke connection instead. Broken stroke connection attempts to rebuild parts of

the signature that have been lost in either the writing or capturing stages. Feature

extraction did not use the GSC ensemble, but instead extracted the contour of the

signature. The contour was then used in conjunction with Zernike moments to

produce values that represent the image. The classification of each signature was

then carried out in the same manner as the previously described approach, and

achieved an accuracy of 83.6%.

Chen and Srihari (2006) build upon these two previous approaches by intro-

ducing a novel method that uses graph matching. This method begins by finding

and extracting the extremas from each signature’s contour. These extremas are

then combined with thin-plate spline mapping to deform the region sampling grid,
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allowing each region to more accurately capture the same structural components

between signatures. Having produced an alternative region sampling grid, the GSC

ensemble is used to extract the features and the classification is carried out using

the same approach as Kalera et al. (2004), and attained an accuracy of 92.2%. This

method was not tested in this thesis as not enough detail was provided to replicate

the algorithm. Additionally, any attempts to contact the authors in regards to this

work was in vain due to their lack of response.

The GPDS dataset (Section 11.2) was tested using an alternative approach,

in which Tian et al. (2007) introduces a scheme that performs verification using

Discrete Wavelet Transform (DWT) and fuzzy nets. To begin, each signature was

preprocessed to a dimension of 60 by 120, and then thinned using the SPTA thin-

ning algorithm. Following this each signature had five distinct features extracted.

Moment features were found as global characteristics, while the four remaining

features used a 4×4 regioning grid. These four features were pixel density (mass),

angle features, gravity centre distance and predominant slant, each of which are

used to generate a feature vector as input for the DWT.

The DWT decomposes these features into lowpass and highpass information,

where only the highpass is kept as it represents the features that contain sharper

variations in the time domain. The classification is carried out by building a fuzzy

net from the training signatures, where if the input signal of an unknown signature

is genuine, the error between it and the fuzzy net is small, otherwise if the error is

too large, the signature is deemed to be a forgery. The experiments were carried

out by randomly selecting 12 genuine signatures to train with, using the remaining

genuine and forgeries for testing. An additional system of selecting preferred train-

ing signatures was tested, with classification also being tried with hidden Markov

models, support vector machines and Euclidean distance. The optimal method

that was presented achieved 87.4%.

A variety of additional approaches have been tested for signature verification in

the person-dependent or one class domain that do not utilise the CEDAR or GPDS

datasets. Deng et al. (1999) proposed a wavelet system based on the contours of
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the signatures that accomplished 92.6%, while Fang et al. (2003) investigated and

attempted to track variations between genuine signatures, and to utilise these vari-

ations for determining whether an unknown signature was genuine; this approach

achieved 81.9%. The kernel principal component self-regression model proposed

by Zhang (2006) attained 96% by utilising principal components from kernel space

to characterise the signatures from a selected individual. Mizukami et al. (2002)

reached 75.1% using the displacement extraction method, where the sum of the

squared Euclidean distance between signatures was used for the classification. An-

other approach was tested by Majhi et al. (2006) who achieved 84.5% when using

the geometric centre of a signature to find feature points to distinguish between

signatures.

2.2 Two Class Classification

The use of two class classification methods for signature verification has increased

as machine learning techniques have become more established. This section will

describe in detail the approaches that can be compared with, followed by a brief

outline of techniques that can not be contrasted against.

The person-independent or two class methodology has been applied to the

CEDAR dataset using a number of approaches. Typically the dataset is prepro-

cessed in the same manner as the person-dependent approach, with the same or

similar features being extracted. The difference lies in the fact that an additional

class is used and different classification methods can therefore be utilised. Srihari

et al. (2004) begins by preprocessing each signature by performing salt-and-pepper

noise removal, followed by slant normalisation. The GSC ensemble of features is

then extracted. The training of both a näıve Bayes classifier and a distance statis-

tics method used 16 genuine and 16 forgery signatures, where the genuine class

was trained using genuine-genuine pairs and the forgery class used genuine-forgery

pairs. The similarity between each pair of signatures was found using the corre-

lation distance. Additionally to this, the distance statistics method, näıve Bayes
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and support vector machines were used to test the classification accuracy when

16 genuine signatures and 5 forgeries were used for training. The support vector

machine achieved 90.7%, the highest accuracy of the three.

Building on this previous work, Srihari et al. (2008) tests a range of ma-

chine learning algorithms in combination with both person-dependent and person-

independent classification. The preprocessing and feature extraction was carried

out using the same procedure as described previously. The classification of un-

known signatures was tested using one of six classifiers, where the number of

genuine training signatures was varied between 5 and 20. These classifiers are

Kolnogorov-Smirnov (KS), Kullback-Leibler (KL), reverse KL, symmetrised KL,

Jensen-Shannon and the combination of KS and KL. The KS and KL combination

attained the highest accuracy at 82.44%. Though the use of a person-independent

approach is mentioned throughout this paper, there is no description to the number

of forgery signatures that are used for training.

Armand et al. (2006) explores the effect of using a person-independent learning

strategy with the GPDS dataset, where a combination of features are used to differ-

entiate between signatures. The modified direction feature is the primary feature

used, and is used either independently, or in combination with one or more of the

following features: centroid, triSurface and length feature. Once the features are

extracted, two neural networks, resilient backpropagation and radial basis function,

are used to classify the signatures. These two classifiers were then trained using 18

genuine and 22 forgery signatures from each of the 39 signature sets, resulting in

1560 signatures being used to train with and 546 signatures being used for testing.

To ensure that the final result was resilient, four fold cross validation was employed.

The combination of all of these features with the radial basis function achieved the

highest accuracy at 91.1%.

Justino et al. (2001) achieved 87.3% when hidden Markov models in conjunc-

tion with extended-shadow-codes were tested together, while Coetzer et al. (2004)

gained 82% when hidden Markov models in combination with the discrete radon

transform were tested. Justino et al. (2005) compares the effectiveness of support
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vector machines and hidden Markov models in relation to off-line signature verifica-

tion; the comparison concluded that support vector machines showed better ability

with a result of 91.0%. Support vector machines were also used by Özgündüz et al.

(2005) with a variety of extracted features, where it is shown that they outper-

form artificial neural networks by 12.5%, attaining 93.5%. Zhang et al. (2007) ac-

complished 98.2% with a novel method of verification using one-class-one-network

classification, which is a fixed-size neural-network-based classifier. Ma et al. (2007)

achieved 96.8% by expanding on the one-class-one-network approach by incorpo-

rating it with adaptive multi-resolution wavelets from which zero-crossing features

were extracted. The combination of different support vector machines in the re-

ceiver operating characteristic space is presented by Oliveira et al. (2008) and is

shown to reduce the false rejection rate while keeping the false acceptance rate at

acceptable levels, from which a 91.8% accuracy is gained.



Chapter 3

Signature Preprocessing

Once a signature has been captured from paper and turned into a digital image,

defining features about the signature can then be extracted. The disadvantage of

extracting features from a signature straight after it has been captured is that the

capturing process may have distorted the signature. The result of this is that the

extracted image features could potentially be misconstrued, which could adversely

affect the classification capability. This is where preprocessing comes in, as it mod-

ifies the signature to help improve the representation of extracted image features

by cleaning and repairing the signature’s structure. By doing this, the signature

image should more accurately represent what the signatory intended it to look like.

This chapter will explain the different methods of preprocessing that were explored.

3.1 Binarisation

When a signature is captured from paper, the device that was used and how it

was set up determines what the colour space of the signature image will be. This

colour space is usually grey-scale, Figure 3.1 shows an example of this. Binarisation

simplifies the image by converting it to be pure black and white pixels, with the

black pixels making up the signature and the background being filled by the white

pixels. By using a binarised image, the complexity of both the computational

performance and the extraction of image features is decreased as the variability of

each pixel value is also decreased. This is because each pixel in a binary image has

15
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21 = 2 possible values, while grey-scale has 28 = 256. This section will describe

different binarisation algorithms, which are of the global or the locally adaptive

variety. Global calculates a single threshold that is then applied to every pixel,

while locally adaptive generates a threshold for each pixel based on its neighbours.

Figure 3.1: An unbinarised signature

3.1.1 Global Threshold

The simplest method of global binarisation is to use a fixed threshold that is man-

ually chosen. Each pixel in the image is then independently converted to black or

white depending on its value in relation to the threshold, where if the value is below

the threshold, the pixel becomes black and is part of the signature, otherwise the

pixel is set to white and is part of the background. The effectiveness of using this

method in accurately thresholding an image is dependent upon the chosen value

for the threshold. Figure 3.2 shows how three different thresholds affect image

binarisation in relation to the unbinarised signature.

The primary advantage of using a fixed threshold for binarisation is its sim-

plicity, as it only requires one pass over the signature. Outside of this, using a

fixed threshold does have the disadvantage of not being able to adapt to the image.

Therefore, what may work well for one image could negatively impact the binari-

sation of another. This is because a threshold that is at a too high a level allows

background clutter to be included, while a threshold at too low a level results in a

loss of information. Another disadvantage is the fact that the threshold is chosen
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(a) Unbinarised Signature (b) Threshold of 210

(c) Threshold of 240 (d) Threshold of 248

Figure 3.2: Signature binarisation with different levels of thresholding

manually, meaning that the algorithm needs human intervention for calibration,

removing the fully automatic aspect which is often required.

3.1.2 Iterative Threshold

Iterative thresholding (Ridler and Calvard, 1978) is an automatic method for find-

ing a global threshold through the use of the grey level histogram of the image. If

two distinct peaks exist in the histogram, then one peak generally corresponds to

the signature and the other to the background. Iterative thresholding attempts to

find the two mean points of these peaks and from here, the optimum divergence

between them. In signature binarisation, where a large portion of the image is

background, only one distinct peak may exist. In this case, a divergence can still

be found, as a minor peak should still exist. Figure 3.3 shows a generated histogram

of pixel frequencies for the unbinarised signature in Figure 3.1. Because the minor

peak is substantially smaller than the major peak, it has been emphasised by using

the log of the frequencies. The dashed line shows where the final threshold value
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will lie.

Figure 3.3: Histogram of pixel frequencies for Figure 3.1, where the dashed line is

the final threshold

Signature binarisation using this method is carried out by first providing a

threshold, such as the average grey level of all pixels, that will split the histogram.

The mean of the pixel values of each half of the histogram is then calculated and a

new threshold is found as the midpoint between these means. This process is then

repeated with the new threshold and is continued until the threshold stabilises.

Figure 3.4 shows how a signature will be binarised using this particular method.

Figure 3.4: Signature that has been binarised using iterative thresholding

The iterative thresholding method is an effective method for binarising a sig-
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nature if there is a distinct contrast between the signature and its background. It

is also a computationally fast algorithm which after constructing the histogram,

only requires approximately four passes over the grey level histogram to determine

a threshold. The disadvantage of iterative thresholding is that if the pixel values

that make up the signature vary substantially the calculated threshold maybe too

low, resulting in sections of the signature being thresholded out.

3.1.3 Otsu

Otsu’s method (Otsu et al., 1979) is one of the most common binarisation tech-

niques for thresholding grey-scale images. It is an unsupervised clustering method

for automatically choosing a global threshold that will split the signature into the

foreground and background classes. The manner in which the optimal threshold

is chosen is by exhaustively searching through the normalised frequency histogram

to find the point which minimises the intra-class variance, or in other words, min-

imising the spread of the grey levels in each class. A problem arises though in

the fact that computing the intra-class variance for each threshold is computation-

ally expensive. Another way of achieving this is to find the between-class variance

instead, as when this is maximised, the intra-class variance is minimised.

Finding the optimal threshold begins with constructing a normalised frequency

histogram. This is carried out by taking the number of pixels n at each grey level

i and normalising this number by dividing it by the total number of pixels N in

the image. The resulting value pi is the probability that this level occurs. This

calculation is shown in Equation 3.1.

pi =
ni

N
(3.1)

Using this normalised histogram, each level is then tested to determine how

effective it is at being a threshold, where the current threshold is designated k. The

first step is to calculate the probability that each of the two classes occur, with the

probability of the class below k being found via Equation 3.2, and represented by
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ω(k). The class above k can be found by 1− ω(k).

ω(k) =
k∑

i=0

pi (3.2)

The next step is to find the mean level of the class below the kth level. This

mean level is also the first-order cumulative moment of the histogram up to the kth

level. The way in which this is found is shown in Equation 3.3 and is represented

by µ(k).

µ(k) =
k∑

i=0

i× pi (3.3)

This process is then repeated to produce the total mean level of the signature

image, where Equation 3.4 shows how this is calculated. The variable L is the

total number of levels in the histogram.

µ(L) =
L∑

i=0

i× pi (3.4)

Using the previous calculated values, the between-class variance for the kth

level can then be found by Equation 3.5 as described by Otsu et al. (1979).

σ2
B(k) =

[µ(L)× ω(k)− µ(k)]2

ω(k)× [1− ω(k)]
(3.5)

The optimal threshold is then found at the k value which maximises σ2
B, as this

value will also minimise the inter-class variance. Figure 3.5 shows the effect that

Otsu binarisation has on a signature.
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Figure 3.5: Signature that has been binarised using Otsu’s method

Otsu’s method is often chosen for image binarisation as it has a simple algo-

rithm which only utilises the zeroth and the first-order cumulative moments of the

grey-scale histogram. As well as its simplicity, Otsu’s method requires no human

involvement, allowing for an optimal threshold to be selected automatically and

stably. This selection is not based on the differentiation of local properties in the

histogram, such as valleys, but from the integration of the entire histogram. The

result of this is that the Otsu method can deal with images that do not have a

defined distinction between the foreground and background.

3.1.4 Niblack

The Niblack method (Trier and Jain, 1995; Blayvas et al., 2006) is a locally adap-

tive binarisation technique that calculates an independent threshold for each pixel,

based on a sample area around the pixel. This threshold T at pixel (x, y) is cal-

culated by Equation 3.6, where m(x, y) is the mean of pixel values in the sample

area and s(x, y) is the respective standard deviation. The variable k is then used

to adjust how much of the boundary around the signature is taken as part of the

signature; it has been found that k = −0.2 gives well-defined results (Trier and

Jain, 1995).

T (x, y) = m(x, y) + k × s(x, y) (3.6)

The pixels that make up the sample area are found in a square of r × r in
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size, and is centred at (x, y). This sample area for binarisation has been set to

9 × 9 instead of the recommended 15 × 15 as it better captures an equal amount

of signature and background when the sample area is centred on a signature pixel.

Figure 3.6 shows the binarising ability of Niblack.

Figure 3.6: Signature that has been binarised using Niblack’s method

It can be seen in this binarisation example that the capability of Niblack is

effective in identifying the wanted signature, but outside of the signature area a

large portion of the background pixels are incorrectly thresholded. The result of

this is that the capability of Niblack in correctly thresholding a signature image

is diminished, and as such, severely effects the extraction of image features that

define the signature. Due to this, the Niblack method will not be employed for

binarisation.

3.1.5 Bernsen

Bernsen’s method (Bernsen, 1986) is another locally adaptive binarisation tech-

nique that thresholds each pixel independently. The first step for a pixel found at

(x, y) is to determine the contrast value C of the sample area around the pixel,

with this contrast being calculated by Equation 3.7. The variables Zhigh and Zlow

are the highest and lowest pixel values of the sample area respectively. If the con-

trast value is less than a predetermined level #, then the pixel is set as background.

(Trier and Jain, 1995) state that # = 15 has been found to be a good contrast level.

C(x, y) = Zhigh(x, y)− Zlow(x, y) (3.7)
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If C is greater than #, then a threshold T will need to be applied to the pixel,

with T being found via Equation 3.8.

T (x, y) =
Zlow + Zhigh

2
(3.8)

Following Niblack, the sample area centred around a pixel was chosen as 9× 9.

The ability of Bernsen’s method is shown in Figure 3.7.

Figure 3.7: Signature that has been binarised using Bernsen’s method

Bernsen’s method often results in patches of incorrectly thresholded pixels.

This is due to the contrast value being greater than 15, causing a threshold to be

calculated in response. Because of these unwanted patches, Bernsen’s method will

adversely affect the extraction of image features, and due to this, will not be used.

3.1.6 Local Iterative Method

Locally adaptive binarisation methods have the advantage of correctly thresholding

parts of the signature that would be lost with global binarisation. Their downfall is

that they do not deal well with the background, as they tend to incorrectly thresh-

old these pixels where the sample area does not contain part of the signature. From

testing these methods, it was noticed that an alternative method of binarisation

was needed, and in response, the local iterative method was devised and built. It

takes the advantages of previous methods and adapts them to produce an algo-

rithm that thresholds signatures in a more controlled manner. By doing this, the

local iterative method limits the amount of noise generated, as well as attempting

to reconstruct sections of the signature that are disjointed.



24 CHAPTER 3. SIGNATURE PREPROCESSING

The local iterative method is carried out by following a process of steps for each

sample area found in a 9 × 9 square centred on the pixel at (x, y). This process

starts by first finding the mean m(x, y) and standard deviation s(x, y) of the pixel

values in the sample area. Using these, any pixel in the sample area that has a value

greater than two standard deviations from the mean, is temporarily set as the mean

for that sample area. By doing this, any pixels that could potentially be noise are

adjusted. The next step is to test if the sample area is solely background through

the use of the contrast method described in Section 3.1.5, using the recommended

# value of 15. If the contrast level of the sample area is greater than #, then a

threshold is used to determine if the pixel at (x, y) is part of the signature or

the background. This threshold is calculated using the iterative method (Section

3.1.2), and is only applied to the pixel located at (x, y). The ability of the local

iterative method is shown in Figure 3.8.

Figure 3.8: Signature that has been binarised using the local iterative method

The local iterative method can in the majority of instances binarise a signature

while reconstructing sections that would normally be lost. But due to this proce-

dure, it does have the side-effect of producing a slight border around the signature.

This is a result of the sample area capturing a portion of the signature, adversely

affecting how the pixel is thresholded. This noise can easily be removed with a

median filter (Section 3.2), which also helps to further reconstruct areas of the

signature, the achieved effect can be seen in Figure 3.9.
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Figure 3.9: Signature that has been improved upon via a median filter

3.2 Median Noise Removal

Often when a signature is binarised, noise from the capturing process will remain.

The removal of this noise helps in extracting image features that more accurately

represent the signature. Noise removal can be accomplished using a variety of

methods, but for this research, only the median approach was tested.

The median approach is a simple technique that is carried out by taking the

eight neighbours of a pixel, as well as itself and sorting them by their values. From

these nine sorted values, the middle or median value is chosen to be the pixel’s new

value.

When applying median noise removal, different shaped filters can be used. The

3×3 rectangular filter, shown in Figure 3.10(a), is the most common approach, but

has the disadvantage of damaging sharp corners in the signature. Another filter

shape that can be used is the + shape, shown in Figure 3.10(b), and is designed

to maintain these sharp corners.

(a) Rectangular filter (b) Plus shaped filter

Figure 3.10: Two filter shapes for median noise removal
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The effect of each filter is shown in Figure 3.11. From these examples, it can

be seen that both filtering methods help reduce the amount of noise that occurs,

with both approaches being very similar. Because of this similarity, the ability of

each filter is unclear, and as such will be determined via experimentation in Section

12.3.1.

(a) Original Image

(b) Rectangular Filtering (c) Plus Filter

Figure 3.11: Comparison of the two median filters with an original signature.

3.3 Rotation Normalisation

When a signature is captured, its rotation maybe out of sync in relation to similar

signatures. This incorrect rotation has the potential of distorting any features that

are extracted, adversely affecting the classification. Rotation normalisation was

tested using two methods, axis of least inertia and region rotation.

3.3.1 Axis of Least Inertia

A generalised method of rotation normalisation is possible with the axis of least

inertia (Kalera et al., 2004). This axis is designed to minimise the spread of black
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pixels on either side of itself, and will generally pass through the longest length

of the signature. From here, the signature can then be rotated so that its longest

length is horizontal.

The axis of least inertia is found by first locating the centre of mass, where ū

and v̄ correspond to the x and y coordinates of the centre of mass respectively.

The second order moments of the signature are u2, v2 and uv and are calculated

by Equations 3.9, 3.10 and 3.11 respectively, where u(i) is the x-coordinate of the

ith black pixel in the signature image, while v(i) is the y-coordinate of the same

pixel and n is the total number of black pixels in the signature.

uv =
1

n

n∑

i=1

(u(i)− ū)(v(i)− v̄) (3.9)

u2 =
1

n

n∑

i=1

(u(i)− ū)2 (3.10)

v2 =
1

n

n∑

i=1

(v(i)− v̄)2 (3.11)

The orientation of the axis of least inertia is then found by the orientation of

the least eigen vector of the matrix in Equation 3.12, as shown by Kalera et al.

(2004).

I =



 u2 uv

uv v2



 (3.12)

Having calculated the angle of the axis, the signature can then rotated accord-

ingly, so that the axis of least inertia will correspond with the horizontal axis. The

effect that this rotation has on a signature is shown in Figure 3.12.

The disadvantage of using the axis of least inertia is that not all signatures will

be rotated correctly, as some signatures will end up being out of alignment. This

is due to the signature shape, where if it taller than it is wide, the signature will

be rotated on to its side. As a result, manual checking will be required to ensure
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(a) Signature needing rotation (b) A rotated signature

Figure 3.12: Effect of rotating by the axis of least inertia

that the signature is in fact correctly rotated. The use of manual checking defeats

the purpose of having an automatic system, and as such, using this method may

decrease the classification accuracy.

3.3.2 Region Rotation

An alternative method to the axis of least inertia is to use a base signature from a

set to determine how each remaining signature should be rotated. This is carried

out by first counting the number of black pixels that occur in each region when the

signature is divided by equimass regioning (Section 5.2.1). The similarity between

the base signature and the signature that is being rotated can be calculated using

the black pixel frequency vector (Section 7.1) with the Euclidean distance. This

similarity and the rotation angle are then stored and the process is repeated with a

different rotation. The rotation angle that has the greatest similarity with the base

signature is then chosen as the final rotation angle. The effect that this approach

has can be seen in Figure 3.13.

(a) The base signature (b) Signature needing rotation (c) Rotated signature

Figure 3.13: Effect that region rotation has in relation to the base signature
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This method is a much slower technique for rotation normalisation as it has

a much greater level of complexity than the axis of least inertia. As well as this,

it is dependent on a base signature for determining the correct rotation. Region

rotation does have the advantage of being less likely to produce an incorrectly

rotated signature, but like the axis of least inertia, it is not guaranteed to correctly

rotate every signature.

3.4 Region Growing

When a signature is written, the strokes that make up the signature may become

damaged due to a variety of reasons, such as a lack of writing pressure or a defective

pen. Region growing attempts to repair these broken strokes by filling in the gaps

between disjointed pixels, with the aim being to repair each stroke to the form

that it was originally intended. This section will cover two methods that can be

employed for repairing these broken strokes.

3.4.1 Broken Stroke Connection

Broken stroke connection (Shi and Govindaraju, 1996) is one method of repairing

strokes in a signature that have become disjointed. The algorithm behind this

method is described with detail in (Shi and Govindaraju, 1996), but basically,

it starts at the left most pixel of the signature and searches the area around it,

locating short runs of pixels on different rows. If these runs are determined to be

broken, they are then completed. The vertical area between these runs are then

filled so that any new horizontal lines are the average length of the rows above

and below it. Using the top and bottom left most points of this reconstructed

area, the process is repeated, until all the pixels have been tested and disjointed

areas recreated. Figure 3.14 shows the effect that this method has in repairing a

signature.
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(a) Original signature (b) Signature with region growing

Figure 3.14: Effect that broken stroke connection has on a signature

3.4.2 Dilate and Erode

Dilate and erode reconstructs broken strokes by simply expanding each black pixel,

so that the disjointed pixels in the broken strokes reconnect. Eroding then shrinks

the black pixel mass back down to its original size. This method is implemented

by expanding each black pixel in all directions by a set size and then eroding them

by repeating this same process with each of the white pixels. The result of dilating

and eroding each black pixel in a signature can be seen in Figure 3.15.

(a) Original signature

(b) Dilate and erode with size 1 (c) Dilate and erode with size 2

Figure 3.15: Effect that dilate and erode has on a signature

This method works when the pixels are dilated by a small amount, as if the size

is too large, internal areas of the signature are at risk of being completely filled

in, and as a result there is a permanent lose of information about the signature.

Figure 3.15(c) shows the result of having a size that is to large, with an internal
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area of the M being completely filled in, as well as this, internal areas that have

been eroded end up being square patches instead if their original shape.

3.5 Normalisation

After all desired preprocessing has been carried out, the next step is to normalise

the signatures, so that no bias is introduced that could skew the achieved results.

Signature normalisation is carried out by cropping the signature so that there is no

unnecessary background padding on any of the four sides of the signature image.

Having cropped the signatures, each image feature is then normalised by dividing

its frequency by the number of pixels in the image. This results in the frequency

being changed into a percentage, making it scale invariant, allowing the signatures

to remain at their initial size without adversely effecting the classification accuracy.

Having normalised the signatures, preprocessing is complete and classification can

be undertaken.
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Chapter 4

Image Features

When classifying a signature, one of the key requirements is the extraction of

features that uniquely define it. This information allows the signature image to

be broken down into components that are more useful for describing its structure,

differentiating it from other signatures when compared. Unlike digital images,

these features are not designed to be understood by humans, but rather they allow

information about the image to be captured in a statistical manner. This statistical

information provides a new representation (Section 7), that allows two signature

images to be compared with greater ease. This chapter will describe a variety of

different features that can be extracted, each of which defines a different structural

property of a signature.

4.1 Mass

One of the easiest features to extract from a binary image is its mass, where mass is

simply the frequency of primary pixels within the image. In the case of signatures,

the primary pixels are black, and constitute the signature. In general, this feature

does not provide enough comprehensive structural information that will allow two

signatures to be differentiated from one another. Therefore, the use of region sam-

pling (Chapter 5) is commonly employed to define the image with more accuracy,

as it provides spatial information.

33
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4.2 Centre of Mass

The centre of mass of a binary image is located at the symmetrical centre of the

signature mass, where this is essentially the average (x, y) position of the black

pixels. The centre of mass is denoted by (x̄, ȳ) and is used in a number of image

applications, such as rotation normalisation (Section 3.3) and ring region sampling

(Section 5.2.2). The mean and median approaches are two methods for calculating

the centre of mass; both of which are described below.

4.2.1 Mean

The prevalent method for calculating the coordinates of the centre of mass is to

use the mean coordinates of the pixels that make up the signature mass (Kalera

et al., 2004). Using this method, (x̄, ȳ) is found using equations 4.1 and 4.2, where

the variable n is the total number of pixels that comprise of the signature mass.

The variables u and v are the vectors of the x and y coordinates respectively of

each pixel in the mass.

x̄ =
1

n

n∑

i=1

ui (4.1)

ȳ =
1

n

n∑

i=1

vi (4.2)

Figure 4.1 shows an example of where the mean centre of mass will be located

for a particular signature image.

Figure 4.1: Example location of the mean centre of mass in a signature
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4.2.2 Median

The median method is an alternative approach for calculating the centre of mass.

The coordinate (x̄, ȳ) is found at the median points of u and v, which are the vectors

of the x and y coordinates respectively of each pixel in the mass. Figure 4.2 shows

an example of where the median centre of mass is located within a signature image.

Figure 4.2: Example location of the median centre of mass in a signature

4.3 Gradient

The gradient feature measures the local characteristics of a pixel based on its

nearest eight neighbours, where these characteristics describe the likelihood that

the pixel is part of an edge as well as the direction that this edge is orientated.

The manner in which both of these characteristics are found begins by convolving

the pixel P and its neighbours with the two Sobel kernels (Srikantan et al., 1996),

which are shown in Equation 4.3, where Gx is the measure of horizontal change

and Gy is the measure for vertical change.

Gx =

∣∣∣∣∣∣∣∣∣

+1 0 −1

+2 0 −2

+1 0 −1

∣∣∣∣∣∣∣∣∣

∗ P Gy =

∣∣∣∣∣∣∣∣∣

+1 +2 +1

0 0 0

−1 −2 −1

∣∣∣∣∣∣∣∣∣

∗ P (4.3)

Having found the two gradients, they can then be used to produce the magni-

tude of the pixel, where the larger the magnitude, the greater the likelihood that

the pixel is part of an edge. This calculation is shown in Equation 4.4.

G =
√

G2
x + G2

y (4.4)
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The direction that the edge is orientated for the pixel at (x, y) can also be

derived from Gx and Gy. Equation 4.5 shows how this direction θ is found.

θ(x, y) = tan−1

(
Gy

Gx

)
(4.5)

The direction of each gradient can range from 0.0 to 2π radians, with these

directions commonly being split into a number of non-overlapping segments, as

shown in Figure 4.3, where s represents the number of segments that the directions

are discretized into.

Figure 4.3: The s possible segments that a direction can be divided

The method of determining which segment a direction should be in is found by

Equation 4.6, where d is the direction of the captured gradient.

segment = round

(
d× s

2π

)
d ∈ [0, 2π] (4.6)

Once every pixel has been assigned to a particular segment, a frequency his-

togram can be produced that describes either the entire image, or a particular

region in terms of its overall gradient.

In image classification, the gradient direction of a pixel is more commonly used

than its magnitude, as the direction can be used to produce a gradient map. The

magnitude of each pixel can instead be used to produce an edge detected represen-

tation of the image. The process for creating this edge detected image is to test
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whether the magnitude of a particular pixel is above a certain threshold, where if it

is, then the pixel is deemed to be part of an edge, otherwise it is set to background.

4.4 Structural

Using the gradient map (Section 4.3), the embedded structural features of the image

can be extracted (Favata and Srikantan, 1996). These structural features are short

strokes that occur across several adjacent pixels and describe the intermediate

characteristics of the image. Applying a set of 12 rules to each pixel and its

neighbours, allows these structural features to be derived from the gradient map,

where Figure 4.4 shows the association between a pixel and its eight neighbours.

Figure 4.4: Pixel Neighbours

To achieve the extraction of these structural features, each pixel is first labelled

with a number based on the pixel’s gradient direction, where Figure 4.5 shows how

the value for each label is determined.
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Figure 4.5: Equispaced segments for gradient direction

Using the gradient direction as well as the association between a pixel and its

neighbours, the structural features that occur at each pixel can be determined by

applying the 12 rules listed in Table 4.1.

Rule Description Neighbour 1 Neighbour 2

1 Horizontal line, type 1 N 0 (2,3,4) N 4 (2,3,4)

2 Horizontal line, type 2 N 0 (8,9,10) N 4 (8,9,10)

3 Vertical line, type 1 N 2 (5,6,7) N 6 (5,6,7)

4 Vertical line, type 2 N 2 (1,0,11) N 6 (1,0,11)

5 Diagonal Rising, type 1 N 5 (4,5,6) N 1 (4,5,6)

6 Diagonal Rising, type 2 N 5 (10,11,0) N 1 (10,11,0)

7 Diagonal Falling, type 1 N 3 (1,2,3) N 7 (1,2,3)

8 Diagonal Falling, type 2 N 3 (7,8,9) N 7 (7,8,9)

9 Corner 1 N 2 (5,6,7) N 0 (8,9,10)

10 Corner 2 N 6 (5,6,7) N 0 (2,3,4)

11 Corner 3 N 4 (8,9,10) N 2 (1,0,11)

12 Corner 4 N 6 (1,0,11) N 4 (2,3,4)

Table 4.1: Structural Feature Rules

Each rule examines a particular pattern of neighbouring pixels for allowed gradient

ranges. For example, rule one states that if the neighbouring pixel at N0 has a
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gradient range of 2, 3 or 4 and the pixel at N4 also has a gradient range of 2, 3 or

4 then a horizontal line is identified and the rule is satisfied. Figure 4.6 shows an

example of this rule, where each value represents the calculated gradient direction

for that pixel. For each rule that the pixel conforms to, that rule is marked as

true. This allows the frequency of each structural feature to be measured and

constructed into a histogram, thus two signature can then be compared via their

structural features and their similarity determined.

Figure 4.6: Example of rule one, where the values represent the gradient direction

segment as computed using Equation 4.6 for each of the nine pixels

4.5 Large Strokes

The features that are extracted from an image are often low dimensional, that is,

they are derived from a single pixel, or from a pixel’s immediate neighbourhood.

Higher dimensional image features are found based on the layout of the entire

image. One of these image features is the large-strokes feature, which attempts to

capture large horizontal and vertical strokes from within the signature mass. If the

run lengths of these strokes are above a predefined threshold, then the stroke is

counted, otherwise it is disregarded. Figure 4.7 shows an example of a signature, in

which the strokes of length 12 or more pixels are identified and highlighted; there

are three horizontal and four vertical strokes. Generally, the frequency of these

strokes will be found on a region by region basis, allowing for a histogram to be

produced for each region.
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Figure 4.7: A signature containing both horizontal and vertical strokes

4.6 Concavity

The concavity features (Favata and Srikantan, 1996) of an image differ from other

features in that each pixel is labelled based on a star-like operator instead of the

pixels nearest neighbours. The star-like operator shown in Figure 4.8 is an eight

pointed star that extends out from a pixel, allowing it to determine its surroundings;

be it the signature or the edge of the image.

Figure 4.8: Star shaped operator with eight arms

The result of using this operator is that it can determined if a pixel is in a

concavity or not based on where each arm ends. Each pixel is then labelled by one

of the eleven possible options. The first eight options are the concavities that open
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in each of the eight direction, with Figure 4.9 showing a right opening concavity.

For a concavity to open in one of these particular directions, the arm of the operator

that goes in that direction must hit the image border, while the other seven arms

must hit the inside edges of the signature (Favata, 2008).

Figure 4.9: Right opening concavity

The ninth option is if all of the arms hit the signature, then the pixel is deemed

to be in a hole, which is an area entirely enclosed by the signature. A pixel is

labelled as being open if two or more arms of the operator hit the border of the

image; this is the tenth option, while the eleventh is if the pixel is part of the

signature mass (a black pixel), in which case it is labelled as such. The result is

that the concavity features also incorporates the mass feature described in section

4.1.

The concavity feature has a variety of possibilities for which it could be ex-

panded upon, based on the number of possible combinations of the operator’s

arms hitting either the edge of the image or the signature. Previously the concav-

ity feature only measured five aspects, these were the concavities that open in the

horizontal and vertical directions as well as any holes. Section 13.2 will determine

whether using diagonal opening concavities as well will have an improvement on

the classification accuracy or whether they detract from its ability to distinguish

one signature from another.
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4.7 Local Binary Patterns

Local binary patterns (LBP) are a multiresolution approach to grey scale and

rotation invariant texture classification (Mäenpää et al., 2000; Ojala et al., 2002).

They essentially allow the texture that surround each pixel to be captured and

represented as a ring of binary values. Having constructed the binary pattern that

surrounds a pixel, it is then possible to apply different techniques to make these

patterns invariant to rotation. This allows for a single texture that has been rotated

differently to be determined as still being the same.

The approach that is used to extract the LBP from around a pixel begins by

first choosing the P and R values, where P is the number of points around the pixel

that will make up the LBP and R is the radius at which these points are found.

The manner in which these points are laid out can be seen in Figure 4.10, where gc

is the grey value of the centre pixel, while gp (p ∈ 0, 1, · · · , P − 1) is the grey value

at each of the points. If the coordinates of gc are at (x, y), then the coordinates of

gp are found via (x + R × cos(2πp
P ), y − R × sin(2πp

P )). The grey values which do

not fall exactly in the centre of a pixel are determined by interpolation from the

surrounding pixels.

(a) P = 4, R = 1.0 (b) P = 8, R = 1.0

Figure 4.10: Circularly symmetric LBP neighbourhoods

Having found the values at each point, they then need to be converted in to

binary values. This is carried out by subtracting the gc value from each gp value,

where if the result is greater than or equal to 0, then binary value is 1, otherwise

it is 0; this process can be seen in Equation 4.7. The texture that surrounds the

central pixel can then be represented as T = (f(g0), f(g1), · · · , f(gP−1)), which is
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essentially a ring of binary values which has a length of P − 1.

f(gp) =






1 if gp − gc ≥ 0

0 if gp − gc < 0
p = 0, 1, · · · , P − 1 (4.7)

Producing a single value from the LBP to represent the local texture of a pixel

can be achieved using one of several methods, each of which allows the texture to

be described in a different manner. These methods are standard, rotation invariant

and uniform, each of which are described in Sections 4.7.1, 4.7.2 and 4.7.3, respec-

tively. The final step is to take the produced LBP values and convert them into a

frequency histogram. This allows the frequency histograms of two signatures to be

compared and from here, their similarity to be determined.

4.7.1 Standard

When producing a single value from a LBP, the simplest method is to take each

point and assign a binomial factor 2p to each produced binary value. This allows

each combination of points to be transformed into a unique LBPP,R number that

defines the local texture around the central pixel. The manner in which the LBPP,R

number is calculated is shown in Equation 4.8.

LBPP,R =
P−1∑

p=0

f(gp)× 2p (4.8)

For this approach, if there are eight points around the central pixel, then there

will be 256 possible values for describing the texture. Figure 4.11 shows an example

of a pixel P that is surrounded by a ring of binary values that have been found

using the method described previously, except that the pixel’s value is used instead

of interpolation. This string starting at middle right and going anti-clockwise is

11001010, which results in this texture being labelled with the value 83.
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Figure 4.11: Ring of Binary values surrounding a pixel

The disadvantage of using this method is that it is not rotation invariant, mean-

ing that if the texture is rotated at all, then the LBP value will change accordingly.

There is a solution to this problem, which can be approached using two different

methods, both of which are described in the following sections.

4.7.2 Rotation Invariant

The LBP value that is produced from the set of grey value points always begins

with the first point being to the right of gc. The result of this is that the standard

method is not rotation invariant, meaning that if the texture is rotated at all, then

the grey values will correspondingly move around the perimeter surrounding gc,

causing a different value to be produced. The effect of rotation can be removed

by assigning the same unique identifier to each rotated variation of a LBP. This

is carried out by generating the LBP value by starting at each possible point and

only keeping the minimum value as the unique identifier. Equation 4.9 shows how

this will be carried out, where ROR(x, i) performs a circular bit-wise right shift i

times on the P -bit number x. The superscript ri identifies the formulas as being

rotation invariant.

LBP ri
P,R = min{ROR(LBPP,R, i) | i = {0, 1, · · · , P − 1} (4.9)

Using this method to produce rotation invariant LBPs will result in 36 unique

values when P = 8. The majority of the original LBP values will not naturally be of

the desired value and as such will require that the LBP be rotated and recalculated.
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Because of this, invariant LBP values are computationally more expensive, but as

a result are more robust.

4.7.3 Uniform

It has been observed that the invariant approach does not provide very good dis-

crimination between LBP values (Pietikäinen et al., 2000) as there are certain local

binary patterns that are fundamental properties of texture, and as such, provide the

majority of the possible LBPs that occur. Because of this, an alternative method

was devised by Ojala et al. (2002) that produces rotation invariant values with

which to identify the patterns. This alternative method introduces the uniformity

measure U(LBP ri
P,R) as shown in Equation 4.10, which measures the number of spa-

tial transitions (bitwise changes from 0 to 1) that occur in each rotation invariant

LBP.

U(LBP ri
P,R) = |f(gP−1)− f(g0)| +

P−1∑

p=1

|f(gp)− f(gp−1)| (4.10)

Once the number of bitwise changes have been counted, then a unique value

is assigned to each LBP based on how many times that 1 occurs when U ≤ 2;

otherwise if U > 2, then the value is set to P + 1. This procedure is shown in

Equation 4.11, where the superscript riu2 refers to the use of rotation invariant

‘uniform’ patterns that have a U value of at most 2.

LBP riu2
P,R =






P−1∑

p=0

f(gp) if U(LBP ri
P,R) ≤ 2

P + 1 if U(LBP ri
P,R) > 2

(4.11)

For example, if P = 8, then there will be a total of ten possible values that can

be assigned to an LBP, where the first nine are the rotation invariant LBPs that

have U ≤ 2, with these LBPs being shown in Table 4.2. The tenth value is for all

other possible patterns, which in this case is 27, as (P + 1) + 27 = 36.
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1 00000000

2 00000001

3 00000011

4 00000111

5 00001111

6 00011111

7 00111111

8 01111111

9 11111111

Table 4.2: The 9 circular rotational patterns that can occur when U = 2

4.8 GSC Ensemble

The Gradient, Structural and Concavity (GSC) ensemble is a combination of five

image features that are commonly used for a range of hand-written text classi-

fication problems. This ensemble allows for a quasi-multiresolution approach for

measuring image characteristics at difference scales (Chen and Srihari, 2006; Favata

and Srikantan, 1996; Srikantan et al., 1996). The image features that GSC is made

up of are described previously in this chapter, with gradient features being covered

in Section 4.3 and structural features in Section 4.4. The concavity component of

GSC is the combination of three separate image features, with these being mass,

large strokes and concavity. Each of these were described in Sections 4.1, 4.5 and

4.6, respectively.



Chapter 5

Region Sampling

When features are extracted from an image, their associated spatial information

is often lost, as only the frequency of the feature is kept, while its corresponding

location within the image is disregarded. It is this frequency information that is

used to construct a histogram that represents the signature. Because no spatial

information is captured, a potential problem that occurs is that two signatures

which have very different appearances may produce similar histograms. The result

of this is that these two signatures will produce a similarity score (Section 9.3) that

is not representative of their true similarity.

A method of solving this problem is to use region sampling, which is a technique

that provides spatial information for the extracted features by breaking an image

up into regions. The concept behind region sampling is that the same region across

multiple signatures will capture the same sections of signature. The goal of this

is that when corresponding regions are compared, the same sections will also be

compared, producing a more accurate similarity.

The sections in this chapter will cover the types of region sampling methods

and how they are implemented. These methods are uniform, adaptive and irregular

adaptive.
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5.1 Uniform

Uniform region sampling is the simplest method for splitting a signature up into

regions and is carried out by ensuring that each region has the same number of

pixels between each of its edges in relation to all of the other regions in the image.

5.1.1 Grid

A uniform grid (Favata and Srikantan, 1996) creates rectangular regions for sam-

pling, where each region is of the same size and shape. This is carried out by placing

the grid lines at equally spaced positions along the x-axis of the image; creating the

vertical regions. Similarly, the horizontal regions are produced by placing grid lines

at equally spaced positions down the y-axis. The positions of both the horizontal

and vertical grid lines are found by Equation 5.1, where the value p is the vector of

line positions, n is the number of horizontal or vertical regions, and l is the width

or the height of the image. The purpose of using the ceiling in Equation 5.1 is to

correct the location of the grid lines so that they are more evenly distributed across

the signature.

pi =

⌈
i× l

n

⌉
i = 1, 2, . . . , n− 1 (5.1)

An example of how a uniform grid will be placed on a signature is shown in

Figure 5.1. This signature has a resolution of 476×147 and has been overlaid with

an 8 × 4 grid. The first vertical grid line is found at 'i × 476
8 ( = 60, when i = 1.

The rest of the vertical lines are found by varying i, producing lines at 119, 179,

. . . , 417. The horizontal grid lines are found in the same manner, with the first

being located at 'i × 147
4 ( = 37, when i = 1. The rest of the horizontal lines are

once again found by varying i, producing lines at 74 and 111.

The uniform grid requires each signature to be the same size, shape and rota-

tion for each region to capture the same section across corresponding signatures.

The problem that occurs when proportions such as the size and rotation differ be-

tween signatures is that each region will capture sections that do not correlate with
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Figure 5.1: Example of regioning using a uniform grid

corresponding regions in other signatures. This is especially true with the uniform

grid, as it does not adapt to where the signature is located.

5.1.2 Ring

The uniform ring regioning method is introduced in this thesis, and uses concentric

circles centred around the signatures centre of mass (Section 4.2) to create each

region. These regions are defined as being the area between subsequent rings, where

each ring is found at an equal distance from the previous. The radius of each ring

is found by Equation 5.2, where p is the vector of radius lengths, d is the maximum

distance that any one pixel lies from the centre of mass and n is the total number

of regions.

pi =

⌊
d

n

⌋
× i i = 1, 2, . . . , n− 1 (5.2)

The floor in this equation ensures that no regions are lost due to any previous

regions being larger than they should. The carry on effect is that the last region

usually has a larger distance between d and the last ring than the distance between

the previous rings.

Figure 5.2 shows an example of how a signature is divided up into regions based

on the uniform ring regioning method. This signature has a resolution of 476×147

and has been divided up into six regions. The mean centre of mass is found at the

coordinates 210× 77, with the furthest pixel being located in the top right corner

of the signature, resulting in d equalling 276. From this, the first ring is found

at a distance of )276
6 * × i = 46 from the centre of mass when i = 1. Each of the
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subsequent rings are then found by varying i, producing rings with radiuses of 92,

138, 184 and 230 from the centre of mass.

Figure 5.2: Example of regioning using a uniform ring

The purpose of using circular regions instead of a rectangular grid is to make

the region sampling rotation invariant. This allows the same structural properties

be captured by corresponding regions when each signature has a different rotation.

5.2 Adaptive

Adaptive regioning is the next progression from uniform regioning in which the

region boundaries are adjusted to better express the signature sections. By doing

this, the similarity between corresponding regions from multiple signatures can be

calculated with more accuracy, as they are more likely to contain the same sections

of signature.

5.2.1 Equimass Grid

An equimass grid is similar to the uniform grid described in Section 5.1.1, except

the horizontal and vertical grid lines are adapted to the number of black pixels,

also known as the mass, of the signature (Favata and Srikantan, 1996). Based on

this, the grid lines that define each region are found at the equimass divisions of the

horizontal and vertical mass histogram of the image. That is, where the total mass

between all adjacent points on either the x-axis or the y-axis are as close to equal

as possible. Equation 5.3 finds this average mass MA between two adjacent points,

where M is the total mass of the signature and n is the number of horizontal or

vertical regions.
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MA =
M

n
(5.3)

The horizontal lines are found by counting the number of black pixels horizontally

until the count equals MA, at which point a grid line is placed, and is repeated

until the bottom of the signature is reached. This same process is used for placing

the vertical lines, except the black pixels are counted vertically until the opposite

side of the signature is reached.

An example of an equimass grid is shown in Figure 5.3, in which the signature

has a resolution of 476× 147 and has been broken up with an 8× 4 grid. The total

mass of this signature is 6420, making the average mass of the vertical regions

6420
8 ≈ 803, the horizontal regions are then 6420

4 ≈ 1605. From this, the vertical

grid lines are found at 69, 105, . . . , 356, while the horizontal grid lines are found

at 62, 78 and 95.

Figure 5.3: Example of regioning using an equimass grid

5.2.2 Equimass Ring

The equimass ring is an adaptive version of the uniform ring described in Section

5.1.2. The size of each region is dependent upon the total number of black pixels in

the signature, with this total being split as evenly as possible between each region.

The goal of splitting the signature in this manner is to better capture the same

sections between similar signatures. Figure 5.4 shows the layout of the equimass

ring when applied to a signature.
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Figure 5.4: Example of regioning using an equimass ring

5.2.3 Centre of Mass Grid

Having an equal amount of signature mass in each region is an effective method

of capturing signature sections which correspond between similar signatures. The

equimass method described in Section 5.2.1 attempts to achieve this, and for the

most part succeeds, but has the disadvantage of some regions differing in the

amount of mass. To overcome this, the centre of mass grid was introduced, building

the regioning grid in a new fashion. This grid is built by first finding the centre of

mass (Section 4.2) of the signature image. Then using this point, a horizontal and

vertical line is placed dividing the signature into quadrants. Due to the nature of

the centre of mass, each of these quadrants will contain an equal share of the total

signature mass. A new centre of mass is then found for each of these quadrants,

with the process beginning again, until the wanted number of horizontal or vertical

regions is reached. If the number of horizontal and vertical regions differ, then the

grid is built in such a fashion that for certain quadrants, only the horizontal or

vertical lines are added.

Figure 5.5 shows an example of how a signature will be regioned using the centre

of mass grid, given that the wanted grid is 8× 4 in size. To further illustrate the

construction of Figure 5.5, the first centre of mass is indicated with
⊗

, while the

secondary centre of masses are identified with ©.

5.3 Irregular Adaptive

The next step up from adaptive grids is to distort the grid lines so that they have a

shape that more accurately captures the same sections across multiple signatures.
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Figure 5.5: Example of regioning using the centre of mass grid

These distorted grids are termed irregular adaptive as each grid line has an irregular

shape. Due to their nature, irregular adaptive grids are complex and difficult

to construct. In literature (Chen and Srihari, 2006), there has only been one

published irregular adaptive grid. This method was not implemented as there was

not enough detail provided about the algorithm to construct it. It is unsure whether

the irregular adaptive approach provides any benefit given the added complexity,

however Section 15.3.1 will compare the results achieved by Chen and Srihari (2006)

from its use with the methods implemented in this thesis.
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Chapter 6

Spatial Pyramids

The splitting of a signature into individual sections via regioning sampling (Chapter

5) permits extracted features to have corresponding spatial information. The use

of a spatial pyramid (Lazebnik et al., 2006) allows this information be improved

upon for each feature by defining where they lie within the signature at different

levels of granularity. By using spatial pyramids, the features from two signatures

can be compared at different levels of granularity, allowing their similarity to be

determined with greater accuracy.

6.1 Granularity

The construction of a spatial pyramid is based primarily off of the regioning method

that has been chosen, and ultimately defines how each level will divide the sig-

nature. The initial number of horizontal and vertical divisions of the signature

produce what will be the finest granularity of the signature, with each subsequent

level being derived from these initial divisions and becoming more coarse, until the

desired or global level is reached.

Each level is produced from the previous level by first dividing the signature

with the chosen regioning method. The next consecutive level of the spatial pyra-

mid is then found by halving the number of horizontal and vertical regions, effec-

tively reducing the total number of regions by three quarters. This is continued

until the chosen number of levels is reached, or no new levels can be created. The
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instance in which no new levels can be created occurs when the number of horizon-

tal or vertical levels can no longer be evenly divided by two. Figure 6.1 shows how

the division lines will be placed on a signature which has had a three level spatial

pyramid applied to it, if the number of regions for the finest level (a) is 8× 4. The

result of using differing amounts of horizontal and vertical cells is that the coarsest

level will not be a single region, but can be achieved by using an equal amount of

horizontal and vertical cells.

(a)

(b)

(c)

Figure 6.1: A three level spatial pyramid

This process of making each consecutive level based on the horizontal and ver-

tical cells of the previous level does not apply to all varieties of regioning methods.

For instance, ring regioning has a set number of circular regions based off of a

single value. In this case, the manner in which the spatial pyramid is constructed

remains essentially the same, expect only this single value is halved, determining

the number of regions in the subsequent level. The construction of new spatial

levels is stopped when the number of predefined levels is reached, or the number

of regions is no longer divisible by two.
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6.2 Weighting

Currently, when using a spatial pyramid to aid in determining the similarity be-

tween signatures, the impact that each level has on the final similarity is dependent

upon the number of features that have been extracted from that level divided by

the total number of features extracted from all levels. For example, if there are

three levels in the spatial pyramid and the global level has 36 features, the middle

level has 144 and the finest level has 576 features, the total number of extracted

features will be 756. The weighting that the global level will have on the similarity

measure will then be 36
756 = 0.0476 or 4.76%, and using this same calculation, the

medium and finest levels have a 19.05% and a 76.19% weighting, respectively.

Using the number of extracted image features per level may not be the most

ideal way of determining the impact that each level will have on the similarity.

Because of this, changing the weighting of each level may improve the accuracy of

the similarity measure. This weighting makes the calculated similarity for a level

proportionate to the total number of features. Using the previous example, the

number of features at the global level is 36, if this is adjusted so that it has a 25%

total impact on the similarity measure, then the weighting for this level is a value

that multiplies 36 so that it equals 25% of 756. This value would 5.25. Lazebnik

et al. (2006) use a 25% weighting for the global level for their spatial pyramid, with

the medium and fine levels having a 25% and 50% weighting respectively.

The manner in which the similarity score between two signatures is calculated

requires that the chosen similarity measure (Section 9.3) be rearranged to manage

multiple spatial levels, each of which has their own weighting. This modification

can be seen in Equation 6.1, where wi is the weighting value for level i and l is

the total number of levels. In this equation, the function f(Vi1, Vi2) is a similarity

measure that has had its denominator removed, where Vi1 and Vi2 are the binary

feature vectors of length ni for the two signatures at level i. Dividing by the vector

length ensures that the final score is between 0 and 1.
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score =

l∑

i=0

wi × f(Vi1, Vi2)

l∑

i=0

ni

(6.1)

The effect that changing the weight for each level has on the similarity measure

between two signatures will vary widely based on which level has the greatest

impact on the similarity. The influence that the weighting of each level has on the

final classification accuracy can not be determined without experimentation, and

as such, Section 13.4 will cover how different weightings affect the results.



Chapter 7

Image Representation

When a signature is in a digital image format it is represented in a manner that

is visually identifiable for humans, making it easier to comprehend what is being

seen. This format is not an ideal choice for representing a signature for the purpose

of classification, as the structural properties that characterise each signature can

not easily be compared. The comparison of signatures can be improved upon

by transforming them into a format that helps to clearly identify their structural

properties. This chapter will look at two common methods for representing a

signature.

7.1 Frequency Vector

In image classification, one of the most common methods used for representing an

image is via a frequency vector, where each element in the vector measures the

frequency of a particular structural property of the signature. A visual example

can be seen in Figure 7.1, where each value is the frequency of a particular property.

136, 47, 89, 103, 24, 96, 118, 149, 6, 71, 153, 82, 192, 75, 84

Figure 7.1: A frequency vector

Equation 7.1 shows the mathematical structure of a frequency vector, where V

is the vector, z is the frequency of a particular property and n is the number of

elements.
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V = (z1, z2, · · · , zn) zi ∈ N ∀i ∈ {1, 2, · · · , n} (7.1)

The advantage of transforming a signature into this form is that it allows two

images to be compared based on the chosen structural properties. From this com-

parison, the similarity between two vectors and thus the two signatures can be

easily computed.

Using the frequency of each image is not the most ideal method of representing

the image, as the frequency is proportional to the size of the signature image. This

means that if two signatures are of different sizes, the frequency of their structural

properties will be skewed disproportionately in relation to each other. The manner

in which this skew is overcome is to normalise the frequency in relation to the total

count of image features that is possible. In most cases, this total is based on the

number of pixels within the image. If the frequency of a structural property is

divided by the total pixel count, then it will be converted into a percentage which

is size invariant.

For example, if a particular property had a frequency of 162 and 374 for two

signature images, and each of these signatures had a total pixel count of 625 and

1444 respectively, then the property would be 162
625 = 0.2592 or 25.92% for the first

signature and 374
1444 = 0.2590 or 25.90% for the second. Even though the frequency

of the structural property was different for the two signatures, proportionally they

are very similar. If this process was applied to the frequency vector in Figure 7.1,

each element in the normalised vector (as shown in Figure 7.2), would be propor-

tional to the sum of all the frequencies, which in this case is 1,425.

.095, .033, .063, .072, .017, .067, .083, .105, .004, .05, .107, .058, .135, .053, .059

Figure 7.2: A normalised frequency vector
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7.2 Binary Feature Vector

The previously described frequency vector gives an accurate measure of the individ-

ual properties that have been chosen to describe a signature. Using a binary feature

vector (BFV) is an alternative method to this, where the frequency of particular

property is replaced by either a 0 or a 1 based on a threshold. If the frequency of

the property exceeds or is below the threshold, the bit is set to 1, otherwise it is

set to 0. Figure 7.3 shows a visual example of what a binary feature vector might

look like after thresholding.

1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1

Figure 7.3: A binary feature vector

The mathematical structure that defines a BFV is shown in equation 7.2, where

V is the BFV, z is a feature bit and n is the number of elements in the vector.

V = (z1, z2, · · · , zn) zi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n} (7.2)

Using a binary feature vector allows each feature bit to be set with a closer

relation to the corresponding feature frequencies in the training signatures. Section

8.2 covers the construction of the thresholds that carry this out. Measuring the

similarity between two signatures is also easier, as the feature bits either match or

they do not; Section 9.3 discusses in more detail the methods used for measuring

the similarity between binary feature vectors.
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Chapter 8

Feature Thresholding

The creation of the binary vector from a feature frequency vector involves deter-

mining whether each feature element matches a certain criteria. If it does, the

corresponding feature bit is set to on, otherwise it is left off. Feature thresholding

is often carried out using a manually fixed threshold. However, this method often

proves to be ineffective, as it requires human involvement to be set, and is not

based on the training signatures. Because of this, new approaches were explored as

part of the research conducted in this thesis. This chapter describes the evolution

of these approaches and have been broken into the manual and automatic methods.

8.1 Manual

When thresholding a feature, a common approach is to use a manually set threshold

(Favata, 2008) that determines how the corresponding feature in the binary feature

vector is set. If the number of occurrences of this feature is greater than or equal to

the threshold, then the criteria is met and the feature bit is turned on, otherwise

it is left off. This method is rather rigid, as it is applied to the entire image.

This makes it ineffective when used with region sampling (Chapter 5), as the same

feature will differ percentage wise between regions. Because of this, the threshold

needs to adapt to each region. So to begin for a particular region, the average

frequency (µ) of the feature is found from each training signature. The formula for

carrying this out is given in Equation 8.1, where T represents the feature frequency
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for each training signature and n is the total number of training signatures.

µ =
1

n

n∑

i=1

Ti (8.1)

The threshold can then be found by multiplying µ with a fixed value m, which

either increases or decreases the threshold in relation to µ by having m either

above or below 1. This adjustment to the threshold is carried out by Equation 8.2,

and allows the threshold to be moved so that it more accurately captures genuine

feature frequencies.

threshold = µ×m (8.2)

The disadvantage of using a single threshold is that if a forgery has a feature

count much greater than the threshold, instead of being relatively close to µ, it will

still be accepted as a genuine. The solution to this is to have a lower and upper

bound. These bounds are created using a method similar to the one previously

described, but instead, a proportional value of µ is both added and subtracted

from itself, with Equations 8.3 and 8.4 performing this respectively.

lower = (1−m)× µ (8.3)

upper = (1 + m)× µ (8.4)

The feature count from an unknown signature will only then be accepted if it falls

between the lower and upper bounds, making the accepted feature count more

controlled.

The spread of feature counts about µ may vary in a fashion that is not normally

distributed, as there is a variety of reasons (Section 1.1) that may cause a genuine

signature to be inconsistent with other genuine signatures. So to improve the

capture of features that are genuine, the distance that both the lower and upper

bounds lie from µ is adjusted so that they are independent from each other. This

is carried out using two multipliers, where mL is the lower multiplier and mU is

the upper multiplier, as seen in Equations 8.5 and 8.6, which replace Equations 8.3
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and 8.4 respectively.

lower = (1−mL)× µ (8.5)

upper = (1 + mU)× µ (8.6)

Manually chosen thresholds often require a range of experiments to find the

optimal value. These experiments use the test data to evaluate different thresholds.

This usually results in the chosen threshold having been optimised for the test

data instead of being found purely from the training data. The problem with this

is that when used in practise, forgeries are generally non-existent, meaning that

no adequate testing can be carried out to determine the optimal threshold. The

solution to this significant problem is to derive a threshold from the training data

only, which Section 8.2 covers in more depth.

8.2 Automatic

The advantage of using an automatic method for feature thresholding is that the

threshold can be derived from only the genuine training signatures and does not

require a range of experiments for it to be optimised (except for determining its

performance once created). The simplest method of creating an automatic thresh-

old is to just use the average feature count from the training signatures. Equation

8.7 shows the formula for this operation, where n is the number of training images

and T is the count of a particular feature from the i-th training signature.

µ =
1

n

n∑

i=1

Ti (8.7)

Because the average lies between the highest and lowest feature counts, its use

as a threshold does not really work, as approximately half of the genuine feature

counts will fall below this value and will be incorrectly set. To improve this, the

threshold is instead set at one sample standard deviation less than the average,
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where the sample standard deviation is found by Equation 8.8.

S =

√√√√ 1

n− 1

n∑

i=1

(Ti − µ)2 (8.8)

The choice of using the sample standard deviation, is that one standard deviation

away from the mean will capture approximately 68% of the genuine feature counts,

making it more difficult for a feature count from a forgery to be accepted. The use of

the sample standard deviation, instead of the standard deviation, is due to it being

a population estimator, therefore, it is more representative of the entire population,

not just the feature counts from the training signatures. The same idea of using

both a lower and an upper bound from Section 8.1 is also incorporated, resulting

in the upper and lower bounds being set by Equations 8.9 and 8.10 respectively,

which replaces Equations 8.5 and 8.6 in the automatic case.

lower = µ− S (8.9)

upper = µ + S (8.10)

The manner in which this method converts the frequency of a feature into its

corresponding feature bit can be seen in Figure 8.1. This figure shows how the

frequencies of the feature taken from the training signatures will generally lie in a

fashion that is normally distributed. If the frequency of the feature is between the

lower and upper thresholds then the defined criteria is met and the feature bit is

turned on. Otherwise, if the frequency is outside of these two thresholds, then it is

deemed to be too far removed from the mean derived from the training signatures

and as a result, the feature bit is set to off.

Calculating the lower and upper bounds separately will also help to further

account for the way in which the feature frequencies from the training signatures

are spread above and below the mean. This is done in a similar manner as above,

except the lower bound is found by Equation 8.11, where SL is the sample standard

deviation of the values below µ and is calculated by Equation 8.13. The upper
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Figure 8.1: Normal curve showing lower and upper threshold placement

bound is found in a similar fashion by Equation 8.12, with SU being calculated by

Equation 8.14, which is the sample standard deviation of the values above µ.

lower = µ− SL (8.11)

upper = µ + SU (8.12)

SL =

√√√√ 1

TL − 1

n∑

i=1

(Ti − µ)2 ∀T < µ (8.13)

SU =

√√√√ 1

TU − 1

n∑

i=1

(Ti − µ)2 ∀T > µ (8.14)

The variable TL is the number of training images that have a value less than µ,

while TU is the number that have a value greater than µ. By having the upper

and lower bounds based off of separately calculated standard deviations, each fea-

ture frequency can be independently and adaptively thresholded, while taking into

account possible outliers. This allows the corresponding feature bit in the binary

feature vector to be set with a greater relation to the training data. Figure 8.2

shows how the feature frequency may be skewed due to an outlying signature.

Outliers occur when the sample of training signatures is small, or if the subject

writes a signature that differs substantially to normal (Section 1.1). To counteract

this, the lower and upper thresholds are placed independently from each other. Be-

cause of this adaptability, this newly introduced method for feature thresholding
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has been termed adaptive feature thresholding (Larkins and Mayo, 2008).

Figure 8.2: How the thresholds will be placed if the frequencies of a feature are

skewed due to the training data



Chapter 9

One Class Classification

One class classification is utilised for classifying an unknown signature when only

genuine training signatures are available to train with. In practise this is the

realistic scenario for achieving signature verification. To achieve this, each signature

in a set is converted to a binary feature vector. The next step is to use the chosen

training signatures to build a classifier that will determine whether an unknown

signature is genuine or forgery. In essence, this is accomplished by determining the

similarity of this unknown signature in relation to the training signatures, where if

the similarity is above a certain threshold, then the signature is classified as being

genuine, otherwise it is deemed to be a forgery. This chapter will look at this

approach in greater detail.

9.1 Distance Statistics

The method used for classifying an unknown signature begins by first comparing

the binary feature vector (BFV) of the unknown signature with each of the training

signatures, using one of the similarity measurements to be described in Section 9.3.

This produces a set of similarity scores. The overall similarity between the unknown

signature and the training signatures is then found as the mean score. Equation 9.1

shows this calculation, where the function S is the similarity measure and n is the

number of positive training signatures for a particular subject; there will generally

69
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be about 8 to 16 of these.

score =
1

n

n∑

i=1

S(U, Ti) (9.1)

Because each signature is classified based on its similarity score against the

training signatures, this score will be a value between 0 and 1. The higher the

similarity score, the greater the likelihood that the unknown signature is genuine.

Only a single threshold is therefore needed for determining at what point on the

similarity scale a score indicates that a signature is a genuine and not a forgery.

This threshold is found by first calculating the mean similarity when each train-

ing signature is compared with every other training signature. Equation 9.2 shows

how this calculation is carried out.

µ =
2

n2 − n

n−1∑

i=1

n∑

j=i+1

S(Ti, Tj) (9.2)

Using µ as the threshold will tend to classify half of the genuine signatures

as forgeries, as it is the mean distance between the positive training examples.

Instead, µ is used as a basis for calculating a new threshold that will classify an

unknown signature. This new threshold is found as an offset of µ, which moves the

threshold from µ down the similarity scale, as shown in Figure 9.1. Two methods

were investigated for finding this offset, manual and automatic, both of which are

described below.

Figure 9.1: Threshold placement using the training mean and an offset
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9.1.1 Manual Offset

The manual offset is a fixed value o which moves the threshold down the similarity

scale. This offset is not designed to optimise the division between the genuine and

forgery classes of each signature set, but is instead designed to minimise the false

acceptance rate (FAR) and the false rejection rate (FRR) of the entire dataset and

therefore will lie at the equal error rate (the point where the forgery and genuine

curves cross). The way in which the threshold is moved down the similarity scale

and used to classify an unknown signature can be seen in Equation 9.3.

class =






genuine if score ≥ µ− o

forgery if score < µ− o
(9.3)

The manual offset is a common method (Kalera et al., 2004; Chen and Srihari,

2006; Srihari et al., 2008) used to calculate the classification ability of a technique

in relation to an entire dataset. The disadvantage of using the manual method is

that it can be fit to the test data indirectly as it requires a range of experiments,

one for each possible threshold until the equal error rate is found. Therefore, the

results may be overly optimistic. In relation to this, an alternative and automatic

method is covered in the next section.

9.1.2 Automatic Offset

Using an automatic approach for calculating the offset removes the need for manual

intervention in regards to the offset, and as such, it is a heuristic approach for

finding where the threshold will lie on the similarity scale. There are potentially

many ways in which the offset could be calculated, but for this research, only

two were explored. These two approaches are the sample standard deviation S

and the lower sample standard deviation SL of similarity scores, when the training

signatures are compared with each other. They differ in that the standard deviation

S is calculated from all the training signature comparisons, while SL is found solely

from the comparisons below µ. The lower sample standard deviation is calculated
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using the adaptive feature thresholding approach (Section 8.2). For the standard

deviation, an unknown signature will then be classified using Equation 9.4, while

the lower standard deviation is calculated in a very similar manner using Equation

9.5.

class =






genuine if score ≥ µ− S

forgery if score < µ− S
(9.4)

class =






genuine if score ≥ µ− SL

forgery if score < µ− SL

(9.5)

9.2 Random Subsets (Bagging)

The method described in Section 9.1 can be modified in a manner that will help deal

with outliers that are potentially detrimental to the classification accuracy. This

modification is known as bagging (Breiman, 1996) and involves taking randomly

chosen subsets of the initial training signatures and using each of these subsets to

produce an independent training mean. Taking the training mean from each subset

and averaging them will allow an overall training mean to be produced, where this

mean is the basis for calculating the threshold. Bagging is beneficial in the fact

that it tries to remove to some degree the effect that possible outliers have on the

classification accuracy. This is achieved as each subset mean will usually over-fit

to the training signatures. By taking the average of these means, this new average

is more stable and less over-fitting will occur.

9.3 BFV Similarity Measurement

The similarity between two binary feature vectors provides the main basis for clas-

sifying an unknown signature. Fortunately, the similarity between two BFVs is

easily calculated. The methods used to calculate the similarity between two BFVs

relies on the four values that are found when they are compared. These values are
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the count of the four possible variations at each position in the vectors, and are

defined as Sij (i, j ∈ 0, 1).

Using the two vectors in Figure 9.2 as an example, the first position in V1 and

V2 is 0 and 1 respectively, and because of this combination, the variable S01 is

incremented by 1. Applying this approach to the second position in these vectors

will result in S11 being incremented. Repeating this process for all n positions will

produce four variables that are the frequency of the four possible combinations.

V1 = 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1

V2 = 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1

Figure 9.2: A set of binary feature vectors of length 32

If the two vectors V1 and V2 from Figure 9.2 were compared and the four possible

variations were counted for each position, the count for each variations would be

S11 = 11, S00 = 7, S01 = 8, and S10 = 6.

Using a combination of these four values, the similarity of two vectors can be

evaluated using a range of different measures. Of the different similarity measures

that are available, the four listed in Table 9.1 will be tested.

Measure S(V1, V2)

GSC (Chen and Srihari, 2006)
0.5× S00 + S11

n

Sokal-Michener (Zhang and Srihari, 2003)
S11 + S00

n

Russell-Rao (Zhang and Srihari, 2003)
S11

n

Rogers-Tanmoto (Zhang and Srihari, 2003)
S11 + S00

S11 + S00 + 2S10 + 2S01

Table 9.1: BFV Similarity Measures
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Zhang and Srihari (2003) conclude that from these similarity measures, the

Rogers-Tanmoto and the Sokal-Michener measurements had the best discriminative

power, while the Russell-Rao measure had the worst power. The GSC measure was

not covered in this literature, but was used by Chen and Srihari (2006). Each of

these measures will always produce a value that ranges between 0 and 1, where if

the value is 0, then the two vectors are completley dissimilar, while if the value

is 1, then the two vectors are either very similar or the same. Each measure is

designed to enhance a particular set of characteristics, by calculating the score

based on certain attributes from the two vectors. The Russel-Rao measure is the

most basic, as it only takes into account the variable S11 in relation to the entire

vector length. The GSC measure takes into account all the positions that have the

same value, but only gives S00 half as much weighting as S11. Sokal-Michener is

very similar to the GSC measure, except that it gives S00 the same weighting as

S11. Rogers-Tanmoto is the most complex of the four measures, instead of using

n to measure the similarity against, it penalises the similarity score twice as much

for each occurrence of positions with differing feature bits. The effect that these

measures have on the similarity score for the two vectors in Figure 9.2 is shown in

Table 9.2.

Measure S(V1, V2) Result

GSC
0.5× 7 + 11

32
= 0.453

Sokal-Michener
11 + 7

32
= 0.563

Russell-Rao
11

32
= 0.344

Rogers-Tanmoto
11 + 7

11 + 7 + 2(6) + 2(8)
= 0.391

Table 9.2: Similarity Example Results
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Two Class Classification

Two class classification is an alternative to the one class approach and has the ad-

vantage of finding a more accurate division for separating the genuine and forgery

classes, instead of estimating where this division should be solely from genuine sig-

natures. Two class classification is only an option if there is a secondary (negative)

class from which the classifier can be trained from. If the primary class consists

of genuine signatures, then this secondary class must consist of skilled forgeries.

Examples of forgeries for a particular subject will allow the best division between

the two classes to be determined. Using skilled forgeries for this secondary class

will provide the most refined classifier (as a negative class comprising of random

and simple forgeries will most likely lead to skilled forgeries being classified as gen-

uine). Machine learning algorithms were utilised for the two class classification

approaches that were carried out.

10.1 Feature Differences

When training a machine learning classifier with two classes, the greater the number

of training instances, the more accurate the division between the two classes should

be. The disadvantage in this domain is that generally there will be few forgery

signatures available, perhaps only 2–4, for example. To improve upon this, the

difference between every pair of signatures from each class can be used to generate

more data to training from, where this difference is calculated using the frequency
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vectors that represent each signature.

The difference between two frequency vectors V1 and V2 of length n is found as

a third vector D, where each element in the vector is determined by Equation 10.1.

Di = |V1i − V2i| i = 1, 2, · · · , n (10.1)

Finding the differences between the genuine signatures begins with obtaining

the normalised frequency vector for each signature. The difference between every

pair of genuine vectors is then found, and this will produce g×(g−1)
2 new vectors,

where g is the initial number of genuine signatures.

For example, if there were 10 genuine signatures, instead of using these 10

signatures to train with, the differences between each pair of signatures will allow

10×(10−1)
2 = 45 genuine instances to be created from which the classifier can be

trained.

The forgery signatures are processed in a different manner. The difference

between each forgery and each genuine signature is found by producing f × g

difference vectors, where f and g are the number of forgery and genuine signatures

respectively. Therefore, if there was 4 forgery and 10 genuines available to train

with, this would allow 4× 10 = 40 negative instances from which the forgery class

in the classifier could be trained. Taking differences therefore increases the amount

of training data from which a model can be built.

10.2 Machine Learning

Machine learning is a field of computer science which draws on the concepts and

results from many other areas, including statistics, artificial intelligence, infor-

mation theory and computational complexity (Mitchell, 1997). Machine learning

algorithms are designed to find structural patterns from within data, and from this

data, learn underlying information. Different algorithms have been invented that

are effective for different types of learning tasks. For the classification of signatures,

the effectiveness of the machine learning approach is tested with three significantly
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different algorithms, Näıve Bayes, Random Forests and Support Vector Machines,

each of which are described in Sections 10.2.1, 10.2.2, and 10.2.3, respectively.

described in this chapter.

These machine learning algorithms are generalised classification techniques, in

which Support Vector Machines and Random Forests are state-of-the-art, while

Näıve Bayes is used as a baseline, due to being simple but effective.

10.2.1 Näıve Bayes

The näıve Bayes classifier is a practical Bayesian learning method based on Bayes’

theorem and is termed näıve because it relies on two important simplifying as-

sumptions. The first assumption is that the predictive attributes are conditionally

independent given the class. This means that the class is defined by the attributes

that it is made up from and each of these attributes are considered independent

given the class; if there is any correlation between attributes, this correlation is

not taken into account. The second assumption is that there is no hidden or latent

attributes that may influence the prediction process, therefore, classification is de-

termined by using only the attributes about the class that are known. Using these

assumptions, näıve Bayes calculates the independent probabilities for features that

have been observed in a particular class, where these probabilities can then be used

to form hypotheses about each class (Witten and Frank, 2005). These hypotheses

can then be used to estimate the probability that an unknown instance belongs to

this class instead of making an outright prediction.

Figure 10.1 is a graphical depiction of a näıve Bayes classifier, where all arcs

are directed from the class attribute to each observable and predictive attributes

X, where k is the number of attributes. The class attribute C is the prediction

that an unknown instance belongs to a particular class.



78 CHAPTER 10. TWO CLASS CLASSIFICATION

X

C

X1 X2 k

Figure 10.1: A graphical depiction of a näıve Baysian classifier

The creation of a näıve Bayes classifier first requires training data from which

it will be built. Table 10.1 contains a mock-dataset as an example, where each

signature is described by basic, high level attributes, where these attributes are

width, height and density. Each of these attributes contain one of three possible

features that describe the shape of the signature.

Signature Class Width Height Density

1 Genuine Thin Medium Medium
2 Genuine Thin Medium Dense
3 Genuine Medium Short Dense
4 Genuine Medium Tall Medium
5 Genuine Wide Tall Sparse
6 Genuine Wide Tall Dense
7 Forgery Thin Medium Sparse
8 Forgery Medium Short Dense
9 Forgery Wide Short Sparse
10 Forgery Wide Short Medium

Table 10.1: Example signature dataset with basic high level features

When each of these features are measured in relation to the signature class,

their probability of occurring can be computed from their frequency using Bayes’

rule and in turn, used to form a näıve Bayes classifier. Bayes’ rule determines the

correct probability P of a feature occurring (F ), given its observed frequency for

either the genuine or forgery class (C), with this rule being shown in Equation 10.2.

P (F |C) =
P (C|F )× P (F )

P (C)
(10.2)

Using the frequency data in Table 10.1 as the basis, the probability of each feature
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occurring conditionally can be estimated. For example, the probability of the

density being sparse given that the class is genuine can be calculated as

P (Sparse|Genuine) =
P (Genuine|Sparse)× P (Sparse)

P (Genuine)

=
0.333× 0.3

0.6

= 0.167.

This method of calculating the feature probability is used to find the probabil-

ities for all attributes and their corresponding features in relation to both classes,

and is used to construct the probability tables shown in Figure 10.2.

Figure 10.2: A näıve Baysian classifier modelled off of the data in Table 10.1

Using the feature probabilities from Figure 10.2, an unknown signature can

then be classified by determining how likely it is to belong to either the genuine or

forgery classes. For example, if a signature has the following characteristics:

Class Width Height Density

? Thin Short Sparse,
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the first step is to find the probability of each respective feature occurring in relation

to both the genuine and forgery classes.

Using the probabilities from Figure 10.2, their joint probability is calculated by

multiplying them together, whilst also taking into account the overall probability

of each class. The formula used to carry this out is shown in Equation 10.3, where

n is the number of features.

P (C, F1, F2, · · · , Fn) = P (C)
n∏

i=1

P (Fi|C) (10.3)

The result of this multiplication for the genuine class is then .6× (.333× .167×

.167) = 0.0056. Repeating this for the forgery class creates the probability .4 ×

(.25 × .75 × .5) = 0.0375. The conditional probability of each class is found by

dividing these values with their sum, which is 0.0056 + 0.0375 = 0.0431. Therefore

the probability that this example is genuine would be 0.0056
0.0431 = 0.1299, while its

probability of being a forgery is 0.0375
0.0431 = 0.8701. Having followed this, the signature

is deemed to belong to the class with the greater probability, which in this case is

forgery.

10.2.2 Random Forests

The random forest classifier is an ensemble of decision trees built from randomly

chosen attributes taken from the training dataset. This section will first describe

how a decision tree is constructed starting at the root node, then the information

gain method used for deciding which node to have at each level is explained, and

finally how a random forest is built and used to classify an unknown instance.

Root Node

The construction of a decision tree for use in a random forest firstly requires a

set of training instances from which it will be modeled, where these instances are

randomly selected from a training dataset. For example, if the mock data in Table

10.1 was a collection of random signatures chosen from a training dataset and
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the three attributes were only a randomly chosen subset of all possible attributes,

a decision tree can be constructed by first forming each attribute into a node.

The branches that extend from each node are formed from the features that this

attribute could potentially be.

Figure 10.3: The three possible nodes, where Gen is genuine and For is Forgery

Using this selected sample, the three possibilities that the root node could be

are shown in Figure 10.3. The decision of which node will be the root is found

using the information gain method, and is described with greater detail later in

this section. The calculated information gain for these nodes is

gain(height) = 0.1117,

gain(density) = 0.0287,

gain(width) = 0.006.

From these values, the best attribute to choose as the root node is the height

attribute, as it produces the greatest information gain.

Having found the root node, the remaining nodes of the tree are then found, a
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process that is described next.

Decision Tree Construction

The construction of a decision tree is carried out in a recursive manner, where the

choice of nodes at each level is found using the same process to choose the root

node. The difference though, is that the information gain for each child node is

calculated using only the instances that came from the parent branch. For example,

if the root node was height, then there are four instances used to select the next

node for the short branch. This recursion is stopped once the data can no longer

be split. Using the three nodes from earlier, the decision tree that is constructed

is shown in Figure 10.4.

Figure 10.4: The built decision tree based on the selected sample data

Ideally, a decision tree will have leaf nodes that are all pure, that is, they contain

instances of only one class, an example of this can be seen for the tall branch for the

height node in Figure 10.4. Unfortunately, this is not always the case, as indicated

in Figure 10.4 by the leaves with a ‘?’. These missing classifications are primarily

caused by missing values, which may prevent an instance from being classified.
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There is also the possibility of multiple instances having the same features, yet

being from different classes. Solutions for both of these situations exist, but their

scope is outside of this discussion; Witten and Frank (2005) outline this with more

detail.

Information Gain

Determining which node should be chosen for each level of the decision tree is

carried out using the information gain method (Witten and Frank, 2005), where

information gain evaluates the purity of the node in being able to provide infor-

mation that will allow an unknown signature to be classified. This measure of

expected information conforms to two initial premises:

1. If the frequency of either class is zero, the information value is zero.

2. If the frequency of both classes is equal, the information value is at a maximum.

The way in which the information gain is calculated for an individual leaf is

shown by Equation 10.4, where a and b are the frequency of genuine and forgery

classes at the leaf node respectively. Generally the information gain is calculated

in base 2, with the resulting value being in fractions of bits, but for the sake of

simplification, base 10 will be used.

info([a, b]) = − a

a + b
× log

a

a + b
− b

a + b
× log

a

a + b
(10.4)

Using the height attribute from Figure 10.3 as an example, the frequency of

each class for the leaf nodes is [1,3], [2,1] and [3,0] for the short, medium and tall

features respectively. The information gain that each leaf node provides is shown

in Figure 10.5.
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info([1,3]) = −1
4 × log 1

4 −
3
4 × log 3

4 = 0.2442,

info([2,1]) = −2
3 × log 2

3 −
1
3 × log 1

3 = 0.2764,

info([3,0]) = 0.

Figure 10.5: Information gain provided by each leaf node for the height attribute

Having calculated the information gain for each leaf, the average information

gain that the attribute node provides towards the classification is found by Equation

10.5. This equation is indicative of a two branch node, but can have as many

branches as necessary. The variable c is the total number of instances.

info([a1, b1],[a2, b2]) =
a1 + b1

c
× info([a1, b1]) +

a2 + b2

c
× info([a2, b2]) (10.5)

Following on from the previous example, the height node consists of 10 in-

stances, with four of these going to the short feature, while the other two branches

have three each. Using these values, the average information gain that the height

node achieves is shown in Figure 10.6.

info([1,3],[2,1],[3,0]) = 4
10 × 0.2442 + 3

10 × 0.2764 + 3
10 × 0 = 0.1806.

Figure 10.6: Average information gain for the height features

Before the gain provided by this node can be calculated, the total informa-

tion value of the selected sample needs to be determined, so seeing as the sample

comprised of six genuine and four forgery signatures, the information gain for the

sample is info([6,4]) = 0.2923. From this, the information gain of the height node

is shown in Figure 10.7.

gain(height) = info([6,4]) - info([1,3],[2,1],[3,0]) = 0.2923 - 0.1806 = 0.1117.

Figure 10.7: Information gain for the height node

This process of calculating the information gain is then repeated for each of the

other attributes, with the attribute that has the most information gain always
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being the one to split on.

Random Forests

Using only one tree for classification is ineffective, as each tree is constructed from

a random subset of attributes taken from instances which have been randomly

selected from a training dataset. This method of attribute selection causes each

node in a tree to be split based on suboptimal criterion (Topi et al., 2005; Witten

and Frank, 2005). However, if many trees are grown using this process, each tree

will contributes a small amount of detail about each class as a whole, improving

classification. For an unknown instance, this is achieved by having each tree in the

forest vote as to which class the instance should belong. The mode of these votes

is used to determine what the final classification should be.

10.2.3 Support Vector Machines

The support vector machine (SVM) is a linear classifier that when given a set of

training data that has N attributes will construct an N − 1-dimensional maximum

margin hyperplane that optimally separates this data. This optimal hyperplane

location is found by first constructing a boundary that passes through the instances

that form the tightest enclosing convex polygon, with the instances that are the

closest to the opposing class boundary being called support vectors. Both classes

will have at least one support vector each, though often there will be more. It

is on the section of boundary defined by these support vectors that the shortest

line between the two classes will lie. By perpendicularly bisecting this line, the

hyperplane will maximise the margin between the two classes. This is seen in

Figure 10.8, where the shortest distance between the two boundaries is indicated

with a dashed line.
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Figure 10.8: A hyperplane splitting two classes in the input space

Often though, the input space of the instances will not be ideal for constructing

a hyperplane, due to the fashion in which they are situated within the input space.

An example of this situation can be seen in Figure 10.9.

Figure 10.9: Two classes in the input space that a hyperplane cannot separate

In the cases where a hyperplane cannot split the data, the instances in the

input space are mapped to a different feature space that allows the two classes to

be linearly separated. This mapping is carried out using mathematical functions

known as kernels, such as the radial basis function (RBF) and the sigmoid kernel.

The mapping of these instances to a new feature space requires the solution to a

very large quadratic programming (QP) optimisation problem, which these kernels

can solve. The manner in which these kernels solve the QP problem is outside the

scope of discussion here, though more information can be found in (Witten and

Frank, 2005; Platt, 1999).



Chapter 11

Signature Datasets

A signature dataset is a collection of signatures containing both genuine and forg-

eries for a range of different people. Having both genuine and forgeries allows for

algorithms to be tested for the purpose of determine whether they can correctly

classify the signature class. Using the same database allows for different algorithms

to be tested against each other, so that from this, the most effective algorithm can

be determined by comparing the produced classification accuracies. For off-line

signature verification there is a limited number of datasets available, the result of

this is that for the evaluation experiments, only two datasets could be obtained,

with these being CEDAR and GPDS.

11.1 CEDAR

The Center of Excellence for Document Analysis and Recognition (CEDAR) signa-

ture dataset1 (Kalera et al., 2004) is a commonly used dataset for off-line signature

verification. The CEDAR dataset consists of 55 signature sets, with each set being

composed by one writer. Each writer provided 24 samples of their signature, where

these samples constitute the genuine portion of the dataset. The forgeries for this

dataset were obtained by asking arbitary people to skillfully forge the signatures

of the previously mentioned writers. In this fashion, 24 forgery samples were col-

lected per writer from about 20 skillful forgers. In total, this dataset contains 2,640

1The CEDAR dataset can be found at http://www.cedar.buffalo.edu/NIJ/publications.html
(December 2008)
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signatures, built from 1,320 genuine signatures and 1,320 forgeries, which are of

the skilled variety (Section 1.5). The writers of both the genuine and forgery sig-

natures were asked to sign in a predefined space measuring 2×2 inches. The input

signatures were scanned at 300 dpi in 8-bit grey scale (which produces 256 shades

of grey) and were stored in the Portable Network Graphics (PNG) format. Figure

11.1 and 11.2 show 10 examples for both the genuine and forgery signatures for

one writer respectively. Figure 11.3 shows an example of each signatures in their

binarised state.

Figure 11.1: CEDAR genuine samples for one writer

Figure 11.2: CEDAR forgery samples for the same writer in Figure 11.2
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Figure 11.3: Sample of each signature in the CEDAR dataset
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11.2 GDPS

The Grupo de Procesado Digital de Senales (GPDS) signature dataset2 is another

dataset that has been used in literature (Martinez et al., 2004; Armand et al., 2006).

This dataset consists of 39 signature sets, where each set has been composed by

one writer, who provided 24 samples of their signature for the genuine component

of the dataset. The forgeries were written by three forgers, each of whom were

allowed to practise the signature for as long as they wish, with these forgers then

imitated five genuine signatures three times. This produced 30 skilled forgeries for

each set, which came from 10 forgers. In total, the GPDS dataset contains 2,106

signatures, which is built from 936 genuine signatures and 1170 forgeries. At the

time this dataset was obtained, only 39 signature sets were available, since then,

it has grown to have 300 signature sets. For testing, only the original 39 sets will

be used. Figure 11.4 and 11.5 show 10 examples of both the genuine and forgery

signatures for one writer respectively. Figure 11.6 shows examples of signatures

from this dataset in their unmodified state.

Figure 11.4: GPDS genuine samples for one writer

Figure 11.5: GPDS forgery samples for the same writer in Figure 11.4

2The GPDS database can be found at http://www.gpds.ulpgc.es/download/index.htm (April
2008)
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Figure 11.6: Sample of each signature in the GPDS dataset
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Chapter 12

Evaluation: Preprocessing

When classifying signatures, there are a variety of preprocessing techniques that can

be applied to each signature image before features are extracted. This chapter will

evaluate each preprocessing technique described in Chapter 3, and will determine

the impact that they have on classification accuracy. This evaluation of these

techniques is carried out with feature extraction and classification remaining fixed,

with only the preprocessing techniques being varied.

12.1 Experiment Design

The evaluation of a preprocessing technique begins by first applying it to the entire

signature dataset. Having carried this out, each signature is then cropped so that

there is no excess padding. The other parameters that influence the classification

will remain fixed, ensuring that the accuracy is fairly compared between prepro-

cessing techniques. The progression from the first experiment to each consecutive

one will utilise the most effective methods based on the achieved results, with the

goal of finding the most advantageous combination of parameters.

The process that is carried out for each experiment begins with taking signa-

tures (the number is dependent on the dataset) from a particular set to use as

training. Following this, a single image feature is then extracted from each train-

ing and testing signature in the set. For the preprocessing evaluation four features

will be tested, these features are mass, gradient with 18 segments, standard local
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binary patterns with a radius of 1, using 8 points and concavity features with di-

agonal opening concavities. The choice of these features is due to their similarity

with the remaining features, which should indicate the affect that preprocessing

techniques have on image features in general. In relation to feature extraction, an

equimass grid of 8×4 in size was chosen without the use of spatial pyramids as this

combination was used by Chen and Srihari (2006). Having extracted the chosen

image feature, it is then represented by a normalised frequency histogram.

The conversion of the frequency histogram to a binary feature vector is carried

out using the adaptive feature thesholding method described in Section 8.2. Each

signature is then classified using one class classification with a manual offset, while

the GSC distance measure is used as the similarity score (Section 9.3).

This experiment process is carried out on each CEDAR signature set by ran-

domly choosing 16 signatures for training, while the remaining 8 genuine and 24

forgery signatures will be used for testing. These experiments are then repeated 10

times each to determine a reliable estimate of the accuracy resulting from one of

the preprocessing techniques being tested. Each accuracy is found as the middle

point between the genuine and forgery classification accuracies and is calculated

by Equation 12.1, where FAR is the false acceptance rate and FRR is the false

rejection rate.

accuracy =
(1− FAR) + (1− FRR)

2
(12.1)

The GPDS dataset will not be tested in the preprocessing evaluation, as it is

already in a binarised format with each signature having been correctly orientated.

12.2 Image Binarisation

The manner in which a signature is binarised from grey-scale to binary can effect

the signature structure. Because of this, four different binarisation methods will

be tested to determine how they impact the classification accuracy. The methods

that will be tested are fixed, iterative, Otsu and local iterative, each of which are
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described in Section 3.1. The fixed threshold is being used as a baseline and will

have its threshold set at 220. The choice of 220 is that from observation, it tends

to binarise the CEDAR dataset reasonable well.

12.2.1 Results

The testing of these binarisation methods followed the experimental design as de-

scribed in Section 12.1. From the results in both Table 12.1 and the corresponding

graph in Figure 12.1, there is no distinct binarisation method that consistently

achieves greater results for each image feature. The fixed method was the most

effective for both the mass and gradient features, while Otsu and local iterative

produced the best results for the LBP and concavity features respectively. The

iterative method did not produce the best results for any of the image features,

but tended to have a decent accuracy for each feature.

Method Mass Gradient LBP Concavities Average

Fixed 75.28 ± 0.71 88.34 ± 0.87 73.96 ± 1.11 85.48 ± 1.01 80.77

Iterative 72.28 ± 1.00 87.57 ± 0.57 75.80 ± 0.68 85.39 ± 0.86 80.26

Otsu 72.61 ± 0.92 88.12 ± 0.57 75.98 ± 0.94 85.86 ± 0.90 80.64

Local Iterative 71.33 ± 0.70 84.79 ± 0.76 75.31 ± 1.24 85.91 ± 0.86 79.33

Table 12.1: Image binarisation results

The accuracy achieved by each feature has a tendency of varying based on

different binarisation methods. For example, using mass with fixed binarisation

has a 2.67% lead over the next best method, while using fixed with LBPs had

the opposite effect, with it being 1.35% lower than the next highest result. If the

accuracy from each image feature is averaged, then the fixed method achieved the

highest result at 80.77%, though this is only marginally higher than the other three

methods, with Otsu and iterative placing second and third.
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Figure 12.1: Graphed results for image binarisation

From the results provided here, it is shown that the binarisation methods tend

to vary based on the image features, with no method being consistently better.

Because of this, each method will be utilised and evaluated under signature re-

construction, as just using the thresholded image is not enough to determine their

impact upon the classification accuracy.

12.3 Signature Reconstruction

Often when the signature is converted from grey scale to binary, sections of the

signature will be incorrectly binarised. To deal with this, four signature recon-

struction techniques were investigated. These four techniques are the square and

plus shaped median filters (SSF and PSF respectively), dilate and erode (DE), and

region growing (RG) each of which are described in Chapter 3. These techniques

will be applied to the four binarisation methods used previously. The purpose of

this is to determine both the effectiveness of each reconstruction method as well as

the ability of the binarisation methods. From these reconstruction and binarisation

methods, the four combinations that fair the best will be tested in conjunction with

rotation normalisation. In regards to this, fixed binarisation will not be included,

as in practise, it will only be effective for signatures that are always captured in the

same manner, as a slight shift in image brightness will result in the image being

incorrectly binarised.
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12.3.1 Results

Following the experimental design of section 12.1, signature reconstruction was

tested using the combination of each binarisation method with the four reconstruc-

tion methods, creating 16 variations of the CEDAR set that will be tested initially.

The results of these 16 experiments are shown in both Table 12.2 and the graphs

in Figure 12.2. Each accuracy is the average of the four image features that were

tested. Appendix A shows the full results in Tables 16.1, 16.2, 16.3 and 16.4.

Fixed Iterative Otsu Local Iterative Average

SSF 83.33 82.98 81.19 81.10 82.15

PSF 82.88 82.80 81.01 82.72 82.35

DE 82.71 82.94 82.43 80.27 82.09

RG 80.96 80.81 80.70 77.87 80.09

Average 82.47 82.38 81.33 80.49

Table 12.2: Results from reconstruction and binarisation combination

These results show that on average the plus shaped filter produces the best

accuracy, though in general, the square shaped filter performs better, except in

regards to local iterative. Dilate and erode also fair exceptionally well in regards

to SSF and PSF, though region growing on the other hand is below dilate and

erode by 2% at 80.09%. In terms of the binarisation capability, the fixed method

surprisingly achieved an accuracy that is greater than the other three methods.

The validity of the fixed method though is undetermined, as in practise there is

no way of guaranteeing that each signature will be captured in the same manner,

as factors such as brightness may change, causing the signature to be binarised

incorrectly. From the other three binarisation methods, iterative faired the best,

followed by Otsu and then local iterative. There is approximately a 1% difference

between each of these results.
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(a) Square shaped median filter (b) Plus shaped median filter

(c) Dilate and erode (d) Region growing

Figure 12.2: Graphed results for the binarisation and reconstruction techniques

Local iterative so far has produced results that are lower than expected. This

is possibly because local iteration tends to produce noise around the signature,

adversely affecting the ability of DE and RG. To combat this, the two median

filters are tested in combination with either DE or RG are tested. The results of

testing these methods together are shown in Table 12.3 and in Figure 12.3. The

full result table is available under Appendix A in Table 16.5.

Dilate and Erode Region Growing

Square Shaped Filter 82.54 81.00

Plus Shaped Filter 82.64 81.18

Table 12.3: Results from local iterative using dual reconstruction

By applying dual reconstruction to local iterative, the results are improved in

regards to DE and RG, but in general, they do not produce any improvement over
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just SSF and PSF.

Figure 12.3: Local iterative using dual techniques

From the produced results, the reconstruction and binarisation techniques are

selected based on the average ability of the four features. Using this average helps

ensure that the chosen method is robust, instead of performing well for a single

feature. When the average ability is ranked in order from the highest to lowest,

the most effective combination can be found. Table 12.4 shows the top six combi-

nations, with the full list being available in Table 16.6 found in Appendix A.

Reconstruction Threshold Mass Gradient LBP Concavities Average

Square Fixed 78.65 87.70 81.47 85.49 83.33

Square Iterative 75.95 87.82 82.65 85.50 82.98

DE Iterative 75.62 87.58 83.23 85.34 82.94

Plus Fixed 77.96 88.29 79.54 85.73 82.88

Plus Iterative 76.63 88.14 80.61 85.81 82.80

Plus Local Iterative 76.57 87.83 80.24 86.25 82.72

Table 12.4: Top results from reconstruction and binarisation combination

Because the fixed method is only a baseline, it will not be considered, therefore,

the remaining four methods are found to be the best combination of preprocessing

techniques, and as such will be test in the following experiments. These methods

are iterative binarisation with each reconstruction type except region growing, and

local iterative with the plus shaped median filter.
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12.4 Rotation Normalisation

When signatures are written on paper, they be written at different orientations.

The result of this, is that when features are extracted from each signature, their

values may differ substantially, unless the features are rotation invariant. Rotation

normalisation is designed to re-orientate each signature in a set, so that they each

have the same alignment. The two tested methods are the axis of least inertia and

region rotation, with both being described in Section 3.3.

12.4.1 Results

Applying rotation normalisation to the four reconstruction methods will produced

eight additional variations to the CEDAR dataset. The effect that using rotation

normalisation can be seen in Table 12.5 and Figure 12.4. The full results from

these experiments can be found in Tables 16.7, 16.8, 16.9 and 16.10 in Appendix

A.

Iterative Local Iterative

Method SSF PSF DE SSF

Original 82.98 82.80 82.94 82.72

Least Inertia 80.33 80.22 80.66 76.62

Region Rotation 81.61 81.43 78.17 78.78

Table 12.5: Average rotation normalisation results

The two rotation normalisation methods, as shown in these results, do not in-

crease the classification accuracy under any of the tested circumstances. In general,

the unchanged or original dataset produces results that have an improvement of 1%

to 4% over the corresponding rotated datasets. In regards to their ability, region

rotation faired better than least inertia, though it does have the disadvantage of

being computationally more complex.
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(a) Iterative with square filter (b) Iterative with plus filter

(c) Iterative with dilate and erode (d) Local Iterative with plus filter

Figure 12.4: Graphed results for rotation normalisation

The reason why rotation normalisation had a drop in accuracy is hard to ex-

plain, as there are individual signature sets that benefit from this rotation. Es-

sentially, there are two possibilities, firstly, rotating of the signatures may damage

the underlying structure of a signature, making it more difficult to differentiate

from other signatures. The second is that the orientation of the signature could

be an attribute of how an individual writes, and as such, this attribute helps to

uniquely distinguish the genuine signatures in a set from the forgeries. Because of

this decrease in accuracy, rotation normalisation will not be applied to the CEDAR

dataset in subsequent experiments.
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Chapter 13

Evaluation: Feature Extraction

The extraction of features from each signature is a necessary step in the classi-

fication process, as features help to uniquely differentiated signatures from each

other. The disadvantage of many features though is that they do not provide any

spatial information in regards to where they were taken from within the image;

this is where region sampling and spatial pyramids should prove to be beneficial.

This chapter will evaluate the image features described in Chapter 4 as well as de-

termining the impact that region sampling and spatial pyramids have on the final

classification accuracy.

13.1 Experiment Design

The evaluation of the image features and the spatial techniques will be carried out

using the best preprocessing techniques found in the previous chapter. Following

on from the experiment design described in Section 12.1, the manner in which

each experiment is carried out will remain fixed, while only the image features will

vary. To reiterate this experimental design, each consecutive experiment will utilise

the most effective parameters found from testing. Classification will be carried

out in the same manner as the preprocessing evaluation, with each feature being

represented as a normalised frequency histogram. The conversion of this frequency

histogram to a binary feature vector is carried out by adaptive feature thesholding

(Section 8.2). Each signature is then classified using one class classification with
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a manual offset, while the GSC distance measure (Section 9.3) is used for the

similarity score. This experiment process will be carried out on each CEDAR and

GPDS signature set, where CEDAR will use 16 randomly chosen signatures for

training and GPDS will use 12. The remaining signatures for each particular set

will be used for testing. The choice of 16 training signatures for CEDAR is to make

the results comparable to the work by Chen and Srihari (2006); Srihari et al. (2004)

and Chen and Srihari (2005). As for GPDS, the choice of 12 training signatures is

to make the results comparable to Tian et al. (2007). This experiment process is

repeated 10 times to determine a reliable estimate of the accuracy.

13.2 Image Features

The experiments in this section will determine the effectiveness of six different

types of image features, with these being, mass, gradient, local binary patterns,

concavities, structural rules and long strokes. The gradient feature will be tested

using 12 and 18 segments. The choice of 12 segments is common in literature (Fa-

vata and Srikantan, 1996; Kalera et al., 2004; Srihari et al., 2004), but 18 segments

have also been used Srikantan et al. (1996). Local binary patterns will be tested

with all three variations; these being, standard, rotation invariant and uniform.

The concavity feature will be tested with and without concavities opening in the

diagonal directions. In total, ten features will be tested.

13.2.1 CEDAR Results

Testing of these image features was carried out using the experimental design de-

scribed in section 13.1. CEDAR will be tested using the four binarisation and

reconstruction combinations that were selected in Section 12.3.1. The results that

were produced using these combinations can be seen in both Table 13.1 and Figure

13.1.
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Iterative Iterative Iterative Local Iterative

Feature SSF PSF DE PSF Average

Mass 76.22 ± 0.76 76.67 ± 1.50 74.39 ± 1.05 76.00 ± 1.24 75.82

Gradient (12) 87.57 ± 0.72 87.28 ± 0.64 86.38 ± 0.82 87.80 ± 0.83 87.26

Gradient (18) 88.14 ± 0.90 88.28 ± 0.46 87.40 ± 0.68 88.20 ± 0.89 88.01

Strokes 81.68 ± 0.66 81.22 ± 0.72 85.29 ± 0.55 81.29 ± 0.68 82.37

Structural 86.06 ± 0.69 85.89 ± 0.91 84.94 ± 0.99 85.77 ± 0.72 85.67

LBP (Standard) 82.29 ± 0.79 80.09 ± 0.83 83.13 ± 1.00 79.91 ± 0.65 81.36

LBP (Invariant) 76.75 ± 1.20 73.39 ± 0.85 75.48 ± 0.43 73.35 ± 1.24 74.74

LBP (Uniform) 80.09 ± 0.80 79.80 ± 0.56 76.78 ± 1.09 79.87 ± 0.86 79.14

Concavity (7) 85.16 ± 0.64 85.41 ± 0.82 84.82 ± 0.96 84.95 ± 0.62 85.09

Concavity (11) 85.49 ± 0.63 85.79 ± 0.79 85.42 ± 0.73 85.58 ± 0.54 85.57

Average 82.95 82.38 82.40 82.27

Table 13.1: CEDAR results when tested with different image features

Each image feature that was tested utilises different aspects of the signature

allowing them to be differentiated from one another, with the classification ability

being dependent upon these aspects. From the results that are shown, there is a

large variation of 14% between the lowest ranked feature (LBP Invariant) and the

highest ranked (Gradient with 18 segments). From this ranking the four features

that are the most effective for binary signatures in the CEDAR dataset can be

seen, with Gradient (18) achieving an accuracy of 88.01%, followed by Concavity

(11), Structural and Strokes. These four features will be used for the following

experiments that will be performed on the CEDAR dataset. Gradient (12) and

Concavity (7) are not included as they are slight variations on Gradient (18) and

Concavity (11) respectively. Gradient (12) assigns each gradient direction to one

of 12 segments, while Concavity (7) does not include diagonal open concavities. Of

the four binarisation techniques, the combination of iterative and square shaped

median filter produced the highest result, and because of this, iterative SSF will

be used for all subsequent testing that is performed on the CEDAR dataset.
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(a) Iterative with SSF (b) Iterative with PSF

(c) Iterative with DE (d) Local iterative with PSF

Figure 13.1: Binarisation and reconstruction for the CEDAR dataset

13.2.2 GPDS Results

Testing of the GPDS dataset was followed in the same fashion as CEDAR, though

GPDS was tested in its original form instead of having any preprocessing methods

applied. The ability of each image feature in regards to the GPDS dataset is shown

in Table 13.2 and Figure 13.2.
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Feature GPDS

Mass 80.04 ± 1.40

Gradient (12) 82.20 ± 0.58

Gradient (18) 82.44 ± 0.48

Strokes 82.44 ± 0.54

Structural 81.92 ± 0.64

LBP (Standard) 81.83 ± 1.07

LBP (Invariant) 80.96 ± 1.13

LBP (Uniform) 84.18 ± 1.02

Concavity (7) 86.01 ± 0.87

Concavity (11) 88.59 ± 0.55

Average 83.11

Table 13.2: GPDS feature results

In relation to the CEDAR dataset, each image feature tends to be ranked the

same in distinguishing ability, though there are some variations. Concavity features

replace gradient as the highest ranked, with LBP uniform also achieving a greater

result than the gradient feature. The variability has diminished between the highest

(Concavity 11) and lowest (Mass) ranked features, with this being approximately

8%. It is uncertain why there was a change in the feature ranking, but was not

investigated due to there being a variety of possible causes.

Figure 13.2: Comparison of each image feature for the GPDS dataset

From these features, Concavity (11), Gradient (18), Strokes and Structural are

the four unique features that were chosen to be used for the remaining experiments.

LBP uniform though achieved approximately 2% higher than gradient (18) making
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it the better choice. The decision to use gradient over LBP uniform is to keep the

features the same between the datasets, and also due to the GSC ensemble utilising

the gradient direction instead of LBP.

13.3 Region Sampling

Region sampling was used in conjunction with feature extraction allowing spatial

information to be associated with each feature. There are several methods of

applying region sampling to an image, with these being the uniform, equimass and

the centre of mass (COM) methods, each of which are described in Chapter 5. As

well as this, ring region sampling is introduced. This alternative form of regioning

is designed to allow the spatial properties to be rotation invariant.

13.3.1 CEDAR Results

The CEDAR dataset was tested with the two different region sizes, 8×4 and 4×4;

the choice of these sizes is due to both having been used in literature (Chen and

Srihari, 2006; Kalera et al., 2004). The first value corresponds to the number of

regions across, while the second is the number of regions down. The effect that

region sampling has on the accuracy is shown by contrasting it with the accuracy

produced when no spatial information is used. These results are shown in Table 13.3

and Figure 13.3. The testing that was carried out also utilised spatial pyramids,

the results of which will be discussed in Section 13.4.

In general, the ability of uniform regioning is an improvement over not regioning,

with there being as much as a 2% increase without spatial pyramids. Both the

equimass and COM sampling techniques have almost a 10% increase over uniform,

automatically making it irrelevant for all future experiments. On average, equimass

has a slightly higher accuracy than COM for each of the tested region and pyramid

sizes. The grid size used also has an effect on the final result, with 8×4 generally

producing an increase of about 1% over 4×4 for the equimass and COM sampling

regions. Based on this, an equimass spatial pyramid using an 8×4 grid will be
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utilised for the remaining experiments.

Region P Size Gradient Structural Strokes Concavities Average

N.A. 1 1×1 79.09 ± 0.90 74.12 ± 1.06 66.16 ± 0.77 73.66 ± 0.87 73.26

Uniform 1 4×4 74.46 ± 1.01 74.09 ± 0.59 68.82 ± 0.86 73.42 ± 1.17 72.70

8×4 77.20 ± 0.76 75.93 ± 0.81 72.72 ± 0.72 77.19 ± 0.89 75.76

3 4×4 78.02 ± 0.79 77.34 ± 1.04 71.66 ± 0.97 76.57 ± 0.90 75.90

8×4 80.11 ± 1.12 78.68 ± 0.96 75.85 ± 1.23 79.57 ± 1.07 78.55

Equimass 1 4×4 87.38 ± 0.95 85.75 ± 1.13 78.95 ± 1.10 84.97 ± 0.76 84.26

8×4 87.48 ± 0.98 85.77 ± 0.85 81.83 ± 1.05 85.34 ± 0.99 85.11

3 4×4 87.93 ± 0.79 86.35 ± 0.96 81.03 ± 0.59 85.81 ± 1.03 85.28

8×4 89.04 ± 0.56 87.00 ± 0.50 84.17 ± 0.79 86.48 ± 0.80 86.67

COM 1 4×4 87.41 ± 0.63 84.92 ± 0.87 80.47 ± 0.96 84.71 ± 0.83 84.38

8×4 88.79 ± 0.69 86.27 ± 0.65 81.18 ± 1.34 85.67 ± 0.94 85.48

3 4×4 87.94 ± 0.75 85.89 ± 0.59 81.60 ± 0.90 84.95 ± 0.79 85.10

8×4 88.91 ± 1.10 87.39 ± 0.61 83.41 ± 1.03 86.08 ± 1.10 86.45

Table 13.3: CEDAR region sampling results

An alternative method of region sampling is to use concentric circles instead of

a rectangular grid. The use of ring region sampling is described with greater detail

in Sections 5.1.2 and 5.2.2. For this method of sampling, the most ideal features

are rotation invariant LBPs, as this allows them to be unaffected by differently

orientated signatures. Therefore, in regards to this, LBP uniform will be tested,

as it performed significantly better than LBP invariant. The ability of ring region

sampling combined with LBP uniform can be seen in Table 13.4 and Figure 13.4,

where R is the number of regions and P is the number of levels in the spatial

pyramid.

Ring Region R8 P4 R4 P3 R8 P1 Average

Uniform 77.06 ± 1.04 76.92 ± 1.20 75.15 ± 0.93 76.38

Equimass 77.78 ± 0.70 74.92 ± 1.48 76.76 ± 0.95 76.49

Table 13.4: Results for ring region sampling

These results show there is an insignificant difference between the uniform ring

and equimass ring techniques. Varying the number of regions or pyramid levels
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(a) Gradient (b) Structural

(c) Stroke (d) Concavity

Figure 13.3: CEDAR results for variations in regioning and spatial pyramid size in
relation to four image features. The abbreviations 8× 4 stands for 8 regions across
4 regions down and P3 stands for a pyramid with 3 levels. P1 indicates that spatial
pyramids were not used

does impact the produced results, but in general, this variations is in the range

of 1% to 2%. From these results, it can be ascertained that there is no benefit of

using the ring regioning techniques over the rectangular grid based techniques.

13.3.2 GPDS Results

Testing of the GPDS dataset was carried out in the same fashion as the CEDAR.

Based on the CEDAR results, uniform sampling will not be tested. The equimass

and COM techniques will be contrasted against the achieved classification accuracy

when no region sampling is used. The results from this testing can be seen in Table

13.5 or alternatively in Figure 13.5.
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Figure 13.4: Graphed results for ring region sampling

Region P Size Gradient Structural Strokes Concavities Average

N.A. 1 1×1 77.00 ± 1.43 72.08 ± 0.76 85.04 ± 1.19 77.75 ± 1.28 77.97

Equimass 1 4×4 84.19 ± 1.07 82.71 ± 0.68 85.90 ± 1.08 88.99 ± 0.71 85.45

8×4 82.17 ± 0.91 81.79 ± 0.87 82.72 ± 0.98 89.16 ± 0.59 83.96

3 4×4 85.55 ± 0.73 83.94 ± 0.96 89.78 ± 0.78 89.97 ± 0.75 87.31

8×4 84.92 ± 1.11 83.63 ± 0.99 88.49 ± 0.62 90.66 ± 0.61 86.93

COM 1 4×4 83.86 ± 0.52 82.50 ± 0.84 85.72 ± 0.75 88.39 ± 0.91 85.12

8×4 80.46 ± 0.73 80.99 ± 0.79 81.87 ± 0.74 89.50 ± 0.82 83.21

3 4×4 85.04 ± 1.03 84.00 ± 0.82 88.99 ± 0.62 89.58 ± 0.77 86.90

8×4 83.79 ± 1.09 83.78 ± 0.73 87.69 ± 0.70 90.43 ± 0.66 86.42

Table 13.5: GPDS region sampling results

These results show that using region sampling has a significant advantage when

classifying signatures, with a substantial increase of approximately 10%. Following

the same trend as CEDAR, equimass on average has a marginal advantage over

COM, though this advantage is generally under 1%. The accuracy also changes

in regards to the grid size, with 4×4 having a slight advantage over 8×4. The

reason for this may be due to the GPDS dataset being smaller in size, meaning

that the regions are too small for 8×4. The concavity feature contrasts with the

other features as an 8×4 grid improves the results. Because concavity achieves the

highest classification, the 8×4 grid will be utilised rather than the 4×4 grid, even

though on average 4×4 is more effective. The secondary reason for this choice, is

that it keeps the parameters between the two datasets equivalent.
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(a) Gradient (b) Structural

(c) Stroke (d) Concavity

Figure 13.5: GPDS results for variations in regioning and spatial pyramid size in
relation to four image features. The abbreviations 8× 4 stands for 8 regions across
4 regions down and P3 stands for a pyramid with 3 levels. P1 indicates that spatial
pyramids were not used

13.4 Spatial Pyramids

The previous section showed that region sampling increased the accuracy signif-

icantly. Spatial pyramids build upon region sampling by extracting the image

features at different granularities, Section 6 describes this in greater detail. The

experiments that are described here follow on from those in Section 5, with three

level pyramids being contrasted against. In relation to this, it will be determined

whether level weightings improve the classification.

13.4.1 CEDAR Results

The manner in which a spatial pyramid is formed is based on the initial grid size of

the region sampling technique, with the number of horizontal and vertical regions
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halving at each successive level. This means that a grid size of 4×4 will result in a

different spacial pyramid than 8×4, as there will be a differing number of regions at

each corresponding level. The effect that spatial pyramids has on the classification

accuracy was shown previously in Table 13.3 and Figure 13.3 under Section 13.3.1.

These results are presented again in Table 13.6 in a reduced form.

Region P Size Feature Average

Equimass 1 4×4 84.26

8×4 85.11

3 4×4 85.28

8×4 86.67

COM 1 4×4 84.38

8×4 85.48

3 4×4 85.10

8×4 86.45

Table 13.6: CEDAR spatial pyramid results

The improvement that is gained from using spatial pyramids can be seen in

these results, with an increase of approximately 1% being achieved in all cases.

The use of an 8×4 grid is also shown to be more effective than 4×4 in regards to

a three level pyramid. This is most likely the result of the signature being broken

up into finer regions, though the effect of using 8×4 is that the global level has two

regions instead of only one.

Each level in its current state has a weighting based on the number of features

that can be extracted from it, where these weightings influence the final accuracy.

The testing carried out here will determine whether two alternative schemes will

be more effective. The first scheme is the standard weighting of a spatial pyramid

(Lazebnik et al., 2006), which at its finest level will be assigned half of the overall

weighting, while the remain two levels account for a quarter each. The second

scheme tested gave each level an equal weighting. The results for both of these are

shown in Table 13.7 and Figure 13.6.
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Weighting Gradient Structural Strokes Concavities Average

Unmodified 89.05 ± 0.73 87.29 ± 0.39 84.28 ± 0.86 86.51 ± 0.77 86.78

( 1
2 , 1

4 , 1
4 ) 88.62 ± 0.37 87.20 ± 0.75 81.67 ± 0.61 85.64 ± 0.65 85.78

( 1
3 , 1

3 , 1
3 ) 87.66 ± 0.75 86.01 ± 0.60 79.02 ± 0.71 84.79 ± 1.35 84.37

Table 13.7: CEDAR results for different weighting schemes

The results show that the unmodified scheme gives the best results, with at

least a 1% gain over the other two schemes that were tried. It is possible that

an alternative weighting may prove to be more advantageous, but based on these

results, the unmodified scheme will be utilised.

Figure 13.6: Graphed results for the CEDAR weighting schemes

13.4.2 GPDS Results

The testing of spatial pyramids in regards to GPDS was carried out in the same

manner as CEDAR. The effect that they have on the accuracy was shown previously

in Table 13.5 and Figure 13.5 under Section 13.3.2. Table 13.8 presents these results

again in a reduced form.
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Region P Size Feature Average

Equimass 1 4×4 85.45

8×4 83.96

3 4×4 87.31

8×4 86.93

COM 1 4×4 85.12

8×4 83.21

3 4×4 86.90

8×4 86.42

Table 13.8: GPDS spatial pyramid results

Like CEDAR, the use of spatial pyramids with GPDS improved the achieved

results by up to 3% in all cases, and dropped the difference between the 8×4 and

4×4 grids from 2% down to 0.5%. Due to the added benefit of spatial pyramids,

they will be utilised for all following experiments.

The weighting schemes that were tested on CEDAR were also tested on GPDS,

with three weighting schemes being tried. The produced results can be seen in

either Table 13.9 or Figure 13.7.

Weighting Gradient Structural Strokes Concavities Average

Unmodified 85.22 ± 0.85 84.21 ± 0.74 88.18 ± 0.85 90.55 ± 0.58 87.04

( 1
2 , 1

4 , 1
4 ) 85.58 ± 0.57 83.44 ± 0.88 89.66 ± 0.52 89.26 ± 0.78 86.99

( 1
3 , 1

3 , 1
3 ) 84.79 ± 0.88 82.65 ± 0.79 88.87 ± 0.94 88.59 ± 0.76 86.23

Table 13.9: GPDS results for different weighting schemes

The GPDS dataset differs from CEDAR as both the gradient and stroke features

have an increase in accuracy when the (1
2 ,

1
4 ,

1
4) weighting scheme was used. On

average, the unmodified scheme has a very slight advantage over the other two,

though this advantage is less than 1%. Because the unmodified scheme produces

the highest results, it will be used exclusively for the remaining experiments.

From these weighting experiments, as well as the other experiments that were

conducted throughout this chapter, conclusions can be drawn to which combination

of feature extraction techniques worked the best. For the features, the four with
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Figure 13.7: Graphed results for the GPDS weighting schemes

the highest results were chosen, with these being Gradient, Structural, Strokes

and Concavities. The combination of equimass regioning and unweighted spatial

pyramids using an 8×4 grid were found to be the best method for extracting

features whilst providing spatial information and as such will be utilised for the

remaining experiments.



Chapter 14

Evaluation: Classification

In the previous evaluation chapters, the ability of preprocessing and feature ex-

traction techniques were established, with each consecutive experiment building on

the previous. From the preprocessing experiments it was concluded that the com-

bination of iterative binarisation and square shaped median filters were the best

choice. The feature extraction experiments found that the most effective features

were gradient, structural, strokes and concavities when used in combination with

an 8×4 equimass grid and a three level spatial pyramid. This chapter will continue

this process by determining the ability of the classifiers described in Chapters 9

and 10, including the impact that other variables have on the accuracy.

14.1 Experiment Design

Having carried out the experiments to find the most effective preprocessing and

feature extraction techniques, the final step is to determine which classification

methods allow for the best differentiation between the genuine and forgery signa-

tures. This is determined by continuing the same methodology as the two previous

evaluation chapters. Both the preprocessing and feature extraction techniques will

remain fixed, while the classifiers are varied. The preprocessing and feature ex-

traction techniques used are those that produced the best results previously. Each

experiment will then be repeated 10 times for the purpose of determining how much

the overall accuracy of the dataset fluctuates.

117
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14.2 Comparison of Feature Thresholds

The conversion of a frequency vector to a binary feature vector requires each ele-

ment to be thresholded to determine whether it will be a 0 or a 1. The are many

ways of calculating this threshold, both manual and automatic. Chapter 8 de-

scribes a variety of these. This section will look at the ability of Adaptive Feature

Thresholding (AFT) in relation to the other automatic thresholding techniques to

determine its effectiveness. The thresholds come in two varieties, single threshold or

an upper and lower threshold. The single threshold techniques consist of the mean

and the mean minus the standard deviation (Mean-Stdev). The upper and lower

thresholds will be tested with the standard deviation (Stdev), the sample standard

deviation (Sample Stdev) and AFT, each of which are described in Section 8.2.

14.2.1 CEDAR Results

The impact that the five feature thresholding techniques have on CEDAR is ex-

pected to vary quite substantially, especially between the single and dual thresholds.

The results that are produced can be seen in Table 14.1 as well as Figure 14.1.

Threshold Gradient Structural Strokes Concavities Average

Mean 73.84 ± 0.66 76.64 ± 0.80 64.22 ± 1.05 76.83 ± 1.21 72.88

Mean-Stdev 83.32 ± 1.22 84.56 ± 0.92 68.58 ± 1.18 82.25 ± 0.79 79.68

Stdev 87.96 ± 0.72 86.30 ± 0.97 84.26 ± 0.62 85.55 ± 0.84 86.02

Sample Stdev 88.58 ± 1.06 86.09 ± 0.86 84.62 ± 0.86 85.36 ± 0.98 86.16

AFT 89.13 ± 0.52 87.02 ± 0.86 84.48 ± 0.77 86.22 ± 0.69 86.71

Table 14.1: CEDAR results for feature thresholding

Out of the five thresholds, the mean produced the lowest average, this is because

the mean is found based on the training signatures and as such will tend to classify

half of the genuine features incorrectly. By offsetting the threshold by the standard

deviation improves this classification by almost 7%. When the upper threshold is

also added via the standard deviation, there is another 7% increase to 86.02%. The

use of the sample standard deviation only has a marginal increase of 0.14%, while
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AFT has approximately a 0.5% improvement over this.

Figure 14.1: Graphed CEDAR results for feature thresholding

From these results, it is shown that AFT consistently achieves the highest

accuracy for each of the features, except for strokes, where the sample standard

deviation approach is higher by 0.14%. Due to the ability of AFT, it will be used

for all remaining experiments.

14.2.2 GPDS Results

The GPDS dataset was also tested using these five feature thesholds, with the

experiments being carried out in the same manner as CEDAR. The results that

GPDS achieves can be seen in both Table 14.2 and Figure 14.2.

Threshold Gradient Structural Strokes Concavities Average

Mean 66.34 ± 1.65 62.83 ± 1.15 89.04 ± 0.99 82.90 ± 0.99 75.28

Mean-Stdev 76.33 ± 0.52 74.07 ± 0.97 91.36 ± 0.45 87.16 ± 1.02 82.23

Stdev 84.03 ± 1.01 84.40 ± 0.64 86.04 ± 0.76 90.78 ± 0.70 86.31

Sample Stdev 84.52 ± 0.61 84.57 ± 0.81 86.38 ± 0.85 91.19 ± 0.67 86.67

AFT 84.88 ± 0.76 84.54 ± 0.81 88.57 ± 1.02 90.76 ± 0.62 87.19

Table 14.2: GPDS results for feature thresholding

From these results it can be seen that each threshold follows a similar trend

as CEDAR, though there are some differences that occur. The first is that the

stroke feature set achieves an incredible score of 91.36%, which surprisingly is with

a single threshold. It is not clear why this score is so high, but in general the use of

a single threshold makes the results susceptible to accepting forgeries as genuine.
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AFT once again had the highest average classification, but the sample standard

deviation did better for both the structural and concavity features.

Figure 14.2: Graphed GPDS results for feature thresholding

Unlike CEDAR, AFT was not the highest for the majority of the features in

the GPDS dataset, though like CEDAR, it did produced the best average accuracy.

Because of this, AFT will be used for the remaining experiments.

14.3 Training with Subsets

Training a signature classifier begins with the random selection of signatures from

the genuine set. The use of bagging attempts to improve the training by using

randomly selected subsets of training signatures. This section will determine the

effect that bagging has on the classification accuracy, where 100 randomly selected

subsets are taken with the purpose of alleviating the impact that outliers have

on the classification. Table 14.3 and Figure 14.3 show the results for the CEDAR

dataset, where four subset sizes are tested and compared against the results without

bagging.

Subset Size Gradient Structural Strokes Concavities Average

N.A. 89.08 ± 0.52 86.92 ± 0.63 84.22 ± 0.74 86.14 ± 0.57 86.59

8 89.23 ± 0.57 87.03 ± 1.13 84.39 ± 0.95 86.34 ± 0.78 86.75

10 89.26 ± 0.74 87.01 ± 0.95 85.05 ± 0.92 86.64 ± 0.83 86.99

12 89.13 ± 0.52 87.21 ± 0.65 84.41 ± 0.56 86.41 ± 0.79 86.79

14 89.06 ± 0.58 87.06 ± 0.70 84.82 ± 0.79 86.22 ± 1.10 86.79

Table 14.3: CEDAR results when subsets are used
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From these results it can be seen that the incorporation of training subsets

improves the classification accuracy. This average accuracy peaks when the subset

size is 10, though the structural feature had a 0.2% improvement over this when

the subset size was 12. The difference between the average ability when no subsets

are used and subsets of size 10 is 0.4%.

Figure 14.3: Graphed results from the CEDAR dataset when subsets are used

From the results that are shown, the use of subsets has a marginal increase

in accuracy, though on average, this increase is less than 0.5% in all cases. Even

though subsets increase the accuracy, they will not be utilised for the GPDS dataset

or the remaining experiments, as to minimise the computational time of the overall

approach.

14.4 Distance Measures

Once each signature has been converted into a binary feature vector, their similarity

with one another can be easily determined. There are a variety of ways in which

this similarity can be found, with four measures explored, GSC, Rogers-Tanamoto,

Russell-Rao and Sokal-Michener, each of which are described in Section 9.3.

14.4.1 CEDAR Results

The ability of each similarity measure was tested using the experimental design

described in Section 14.1. The results that were produced are shown in both Table

14.4 and Figure 14.4.
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Measure Gradient Structural Strokes Concavities Average

GSC 88.82 ± 0.59 87.32 ± 0.72 84.34 ± 0.87 86.41 ± 0.74 86.72

Rogers-Tanamoto 89.22 ± 0.68 87.02 ± 0.23 84.69 ± 0.87 85.48 ± 0.67 86.60

Russell-Rao 88.20 ± 0.74 86.96 ± 0.93 84.14 ± 0.91 86.16 ± 0.82 86.37

Sokal-Michener 89.53 ± 0.43 87.18 ± 0.85 84.23 ± 0.91 85.34 ± 0.67 86.57

Table 14.4: CEDAR results with different distance measures

These results show that the ability of each similarity measure has a tendency of

fluctuating based on the feature that it is used with. The highest average classifica-

tion accuracy is achieved using the GSC measure, though this average is only 0.12%

above Rogers-Tanamoto. The lowest scoring measure was Russell-Rao, which pro-

duced an accuracy 0.35% below GSC.

Figure 14.4: Graphed CEDAR results for each distance measure

The similarity measure that is used to differentiate between two binary feature

vectors does influence the classification accuracy. From the experiments that were

carried out on the CEDAR dataset, this influence on average appears to be minimal,

with each feature being impacted differently. Based on these results, the GSC

measure will be utilised for the CEDAR dataset.

14.4.2 GPDS Results

Testing of the four distance measures with the GPDS dataset was carried out in

the same fashion as CEDAR. Table 14.5 and alternatively Figure 14.5 show the

produced results.
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Measure Gradient Structural Strokes Concavities Average

GSC 84.94 ± 0.90 83.99 ± 1.11 88.74 ± 0.95 90.62 ± 0.86 87.07

Rogers-Tanamoto 85.31 ± 0.88 84.71 ± 0.53 87.69 ± 0.60 91.04 ± 0.60 87.19

Russell-Rao 84.73 ± 0.82 83.53 ± 0.43 88.30 ± 0.74 90.14 ± 0.65 86.68

Sokal-Michener 85.23 ± 0.77 84.57 ± 0.92 87.69 ± 0.82 90.60 ± 0.46 87.02

Table 14.5: GPDS results with different distance measures

The shown results differ between the GPDS and CEDAR datasets when the

similarity measure is varied. The GSC measure drops below Rogers-Tanamoto by

0.12%, with the lowest measure once again being Russel-Rao at 86.68%, 0.51%

below Rogers-Tanamoto. On average, the difference between each of these mea-

sures is minimal, even though the Rogers-Tanamoto measure achieved the highest

accuracy for three of the features.

Figure 14.5: Graphed GPDS results for each distance measure

The GPDS results differ from CEDAR in that Rogers-Tanamoto has an in-

creased tendency to produce a greater differentiation between the two signature

classes. The choice of using GSC over Rogers-Tanamoto for the remaining experi-

ments is so that the feature parameters between the two datasets remain the same,

though in regard to this, the difference between GSC and Rogers-Tanamoto is only

0.12%.
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14.5 Automatic Classification

In all previous experiments, each signature was classified using the manual offset

described in Section 9.1.1, and is used to adjust the false acceptance rate and the

false rejection rate ensuring that they both lie at the equal error rate. By doing

this, the accuracy of a method can be accurately compared with that of another,

and is a common approach in literature (Kalera et al., 2004; Chen and Srihari,

2006; Srihari et al., 2008). In practise though, the manual offset is not a viable

option as normally there will be no negative training data available. Because of

this, an automatic approach is required to offset the threshold from the mean. This

automatic approach is described in Section 9.1.2 with its ability being determined

in this section for both the CEDAR and GPDS datasets.

14.5.1 CEDAR Results

For automatic classification, two methods were explored, both of which change how

the threshold is offset. Essentially they move the threshold down the similarity scale

based on the sample standard deviation or by the lower sample standard deviation.

The ability of these automatic methods can be seen in either Table 14.6 or Figure

14.6.

Offset Gradient Structural Strokes Concavities Average

Manual 89.01 ± 0.71 87.23 ± 0.74 84.05 ± 0.83 86.32 ± 0.58 86.65

Lower Stdev 86.17 ± 1.01 83.99 ± 0.94 80.62 ± 0.49 82.30 ± 1.03 83.27

Stdev 87.30 ± 0.81 85.33 ± 0.64 80.89 ± 0.64 83.61 ± 0.52 84.28

Table 14.6: CEDAR results for automatic classification

In all cases, the manual method out performs both the sample standard devi-

ation (Stdev) and the lower sample standard deviation (Lower Stdev) by over 2%.

This decrease though was to be expected, as the false acceptance rate (FAR) and

the false rejection rate (FRR) will not be the same. The difference between the

two automatic offsets is about 1%, with the standard deviation being the better

choice of the two. This is most likely due to the standard deviation moving the
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threshold down the similarity scale by a smaller amount, decreasing the FAR.

Figure 14.6: Graphed CEDAR results for automatic classification

Because the offset is found automatically, it is very unlikely to be at the equal

error rate between the FAR and the FRR. In general, both of these automatic

methods will have a higher FAR, with there being approximately a 15% to 20%

difference between FAR and FRR. Having a higher FAR will classify more genuine

signatures correctly, but will also allow a higher number of forgeries to be incorrectly

classified.

14.5.2 GPDS Results

Following on from the CEDAR dataset, GPDS was tested in the same manner

using automatic classification. The results that GPDS produced can be found in

Table 14.7 or in Figure 14.7.

Offset Gradient Structural Strokes Concavities Average

Manual 84.95 ± 0.67 84.61 ± 1.10 88.58 ± 1.23 90.82 ± 0.58 87.24

Lower Stdev 82.32 ± 0.97 81.00 ± 0.78 87.53 ± 1.11 87.34 ± 1.08 84.55

Stdev 82.81 ± 0.81 81.73 ± 0.80 87.37 ± 0.69 87.53 ± 0.75 84.86

Table 14.7: GPDS results for automatic classification

The GPDS results show that automatic classification follows the same trend

as CEDAR, with the sample standard deviation having an average accuracy of

84.86%, 0.31% higher than the lower sample standard deviation. Like CEDAR,

the manual method has an increase of about 2% over these methods.
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Figure 14.7: Graphed GPDS results for automatic classification

The decrease in performance between the automatic and manual methods is

due to the difference in FAR and FRR. Like the CEDAR dataset, this difference

is in the range of 15% to 20%, with the FAR being higher than the FRR. Even

though there is this difference, the overall accuracy has not dropped by a significant

amount.

According to Judd (2008), having the FAR higher than the FRR is beneficial

in practise as ‘ultimately any system could only identify a potential issue and the

number of false:positives becomes an issue. Any possible fraud situation would still

require a “human” to work through’. This means that every suspect signature would

require investigation, requiring time and money to perform.

14.6 Machine Learning

In all the previous evaluation sections only one class classification was tested. This

section will look at two class classification in relation to three machine learning

algorithms. These algorithms are näıve Bayes (NB), random forest (RF) and sup-

port vector machines (SVM). The implementation of these algorithms comes from

the Waikato Environment for Knowledge Analysis (WEKA), which is a machine

learning workbench written in the Java language (Witten and Frank, 2005). The

two class experiments will use the final parameters decided upon from the previous

tests, with the sole difference being in the classification step. The way in which the

classification is carried out is outlined in Section 14.1.



14.6. MACHINE LEARNING 127

14.6.1 CEDAR Results

The two class experiments that will be carried out on the CEDAR dataset will

use the three machine learning algorithms described in Section 10.1. The training

of these algorithms will use the method from Section 10.2, using three different

combinations of training signatures, each of which are shown in Table 14.8.

Combination Genuine Forgery

1 12 4

2 12 12

3 16 16

Table 14.8: Combinations of genuine and forgery signatures used for training

The first choice of using 12 genuine (G) and 4 forgery (F) signatures is that in

practise the genuine signatures will be easier to obtain. The other two combina-

tions are optimistic amounts designed to determine the effect of using an increased

number of either genuine or forgery signatures. The results that are produced for

the CEDAR dataset are shown in both Table 14.9 and Figure 14.8.

ML G F Gradient Structural Strokes Concavities Average

NB 12 4 83.44 ± 0.89 83.26 ± 1.20 86.89 ± 0.69 78.12 ± 1.40 82.93

12 12 77.17 ± 1.35 76.85 ± 1.28 85.23 ± 1.02 72.92 ± 1.08 78.04

16 16 82.70 ± 1.45 81.18 ± 1.42 87.31 ± 1.12 75.93 ± 1.05 81.78

RF 12 4 85.08 ± 0.85 85.91 ± 0.57 85.56 ± 1.06 82.28 ± 1.03 84.71

12 12 94.38 ± 0.57 93.87 ± 0.65 92.56 ± 1.04 94.05 ± 0.71 93.72

16 16 94.91 ± 0.91 94.85 ± 0.59 93.28 ± 0.90 94.95 ± 0.77 94.50

SVM 12 4 90.10 ± 0.65 89.95 ± 0.68 86.60 ± 0.67 85.39 ± 0.58 88.01

12 12 95.81 ± 0.38 95.41 ± 0.34 92.36 ± 0.51 91.47 ± 0.57 93.76

16 16 96.35 ± 0.52 96.18 ± 0.59 93.10 ± 0.80 93.02 ± 0.56 94.66

Table 14.9: CEDAR machine learning results

These results show that for the first combination there is a difference in ability

between each of the three algorithms, with NB being lower than the other two at

82.93%, while SVM produced the highest accuracy at 88.01%. Surprisingly, when
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a large number of forgery signatures are used the NB accuracy drops. This is not

the case for either RF or SVM which increase in accuracy to over 93% when 12

genuine and forgery signatures are used to train with. When 16 signatures are used

for both classes, the average accuracy is over 94%.

(a) Näıve Bayes (b) Random Forest

(c) SVM

Figure 14.8: Comparison of machine learning algorithms for the CEDAR dataset

The way each algorithm differentiates between the genuine and forgery signa-

tures varies based on the number of training signatures. The result of this is that

the FAR and FRR are not usually the same. The difference between the FAR and

the FRR tends to vary based on three aspects, the machine learning algorithm, the

feature and the number of training signatures that are used. When the number of

training signature is higher the difference between the FAR and FRR for NB tends

to increase, while for RF and SVM, it decreases. This difference is less than 1%

for the gradient feature when SVM is used with 16 genuine and forgery signatures;

this explains why the accuracy achieved over 96%.
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14.6.2 GPDS Results

The manner in which the GPDS dataset was tested follows the same procedure

as that of CEDAR, with the same combination of genuine and forgery signatures

being used. The results that the two class approach achieves for the GPDS dataset

are shown in Table 14.10 and Figure 14.9.

ML G F Gradient Structural Strokes Concavities Average

NB 12 4 78.09 ± 1.31 80.34 ± 1.80 89.77 ± 0.99 81.11 ± 0.71 82.33

12 12 70.37 ± 1.16 73.93 ± 1.25 88.79 ± 1.20 76.85 ± 1.45 77.49

16 16 74.28 ± 1.32 78.84 ± 1.25 90.16 ± 1.10 76.89 ± 1.24 80.04

RF 12 4 74.13 ± 1.25 75.74 ± 1.43 87.88 ± 0.70 78.94 ± 1.40 79.17

12 12 88.72 ± 0.46 89.91 ± 1.00 92.65 ± 0.86 93.34 ± 0.80 91.16

16 16 90.01 ± 0.87 91.37 ± 1.16 93.59 ± 0.85 94.41 ± 0.56 92.35

SVM 12 4 82.30 ± 0.74 83.23 ± 1.09 88.51 ± 0.70 85.99 ± 0.66 85.01

12 12 92.66 ± 0.38 92.48 ± 0.88 92.12 ± 0.71 91.82 ± 0.95 92.27

16 16 94.06 ± 0.93 93.74 ± 0.95 93.51 ± 0.75 92.88 ± 0.61 93.55

Table 14.10: GPDS machine learning results

These results show that the ability of each machine learning algorithm when

using a particular combination of genuine and forgery signatures follows a trend

that is much the same as CEDAR. The difference between each average accuracy

has dropped, with the change from combination 2 to combination 3 (Table 14.8)

only increasing the score by about 1%. The highest average was again produced

by SVM when 16 genuine and forgery signatures were used.

Like the CEDAR dataset, the difference between the FAR and the FRR for

each GPDS experiment is similar. When a greater number of genuine and forgery

signatures are used to train with this difference decreases. The highest result

achieved for GPDS is once again SVM when it is trained with the gradient feature

using 16 genuine and forgery signatures.
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(a) Näıve Bayes (b) Random Forest

(c) SVM

Figure 14.9: Comparison of machine learning algorithms for the GPDS dataset



Chapter 15

Evaluation: Summary

In the three previous chapters, the effectiveness of different techniques for pro-

cessing, defining and classifying signatures were evaluated, and was carried out in

regards to both the CEDAR and GPDS datasets. This chapter summarises these

techniques with respect to the three main steps used to carry out the evaluation.

Due to the large variety of techniques, there was a number of combinations that

were not tested, as this would have required an infeasible number of experiments.

To ensure that the most effective methods were found, each experiment determined

which techniques achieved the greatest results. Following this, the combination of

these most effective techniques will be compared definitively against other verifica-

tion approaches published in literature.

15.1 Final Evaluation Configuration

The final configuration of techniques that were chosen for classifying signatures is

described in this section with respect to the three main evaluation steps. These

steps were preprocessing, feature extraction and classification.

The preprocessing of each signature began with its binarisation followed by its

reconstruction. It was determined that the best combination for achieving this

was iterative binarisation and a square shaped median filter. The use of rotation

normalisation was found to detract from the classification accuracy.

Using the preprocessed signatures, a variety of features were extracted and
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tested, where these feature are used to uniquely define each signature. The gradient,

structural rules, long strokes and concavity features when tested were determined to

achieve the highest accuracy. Additionally their combination with an 8×4 equimass

grid and a three level spatial pyramid further boosted the accuracy.

Classification is the final step in the verification process, and is built from a

range of individual components, where these components are feature thresholding,

distance measures, and automatic one class and two class classification. For feature

thresholding, it was found that adaptive feature thresholding was the best method

for converting a feature frequency vector to a binary feature vector. The distance

measure that produced the best distinction between pairs of binary feature vectors

was the GSC measure. Using this combination, automatic classification was carried

and is shown to produce the best classification when the standard deviation of

the signature similarity scores is used to calculate the offset. The experiments

conducted for two class classification found that support vector machines achieved

the best result out of the three machine learning algorithms.

15.2 Count of Training Signatures

The experiments that were performed for both datasets in the previous evaluation

chapters used a fix number of genuine training signatures. For CEDAR this was

16, while GPDS used 12. The reason behind this choice of training signatures

was to ensure that the achieved accuracy is comparable to approaches previously

published in literature, as they also use this number.

The stability of the produced accuracy when the number of training signatures

is varied between six and twenty was investigated. The results of this variation can

be seen in Figure 15.1(a) and 15.1(b) for CEDAR and GPDS respectively. They

can also be found in a tabulated form in Tables 16.11 and 16.12 in Appendix A.
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(a) CEDAR (b) GPDS

Figure 15.1: Classification accuracy when the number of training signatures are

varied

The results show that there is an increase in accuracy when additional training

signatures are used for both datasets, though this is less substantial with CEDAR.

For CEDAR, the best feature was gradient, while for GPDS, this was concavity,

both of which remained consistent in all cases. The stability of other approaches

in literature are not often tested in this manner, as the usual procedure is to use a

fixed number of training signatures. The combination of techniques that have been

used here shows that the accuracy remains remarkably resilient even when there is

only six training signatures.

15.3 Comparison of Verification Approaches

The verification approach that was implemented in this thesis is only one of many

that have been tried in regards to off-line signature verification. This section will

take the final one and two class classification approaches that were devised in the

evaluation chapters and compare them against methods that have been proposed

in previous literature. Each of these methods are described in greater detail in

Chapter 2, with the comparison of each being carried out in regards to both the

GPDS and CEDAR datasets.
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15.3.1 One Class

The most effective one class approach determined in Section 15.1 will be evaluated

against other approaches presented in literature. This method will use 16 train-

ing signatures for CEDAR and 12 for GPDS, as this appears to be standard in

literature. For CEDAR the gradient feature will be used as it achieved the best

classification, while the concavity feature will be used for GPDS. The automatic

method for classifying signatures is not included here as the methods that are eval-

uated against utilise the manual approach to ensure that the results are at the

equal error rate.

The highest accuracy that was achieved by Srinisvasan et al. (2005) was 82.44%

using the Kolmogorov-Smirnov and Kullback-Leibler classifiers togethor, which is

over 6% less than AFT Gradient at 88.68%. Table 15.1 shows the accuracy of

three additional approaches that have been proposed. The prefix AFT indicates

the results achieved by research conducted in this thesis. As well as this, the

classification accuracy when the signatures are not normalised will be tested, as

the size of the signature maybe an attribute of how a person writes. Finally the

gradient, structural, stroke and concavity features will be combined to determine

what improvement is achieved over single features.

Method 1-FAR (%) 1-FRR (%) Accuracy (%)

GSC (Kalera et al., 2004) 80.50 77.55 78.50

Zernike Moments (Chen and Srihari, 2005) 83.70 83.40 83.60

Graph Matching (Chen and Srihari, 2006) 91.80 92.30 92.10

AFT Gradient 89.02 88.34 88.68

AFT GSC 88.58 89.14 88.86

AFT Gradient NN 90.69 90.66 90.67

Table 15.1: CEDAR Comparison Results, where NN stands for No Normalisation

The implemented one class approach used in this thesis is based heavily on

the GSC procedure by Kalera et al. (2004) which achieved 78.50%, over 10% less

than when the Adaptive Feature Thresholding (AFT) technique is included. The

GSC ensemble only has a marginal increase over the gradient, while the inclusion
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of the size attribute adds 2% to the accuracy. The graph matching approach is

approximately 2% higher than AFT Gradient NN, though the literature in which

the graph matching method is presented does not mention whether any normalisa-

tion or signature cropping was carried out. Therefore, if no cropping was applied

to the AFT Gradient NN method the result is 92.16% and is equivalent to graph

matching. If the centre of mass regioning is used instead of equimass, the accuracy

further increases to 93.28%.

The same experiments that were conducted on the CEDAR dataset were also

tested on GPDS, though concavity was used instead of gradient due to being more

effective. The achieved results are shown in Table 15.2 where they are compared

against the seven methods presented by Tian et al. (2007).

Method 1-FAR (%) 1-FRR (%) Accuracy (%)

HMM 87.40 85.90 86.65

SVM Linear 81.46 78.94 80.20

SVM Poly 84.36 84.59 84.47

SVM RBF 86.88 84.59 85.73

Euclidean 84.34 83.79 84.06

Random 82.08 80.69 81.39

Optimal 88.11 86.74 87.43

AFT Concavity 90.68 90.60 90.64

AFT GSC 89.26 89.97 89.56

AFT Concavity NN 91.19 91.58 91.39

Table 15.2: GPDS comparison with Tian et al. (2007)

The ability of AFT in regards to the GPDS dataset is shown to have increased

results over the other methods listed in Table 15.2. The AFT concavity method

had approximately a 3% improvement over the optimal method presented in Tian

et al. (2007). The GSC ensemble produces lower accuracy than when a single

feature is used, and in this regard differs from the CEDAR dataset. Once again, if

the size of each signature is taken into account the accuracy increases marginally

by 0.75%.

From the comparisons shown previously, AFT has a substantial improvement
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over the other methods presented for both the CEDAR and GPDS datasets. In

relation to graph matching, there is no evidence that the signatures were either

cropped or normalised. When this is applied to AFT the same accuracy is achieved.

It was shown that if centre of mass regioning was used instead of equimass when

no cropping or normalisation occurs, the result further increased. The accuracy of

the GSC ensemble fluctuated in comparison with both the gradient and concavity

features, but in practise would be the better choice as it should remain more stable.

15.3.2 Two Class

Two class classification trains with signatures from both the genuine and forgery

classes, because of this, these approaches can not be fairly compared with the

one class approach. This section will determine the effectiveness of the two class

approaches implemented in this thesis and compare them against those proposed

in literature. This will be carried out for both the CEDAR and GPDS datasets.

The classification accuracy that was achieved by Srihari et al. (2004) can be seen

in Table 15.3 where two combinations of genuine (G) and forgery (F) signatures

are used to train with. The methods identified with a ‘&’ were produced from the

research conducted in this thesis.

Method G F 1-FAR (%) 1-FRR (%) Accuracy (%)

Distance Statistics 16 16 77.90 78.70 78.30

Näıve Bayes 16 16 75.90 77.10 76.50

Distance Statistics 16 5 79.30 82.40 80.80

Näıve Bayes 16 5 87.00 90.05 88.55

SVM 16 5 89.90 91.50 90.70

! Näıve Bayes 16 16 97.95 50.61 74.28

! SVM 16 16 94.05 94.07 94.06

! Näıve Bayes 16 5 96.90 76.07 86.48

! SVM 16 5 85.09 97.68 91.39

Table 15.3: CEDAR comparison with Srihari et al. (2004)

The results in Table 15.3 show that the approaches introduced by Srihari et al.
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(2004) when combined with different classifiers produce a maximum accuracy of

90.70%. The näıve Bayes classifier that was tested in this thesis did not fair that

well as it had a 2% decrease in accuracy from its counterpart by Srihari et al.

(2004) for both combinations of training signatures. When the number of forgeries

are decreased for Näıve Bayes, the accuracy is shown to increase, the reason for

this has not been identified but is likely correlated with the high false rejection

rate. In regards to both combinations of training signatures, the SVM classifier

used in this thesis produced the best results.

Following the CEDAR dataset, the same experimental setup was tested with

GPDS. The difference though is that the number of training signatures differs to

allow each approach to be fairly compared against. Table 15.4 shows the results that

are achieved when the resilient backpropagation (RBP) and radial basis function

(RBF) neural networks are used. These two neural network classifiers are trained

using all four features, described by Armand et al. (2006). SVM was used to

compare against these two classifiers as it produced the highest result.

Method G F 1-FAR (%) 1-FRR (%) Accuracy (%)

RBP 18 22 Not Provided Not Provided 85.90

RBF 18 22 Not Provided Not Provided 91.12

! SVM 18 22 95.77 92.69 94.23

! SVM 9 11 93.23 88.65 90.94

Table 15.4: GPDS comparison with Armand et al. (2006)

The results that are shown in Table 15.4 indicate that both RBP and RBF

are not as effective as SVM for classifying signatures. To further show the ability

between these two neural networks and SVM, the number of training signatures was

halved when training the SVM. The difference in accuracy between RBF and SVM

in this case is only 0.18%, effectively meaning that the two classifier are equivalent

when RBF has twice the number of training signatures.

The results that were shown for both the CEDAR and GPDS comparisons indi-

cate that when the training method outlined in Section 10.1 is used in conjunction

with the WEKA work bench, the produced results tend to be better than those
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previously proposed.



Chapter 16

Conclusion

Signature verification is one of the most important and common tasks in today’s

society. Signatures are the most accepted form of identity verification, however

forgers can often exploit signatures to impersonate an individual, giving them the

authority to carry out tasks that they are not permitted to. Generally, verification

to combat forgers is carried out by forensic document examiners. An alternative

and cheaper approach is automatic signature verification, in which a computer

determines whether the signature is a genuine or a forgery.

This thesis explored each of the three main steps required for automatic off-line

signature verification, where these steps were preprocessing, feature extraction and

classification. For each step, well-established techniques were tested and compared

against novel techniques introduced in this thesis. The best achieved accuracy was

then evaluated against published literature to determine the improvement.

16.1 Explored Techniques and Their Ability

The results show that our method out-performs the majority of approaches pre-

viously published. Signature preprocessing methods generally remains the same

throughout literature, though the choice of using rotation normalisation varies.

We show that there is a significant increase in accuracy when signatures are left

at their original orientation. This indicates that the orientation of a signature is a

potential attribute which is often overlooked.

139



140 CHAPTER 16. CONCLUSION

Additionally, the use of normalisation to ensure that each signature is the same

size is commonly applied, so that no bias is introduced. However, as with orien-

tation, the size of a signature is also a potential attribute. Our results show that

when the size is taken into account there is a distinct performance increase.

Feature extraction is normally carried out using a variety of features, as multiple

features often boost the ability to differentiate between signatures. The introduc-

tion of Adaptive Feature Thresholding (AFT) when tested using the GSC ensemble

achieve 88.86%, which is a substantial gain over the manual threshold at 78.50%.

The best result of 93.28% was attained using AFT with centre of mass regioning.

The testing of newly published techniques often utilises manual classification

approaches to ensure that the false acceptance and false rejection rates are equal.

By doing this, the achieved results can be compared more accurately. The disad-

vantage though is that this method of classification is not feasible in practise, as

there is no guarantee that the false acceptance and false rejection rates will remain

equal. As well as this, each approach is usually trained with more signatures than

what would be realistic in practise. This thesis introduced a fully automatic one

class classification scheme that is shown to produce classification accuracies that

differ from the manual accuracy by a minimal amount. The final classification

approach chosen is shown to remain relatively stable when the number of training

signatures is varied, with 6 training signature getting 87.08% and 20 attain 89.29%

when the gradient feature is used.

16.2 Contributions

From the research that was carried out in this thesis, the techniques that have the

greatest impact were identified. This extensive examination of each technique has

not been carried out in previous work, and as such allowed insights into their ability.

This thesis also introduced new techniques, some of which proved to be beneficial,

whilst others unfortunately were not. The following is a list of contributions made

to research, listed roughly in order of importance:
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1. I introduced Adaptive Feature Thresholding, which vastly improves the con-

version of a feature frequency vector to a binary feature vector by conforming

more closely with the training signatures.

2. Demonstrated that the novel combination of region sampling and spatial

pyramids boosts the classification ability.

3. Identified that adding additional features to uniquely distinguish a signature

does not necessarily boost the classification accuracy, as good single features

such as gradients and concavity features can be better than ensembles.

4. Illustrated that rotation normalisation decreases accuracy.

5. Demonstrated that simple median filters are superior to region growing.

6. Introduced an algorithm for a fully automatic approach to one class signature

classification.

7. Improved the concavity feature by allowing it to take into account a greater

variety of concavities, increasing the achieved results.

8. Demonstrated that size and rotation are potentially powerful, yet under-

utilised attributes.

9. Introduced the centre of mass grid and ring region sampling.

10. Adapted iterative thresholding into a local style binarisation method.

11. Introduced region rotation, which improves on using the axis of least inertia

for rotation normalisation.

From these, the most significant contribution that this thesis made to the task

of signature verification was the introduction of Adaptive Feature Thresholding.

Essentially this approach ensures that the transformation of a feature frequency

vector to a binary feature vector is properly carried out, using only a single positive

class. This is a significant achievement.
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Appendix A

Result Tables

The experiments performed in the evaluation chapters produced a large number

of results, while the majority of these results are tabulated with the evaluations,

some did not fit. The following tables are those that did not fit.

Method Mass Gradient LBP Concavity Average

Fixed 78.65 ± 1.07 87.70 ± 0.56 81.47 ± 0.81 85.49 ± 0.64 83.33

Iterative 75.95 ± 0.80 87.82 ± 0.68 82.65 ± 0.80 85.50 ± 1.03 82.98

Otsu 72.02 ± 0.91 87.28 ± 1.28 79.95 ± 0.90 85.50 ± 1.03 81.19

Local Iterative 72.22 ± 1.01 87.64 ± 0.87 79.44 ± 0.74 85.09 ± 0.55 81.10

Table 16.1: Results for the square shaped median filter

Method Mass Gradient LBP Concavity Average

Fixed 77.96 ± 0.87 88.29 ± 0.89 79.54 ± 1.28 85.73 ± 0.90 82.88

Iterative 76.63 ± 0.85 88.14 ± 0.88 80.61 ± 0.86 85.81 ± 0.70 82.80

Otsu 72.78 ± 1.49 87.69 ± 0.59 77.99 ± 0.63 85.56 ± 0.67 81.01

Local Iterative 76.57 ± 0.76 87.83 ± 1.05 80.24 ± 0.76 86.25 ± 0.63 82.72

Table 16.2: Results for the plus shaped median filter

Method Mass Gradient LBP Concavity Average

Fixed 75.46 ± 0.84 87.20 ± 0.54 83.07 ± 1.17 85.12 ± 0.95 82.71

Iterative 75.62 ± 0.51 87.58 ± 0.79 83.23 ± 0.21 85.34 ± 0.96 82.94

Otsu 72.72 ± 1.08 87.36 ± 0.72 83.92 ± 0.81 85.73 ± 1.12 82.43

Local Iterative 70.73 ± 0.99 84.76 ± 0.84 79.58 ± 1.14 86.03 ± 0.74 80.28

Table 16.3: Results for dilate and erode
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Method Mass Gradient LBP Concavity Average

Fixed 74.55 ± 0.86 87.10 ± 0.68 76.79 ± 0.70 85.40 ± 0.94 80.96

Iterative 74.06 ± 0.94 87.54 ± 0.55 76.50 ± 0.44 85.16 ± 1.06 80.82

Otsu 72.34 ± 1.09 87.19 ± 0.48 77.95 ± 0.85 85.33 ± 0.80 80.70

Local Iterative 70.18 ± 0.75 84.14 ± 1.13 71.94 ± 1.59 85.23 ± 0.87 77.87

Table 16.4: Results for region growing

Method Mass Gradient LBP Concavity Average

Plus & DE 73.10 ± 0.78 87.55 ± 0.91 85.05 ± 1.14 84.86 ± 0.78 82.64

Square & DE 72.53 ± 0.97 87.24 ± 0.70 85.20 ± 0.87 85.20 ± 0.87 82.54

Plus & RG 72.25 ± 1.02 87.55 ± 0.72 79.84 ± 0.51 85.09 ± 0.56 81.18

Square & RG 71.79 ± 1.09 87.11 ± 1.04 79.79 ± 0.57 85.31 ± 0.72 81.00

Table 16.5: Results for local iterative binarisation when the two median filters are

combined with dilate and erode (DE) and region growing (RG)
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Reconstruction Threshold Mass Gradient LBP Concavity Average

Square Fixed 78.65 87.70 81.47 85.49 83.33

Square Iterative 75.95 87.82 82.65 85.50 82.98

DE Iterative 75.62 87.58 83.23 85.34 82.94

Plus Fixed 77.96 88.29 79.54 85.73 82.88

Plus Iterative 76.63 88.14 80.61 85.81 82.80

Plus Local Iterative 76.57 87.83 80.24 86.25 82.72

DE Fixed 75.46 87.20 83.07 85.12 82.71

Plus & DE Local Iterative 73.10 87.55 85.05 84.86 82.64

Square & DE Local Iterative 72.53 87.24 85.20 85.20 82.54

DE Otsu 72.72 87.36 83.92 85.73 82.43

Square Otsu 72.02 87.28 79.95 85.50 81.19

Plus & RG Local Iterative 72.25 87.55 79.84 85.09 81.18

Square Local Iterative 72.22 87.64 79.44 85.09 81.10

Plus Otsu 72.78 87.69 77.99 85.56 81.01

Square & RG Local Iterative 71.79 87.11 79.79 85.31 81.00

RG Fixed 74.55 87.10 76.79 85.40 80.96

RG Iterative 74.06 87.54 76.50 85.16 80.81

N.A. Fixed 75.28 88.34 73.96 85.48 80.77

RG Otsu 72.34 87.19 77.95 85.33 80.70

N.A. Otsu 72.61 88.12 75.98 85.86 80.64

DE Local Iterative 70.73 84.76 79.58 86.03 80.27

N.A. Iterative 72.28 87.57 75.80 85.39 80.26

N.A. Local Iterative 71.33 84.79 75.31 85.91 79.33

RG Local Iterative 70.18 84.14 71.94 85.23 77.87

Table 16.6: Comparison of reconstruction and binarisation methods, ordered by

the Average of the four image features

Method Mass Gradient LBP Concavity Average

Original 75.95 ± 0.80 87.82 ± 0.68 82.65 ± 0.80 85.50 ± 1.03 82.98

Least Inertia 74.69 ± 1.05 84.17 ± 0.76 78.39 ± 0.95 84.05 ± 1.35 80.33

Region Rotation 75.25 ± 0.88 85.02 ± 0.96 80.98 ± 0.49 85.19 ± 0.75 81.61

Table 16.7: Results for rotation normalisation using iterative with square shaped

median filter
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Method Mass Gradient LBP Concavity Average

Original 76.63 ± 0.85 88.14 ± 0.88 80.61 ± 0.86 85.81 ± 0.70 82.80

Least Inertia 74.51 ± 0.63 84.70 ± 0.62 76.87 ± 1.02 84.78 ± 0.71 80.22

Region Rotation 75.23 ± 0.68 85.77 ± 0.76 79.08 ± 0.68 85.62 ± 0.85 81.43

Table 16.8: Results for rotation normalisation using iterative with plus shaped

median filter

Method Mass Gradient LBP Concavity Average

Original 75.62 ± 0.51 87.58 ± 0.79 83.23 ± 0.21 85.34 ± 0.96 82.94

Region Rotation 73.70 ± 1.17 84.47 ± 0.74 80.62 ± 1.40 83.83 ± 0.74 80.66

Least Inertia 70.55 ± 1.15 82.64 ± 0.86 76.42 ± 0.91 83.05 ± 0.77 78.17

Table 16.9: Results for rotation normalisation using iterative with dilate and erode

Method Mass Gradient LBP Concavity Average

Original 76.57 ± 0.76 87.83 ± 1.05 80.24 ± 0.76 86.25 ± 0.63 82.72

Least Inertia 67.65 ± 1.21 82.80 ± 0.89 73.93 ± 0.80 82.11 ± 1.11 76.62

Region Rotation 70.22 ± 0.63 84.40 ± 0.89 76.52 ± 0.83 83.96 ± 0.48 78.78

Table 16.10: Results for rotation normalisation using iterative with square shaped

median filter

Training No. Gradient Structural Strokes Concavities Average

6 87.08 ± 0.97 85.00 ± 1.06 79.76 ± 0.82 83.67 ± 0.67 83.88

8 88.56 ± 0.80 86.08 ± 0.60 82.27 ± 0.96 85.37 ± 0.71 85.57

10 88.70 ± 0.72 86.44 ± 0.55 83.02 ± 0.99 86.08 ± 0.50 86.06

12 88.52 ± 0.70 86.66 ± 0.75 83.70 ± 0.46 86.69 ± 0.54 86.39

14 88.89 ± 0.74 87.02 ± 1.00 83.83 ± 0.81 86.72 ± 0.67 86.62

16 89.05 ± 1.01 87.42 ± 0.56 84.46 ± 0.85 86.89 ± 0.86 86.96

18 88.95 ± 0.80 87.44 ± 0.63 84.73 ± 1.07 86.43 ± 0.88 86.89

20 89.29 ± 0.91 87.75 ± 1.23 84.48 ± 1.22 86.28 ± 1.06 86.95

Table 16.11: CEDAR results when the training count is varied
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Training No. Gradient Structural Strokes Concavity Average

6 82.85 ± 1.28 81.41 ± 1.13 84.30 ± 1.37 87.81 ± 0.71 84.09

8 83.77 ± 1.05 82.59 ± 1.21 86.60 ± 1.15 89.40 ± 0.66 85.59

10 84.71 ± 0.67 83.50 ± 1.02 87.67 ± 0.76 89.86 ± 0.66 86.44

12 85.19 ± 0.88 84.13 ± 0.65 88.81 ± 0.76 90.47 ± 0.85 87.15

14 85.19 ± 1.01 84.66 ± 1.03 89.35 ± 0.74 91.21 ± 0.82 87.60

16 85.69 ± 1.00 84.88 ± 1.21 89.30 ± 0.89 91.38 ± 0.85 87.81

18 85.36 ± 1.52 85.40 ± 0.91 89.24 ± 1.13 91.54 ± 0.82 87.89

20 85.35 ± 1.05 84.77 ± 1.44 89.88 ± 0.96 92.00 ± 0.64 88.00

Table 16.12: GPDS results when the training count is varied
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Appendix B

IVCNZ Conference Paper

The following paper, Adaptive Feature Thresholding for Off-line Signature Verifi-

cation (Larkins and Mayo, 2008), is based on the research conducted in this thesis,

and was presented at the Image and Vision Computing New Zealand (IVCNZ)

conference in November 2008.
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Adaptive Feature Thresholding for Off-line Signature
Verification

Robert Larkins, Michael Mayo

Machine Learning Group, Department of Computer Science, University of Waikato, New Zealand.
Email: {rll6,mmayo}@cs.waikato.ac.nz

Abstract

This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent
off-line signature verification. AFT enhances how a simple image feature of a signature is converted to
a binary feature vector by significantly improving its representation in relation to the training signatures.
The similarity between signatures is then easily computed from their corresponding binary feature vectors.
AFT was tested on the CEDAR and GPDS benchmark datasets, with classification using either a manual
or an automatic variant. On the CEDAR dataset we achieved a classification accuracy of 92% for manual
and 90% for automatic, while on the GPDS dataset we achieved over 87% and 85% respectively. For both
datasets AFT is less complex and requires fewer images features than the existing state of the art methods,
while achieving competitive results.

Keywords: off-line signature verification, person-dependent, feature thresholding, spatial pyramid

1 Introduction

Hand written signatures have a well-established
and accepted place in society as a formal means
of personal verification, for both the identification
and the intent of the signatory. Because of this,
signatures are the most accepted method of veri-
fication [1] and are used in government, legal and
commercial transactions. A result of this is that
signatures are often forged for the purpose of feign-
ing the authenticity of a document. This leads
to the problem of being able to correctly verify
whether a signature is a genuine or a forgery.

Many different approaches have been employed for
accurately classifying whether a signature is a gen-
uine or a forgery. These approaches are split into
two categories: on-line and off-line.

Online approaches use a digitising surface to cap-
ture dynamic features about how a signature is
written. These are features such as pressure, speed
and direction, which allow online classification to
achieve accuracies of over 95% [2].

Off-line verification deals with signatures that have
been written on paper and scanned in to the com-
puter. Because of this, they are unable to use
dynamic features. This means that the signatures
can only be distinguished from each other by what
is visually available.

978-1-4244-2582-2/08/$25.00 c©2008 IEEE

Person-dependent classification is a commonly used
method that is designed to train with genuine sig-
natures from only one person. Two methods that
have achieved high person-dependent classification
accuracies are graph matching [3] and the Discrete
Wavelet Transform (DWT) [4].

The approach that we use is similar to the Gradi-
ent, Structural and Concavity (GSC) method [5],
except we only use the gradient direction. The
improvement that dramatically increased classifi-
cation accuracy was the way in which we imple-
mented the thresholding of each image feature count.
This enhanced the creation of the binary feature
vector [6] by adaptively restricting which feature
bits are set to 1. In GSC, thresholding is carried
out with a fixed value that is manually chosen,
with its capability being determined by experimen-
tation, where if the count of an image feature is
above this value, then the feature bit is set to 1,
otherwise it is set to 0. An adaptation is then made
to our thresholding method to achieve automatic
classification. As well as these methods, a novel
combination of spatial pyramids [7] and equimass
sampling grids [8] is also introduced to help boost
the classification accuracy.

2 Signature Representation

Each signature, before it is processed, is in the form
of a binarised digital image (see Figure 1). This
format does not describe the individual aspects of



the signature in a manner that makes it feasible for
comparing it to other signatures. This is because
digital images are designed to be visually identifi-
able to humans. As a result, each signature needs
to be converted into a format that will allow the
similarity of it and another signature to be easily
computed.

This section details the implementation of the novel
thresholding method, AFT, that this paper presents.
Essentially, this method ensures that the compar-
ative similarity of a signature is more accurately
represented in contrast to the training signatures
when it is converted from a digital image to a
binary feature vector.

Figure 1: A signature that has been binarised.

2.1 Binary Feature Vector

A binary feature vector is a method of represent-
ing a signature by indicating whether a particular
feature matches a certain criteria by turning the
corresponding feature bit on. The vector structure
is shown in equation (1), where V is the feature
vector, z is a feature bit and k is the number of
elements in the vector.

V = (z1, z2, · · · , zk) zi ∈ {0, 1} (1)

2.2 Gradient Direction Extraction

The creation of a binary feature vector is based
solely on the gradient direction of each pixel from
across a signature. This direction θ of a pixel at co-
ordinates x and y is found by equation (2), where
Gx is the Sobel kernel for horizontal change and
Gy is the kernel for vertical change.

θ(x, y) = tan−1

(
Gy

Gx

)
(2)

The resulting direction is a value that ranges from
0.0 to 2π radians. This range can then be split
into 18 non-overlapping segments based on 2π

18 ra-
dians, allowing a gradient direction histogram to be
created from the count of each direction. For the
experiments conducted in this paper, 18 segments
were chosen because this value proved effective in
initial tests and is also used in [9].

2.3 Equimass Spatial Pyramids

Using the gradient direction in its current state
only expresses a signature at the global level. This
can be improved upon through the use of a spatial

pyramid, which defines the signature at increas-
ingly finer levels of granularity, improving the abil-
ity to distinguish a signature in relation to other
signatures. This is normally achieved through the
use of different types of image features which cap-
ture particular properties of the signature, but the
use of spatial pyramids helps to overcome this need
for multiple features.

The levels of granularity are produced by split-
ting a signature up into increasingly smaller re-
gions, which is usually carried out with a uniform
grid. The disadvantage of a uniform grid is that
it does not capture the same structural proper-
ties of corresponding regions between signatures.
A novel and effective approach that improved the
capture of these structural properties was achieved
by combining spatial pyramids and equimass sam-
pling grids.

Equimass is an adaptive grid based on the number
of black pixels or mass M of a signature, where the
grid lines are found at the equimass divisions of
the horizontal and vertical mass histogram. That
is, where the masses between all adjacent points
on either the x-axis or the y-axis are equal. This
average mass MA is found by equation (3), where
r is the number of horizontal or vertical regions.

MA =
M

r
(3)

Figure 2 shows how the grid lines will be placed
for each of the three levels of the spatial pyramid
if the number of regions for the finest level (c) is
8×4. An example of this calculation is if Figure
2(a) has mass M = 2709, then the single vertical
line will be placed where the number of black pixels
in both regions is 2709

2 = 1354.

(a)

(b)

(c)

Figure 2: A three level spatial pyramid.

2.4 Novel Feature Thresholding

When thresholding a particular gradient direction
of a region, the criteria for determining whether the
corresponding feature bit will be 0 or 1 is depen-
dent upon the training signatures, where if the di-
rection count c of a set of pixels abides by τ1 ≤ c < τ2,



then the feature bit is set to 1, otherwise it is set
to 0.

The lower threshold, τ1 and the upper threshold,
τ2 are found at one sample standard deviation S
either side of µ, where µ is the mean of D, in which
D is the count of a particular direction from the
same region across each training signature. The
problem with using S to calculate both τ1 and τ2

is that any possible skew is not taken into account,
as the values from D may be spread about µ in
a fashion that is not normally distributed. So to
adjust for the skew, τ1 is calculated by the equation
(4) and τ2 is calculated by (5).

τ1 = µ− SL (4)
τ2 = µ + SU (5)

The variable SL is the average distance that values
below µ lie from µ and is found by equation (6). SU

is found in a similar fashion but for values above
µ, this is calculated by equation (7).

SL =

√√√√ 1
DL − 1

n∑

i=1

(Di − µ)2 ∀D < µ (6)

SU =

√√√√ 1
DU − 1

n∑

i=1

(Di − µ)2 ∀D > µ (7)

DL is the number of values in D which are less than
µ, DU is the number that have a value greater than
µ and n is the size of D.

For example, if D = {36, 47, 54, 59, 63, 81} then µ
would equal the mean value of D which is 56.67.
SL then equals 16.24 and is calculated by equa-
tion (6) using the values 36, 47 and 54, the values
from D which are less than µ. SU equals 17.86
and is found by equation (7), using the values 59,
63 and 81, the values greater than µ. τ1 then
equals 56.67 - 16.24 = 40.43 and τ2 would equal
56.67 + 17.86 = 74.53. Therefore the correspond-
ing feature bit will be 1 if 40.43 ≤ c < 74.53,
otherwise it will be 0.

Using this method, each direction in a gradient
direction histogram can be thresholded indepen-
dently and used to produce one bit of the feature
vector. This is then repeated for the histogram
of each region across each spatial level for all sig-
natures. Using this thresholding method on the
signature in Figure 2 would produce a feature vec-
tor that is 756 feature bits in length, consisting of
36 bits for (a), 144 bits for (b) and 576 bits for (c).

3 Signature Classification

The classification of an unknown signature is based
heavily on the similarity score of two feature vec-
tors. The comparison of these two vectors produces

Va = 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1
Vb = 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1
Vc = 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1
Vu = 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1

Figure 3: A set of binary feature vectors of length 18

four values based on the sum of the four possible
variations at each position in the vectors. These
four values are defined by equation (8), where C is
the count of times that each of the four outcomes
occur, i is the feature bit value for the first vector
V1, and j is the value for the second vector V2.

Cij (i, j ∈ {0, 1}) (8)

The similarity between two vectors, that both have
the length k, is calculated by the function f and
produces a score between 0 and 1, where if the
score is 0, the two vectors are completely different,
while 1 means they are the same. This scoring
method is used in [3] and is calculated by equation
(9). The calculation of f only requires C00 and
C11, as it is designed to take into consideration
only the positions where the feature bits are both
the same. For example, if the feature vectors Va

and Vb in Figure 3 were compared, the result would
be that C00 = 4 and C11 = 5. The similarity of
these two vectors would be calculated by equation
(9) and would equal 0.389.

f(V1, V2) =
0.5× C00 + C11

k
(9)

The similarity score between an unknown vector U
and the set of training vectors T is then found as
the mean similarity when U is compared to each
signature in T . For example, if the vectors Va, Vb

and Vc from Figure 3 are used as the set T , and Vu

is an unknown vector, the similarity score between
T and Vu would be .491.

The threshold that will be used to determine the
classification is produced from the average similar-
ity score µ of the training vectors when they are
compared to each other. This method of finding µ
is outlined in [3], and [10]. Carrying on from the
previous example, if T comprises of the first three
vectors from Figure 3, µ would be .398.

Because µ is the mean similarity score of the train-
ing vectors, it will tend towards classifying half of
the genuine signatures as forgeries, therefore its
use as the threshold is not ideal. So to create the
threshold, an offset is required to move the mean
down the similarity scale, with the intent being to
maximise the classification accuracy of both the
genuine and forgery signatures. This is shown in
Figure 4, where the threshold is the offset of the



mean. Two methods were investigated for finding
this offset, these were manual and automatic, both
of which are described below.

.50

Offset

MeanThreshold

Forgery

Genuine

Similarity Scale

=

1

Similarity of an unknown
to the training set.

Figure 4: Threshold creation.

3.1 Manual Classification

Manual classification uses a fixed offset o to move
µ down the similarity scale. This offset does not
compute a threshold directly, but instead is used
to generate a false acceptance rate (FAR) versus
false rejection rate (FRR) curve, from which the
best threshold (found at the equal error rate) is
computed. This offset is then used for all signature
sets, with the class of an unknown signature being
determined by equation (10).

class =

{
genuine if score ≥ µ− o

forgery if score < µ− o
(10)

The disadvantage of the manual method is that
it requires a range of experiments to find a value
which minimises the FAR and the FRR. The use
of this method was to make AFT comparable to
the graph matching technique [3], which also uses
this manual offset.

3.2 Automatic Classification

Automatic classification is a heuristic method for
finding an offset based on the training signatures.
The offset is found in the same manner that AFT
uses for calculating the lower sample standard de-
viation SL, where only the values below µ are used.
These values are the similarity scores from equa-
tion (9) when all training signatures are compared
to each other. The class of an unknown signature
is then determined by equation (11).

class =

{
genuine if score ≥ µ− SL

forgery if score < µ− SL
(11)

4 Experiments

The evaluation of AFT was carried out on two
datasets of signatures, both of which comprise of
skilled forgeries. A skilled forgery is one in which
the forger has both seen and practised writing a

Figure 5: Correlation between FAR and FRR

genuine signature, making it visually similar to the
original. Because of this visual similarity, there is
a substantial increase in difficulty of being able to
classifying an unknown signature, as opposed to
signatures of the random or simple variations [11].

The first dataset, CEDAR [12], is made up of 55
signature sets, where each set consists of 24 genuine
signatures and 24 forgeries. Initially this dataset
was in grey-scale, but was converted to binary us-
ing a classic iterative thresholding method [13],
which was chosen for its simplicity and robust-
ness. The second dataset was GPDS [14], which
was already binarised. This dataset contains 39
signature sets, where each set consists of 24 genuine
signatures and 30 forgeries.

The experiments for both of these datasets were
carried out using three spatial pyramid levels and
an 8×4 grid for the finest level of region sampling.
The final accuracy is calculated by equation (12)
and is the middle point between the genuine and
forgery classification accuracies.

accuracy =
(1− FAR) + (1− FRR)

2
(12)

4.1 CEDAR Results

For each signature set in CEDAR, 16 signatures
were randomly selected as training samples, while
the remaining 8 genuine signatures along with the
24 forgeries were used for testing. The use of 16 sig-
natures for training was to make the results compa-
rable to [3], [5], and [10]. This was then repeated 10
times for each set. By varying the offset, the error
trade-off can be plotted (See Figure 5), allowing
the offset that minimises both the FAR and FRR
to be identified and used for the final classification
accuracy.



The results in Table 1 show that AFT produces
competitive results to the graph matching method,
with the manual method achieving an accuracy ap-
proximately 2% greater than the automatic method.
AFT, in comparison to GSC, has a significant ac-
curacy increase of approximately 14%.

Table 1: CEDAR Results

Method 1-FAR 1-FRR Accuracy
GSC [5] 80.5 77.55 78.5
Zernike [10] 83.7 83.4 83.6
Graph Matching [3] 91.8 92.3 92.1
AFT (Auto) 89.04 91.84 90.44
AFT (Manual) 92.58 92.25 92.42

4.2 GPDS Results

In GPDS, training was carried out in the same
fashion as CEDAR, except only 12 randomly se-
lected signatures were used, so that the results
would be comparable to [4]. The remaining 12
genuine signatures and 30 forgeries were then used
for testing. This was once again repeated 10 times
for each set. The offset that minimises both the
FAR and FRR was then found in the same way as
CEDAR, and was used for the final classification
accuracy.

Table 2 shows that AFT can match the classifi-
cation accuracy that the more complex method
DWT is able to achieve. Once again, there is ap-
proximately a 2% accuracy difference between the
manual and automatic methods.

Table 2: GPDS Results

Method 1-FAR 1-FRR Accuracy
DWT (Random) [4] 82.08 80.69 81.39
DWT [4] 88.11 86.74 87.43
AFT (Auto) 82.76 89.21 85.99
AFT (Manual) 85.79 89.52 87.66

4.3 Reduced Training Size

AFT also remains fairly stable when the number
of training signatures is varied, showing that it
is remarkably resilient. This is shown in Figures
6 and 7. The manual method in both CEDAR
and GPDS required the offset to be adjusted with
relation to the change in the number of training
signatures. This change allows the classification
accuracy to remain stable when 8 or more training
signatures were used; when less than 8 signature
were used, the accuracy dropped off fairly quickly.
The automatic method tended to consistently fol-
low the same pattern, except it dropped off at
a much quicker rate. The stability of the clas-
sification accuracy when the number of training
signatures varied was not tested in [3], [4], [5], and

[10], therefore, the comparable ability of AFT in
this regard cannot be determined.

Figure 6: CEDAR stability when the number of

training signatures is varied. The standard training

amount is 16 signatures.

Figure 7: GPDS stability when the number of training

signatures is varied. The standard training amount is

12 signatures.

5 Conclusions and Future Work

This paper presented a novel method for off-line
signature verification by introducing what has been
termed adaptive feature thresholding. AFT is de-
signed to greatly restrict how a binary feature vec-
tor is created, improving its representative simi-
larity in relation to the training signatures. Along
with AFT, we found that the combination of spa-
tial pyramids and equimass sampling grids helped
to improve the extraction and representation of a
signature through the use of the gradient direction.
Using these methods, AFT achieved a classification
accuracy that is competitive to both the graph
matching and the DWT methods. As well as this,
AFT also remains computationally less complex
due to using only one image feature as opposed to
the ensemble of image features that other methods
tend to use. Experimentation was carried out using



two different approaches, manual and automatic.
Manual tended to achieve an accuracy that was 2%
greater than automatic. It was also shown that
this method remained relatively stable when the
number of training signatures was greater than 8.

Possible future work would be to test AFT with
other image features, as well as combining it with
the graph matching method, as this may further
enhance the classification accuracy. The use of
AFT in other areas of research is also possible
due to its generalist nature, and may prove to be
beneficial.
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