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Abstract 
 

This thesis investigates the use of machine learning techniques in computer games 

to create a computer player that adapts to its opponent‟s game-play. This includes 

first confirming that machine learning algorithms can be integrated into a modern 

computer game without have a detrimental effect on game performance, then 

experimenting with different machine learning techniques to maximize the 

computer player‟s performance. Experiments use three machine learning 

techniques; static prediction models, continuous learning, and reinforcement 

learning. Static models show the highest initial performance but are not able to 

beat a simple opponent. Continuous learning is able to improve the performance 

achieved with static models but the rate of improvement drops over time and the 

computer player is still unable to beat the opponent. Reinforcement learning 

methods have the highest rate of improvement but the lowest initial performance. 

This limits the effectiveness of reinforcement learning because a large number of 

episodes are required before performance becomes sufficient to match the 

opponent. 
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1 Introduction 
 

This report investigates the use of machine learning techniques in a computer 

game (BZFlag) to produce a computer controlled player that adapts to an 

opponent‟s style of game-play. Added constraints are that the computer player is 

limited to the same in-game capabilities, degree of control, and information as the 

human opponent. The game used is BZFlag which provides competitive one-on-

one game-play in a complex 3D environment. 

Three machine learning techniques are tested; static prediction models, continuous 

learning, and reinforcement learning. Static models have the best initial in-game 

performance but are not able to beat the opponent. Continuous learning shows an 

improvement in performance over time, but the initial performance is less than 

that of static models and the rate of improvement drops as the duration of the 

experiments is extended. Reinforcement learning shows the highest rate of 

improvement, but has the worst initial performance. This highlights a limitation in 

reinforcement learning; that an extremely large number of iterations are often 

required before the performance becomes adequate. 

 

1.1 Context in Games 
 

Sweetser [2002] states: 

 “The next industry breakthrough will be with characters that behave 

realistically and that can learn and adapt, rather than more polygons, higher 

resolution textures and more frames-per-second.” (Cited in [Ponsen & 

Spronck, 2004]) 

Computer controlled players are used in all forms of computer games. This can 

involve anything from simple fixed behaviour to complex sets of rules designed to 

alter behaviour depending on the state of the game. Machine learning (ML) 

techniques have been used to create computer opponents and have shown success 

in simple games, such as board games and card games, but the complexity of 
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modern 3D games often limits the feasibility of creating computer players that use 

ML. 

Methods used in modern 3D games generally provide an enjoyable experience to 

the human player. However, these systems are typically complex and are both 

time consuming and costly to produce. As games continue to increase the scope of 

their virtual worlds there is an increasing need for computer-controlled characters 

that can adapt to different situations and even develop unique „personalities‟ to 

provide a more realistic environment for a human player. The use of ML 

techniques in complex 3D games to create computer-controlled characters is 

becoming a more popular area of research to solve this problem. 

 

1.2 Context in Machine Learning 
 

Manslow [2002] states: 

 “It is anticipated that the widespread adoption of [machine] learning in 

games will be one of the most important advances ever to be made in game 

AI. Genuinely adaptive AIs will change the way in which games are played 

by forcing the player to continually search for new strategies to defeat the 

AI, rather than perfecting a single technique.” 

Games often use „expert systems‟ to control computer character behaviour. An 

expert system uses a set of rules written by an „expert‟ with domain knowledge. 

These systems are widely used as a way to provide access to domain knowledge 

without having an expert present „in the flesh‟. The rules are written by hand 

which is inherently time consuming and often requires extensive „debugging‟ 

before the system is released for use. The rules are also fixed, making them unable 

to adapt and they typically repeat any mistakes that they might make. 

Machine learning (ML) algorithms can help overcome these limitations. ML 

algorithms generally try to learn a function that maps input values to an output 

value. In supervised learning this is done by inferring a function from sets of 
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known examples. Alternatively, reinforcement learning allows an algorithm to 

learn a function by „trial and error‟. 

Complex 3D games provide an interesting, and somewhat unexplored, 

environment for ML research. Games often have strict requirements on CPU time 

and memory resources; whereas traditional ML research often involves an entire 

machine being devoted to a single algorithm. This may sound like ML techniques 

are not useful in computer games, but one must also consider that with these 

increased physical demands comes a decreased performance demand. That is to 

say; in a real-time game, decisions are made repeatedly (often second-by-second 

or faster), and this large number of decisions means a large number of „bad‟ 

decisions can go unnoticed by a human user. 

 

1.3 The Problem Domain 
 

The problem domain addressed by this thesis is that of creating a computer 

opponent in BZFlag able to adapt to a human player‟s style of game-play. An 

added constraint is that the computer opponent is not given an advantage over the 

human player. That is, the computer opponent must use the same controls and 

information that a human player would have in the same situation. 

The overall aim of this study is to create a computer controlled opponent (using 

ML techniques) capable of adapting to a human player‟s style of game-play, 

ideally resulting in a computer opponent that can beat the human player. 

Creating a computer opponent includes first determining whether ML algorithms 

can be used in BZFlag without having a detrimental effect on game performance, 

then experimenting with various ML techniques to determine the in-game 

performance that can be achieved and adjustments to maximize performance. The 

ML approaches used in experiments are; static prediction models, continuous 

learning, and reinforcement learning. 

 

1.4 Thesis Outline 
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Chapter 2 gives some background on computer players produced by game 

developers as well as systems created for academic studies. A brief overview of 

the WEKA machine learning workbench, the source used for many of the ML 

algorithms, is given, followed by a description of PIQLE and Connectionist which 

are two reinforcement learning frameworks. 

Chapter 3 describes initial attempts to integrate an ML algorithm into BZFlag as a 

proof of concept. This includes separation of tank controls into steering, shooting, 

and rotation. The methods used to gather training data are discussed, as well as 

preliminary results which show that ML algorithms can be used to control 

shooting without affecting game performance. Modifications to data collection for 

the speed control are described, as well as the development of the online and 

offline training approaches which allow a wide range of ML algorithms to be 

used. Finally some limitations observed during experimentation are discussed. 

Chapter 4 describes attempts to create a computer player that uses static prediction 

models to determine its actions. The limitations mentioned in Chapter 3 are 

described in more detail and solutions used are presented. Results using a static 

prediction model to control a single aspect of tank behaviour are presented, 

showing that the performance achieved is not terrible but is insufficient to beat the 

opponent. This is followed by results when two static models are used which 

show the performance using two static models can be better or worse than the 

performance either model alone. A problem observed when the models are not 

independent is discussed, as well as the solution used and the results obtained. 

These independent results show an improvement in performance over the previous 

results, but the computer player is unable to beat the opponent. 

Chapter 5 describes attempts to improve performance achieved in Chapter 4 using 

continuous learning for one of the prediction models. The method used to select 

algorithm combinations is discussed, and results when continuous learning is used 

for short duration tests and longer duration tests are presented. The results from 

the short duration tests generally show an improvement in performance over time, 

but this is not maintained in the longer duration tests indicating there is a limit to 

the performance increased that can be gained by continuous learning. 
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Chapter 6 describes experiments that use reinforcement learning to control a tank. 

The initial configuration used with the Connectionist framework is described, and 

results are presented showing that the computer player does not demonstrate a 

steady improvement in performance. A problem with the behaviour of the tank 

using the initial configuration is described, as well as the changes made to 

overcome the problem and the results obtained which show a decline in the 

overall performance. The initial configuration used with the PIQLE framework is 

described along with results obtained which show very poor performance by the 

computer player. An altered configuration to improve performance is described 

and the results of a longer test run are presented which show a gradual 

performance improvement over time but the overall performance is less than that 

achieved when using Connectionist. 

Chapter 7 gives a summary of this thesis and discusses achievements made during 

the research. These include; showing that machine learning algorithms can be 

used in a complex, modern game without having a detrimental effect on game 

performance, the use of only static prediction models to control a tank, and 

highlighting some limitations in both continuous learning and reinforcement 

learning when they are applied to games. Possible areas of future work are also 

discussed showing the research area using ML in computer games is vast and 

presents many avenues that can be explored. 
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2 Background 
 

This chapter defines artificial intelligence in the context of computer games and 

describes some common approaches used by game developers and academic 

researchers. A general description of BZFlag is given, along with limitations that 

arise from using it for experimentation. A brief overview of the WEKA machine 

learning workbench is given, as well as an overview of reinforcement learning 

and the two reinforcement learning frameworks used in experiments. 

 

2.1 Game AI 
 

For the purposes of this discussion, artificial intelligence in games (game-AI) is 

defined as: a system to dictate the behaviour of a character inside a computer 

game, as distinct from characters controlled by a human user. 

Game-AI can involve a multitude of different approaches, from rule-based expert 

systems to reinforcement learning agents. The development of game-AI can be 

separated into two categories based on the main objective in developing the game-

AI. They are referred to here as commercial game-AI, which is done to create an 

opponent that is enjoyable to play against, and academic game-AI, which is done 

to create a computer player that plays the game well. 

 

2.1.1 Commercial Game-AI 

 

Commercially developed game-AI is perhaps the most prolific of game-AI 

systems. The term „commercial‟ here is used to mean any computer game 

produced for its appeal to potential users (this includes games not necessarily 

made for profit, such as free or open source games). The main objective of game-

AI in commercial games is to create computer players that a human player finds 

enjoyable to play against. 
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How enjoyable a player is to play against cannot be quantified directly and 

developers have many considerations when designing game-AI, often involving 

constraints at both upper and lower limits. For instance, human players want a 

computer opponent that is challenging to beat, but not so difficult that the game 

becomes frustrating. Human players also want game-AI that behaves 

„realistically‟; this can be things like „taking cover‟ in first person shooter (FPS) 

games, or cooperating with other computer team-mates to meet objectives rather 

than behaving as a group of individuals. 

Commercially developed game-AI is often complex, but the focus is on creating 

the appearance of learning (or adaptation) from the player‟s point of view. The 

game-AI itself usually behaves deterministically regardless of previous world 

state. In this sense the game-AI does not „learn‟ how to play and typically repeats 

any mistakes it has made. 

 Three methods often used in commercial game-AI are; scripting, cheating, and 

rule-sets.
1
 These distinctions are made here to aid discussion of game-AI 

techniques but modern games often combine these methods together in various 

ways. 

 

Scripting 

 

Scripting refers to a fixed „script‟ that is created by a developer to dictate a non-

player character‟s (NPC‟s) behaviour, where the „script‟ is something set by a 

developer that does not take into account the current game state. One method of 

scripting is hand-coded instructions that dictate the exact position and actions of 

an NPC, another common method is „way-points‟ for NPCs to use. 

Hand-coding an NPC‟s actions has numerous limitations, most notably poor 

scalability. This also does not work well when the human player has a large 

amount of in-game freedom. For example, an NPC might be talking to the human 

player but facing another direction. Modern games still use this technique but, 

                                                 
1
 In this report scripted actions are separated from rule-sets that determine behaviour but among 

game developers „scripting‟ is often used to refer to a combination of the two. 
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because of these limitations, long scripted scenes are often replaced with „cut 

scenes‟.
2
 

Way-points are often used in „death-match
3
‟ style shooting games where 

destinations have multiple paths. Way-points are points placed in the „map‟ by 

designers at strategic places, typically intersections of paths and half-way points 

between those intersections. The way-points can then be viewed as a graph which 

allows for faster path-finding algorithms in NPC navigation. 

Firing points, a slight variation of way-points, are points placed on the map that 

dictate positions that are good strategically, such as areas with good cover for 

defence. This helps reduce the complexity of game-AI calculations and was used 

extensively in the FPS game Halo [Butcher & Griesemer, 2002 pg 22]. 

 

Cheating 

 

Cheating is where an NPC is given an unfair advantage over the human player. 

This creates NPCs that are more difficult to beat without requiring complex 

calculations. Cheating can be narrowed into three subcategories; capability, 

„rubber-band game-AI‟ and knowledge. 

Capability refers to a difference in abilities between the human player‟s character 

and NPCs. This can be a range of things depending on the game type. In an FPS 

game, for instance, the „harder‟ opponents may have weapons that are not 

available to human players, or they may have more „hit points‟ so they can 

survive more damage than human players. Another example is real-time strategy 

(RTS) games where a „harder‟ computer opponent is given a better starting state 

such as more „units‟ or more resources. 

This technique sounds very simplistic but playtests carried out during 

development of Halo found that simply making enemy NPCs „tougher‟ (i.e. able 

                                                 
2
 A „cut scene‟ is where the human player‟s controls are limited or disabled („cut‟) and they 

observe what happens on the screen (like a movie), generally this is done to show scenes that 

develop characters or advance the plot of the game.  
3
 Death-match games (also known as free-for-all or all-against-all games), are games where the 

objective is simply to kill as many opponents as possible within a given time limit. 
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to survive more damage) generally causes human players to think the NPCs are 

more intelligent [Butcher & Griesemer, 2002 pg 16]. 

„Rubber-band game-AI‟ (also known as „catch-up AI‟) is often seen in racing and 

sports games, but is also used in other games. Rubber-band game-AI is a 

technique where the NPC‟s performance is adjusted to be similar to the human 

player‟s performance. For instance, in a racing game where the human player has 

a large lead (e.g. after the NPC has crashed into a wall), the NPC is able to catch 

up in a short amount of time, which would require the NPC‟s car to be going 

faster than the maximum speed permitted by the game (as though the two 

characters are connected by a rubber-band). Similarly, rubber-band game-AI can 

be applied in the opposite scenario, where the human player is doing poorly and 

the NPC reduces its performance so the human player still has a chance to win. 

The idea of rubber-band game-AI is to regulate the game difficulty to match the 

human player‟s ability (and is often listed as a positive feature of the game). If 

done well this can make the game more enjoyable by ensuring the game is never 

„too easy‟ or „too hard‟, but often the NPC‟s „miraculous‟ improvement in 

performance creates a feeling of unfairness and is less enjoyable to play against, 

or the other extreme where the NPCs „dumbing down‟ makes the NPC too easy to 

beat and reduces the game‟s challenge.
4
 Note that rubber-band game-AI is similar 

to capability cheats described previously, but rubber-band game-AI only affects 

the game when there is a large difference in performance between players. Once 

the NPC and human player are even (or close to it), rubber-band game-AI is 

suspended and the NPC‟s performance becomes normal again. 

A good example of rubber-band game-AI is present in the well known Need for 

Speed racing game series to ensure the human player is never too far in front of (at 

least) one NPC. An example of rubber-band game-AI used in a genre other than 

racing is the third person shooter Max Payne, where the difficulty level of the 

NPCs is determined by the human player‟s performance. This technique is even 

                                                 
4
 Many gamers, typically of intermediate or advanced level, do not like any form of rubber-band 

AI in games because it can reduce the skill required to complete the game and is often seen as 

unrealistic and somewhat patronising. 
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mentioned in the game‟s publicity material as a feature of the game (referred to as 

“auto-adjusting gameplay”).
5
  

Knowledge-based cheats are often used in real-time strategy games (RTS) to 

enhance the performance of the game-AI. Knowledge cheats refer to the game-AI 

having access to more data than its human opponent does. For example, many 

RTS games use a mechanism called „fog of war‟ that obscures large portions of 

the map for the player (unless one of the player‟s units is in the area), while the AI 

knows the exact layout of the map and the locations of the human player‟s units. 

Another example is an FPS game where the human player only has knowledge of 

what they can see (line-of-sight), whereas NPCs in the game know exactly where 

the human player is at all times. 

 

Rule-Sets 

 

Rule-set systems are similar to scripting discussed previously but allow for more 

variation based on the current environment. Rule-set systems use a set of rules 

(IF…THEN) that determine the NPC‟s actions based on the current environment. 

The ability to alter behaviour based on world state allows for variations in 

behaviour that cannot be achieved with scripting. 

Rule-set systems are known as „expert systems‟ in machine learning, where a 

human „expert‟ uses domain knowledge to define what actions should be taken 

depending on the world state. Creating expert systems is inherently time 

consuming and often requires „debugging‟ to adjust the rule-set. The rule-set is 

also highly specific to the situation, meaning new rule-sets must be created for 

each new game, and often different NPCs each require their own specific rule-set. 

An example of rule-sets in game-AI is in Halo, which makes use of a rule-set for 

NPCs to complete their current goal (such as fight, hide, or search), though Halo 

also makes use of many other techniques as well [Butcher & Griesemer, 2002 pg 

                                                 
5
 Can be seen on the Max Payne homepage: http://www.rockstargames.com/maxpayne/main.html 

on the fourth slide („Make your own levels‟). 
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21]. A simpler example is BZFlag which has two built-in NPCs that use only rule-

sets to determine actions to take during a game (discussed further in Section 2.2). 

 

2.1.2 Academic Game-AI 

 

Academic game-AI refers to non-human players developed where the 

performance of the non-human player is the main focus. Unlike commercially 

developed game-AI (discussed in Section 2.1.1) there is little or no concern for 

the enjoyment of a human player. The goal is generally that the game-AI be 

capable of beating any human player (i.e. the world champion). To aid discussion 

academic game-AI is separated into three categories based on the games used; 

turn-based competition, real-time competition, and solo. 

 

Turn-Based Competition 

 

Turn-based games are perhaps some of the oldest games known to man and, not 

surprisingly, are popular as academic studies in machine learning. Turn-based 

competition games (TBCs) are games where two or more players take turns 

performing actions that alter the game‟s state. TBCs include most board games, 

card games, turn-based strategy games, and even some physically oriented games 

like Jenga. 

TBCs can easily use traditional machine learning because each player must wait 

for their turn to perform an action, effectively giving a computer opponent ample 

time to determine its next action. Even if the decision time is limited (as is often 

the case when a computer plays against a human) the board state will not change 

until the action is taken, meaning that although the „thought‟ time is limited the 

computer player is not punished for taking the maximum time allowed to 

determine its next move. 

Many TBCs used in machine learning experiments are also „perfect information‟ 

games, where the entire world state is known at all times. For example, in chess 

both players know the position of all pieces on the board at all times. „Perfect 
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information‟ and relatively low time constraints often allow computer game-AI to 

use the „brute-force‟ technique, where all game states that can be reached from the 

current state are computed, with the best possible move then being selected. 

Deep Blue created by IBM is perhaps the most famous TBC academic game-AI 

system. Deep Blue played chess using the brute-force technique
6
 and was able to 

beat the grand master at the time.  

Tesauro‟s TD-Gammon is another example of an academic game-AI system for a 

TBC (backgammon). TD-Gammon uses temporal-difference learning to play 

backgammon. Temporal-difference learning is a form of reinforcement learning 

where learning is based on observed values that change over time (i.e. from one 

time-step to the next). TD-Gammon can learn to play backgammon successfully 

by playing repeated games against itself and, if combined with a shallow look-

ahead function, is able to beat the top world players [Tesauro, 2002]. 

 

Real-Time Competition 

 

Real-time competition games (RTCs) are games where all players carry out 

actions that affect the game state simultaneously. These are more complex than 

TBCs discussed previously and require actions to be chosen rapidly. The real-time 

nature of these games combined with the large number of variables involved 

makes the brute-force technique and some other machine learning techniques 

unfeasible. 

Many computer games are RTCs, including most shooting games, RTS, and some 

racing games (if there is an opponent). Academic studies on RTCs often use RTS 

games to test machine learning performance. RTS games typically take a 

(relatively) long time to complete, and poor decisions are not as quickly 

„punished‟ as they might be in other games (such as shooting games). This means 

that of all real-time games, RTS games are perhaps the least demanding on time. 

                                                 
6
 Deep Blue also had several thousand opening moves and end-game moves stored persistently, 

rather than having to compute them all repeatedly. 
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The focus of machine learning in RTCs is often limited to a single aspect of 

game-AI behaviour (such as path-finding or resource management). The games 

can also be changed to „solo‟ games by removing the opponents (the algorithms 

are then scored by some metric, for example the amount of gold mined by the 

computer player after 10 minutes of game time). 

One example of academic research in RTCs is the study done by Forbus et al. 

[2002] into the use of spatial reasoning to improve game-AI in RTS games. This 

aims to improve, among other things, path-finding in RTS games which typically 

use the A* algorithm and a variation of way-points (described in Section 2.1.1). 

Another example is the annual RoboCup competition which aims to create a team 

of humanoid robots capable of beating a human team in a game of soccer by 2050. 

RoboCup has many categories based on the hardware used and is more of a 

robotics challenge, but also includes a simulation category which is based only on 

software and so falls into the academic game-AI RTC category. 

 

Solo 

 

Solo games are any games where there is no opponent, often using beat-the-clock 

style games such as racing games. In academic studies solo games are often used 

because they provide a static environment that is only changed by the agent‟s 

actions. This allows for „incremental-improvement‟ systems, like reinforcement 

learning, to be used effectively. 

One example of this is the Robot Auto Racing Simulator
7
 (RARS) which was 

designed to provide researchers an easy way to apply machine learning algorithms 

to a racing game. Many academic studies have been done using RARS as a test 

environment, Cleland [2006] shows that an agent using reinforcement learning 

(Q-Learning) can learn to drive around a simple track and is able to beat basic 

heuristic robots. 

  

                                                 
7
 RARS has since been superseded by The Open Racing Car Simulator (TORCS) available online 

at http://torcs.sourceforge.net/ 
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2.2 Objective 
 

Game-AI has been developed for all types of computer games. Commercial game-

AI is used in complex 3D games, but is costly and time consuming to create. It is 

also often highly tailored to one particular game. By contrast, academic game-AI 

often makes use of versatile machine learning techniques, but is generally applied 

to less complex games or learning is isolated to a particular task (such as path-

finding). 

This study aims to determine whether a computer controlled opponent can adapt 

to a human player‟s style of game-play in a complex 3D game. Furthermore the 

computer opponent must use the same level of information and control the human 

player is given (i.e. not cheating game-AI described in Section 2.1.1). Several 

machine learning techniques are used; static prediction models, continuous 

learning, and reinforcement learning. 

 

2.3 BZFlag 
 

BZFlag (short for BattleZone Flag) is a free, open source, and cross-platform 

multiplayer 3D tank battle game based on a previous game called BattleZone and 

released under the GNU LGPL. Using the terminology from Section 2.1 BZFlag 

is a commercial real-time competition game that uses rule-sets to control NPCs. 

The basic game-play of BZFlag is to have two or more tanks whose objective is to 

shoot each other, but there are several variations of this basic theme including 

teams, capture-the-flag (CTF), and „rabbit hunt‟. 

 

2.3.1 Client-Server Architecture 

 

BZFlag uses client-server architecture for all games, though both client and server 

programs can run on the same machine. The client can be considered a „fat client‟, 

whereby a large amount of processing is done in the client program while the 

server program mainly handles synchronization of the game state between 
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multiple clients.
8
 In this report BZFlag refers to the client program, while BZFS 

refers to the server program. All discussions of BZFlag and BZFS in this report 

refer to version 2.0.10. 

 

2.3.2 World Configuration 

 

The world configuration refers to the characteristics of the virtual world created 

by BZFS. This includes aspects such as size, obstacles, tank abilities, flags, and 

game-play modes. Due to the large number of parameters that can be set in BZFS 

only a brief overview is given here.
9
 

 

 

Figure 2.1 Screenshot of BZFlag 

 

                                                 
8
 This approach, combined with the open source nature of BZFlag, makes it possible for a player to 

cheat by recompiling their client with altered code. As a result the „division of labour‟ between the 

client and server may change in future versions. 
9
 A thorough list of BZFS configuration settings is available online at 

http://my.bzflag.org/w/BZFS_Command_Line_Options 



16 

 

Figure 2.1 shows a screen created by BZFlag. The red and purple writing on the 

top half of the screen is score information. The orange squares show tank aiming 

information, with the smaller square showing where a shot would go if the tank 

fired one. The world in Figure 2.1 is randomly generated, with pyramids in blue 

and boxes in brown. The X-Y plane (ground) is green. Left of centre is the 

opponent tank in red. Bottom left shows the „radar‟ that gives the positions of all 

other tanks (red dot) as well as all obstacles in the world (blue boxes). To the right 

of the radar is the message area which provides information such as server 

messages and chat facilities between players. 

 

World Size 

 

World size is the size of the virtual world created by BZFS. This is measured in 

„BZFlag units‟ which have no real-world counterpart (though it is suggested that 

if the tank was life-sized one BZFlag unit would be approximately one meter). 

The world size is set on the X and Y coordinate planes, the Z-axis size cannot be 

set by the user. The coordinates on all three axes can be positive or negative, so a 

world with a size of 200x200 is effectively 400x400 units (on the X-Y plane, 

green in Figure 2.1) with coordinates ranging from -200,-200 to 200,200.  

The terrain is always flat, though obstacles can be placed within the world 

depending on the configuration. Terrain is uniform in all areas, meaning the 

characteristics (such as traction) are consistent regardless of position in the world. 

The world is enclosed on all four sides by „walls‟ which cannot be damaged, 

destroyed, or breached in any way. 
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Obstacles 

 

BZFlag has several types of obstacles that can be placed within the virtual world. 

These include boxes, cones, pyramids, arcs, and spheres. All obstacles are solid 

and cannot be moved or damaged by tanks regardless of the world configuration. 

Randomly generated worlds in BZFlag use only boxes and pyramids (randomly 

placed), but boxes are the only type of obstacle used for experiments described in 

this report.  

 

Tank Abilities 

 

Most tank characteristics are fixed (e.g. maximum speed), but some can be set by 

BZFS when starting the server, such as jumping and the shot-count. Jumping 

allows the player to „jump‟ the tank upwards (increasing Z-axis values), which is 

often useful in dodging an opponent‟s shot. If jumping is turned off the tank stays 

on the „ground‟ at all times (except when blown up by the opponent). 

The shot-count is the number of shots each tank has available. This can be thought 

of as the number of chambers the turret has, where each chamber has to be 

reloaded after it has been fired. Each shot is reloaded independently of any other 

shots, with a fixed reloading delay of approximately four seconds. 

Experiments discussed in this report have jumping disabled and the number of 

shots set to one for simplicity of testing.  

 

Flags 

 

Flags can be turned on or off in BZFS. If flags are turned on, BZFS randomly 

places several flags throughout the world at the start of a game. Both „good‟ and 

„bad‟ flags can be used, where a „good‟ flag gives the player some kind of 

enhancement that makes game-play easier, while „bad‟ flags do the opposite, 

making game-play harder for the player (often by manipulating the controls or 

making it easier for opponent tanks to shoot the player‟s tank). 
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There are a large number of flags available and they will not be listed here but, to 

give an idea of the effects, two „good‟ flags are „Cloaking‟ and „Shield‟, while 

two „bad‟ flags are „Left Turn Only‟ and „Reverse Only‟. 

It should be noted that the flag used in CTF games is a special flag, which is not 

placed randomly
10

 by the server and is neither „good‟ nor „bad‟ (as it has no effect 

on the tank abilities or controls). 

 

Respawning 

 

Respawning is a term in games that refers to a player‟s character coming back to 

life after they have died in the game. Some games use fixed points („respawn 

points‟) where the characters are placed after respawning, while other games place 

the character randomly in the world. BZFlag can use different types of 

respawning but the one used during experiments in this report is semi-random 

respawning. This attempts to find a position that is away from the opponent tank 

by randomly (using pseudorandom number generation) picking places in the 

world. A time limit of 10 milliseconds is used, after which the tank is placed in 

the world regardless of opponent position. 

 

2.3.3 Game-Play 

 

Games in BZFlag are generally one of two varieties; death-match and capture-the-

flag (CTF). Death-match games are free-for-all games where each tank is trying to 

shoot every other tank. One variation of this is team death-match, which is the 

same as standard death-match except each tank is part of a team and is penalized 

for shooting team-mates. Another variation is „rabbit hunt‟, where one player is 

the „rabbit‟ and is hunted by all other players. When the rabbit is shot, the shooter 

becomes the rabbit and the process begins again, where the aim is to spend as 

much time as possible being the rabbit. 

                                                 
10

 The CTF flags are always placed on the team bases, the bases themselves however can be 

randomly placed on the map. 
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CTF always uses teams, although a team can be composed of a single player 

(BZFlag supports up to four teams). Each team has a „base‟ on the map that has a 

flag bearing the team colour. The aim is to retrieve an opponent‟s flag and return 

it to the player‟s base. 

 

2.3.4 Computer Players 

 

BZFlag comes with two built-in computerized players. In this report they are 

referred to as basic-pilot and autopilot. Both players use rule-sets to determine 

behaviour, though the rule-sets of the two are different. Basic-pilot is the standard 

computer opponent during single player games. It has some simple dodging code 

but overall performs poorly and is easily beaten by a human player. 

Autopilot exists to take over a human player‟s tank when desired (for instance, to 

answer the phone during a multiplayer game). Autopilot is superior to basic-pilot 

and easily beats basic-pilot in a one-on-one match. Autopilot uses a fixed rule-set 

that creates predictable behaviour and can be beaten by an intermediate human 

player
11

 without much difficulty. 

 

2.3.5 Limitations 

 

Games used in academic studies, particularly those that deal with reinforcement 

learning, often increase the execution speed of the game because of the large 

amount of game-play required for learning. Unfortunately, the synchronization 

performed by BZFS makes it difficult to change the operating speed of BZFlag so 

some experiments in this study have a limited duration. 

  

                                                 
11

 All observations based on an „intermediate human player‟ are from playing the game myself. 
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2.4 WEKA 
 

WEKA is a machine learning workbench written in Java and released as open-

source under the GNU GPL. WEKA is widely used in machine learning research 

so only a brief description is given here. For a more comprehensive description of 

WEKA and the algorithms included with it, see Witten & Frank [2005].
12

 

WEKA includes various machine learning algorithms, data pre-processing tools, 

and applications for trialling learning algorithms on user provided datasets. The 

pre-processing tools include functions such as discretization or removal of 

attributes from a dataset. 

WEKA uses a two step train-test approach. The first step is to „train‟ the 

algorithm on a given dataset. Once the training completes, the learning algorithm 

is fixed (static) and does not change for the duration of the tests. The second step 

is the „test‟ or „prediction‟ phase, where the trained learning algorithm is used on 

the test dataset. The two datasets (test and train) can be the same dataset, separate 

datasets, or sub-sections of a larger dataset (such as in cross-validation tests). 

 

2.5 Reinforcement Learning 
 

Parts of this report use reinforcement learning. It is useful therefore to provide a 

definition of the term as well as a description of the two frameworks used. A 

detailed explanation of reinforcement learning is beyond the scope of this report, 

for more information see Sutton & Barto [1998]. 

  

                                                 
12

 Information is also available online at http://www.cs.waikato.ac.nz/ml/weka/ 
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2.5.1 Definition 

 

Reinforcement learning (RL) is a method which matches a situation (world state) 

to an action in order to maximize some reward function. Furthermore the learner 

(agent) is not told the right action to take but rather must learn through trial and 

error which actions maximize the reward function [Sutton and Barto, 1998]. 

The lack of known „correct‟ examples often results in slower learning than in 

supervised learning but, given sufficient learning time, RL is capable of exploring 

the entire search space and so is guaranteed to find the optimum solution (if one 

exists). 

One method to achieve this is referred to as state-action pairs whereby all possible 

combinations of states and actions are kept in memory along with the observed 

reward for each state-action pair (i.e. the reward the agent received the last time 

the action was taken from that state). Another method used is similar to state-

action pairs but uses a neural network to generalize the learning. This has the 

advantage of a lower memory requirement, since state-action pairs do not need to 

be kept in memory. 

 

2.5.2 PIQLE 

 

PIQLE (Platform Implementing Q-Learning) is a Java framework that is designed 

to separate problems from algorithms, allowing researchers to easily test new 

algorithms using standard problems or vice-versa.
13

 

PIQLE includes implementations of various RL algorithms (generally those 

described in Reinforcement Learning, an Introduction [Sutton and Barto, 1998]), 

but because of time constraints only the state-action pair algorithm in PIQLE is 

used in this report. 

The state-action pair method stores all combinations of states and actions along 

with the maximum expected reward for each state-action pair. PIQLE uses 

                                                 
13

 Only a brief overview is given here, for more information see the PIQLE homepage at 

http://sourceforge.net/projects/piqle 
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hashing to reduce the memory requirement so that only observed state-action pairs 

are stored, but the memory requirement can still be quite large. 

The state-action pair approach works well on small or simplified problems but 

does not scale well to more complex areas. The reasons for this are firstly that a 

large number of states or actions (or both) increases the memory requirement, and 

secondly all state-action pairs must be visited repeatedly in order for the algorithm 

to converge. 

PIQLE allows the number of actions available to be set on a state-by-state basis. 

This is particularly beneficial for use in the research described in this report 

because of the reloading delay (described in Section 2.2.2) which means a tank 

cannot fire in all world states. 

 

2.5.3 Connectionist 

 

Connectionist is a Java RL framework that uses Connectionist Q-Learning as 

described by Kuzmin [2002] where a neural network is used to allow 

generalization of the state-action pairs used for learning. It should be noted that 

PIQLE also has neural network based algorithms but Connectionist is 

experimented with first as it is less complex than PIQLE.
14

 

Figure 2.2 shows the neural network at the centre with sensors on the left and 

actions on the right. The neural network has an arbitrary number of inputs 

(sensors) that represent the current world state, with the reward value received 

from previous states as an additional input. The output of the neural network 

corresponds to an action the agent can perform. The actions are fixed at the start 

of the experiment and it is assumed the actions are always available. 

  

                                                 
14

Only a brief overview of Connectionist is given here, for information see the Connectionist 

homepage at http://elsy.gdan.pl/ 
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Figure 2.2 Connectionist Brain
15

 

 

The neural network approach has the benefit of a reduced memory requirement 

over state-action pairs used in PIQLE (see Section 2.4.2). However, generalization 

by the neural network adds a level of complexity that can make it difficult to 

adjust for a particular learning problem. 

Connectionist also allows for the neural network weights to be saved and restored 

during experiments. This allows for the neural network to be restored to a known 

„good‟ state if the performance begins to deteriorate due to exploration of the 

search space. 

The neural network approach
16

 was used by Tesauro‟s TD-Gammon backgammon 

player (described in Section 2.1.2) which is capable of beating the top world 

players, proving that the neural network approach can be used successfully at least 

for simple 2D games. 

  

                                                 
15

 Obtained From 

http://elsy.gdan.pl/index.php?option=com_content&task=view&id=19&Itemid=32 
16

 TD-Gammon uses the neural network approach to reinforcement learning, but does not use the 

Connectionist framework. 
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2.6 Chapter Summary 
 

Game-AI has been developed for all kinds of computer games. Often the creation 

of these systems is both costly and time consuming. Research has been done using 

machine learning techniques to create computer opponents, but this is generally 

applied to simpler games. Use of machine learning techniques in a complex 

computer game raises many interesting questions and is largely an unexplored 

area of machine learning research. 

This study aims to develop game-AI for BZFlag that is able to adapt to the game-

play of a human opponent. An additional constraint is the game-AI will have the 

same in-game capabilities, information, and controls as a human player (i.e. not 

cheating). BZFlag is used because it provides competitive game-play in a complex 

3D environment. The experiments described in this report make use of the WEKA 

machine learning workbench, and the PIQLE and Connectionist reinforcement 

learning frameworks. 
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3 Integration of Machine Learning in BZFlag 
 

This chapter describes initial attempts to use machine learning (ML) algorithms to 

control a tank in BZFlag. It includes a description of how tank controls are 

separated, the selection of attributes used to train the algorithms, and development 

of online and offline approaches to training. 

The goal at this stage is to determine whether an ML algorithm can be used to 

control a tank in BZFlag. This includes determining what attributes are available 

in BZFlag and confirming that an ML algorithm can be used to control a tank in 

real-time without having a detrimental effect on the performance of BZFlag. In-

game performance of the ML-controlled tank is also observed but is of secondary 

importance at this point. 

Section 3.1 explains how tank controls are separated into three categories; speed, 

shooting, and rotation. Section 3.2 describes the attempts to use an ML algorithm 

to control tank shooting and the observed in-game performance. Section 3.3 

describes attempts to use an ML algorithm to control speed and the online and 

offline training approaches developed to accomplish it. Section 3.4 describes 

some limitations observed during the experimentation described in the previous 

sections. Section 3.5 is a brief summary of this chapter. 

 

3.1 Separation of Controls 
 

BZFlag allows players to control a tank inside the virtual world created by BZFS 

(discussed in Section 2.3). For this study controls are separated into three distinct 

categories; speed, shooting, and rotation. Separation simplifies the complexity of 

controlling a tank in the 3D environment in the hope that this improves an ML 

algorithm‟s ability to learn tank behaviour. 

Speed is defined as the tank‟s velocity along the line it is facing. It is adjusted by 

setting a floating-point number representing the fraction of the maximum possible 

speed. This can be set to a maximum of 1.0 and a minimum of -0.5, with 1.0 being 

full speed ahead and -0.5 being full speed backwards (the tank can only go half as 
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fast in reverse). Changes to speed happen instantaneously (that is to say, to the 

user acceleration appears to be instantaneous). 

 Shooting is the ability to fire a projectile from the tank. Once fired the projectile 

continues along a straight-line path until it either hits something (an obstacle, 

tank, or wall) or reaches its maximum range. Tanks do not always have the ability 

to shoot because of the reloading mechanism (described in Section 2.3.2), unlike 

the speed and rotation controls which are always available. The shooting control 

is also different from speed and rotation in that it is a binary variable and thus can 

simply be toggled (to fire) when required. 

Rotation is defined as the tank‟s ability to change its orientation in the virtual 

world. As with speed this is adjusted by setting a floating-point number 

representing the fraction of the maximum possible turn speed. This can be set to a 

maximum of 1.0 and a minimum of -1.0, where 1.0 is turning as fast as possible to 

the left and -1.0 is turning as fast as possible to the right. Unlike speed however, 

turning does not happen instantaneously, it takes time for the tank to rotate 

(approximately 8 seconds to turn 360 degrees). 

 

3.2 Learning to Shoot 
 

Shooting is selected as the first control to learn with an ML algorithm for two 

reasons; firstly it is a binary value and so does not require any discretization 

which simplifies the experiment, and secondly the effect of the algorithm on tank 

behaviour is the easiest of the three controls to observe during game-play. 
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3.2.1 Initial World Configuration 

 

The initial world configuration used for testing has a size of 200. As described in 

Section 2.3.2, this creates a world that is 400x400 units (with coordinates from     

-200 to +200 on both the X and Y axis). This size was chosen arbitrarily but 

creates a world small enough that the tanks do not need to spend much time 

moving to find each other, yet large enough that the tanks cannot shoot each other 

from one side of the world to the opposite side (so some movement is still 

required). 

To simplify the test, the only obstacle in the world is a single 10x10x10 square 

block at the centre of the world (coordinates 0,0). The standard re-spawning 

algorithm discussed in Section 2.3.2 is used to re-spawn dead tanks. 

 

3.2.2 Gathering Training Data 

 

Training data is gathered from a one-on-one match between autopilot and basic-

pilot. The decisions made by autopilot are output at each time-step of the game. 

Table 3.1 shows the data recorded. 

 

Name Description 

MyPosition (X,Y,Z) The position of the autopilot‟s tank on the axis 

MyVelocity (X,Y,Z) The velocity of the autopilot‟s tank along the axis 

EnemyPosition (X,Y,Z) The position of the opponent‟s tank on the axis 

EnemyVelocity (X,Y,Z) The velocity of the opponent‟s tank along the axis 

EnemyDistance The straight-line distance from the centre of the 

autopilot‟s tank to the centre of the opponent‟s tank. 

AngleDifference The difference between the current rotation of the 

autopilot‟s tank, and the rotation which would point the 

autopilot‟s tank straight at the opponent‟s tank. (How 

far the autopilot tank must rotate to be facing the 

opponent tank) 

isObscured Boolean value – True if the opponent‟s tank is obscured 

behind an obstacle in the world, false otherwise. 

Fire (Class value) Boolean value – True when a shot is fired, false 

otherwise. 

Table 3.1 Dataset Used to Train ML Algorithms to Control Shooting 
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The position attributes (MyPosition and EnemyPosition) are the absolute position 

of one of the tanks (autopilot or opponent) on the world axes. Using the world 

configuration described in Section 3.2.1, the X and Y coordinates have a range of 

-200 to +200, the Z coordinates have a minimum value of 0 and a maximum of 

approximately 30 (this is how high the tank goes when it explodes after being 

killed). 

Velocity attributes (MyVelocity and EnemyVelocity) are the velocities of one of 

the tanks along the world axes. Using the world configuration described in 

Section 3.2.1 all velocity attributes (X,Y,Z) have a range of -25 to +25. As with 

world size this does not have a direct real-world unit of measure, but if one 

BZFlag unit is equal to one meter then a tank‟s maximum velocity is close to 

25km/h. 

EnemyDistance is the straight-line distance to the opponent‟s tank in BZFlag 

units. Using the world configuration described in Section 3.2.1 this has a 

minimum value of 0 and a maximum of approximately 565 (that is, if the two 

tanks are in opposite corners of the world, the hypotenuse of the triangle formed 

by two sides of the world is approximately 565 BZFlag units long). 

AngleDifference is the difference in angle between the autopilot tank‟s current 

orientation, and the orientation that would have it facing straight at the opponent‟s 

tank. This is measured in radians and so has a minimum value of 0 and a 

maximum of approximately 3.14 (just under 180 degrees). 

isObscured is a Boolean value that is true if the opponent‟s tank is obscured by an 

obstacle. In other words, it is true if there is no obstacle between autopilot and the 

opponent‟s tank (following a straight-line path). 

The EnemyDistance, AngleDifference, and isObscured attributes are all generated 

by functions that are built-in to the autopilot‟s logic. All values except isObscured 

and Fire are numeric (floating-point) values. The two Boolean values, isObscured 

and Fire, are stored as nominal attributes with values “True” and “False”.  
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3.2.3 Rule-Based ML Algorithm (PART) 

 

 

Figure 3.1 Percentage of Instances Correctly Classified in the Shooting 

Dataset 

 

A large number of the machine learning algorithms in WEKA are trialled on the 

initial dataset. The percentages of correctly classified instances for each ML 

algorithm using 10-fold cross-validation on the dataset are shown in Figure 3.1. 

The dataset has over 150,000 instances so 10-fold cross-validation has over 

15,000 instances in each fold. 

The dataset has a large difference between the numbers of positive and negative 

examples because shots are fired relatively rarely (by several orders of magnitude) 

compared to other actions taken at each time-step. Figure 3.1 shows a majority of 

the learning algorithms perform extremely well on the dataset; this is most likely 

due to prediction of the majority class which is close to 99.5% of the dataset. 

ZeroR, for instance, which predicts the majority class for all instances scores close 

to 100%. 

To correct this problem, the number of negative examples is reduced using 

random re-sampling so the numbers of positive and negative examples are 

approximately equal. The size of the balanced dataset is approximately 1500 

instances which allows for 10-fold cross-validation to be used with around 150 

instances per fold.  

0
20
40
60
80

100
FL

R

H
yp

er
P

ip
es V
FI

B
FT

re
e

D
ec

is
io

n
St

u
m

p

J4
8

J4
8

G
ra

ft

LM
T

N
B

Tr
ee

R
an

d
o

m
Fo

re
st

R
an

d
o

m
Tr

ee

R
EP

Tr
ee

Si
m

p
le

C
ar

t

D
ec

is
io

n
Ta

b
le

JR
ip

O
n

eR

P
A

R
T

R
id

o
r

Ze
ro

R

Lo
gi

st
ic

N
ai

ve
B

ay
es

U
…

N
ai

ve
B

ay
es

B
ay

es
N

et

R
B

FN
et

w
o

rk

SM
O

IB
1

Ib
k

Percentage of Instances Correctly Classified
in the Shooting Dataset



30 

 

 

Figure 3.2 Percentage of Instances Correctly Classified in the Even Shooting 

Dataset 

 

The percentages of correctly classified instances (using 10-fold cross-validation) 

for each ML algorithm on this reduced dataset are shown in Figure 3.2. This 

shows that ZeroR now scores close to 50% as expected but, despite balancing the 

dataset with equal numbers of positive and negative instances, a majority of the 

ML algorithms still score over 90%. Good performance from so many algorithms 

may indicate that the problem of shooting control is a relatively simple one; 

alternatively it could be an indication of over-fitting the data. 

 To check for over-fitting, one of the algorithms is used to decide the autopilot‟s 

actions during game-play. Observation of the tank‟s behaviour then reveals 

whether the algorithm has generalized enough to learn an adequate prediction 

model. The PART algorithm is selected because it is a rule-based learner and so 

can be easily integrated into the autopilot as a series of IF...THEN rules. It also 

has the smallest and least complex set of rules of all the rule-based learners. 

Autopilot using rules generated by PART to control shooting (referred to as 

autopilot-PART), is capable of matching basic-pilot in a one-on-one match using 

the world configuration described in Section 3.2.1. Observation of the game-play 

however shows that shooting behaviour is inconsistent; situations considered 

similar by a human player can result in different shooting behaviour by autopilot-

PART.  
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3.2.4 Human-Computer Shared Control 

 

Autopilot-PART is modified to allow a human user to control the speed and 

rotation, while only the rules generated by the PART algorithm control shooting. 

This is done to better understand behaviour from the rules generated by the PART 

algorithm. This combination of human and autopilot-PART is adequate to beat 

basic-pilot due to the human player‟s ability to compensate for autopilot-PART‟s 

sometimes poor shooting performance. 

Observation of the in-game behaviour of autopilot-PART reveals that shooting 

behaviour differs depending on where the tank is in the world. Inspection of the 

rule-set generated by the PART algorithm, some of which is shown in Figure 3.3, 

shows this is due to the algorithm using the position attributes as independent 

values for prediction rather than using the relationship between them (position 

values are bold in Figure 3.3). However, because autopilot-PART is capable of 

equalling the performance of basic-pilot, investigation is turned to the more 

complex area of speed control. That is to say, the objective of determining 

whether ML can control shooting is achieved. Analysis and improvement of 

shooting control is deferred to Chapter 4. 

 

if(isObscured == false &&  

AngleDifference > 0.0398 &&  

EnemyDistance <= 211.52 &&  

EnemyPositionZ <= 0.000313 &&  

EnemyVelocityX <= -12.9125) 

 

return false; 

if(isObscured == false && 

EnemyDistance <= 35.6192 &&  

EnemyPositionX > -29.2714 &&  

EnemyPositionX <= 93.8645 &&  

MyVelocityY <= 8.73996 &&  

EnemyDistance > 13.8054) 

 

return false; 

Figure 3.3 Portion of PART Rule-Set  
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3.3 Learning to Control Speed 
 

Autopilot-PART (described in the previous section) is able to equal the 

performance of basic-pilot. This shows that an ML algorithm can be used to 

control tank behaviour and investigation is now shifted to tank speed. Speed is 

potentially more complex than shooting because it is a floating point numeric 

value rather than a binary value. 

Tests use the same world configuration described in Section 3.2.1. All data used 

in this section is gathered from a one-on-one match between the standard autopilot 

and a robot player using the same logic as the autopilot (referred to as robot-pilot) 

rather than basic-pilot used in Section 3.2.2. This is done because the standard 

autopilot can easily beat basic-pilot so matching the ML-controlled autopilot 

against a standard autopilot should give a better indication of how well the 

algorithm has learned tank behaviour. 

 

3.3.1 Speed Dataset 

 

When an algorithm makes use of the position attributes as individual values it 

results in inconsistent tank behaviour (discussed in Section 3.2.4). In order to 

prevent algorithms from using position attributes individually (rather than the 

relation between them) the MyPosition and EnemyPosition attributes are removed 

from the dataset and are replaced with RelativePosition attributes.  
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Name Description 

MyVelocity (X,Y,Z) The velocity of the autopilot‟s tank along the X axis. 

EnemyVelocity (X,Y,Z) The velocity of the opponent‟s tank along the X axis. 

RelativePosition 

(X,Y,Z) 

The position of the opponent‟s tank on the X axis, 

relative to the autopilot‟s tank. 

EnemyDistance The straight-line distance from the centre of the 

autopilot‟s tank to the centre of the opponent‟s tank. 

AngleDifference The difference between the current rotation of the 

autopilot‟s tank, and the rotation which would point the 

autopilot‟s tank straight at the opponent‟s tank (How far 

the autopilot tank must rotate to be facing the opponent 

tank). 

isObscured Boolean value – True if the opponent‟s tank is obscured 

behind an obstacle in the world, false otherwise. 

Angle The current orientation of the autopilot‟s tank. 

Speed (Class value) The speed of the autopilot‟s tank. 

Table 3.2 Dataset Used to Train ML algorithms to Control Speed 

 

Table 3.2 shows the set of attributes used to train the ML algorithms to control 

tank speed. The RelativePosition values are the result of the opponent tank‟s 

position being subtracted from the autopilot tank‟s position on the respective axis. 

Using the world configuration described in Section 3.2.1, the X and Y values have 

a range of possible values from [-400 to +400], while the Z value has a range of 

approximately [-30 to +30]. As in Section 3.2.2 all values except isObscured are 

floating point numeric values. 

The current orientation of autopilot‟s tank is also added to the dataset as this may 

affect the chosen speed (it was decided the angle information would most likely 

not be useful in the shooting control so it is left out of the shooting dataset shown 

in Table 3.1). It should also be noted that the current tank speed is not present in 

the dataset shown in Table 3.2; this is to prevent the possible problem of 

algorithms simply returning a value based on the tank‟s current speed, since a 

change in speed happens less often than maintaining the current speed. 
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3.3.2 ML Algorithm Results 

 

Very few classification algorithms are able to predict numeric values, so in order 

to use a majority of the ML algorithms in WEKA the dataset must have a nominal 

class attribute. To achieve this, the class value (speed) is discretized. As described 

in Section 3.1, changes to tank speed happen almost instantaneously, this makes 

the descretization easier since almost all values in the dataset are either 1.0 (full 

speed ahead), 0.0 (stopped), or -0.5 (full speed backwards).  

The value is discretized using the discretize filter available in WEKA with equal-

width binning. Three bins are created to correspond with the observed speed 

values mentioned above, the bins generated by the filter are; [-∞ to -0.315415],   

[-0.315415 to +0.342293], [+0.342293 to +∞]. Given that the speed dataset is 

somewhat already separated into three classes these bins are deemed sufficient 

and no further testing with filter settings is carried out. 

The same classification algorithms from Section 3.2.3 are tested on the new 

dataset with the discretized speed attribute. The dataset has over 1200 instances 

which provides over 120 instances per fold using 10-fold cross-validation.  

 

 

Figure 3.4 Percentage of Instances Correctly Classified in the Speed Dataset  
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Figure 3.4 shows that, as with shooting in Section 3.2.3, many algorithms perform 

very well on this dataset. JRip is the best performing algorithm by a small margin, 

and so is selected as the algorithm to test in BZFlag.  

 

3.3.3 Online Training 

 

The increased complexity of the rule-set created by JRip (mentioned in the 

previous section) over that created by PART (Section 3.2.3) makes it impractical 

to integrate the rule-set into the autopilot code. To allow JRip (or any other 

algorithm available in WEKA) to be used easily, BZFlag is modified to allow data 

used for classification to be sent over a TCP connection to a server program. After 

sending each instance the autopilot listens for the predicted value to be sent back 

over the same TCP connection.  

WEKA does have some remote server capabilities but it was decided it was easier 

to write a new server program specifically for using machine learning algorithms 

from WEKA to control a tank in BZFlag. The server program is written in Java so 

it can make use of any of the algorithms in WEKA without modification. To 

differentiate this program from the BZFlag server, it is referred to as WEKA-

Server.  

 

 

Figure 3.5 Communication Between BZFlag and WEKA-Sever 
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Figure 3.5 depicts the actions that take place for each decision made by the ML 

algorithm for the autopilot. This figure shows there are at least ten steps (some are 

condensed for simplicity) for every time-slice of game-play in BZFlag. The 

operation of each step is described in the following list: 

1. BZFlag starts a new time-slice and calls on autopilot to update its speed 

and rotation, and to fire a shot if applicable. 

2. Autopilot compiles a list of attributes describing the current world state of 

BZFlag, these values correspond to the attributes in the dataset (such as 

the one shown in Table 3.2). This also includes the class value (the value 

autopilot would choose). 

3. The attributes (world state) are sent to WEKA-Server via the TCP 

connection. 

4. WEKA-Server receives the attributes and creates a new Instance class 

(used by WEKA code). 

5. The instance is passed to the ML algorithm. 

6. The algorithm predicts the classification of the instance. 

7. The new instance is added to the list of instances used to retrain the 

algorithm (when required). 

8. The predicted value from Step 6 is sent via TCP to BZFlag. 

9. Autopilot receives the predicted value. 

10. Autopilot updates its speed\rotation\shooting accordingly. 

 

Both sending and receiving in BZFlag uses blocking sockets so any delays caused 

by the operations do not disadvantage the autopilot (as the whole game blocks 

until the operations are complete). 

It should also be noted that whilst the TCP connection allows WEKA-Server to be 

run on any remote computer (accessible via a network), the increased delay 

caused by a network connection causes a lot of „jitter‟ when watching the game so 

for all experiments WEKA-Server is run on the same machine as BZFlag (using 

the loopback interface for TCP connections). 

The list mentioned in Step 7 (referred to hereafter as the retrain-list) contains all 

instances received by WEKA-Server since the start of the current experiment, 

with the class values being the values the standard autopilot would have used. The 

instances in the retrain-list are used to periodically retrain the algorithm when a 

sufficient number have been received. 
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Two values affect the retraining of the algorithm, the first is the maximum size of 

the retrain-list and the second is the retrain-threshold. In some experiments the 

total size of the retrain-list is limited to a fixed number, typically because the 

algorithm takes too long to retrain as the retrain-list becomes larger. Once the 

retrain-list reaches its maximum size each new instance replaces the oldest 

instance in the retrain-list. 

The retrain-threshold specifies how large the retrain-list must be before the 

algorithm is retrained. After each retrain the retrain-threshold is increased until it 

reaches the maximum size of the retrain-list (if one is set). The initial retrain-

threshold is set at 8 instances and is multiplied by 1.25 after each retrain. So 

retraining is done when the retrain-list has a size of 8, then 10, then 12, then 15, 

then 18, and so on. These values are somewhat arbitrary but were chosen 

empirically as this allows for the algorithm to be retrained often while the dataset 

is small and prone to poor representation of classes, but less often as the list 

becomes larger and the training time increases. Until the initial retrain-threshold is 

reached a default value is returned for all instances, this has a minimal effect on 

performance if the initial retrain-threshold is low because very little time elapses 

before the initial retrain-threshold is reached. 

 

3.3.4 JRip 

 

Section 3.3.2 shows JRip has (marginally) the best performance of the algorithms 

trialled on the speed dataset, so it is used to test the online training configuration 

described in the previous section. The experiments are run using the world 

configuration described in Section 3.3. 

Observation of autopilot using JRip to control speed shows that if the retrain-list 

is limited to a maximum size of 500 then autopilot performs on-par with robot-

pilot, but if the retrain-list is limited to a maximum size of 1000 then autopilot 

out-performs robot-pilot. 

It was later discovered that robot-pilot had a flaw related to target selection in its 

implementation of the autopilot logic that resulted in it performing worse than the 
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standard autopilot. This does not affect the described performance of the online 

training configuration but means the in-game performance of the JRip algorithm 

observed at this stage is not reliable. 

Some shortcomings of the online training approach became apparent during 

testing, namely a high demand on the CPU when retraining and, because blocking 

sockets are used for all communications between BZFlag and WEKA-Server, the 

game „hangs‟ during periods of retraining. 

 

3.3.5 Offline Training 

 

To overcome the limitations of the online training configuration, a new 

configuration with classification separated from algorithm retraining is used. 

Operation is the same as that described in Section 3.3.3 except that instead of 

WEKA-Server retraining the algorithm the instances are sent via another TCP 

connection to another server program (referred to as ClassifierBuilder). 

ClassifierBuilder then retrains the algorithm when required and sends the newly 

trained algorithm back to WEKA-Server via the TCP connection. WEKA-Server 

uses the most recently received algorithm to classify incoming instances from 

BZFlag. Figure 3.6 shows the general operation of the offline training 

configuration. 

 

 

Figure 3.6 Communication Between BZFlag, WEKA-Server, and 

ClassifierBuilder 
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WEKA-Server communicates with ClassifierBuilder using a separate thread so 

BZFlag is unaffected by the delays of retraining the algorithm. This also allows 

for ClassifierBuilder to run on a separate machine without the delay of network 

communications affecting BZFlag and eases the load on the local CPU (though 

this is less of a concern if it is running on a multiple core machine).  

The retraining delay no longer affects BZFlag so there is less need to put a limit 

on the size of the retrain-list. This means that retrain-threshold is the main value 

that determines when the algorithm is retrained. However, because BZFlag no 

longer halts during algorithm retraining, new instances are constantly being 

received by WEKA-Server. This becomes a major problem when retrain times 

become larger and cause WEKA-Server to hold an increasing number of 

instances, often causing WEKA-Server to run out of memory. For instance, say 

the retrain-list has 500 instances, the retrain-threshold is at 550, and WEKA-

Server has 300 instances waiting to be sent to ClassifierBuilder. Using the retrain-

threshold to determine algorithm retraining, 50 instances are sent from WEKA-

Server to ClassifierBuilder, which starts retraining the algorithm. Meanwhile 

WEKA-Server still has 250 instances waiting to be sent to ClassifierBuilder, and 

will continue to receive more instances from BZFlag while ClassifierBuilder is 

retraining the algorithm. 

To overcome this problem the retrain-threshold is ignored if a large number of 

instances (over 100) are still waiting to be sent from WEKA-Server to 

ClassifierBuilder, in which case all the instances are sent to ClassifierBuilder and 

then the algorithm is retrained. This does not always come into effect, as some 

algorithms retrain quickly even with large numbers of instances, but it is a 

necessity with algorithms that take a long time to retrain. 

As with the online training approach described in Section 3.3.3, a default value is 

returned for all instances until WEKA-Server receives the first trained algorithm. 

The retrain-threshold used for the experiments conducted with the offline training 

approach is the same as that described in Section 3.3.2 (initial value of 8, 

multiplied by 1.25 after each retrain). 

The offline training approach introduces several elements that can affect in-game 

algorithm performance. Firstly there is an increased delay due to network latency 
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when ClassifierBuilder is running on a remote machine. Secondly BZFlag does 

not halt during algorithm retraining and WEKA-Server has to use the „old‟ 

algorithm until the retraining is complete. To determine how much effect this has 

on in-game performance a similar test to that described in the Section 3.3.4 is 

carried out with JRip controlling tank speed. 

Observation of autopilot using JRip to control speed shows the offline training 

approach has no noticeable effect on in-game algorithm performance, with 

autopilot still able to out-perform robot-pilot. Most likely any detrimental effect 

caused by network and retraining delays is offset by the fact that the retrain-list 

does not need to have its size limited like it does in the online approach (described 

in Section 3.3.3). 

As with the results described in Section 3.3.4, robot-pilot was later found to have 

a flaw in its implementation of the autopilot logic that caused it to perform worse 

than the standard autopilot. This does not affect the comparisons between the 

offline and online training approaches or the observed performance of the offline 

approach but means the observed in-game performance of the JRip algorithm at 

this stage is not reliable. 

 

3.4 Limitations 
 

The approach used during the initial experimentation discussed in this chapter 

suffers from some limitations. For example, all evaluations of in-game 

performance are done by human observation of game-play rather than an objective 

test.  It is also possible for the game to enter a state of „stale-mate‟, where the 

tanks become stuck in logic loops and are unable to kill each other, generally they 

are either in a state of „indecision‟ on opposite sides of the obstacle in the world 

and are unable to „choose‟ which side to go around, or they enter a state of „Neo-

Smith circling‟ when they get stuck side by side, continually turning the same 

direction, and are unable to shoot each other (since they turn at the same speed), 

similar to two dogs chasing each other‟s tail. Lastly there is the ability for „spawn-

camping‟ by a surviving tank that can potentially give an unfair advantage to one 
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side. These limitations and solutions used are discussed in more detail in the next 

chapter. 

 

3.5 Chapter Summary 
 

Chapter 3 describes several approaches to integrate an ML algorithm into BZFlag 

in order to control a tank. It is possible to use a hard-coded static model learned 

from standard autopilot behaviour to control tank shooting, but hard-coding a 

model becomes unfeasible with more complicated learning algorithms. 

Online training can be used to avoid having to hard-code a prediction model but is 

detrimental to the performance of BZFlag due to the delays caused by algorithm 

retraining. Offline training overcomes the delay problem and allows an algorithm 

to be used to control a tank in BZFlag without compromising the performance of 

either the ML algorithm or BZFlag. 

Having shown that machine learning algorithms can be used in a modern 

computer game without having a detrimental effect on game performance; 

investigation now turns to the performance of the algorithms and whether static 

prediction models are sufficient to beat an opponent. This is the subject of the 

next chapter. 
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4 Static Prediction Models 
 

This chapter describes experiments to determine whether a tank controlled only 

by static prediction models can out-perform robot-pilot or a human player. This 

includes first determining how well a static prediction model can control a single 

aspect of tank behaviour when facing robot-pilot, then experimenting with 

combinations of static models to control all aspects of tank behaviour. 

Section 4.1 discusses changes to the world configuration because of the 

limitations described in Section 3.4. Section 4.2 describes results obtained using a 

single static model to control one aspect of tank behaviour. Sections 4.3 expands 

on this, describing the results obtained when two static models are used to control 

different aspects of tank behaviour simultaneously. Section 4.4 discusses a 

problem observed with the predictions of one machine learning (ML) algorithm 

affecting the performance of another algorithm and the results of a proposed 

solution. Section 4.5 gives a brief summary of this chapter. 

 

4.1 Solutions to Previous Limitations 
 

The approach used in the experiments described in Chapter 3 suffers from some 

limitations (previously mentioned in Section 3.4), namely the lack of an objective 

performance comparison, the ability of the game to enter a „stale-mate‟ state, and 

the ability of living tanks to gain an advantage over re-spawning tanks („spawn-

camping‟). This section describes these limitations in more detail and solutions 

implemented to overcome them. 
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4.1.1 Scoring 

 

In the previous chapter all evaluations of in-game performance are done by human 

observation of game-play. This is inherently subjective and makes it difficult to 

compare the results of different experiments. 

To overcome this issue an objective method for measuring performance is 

required. Some metrics such as shot accuracy were considered, but on its own this 

is not sufficient to score tank behaviour. For instance, player A may have 100% 

accuracy while player B has 50% accuracy. One is inclined to think that player A 

has better performance, but suppose player B has a rate-of-fire three times greater 

than player A. Now, despite having a lower accuracy, player B will have more 

hits. 

A more reliable test method is to have the two players continue playing until the 

total kill-count reaches 100. That is, the sum of the number of deaths (hits) each 

tank has received reaches 100. The score of each player then gives a percentage of 

how likely they are to win against the opponent given any random starting state. 

In some cases the total kill-count may actually be 101, this is because the scores 

are updated during re-spawning and it is possible for both tanks to kill each other 

before the update, this is described in more detail in Section 4.1.3. 

As described in Section 2.3.1, BZFlag uses client-server architecture. This makes 

it inherently multi-threaded and non-deterministic. This non-determinism means 

there is always a random element during in-game tests, which affects the 

reliability of scoring. To observe the variance of scores, ten test runs are 

conducted playing autopilot against robot-pilot (described in Section 3.3).  
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Figure 4.1 Autopilot Score Against Robot-Pilot After 100 Kills 

 

The results in Figure 4.1 show that with two evenly matched opponents the score 

stays close to 50 as expected, though the score is not constant. The average score 

over all ten runs is 50.9, and the standard deviation is 3.446415. Assuming a 

normal distribution, 95% of runs will fall within approximately 7 points of the 

true average. Due to time constraints most of the experiments conducted use a 

single run (to 100 kills) to determine performance and these values are used as the 

base for performance comparisons. 

When discussing tank performance in this report the terms „score‟ and „points‟ 

refer to the number of hits achieved by a single tank, whereas the terms „kills‟, 

„total kills‟, and „total kill count‟ refer to the combined number of hits by both 

tanks. Descriptions of graph axes also use the term „N-Kill block‟ where N is the 

number of kills represented by each data point, for instance each „run‟ in 

Figure 4.1 is one 100-kill block. 
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4.1.2 Stale-Mate Conditions 

 

The possibility for players to enter a stale-mate condition is a problem observed 

during the experiments described in Chapter 3. Stale-mate conditions are where, 

due to loops in the logic, the tanks become „stuck‟ and are unable to kill each 

other. This is a quirk of BZFlag‟s implementation and is not present in games 

with a human opponent, but due to the large amount of game-play required it is 

impractical to use a human opponent for the tests. The „stale-mate‟ condition 

typically occurs in two varieties, referred to as indecision and Neo-Smith circling.  

Indecision occurs when tanks are on opposite sides of the single box in the world 

(using the world configuration described in Section 3.2.1). If the tanks are close to 

the centre of the box, the distance to the opponent is approximately equidistant 

around either side of the box. This often causes the tanks to quickly switch 

between going left and going right, while the opponent tank does the same. The 

switching results in both tanks staying near the centre of the block and the loop 

begins again. 

Neo-Smith circling occurs in open ground areas of the world where the two tanks 

get very close to each other. This can happen because the autopilot continues 

moving towards the enemy even when it cannot fire (due to the reload delay 

described in Section 2.3.2). If the tanks manage to get side-by-side without 

shooting each other, they then start turning towards each other, often firing „over 

the shoulder‟ of the opponent tank, but because they both turn at the same speed 

this behaviour continues infinitely.
17

 

To prevent situations that lead to a state of indecision, the block (described in 

Section 3.2.1) is removed, resulting in a world that is a 400x400 plane. It is 

impossible to fully prevent Neo-Smith circling without rewriting the autopilot 

logic, so BZFlag is altered to kill off and re-spawn both tanks if no tank has died 

in the last 30 seconds. This time limit can also affect the game when tanks are not 

in a Neo-Smith circling state, but prevents the experiments from taking an 

excessively long time to complete. If the tanks are killed off because of the time 

                                                 
17

 The name Neo-Smith circling comes from a fight scene in the 1999 move The Matrix, which has 

a similar situation between two evenly matched opponents firing guns over each other‟s shoulder. 
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limit, scoring (described in Section 4.1.1) is not affected, the scores only count 

actual „hits‟ by the tanks against each other. 

 

4.1.3 ‘Spawn-Camping’ 

 

„Spawn Camping‟ is a term used by the online gaming community to mean 

„camping‟ or waiting near a re-spawn point (discussed in Section 2.3.2) in order to 

kill an opponent as soon as they re-spawn. This gives the „camper‟ an unfair 

advantage since the re-spawned player does not have time to react before being 

killed. Modern games often use random re-spawn points to avoid this issue, and 

indeed BZFlag also makes use of semi-random re-spawn points (described in 

Section 2.3.2). So, while „camping‟ in the strict sense is not possible, autopilot 

generally continues moving at full speed while the opponent is dead and through 

„luck‟ can come upon the recently re-spawned tank and gain an advantage. 

BZFlag is altered to re-spawn both tanks after each kill to prevent this issue from 

unfairly affecting the results. This means the score keeping, as described in 

Section 4.1.1, is effectively the score of 100 random, isolated, one-on-one 

matches. It should also be noted that re-spawning after a kill does not happen 

instantly. This is because it is possible for a tank‟s projectile to hit the opponent‟s 

tank even after the tank that fired the shot has died, meaning the tanks can kill 

each other before either one has re-spawned. 

 

4.2 Single Static Model 
 

The large number of machine learning algorithms available in WEKA, and the 

fact that ultimately three tank controls have to be learned, make it unfeasible to try 

all possible combinations of algorithms and controls. To maximize the chance of 

finding a successful combination of algorithms and controls, the algorithms are 

first trialled on the relevant dataset using 10-fold cross-validation. Algorithms that 

perform well are then tested for in-game performance when controlling a single 

aspect of tank behaviour (using the scoring mechanism described in Section 
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4.1.1). The performance of each individual algorithm is then used to determine 

which algorithms are tested in combination. 

 

4.2.1 Gathering Data 

 

The datasets used in this chapter are obtained from a one-on-one match between a 

human player and robot-pilot. Data is gathered from both players to maximize an 

ML algorithm‟s ability to infer a generalised model of behaviour. The choices 

made by both players are recorded and combined randomly to form the datasets 

used. Both players‟ decisions are recorded in the hope that the algorithms will be 

able to create prediction models with sufficient generalisation to out-perform 

robot-pilot.  
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Name Description Shoot Speed Rot. 

MyVelocity 

(X,Y,Z) 

Velocity of player‟s tank along the axis. X X X 

EnemyVelocity 

(X,Y,Z) 

Velocity of opponent‟s tank along the 

axis. 
X X X 

RelativePosition 

(X,Y,Z) 

Position of opponent‟s tank on the axis, 

relative to player‟s tank. 
X X X 

EnemyDistance Straight-line distance from the centre of 

player‟s tank to the centre of opponent‟s 

tank. 

X X X 

AngleDifference Difference between the current rotation 

of the player‟s tank and the rotation 

which would point player‟s tank straight 

at opponent‟s tank (How far player‟s 

tank must rotate to be facing opponent‟s 

tank). 

X X X 

isObscured Boolean value – True if opponent‟s tank 

is obscured behind an obstacle, false 

otherwise. 

X X X 

ShotRelative 

(X,Y,Z) 

Position of opponent‟s projectile on the 

axis, relative to the player‟s tank 

(Missing if opponent does not have an 

active shot). 

X X X 

ShotVelocity 

(X,Y,Z) 

Velocity of opponent‟s projectile along 

the axis (Missing if opponent does not 

have an active shot). 

X X X 

ShotDistance Straight-line distance to opponent‟s 

projectile (Missing if opponent does not 

have an active shot). 

X X X 

MyRotation Orientation of player‟s tank. X X X 

MySpeed Current speed of player‟s tank. X  X 

FiringStatus Integer value, tank can only fire when 

value is 1 (meaning „ready‟). 
X   

Fire (Class) Boolean value – True when a shot is 

fired, false otherwise. 
X   

Speed (Class) Desired speed of player‟s tank.  X  

NewRotation 

(Class) 

Desired rotation of player‟s tank.   X 

Table 4.1 Datasets Used for Static Model Training 
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Shooting 

 

Table 4.1 shows the data used in the shooting dataset (indicated with an „X‟ in the 

shoot column). The first six rows in Table 4.1 are the same as those used in the 

speed dataset described in Section 3.3.1. To give a more accurate representation of 

world state and allow the algorithms to learn dodging behaviour, attributes are 

also included that relate to the opponent‟s projectile if one has been fired 

(ShotRelative, ShotVelocity, ShotDistance). 

The ShotRelative attributes are similar to the RelativePosition attributes and have 

the same range of possible values. Each ShotRelative attribute is the position of 

the enemy‟s projectile subtracted from the player tank‟s position.  

The ShotVelocity attributes are the velocities of the enemy‟s projectile along the 

respective axis, with the same range of values as the MyVelocity and 

EnemyVelocity attributes. ShotDistance uses the same function as EnemyDistance 

to compute the straight-line distance to the opponent‟s projectile. All three shot 

attributes (ShotRelative, ShotVelocity, ShotDistance) can have missing values 

(represented with a „?‟ in WEKA) if the enemy does not have an active shot (i.e. 

there is currently no projectile fired by the enemy in the world). 

MyRotation is the current orientation of the player‟s tank in the world. This value 

is in radians and has a minimum value of 0 (0 degrees) and a maximum value of 

approximately 6.28 (just under 360 degrees). 

MySpeed is the current speed of the player‟s tank. This is measured as a fraction 

of the tank‟s maximum speed with a range of [-1.0 to +1.0] (full speed reverse to 

full speed forwards). It should be noted that the tank can only go half as fast in 

reverse, so a MySpeed value of -1.0 does not mean the tank is travelling as fast as 

a value of +1.0, but rather means the tank is travelling at the maximum speed 

possible in that direction (forward or reverse). 

FiringStatus is an integer value used in BZFlag to indicate the current tank status. 

In the world configuration used this has three possible values; 0, 1, and 2. A value 

of 0 means the tank is dead and is waiting to be re-spawned. A value of 1 
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indicates the tank is ready to fire. A value of 2 indicates that the tank is reloading 

and is therefore unable to fire. 

The tank firing control is effectively binary (described in Section 3.2) so it does 

not require discretization and is simply converted to a nominal attribute for use 

with the ML algorithms present in WEKA. 

Speed 

 

Table 4.1 shows the data used in the speed dataset (indicated with an „X‟ in the 

speed column). The FiringStatus attribute is not included as it has little to do with 

speed behaviour. MySpeed is also excluded because, as noted in Section 3.3.1, 

changes in speed happen less often than maintaining the current speed and so the 

algorithm might return a value based on the current speed for all instances, 

resulting in the tank never moving (because the initial speed is zero). 

Changes to the speed of the tank happen almost instantly (as described in Section 

3.3.2) so class values in the speed dataset are easily separated into three categories 

(forward, stopped, backwards). The discretization used is the same as that 

described in Section 3.3.2. It is possible for a human user to control the speed with 

less coarse stepping (by using a mouse or joystick), but this is sufficient to 

provide the algorithm the same degree of control that a human user has when 

using a keyboard. 

 

Rotation 

 

Table 4.1 shows data used in the rotation dataset (indicated with an „X‟ in the rot. 

column). One notable difference is inclusion of the MyRotation attribute. This is 

included because, unlike speed, rotation is not set with an absolute value. In 

BZFlag setting the tank‟s desired speed to 1.0 (full speed ahead) results in the 

tank accelerating and instantly achieving top speed, however the tank‟s 

orientation is altered by setting the desired turn speed, not the desired orientation, 

so it is less likely to have a detrimental effect on performance.  
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NewRotation is discretized into three groups; -1.0 (turn left) 0.0 (go straight) and 

1.0 (turn right). Rotation values are more evenly spread than speed values so the 

discretization bins are set by hand to [-∞ to -0.01], [-0.01 to 0.01], and [0.01 to 

+∞]. As with speed, a human user can use more precise inputs but this gives the 

algorithm a similar degree of tank control that a human user has with a keyboard. 

Five datasets are created for testing. Rotation and speed both have two datasets 

created; one with all instances produced during the game (referred to as the „full‟ 

dataset), the other created using random re-sampling on the full dataset to reduce 

the number of majority-class instances, resulting in a dataset with approximately 

even numbers of all class values (referred to as the „even‟ dataset). The shooting 

dataset has a considerably higher number of negative instances (several orders of 

magnitude more, as noted in Section 3.2.3) so only the even dataset is used for 

shooting experiments. 

 

4.2.2 Algorithm Selection 

 

The list of learning algorithms trialled on the datasets described in Section 4.2.1 is 

less extensive than that used in Chapter 3. This is because of the time constraints 

and the number of datasets, which are larger than those in Chapter 3. With this in 

mind, ML algorithms that train relatively quickly are favoured over those that take 

longer to train; however, for completeness, some common algorithms, such as 

SMO, are also included. 

The algorithms used for in-game testing are determined by checking the 

percentage of correctly classified instances on the dataset using 10-fold cross-

validation. Both the full and even datasets described in the previous section are 

used for trailing ML algorithms to control speed and rotation. Note that ZeroR, 

which predicts the majority class for all instances, is not considered for in-game 

use but is included in the test-set to determine a lower-bound for each dataset (that 

is to say, if an algorithm scores worse than ZeroR it should not be considered at 

all). 
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Figure 4.2 Percentage of Instances Correctly Classified in the Speed Datasets 

 

Figure 4.2 shows the percentages of instances correctly classified in the speed 

datasets (using 10-fold cross-validation). These results demonstrate that using the 

even dataset for training generally results in algorithms that perform worse (if 

only slightly) than those trained on the full dataset. Based on these results only the 

algorithms trained on the full dataset are considered. The five algorithms with the 

best performance are selected for in-game testing. These are; RandomForest, J48, 

REPTree, JRip, and RandomTree (best to worst). The in-game performance of 

these algorithms is discussed in Section 4.2.3. 
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Figure 4.3 Percentage of Instances Correctly Classified in the Rotation 

Datasets 

Figure 4.3 shows that, as with the results in Figure 4.2, generally algorithms 

trained on the even dataset perform no better than algorithms trained on the full 

dataset. Because of this, only the algorithms trained on the full dataset are 

considered for in-game testing. The five algorithms with the best performance are 

selected for testing in-game performance. These are; RandomForest, J48, JRip, 

RandomTree, and REPTree (from best to worst). In-game performance of these 

algorithms is discussed in Section 4.2.3. 

It is interesting to note the top five algorithms are the same for both rotation and 

speed datasets. This may be due to similarity of the data within the dataset, as they 

both have a large number of attributes in common (shown in Table 4.1). 
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Figure 4.4 Percentage of Instances Correctly Classified in the Shooting 

Dataset  

 

The results shown in Figure 4.4 use only the even shooting dataset. This is 

because the full shooting dataset has a large number of negative instances (by 

several orders of magnitude), so an algorithm that simply predicts the majority 

class can score over 95% (as noted in Section 4.2.1). 

Based on the results shown in Figure 4.4, the five algorithms with the best 

performance are selected for testing in-game performance. These are; OneR, 

NaiveBayes, REPTree, DecisionTable, and JRip (best to worst). In-game 

performance of these algorithms is discussed in Section 4.2.3. 

 

4.2.3 In-Game Performance 

 

Using the results described in Section 4.2.2, the algorithms with the best 

performance are used to control a single aspect of tank behaviour in BZFlag, 

while the autopilot controls the remaining two aspects. All results displayed in 

this section include the performance of autopilot (labelled „Autopilot‟) in order to 

accurately compare the performance achieved by the algorithms. All results are 

also ordered (left to right, best to worst) based on the algorithms‟ performance 

discussed in the previous section. 
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Figure 4.5 Score After 100 Kills Using ML Algorithm to Control Speed 

 

Figure 4.5 shows the performance of algorithms in cross-validation tests is not 

necessarily matched when the algorithm is used for tank control. For instance 

RandomForest, the algorithm with the best performance when tested on the 

dataset in the previous section, is the worst performing algorithm in Figure 4.5. 

This may be an indication the algorithm has over-fit the training dataset, resulting 

in a prediction model that does not generalise enough to perform well during in-

game tests. 

The in-game performance of the algorithms does not equal that of autopilot, but 

the scores are not abysmal. Except for RandomForest all algorithms tested score 

40 points or higher against robot-pilot, with the best performing algorithms of 

REPTree and RandomTree both scoring 45 points.  
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Figure 4.6 Score After 100 Kills Using ML Algorithm to Control Rotation 

 

Figure 4.6 shows that, as with the speed results displayed in Figure 4.5, none of 

the algorithms are capable of matching autopilot‟s performance, however three of 

the five algorithms still manage to score 40 points or higher against robot-pilot. It 

is interesting to note that REPTree is the best performing algorithm in Figure 4.6 

and is best-equal in Figure 4.5, possibly indicating the two controls are similar 

problems. 

 

 

 

Figure 4.7 Score After 100 Kills Using ML Algorithm to Control Shooting 
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Figure 4.7 shows that OneR clearly performs better than the other algorithms in 

the test-set, coming very close to the performance of autopilot with a score of 48 

against the robot-pilot, versus autopilot‟s score of 49. 

The remaining algorithms performed poorly in comparison; NaiveBayes is the 

only other algorithm to score more than 30 points against robot-pilot. This is a 

particularly interesting result because shooting is a binary control and is expected 

to be the easiest of the three controls to learn. The high performance of OneR, a 

classification algorithm that creates a prediction based on a single attribute, 

indicates the other algorithms‟ poor performances may be caused by the 

simplicity of the problem. That is to say; OneR creates a simple prediction model 

but the other algorithms develop overly complex models for the relatively simple 

problem, resulting in poor performance. 

 

4.2.4 Observations 

 

ML algorithms with the best performance on the dataset do not necessarily have 

the best in-game performance. This may be due to over-fitting the training data to 

some degree rather than problems with the testing itself. All the algorithms that 

perform well in-game also perform well in the cross-validation tests, indicating it 

is an adequate method of reducing the number of algorithms selected for in-game 

performance testing. 
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4.3 Dual Static Models 
 

None of the algorithms tested in the previous section are capable of out-

performing robot-pilot in a one-on-one competition when they control one aspect 

of tank control. However, it is unclear what performance can be achieved when 

two or all three control aspects are handled by ML algorithms.  

This section describes experiments to determine the best performing two-

algorithm combinations for tank control, while autopilot controls the third aspect 

of tank behaviour. 

 

4.3.1 Algorithm Selection 

 

Due to the time consuming nature of in-game tests and the large number of 

possible combinations of controls and ML algorithms, some algorithms discussed 

in the previous section are removed from the test-set. 

Figure 4.5 shows the difference between the best and worst performing algorithms 

used to control tank speed is 11 points. Similarly Figure 4.6 shows the difference 

between the best and worst performing algorithms used to control rotation is 14 

points. Figure 4.7 however, shows the difference between the best and worst 

performing algorithms used to control shooting is 28 points. Because of this large 

difference in shooting ML algorithm performance, only the best three are kept in 

the test-set. These are OneR, NaiveBayes, and REPTree (best to worst in-game 

performance). 

 

4.3.2 In-Game Performance 

 

Using two ML algorithms to control different aspects of tank behaviour is more 

complex than the single algorithm tests described in Section 4.2.3 because there 

are a large number of possible combinations. Tests described in this chapter 
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include the following control pairs; speed+shooting, rotation+shooting, and 

speed+rotation. 

 

Speed and Shooting 

 

Figure 4.8 shows configurations using OneR to control shooting consistently out-

perform tanks using NaiveBayes and REPTree to control shooting. This is 

expected given the vast difference in the in-game performance of the algorithms 

(shown in Figure 4.7). 

Interestingly NaiveBayes, which performs better than REPTree when autopilot 

controls tank speed, performs worse than both OneR and REPTree in all 

combinations tested. This seems to indicate NaiveBayes over-fits to situations that 

autopilot creates and is unable to generalize when presented with the different 

situations encountered when an ML algorithm controls tank speed. 

 

 

Figure 4.8 Score After 100 Kills With ML Algorithms Controlling Speed & 

Shooting 
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Rotation and Shooting 

 

Figure 4.9 shows the scores obtained by tanks using ML algorithms to control 

tank rotation and shooting, while autopilot controls speed. The combinations 

which use OneR to control tank shooting consistently perform better in Figure 4.8, 

but here combinations with REPTree have similar or better performance in two of 

the five combinations. Similar to the speed+shooting results in Figure 4.8, 

NaiveBayes does poorly when used in combination with other algorithms 

controlling tank rotation. 

 

 

Figure 4.9 Score After 100 Kills With ML Algorithms Controlling Tank 

Rotation & Shooting 
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Speed and Rotation 

 

Figure 4.10 shows the scores obtained by tanks using algorithms to control tank 

speed and rotation, while autopilot controls shooting. The combination using 

algorithms to control both speed and rotation clearly results in an extremely poor 

performance compared to results discussed previously in this section. 

The results in Figure 4.8 and Figure 4.9 show that tanks using ML algorithms to 

control shooting and either speed or rotation can typically score at least 30 points 

in one combination against robot-pilot. Here however the combination using 

RandomTree to control speed and RandomForest to control rotation is the only 

combination that scores more than 10 points against robot-pilot. 

 

 

Figure 4.10 Score After 100 Kills With ML Algorithms Controlling Tank 

Speed & Rotation 
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4.3.3 Observations 

 

The results shown in Figure 4.8 and Figure 4.9 both show it is possible for a 

combination of two ML algorithms achieve a better performance than either 

algorithm individually. For instance the combination shown in Figure 4.8, where 

RandomForest is used to control tank speed and REPTree is used to control 

shooting achieves a higher score than that of RandomForest (Figure 4.5) or 

REPTree (Figure 4.7) alone. 

This indicates the combination of three ML algorithms may improve performance 

over that shown in Figure 4.10, but based on the results in Figure 4.8 and 

Figure 4.9 it is unlikely that any improvement achieved would be sufficient to 

match robot-pilot. 

 

4.4 Independent Models 
 

Inspection of the datasets described in Section 4.2.1 shows the poor performance 

shown in Figure 4.10, when ML algorithms are used to control both speed and 

rotation, may be caused by the prediction of one algorithm being used as attributes 

for another algorithm (either directly or indirectly). This section discusses 

experiments to determine if removing some of these attributes from the datasets is 

sufficient to increase the in-game performance of the algorithms. 

 

4.4.1 Dataset Changes 

 

Some attributes are removed from the datasets described in Section 4.2.1 to 

prevent the prediction of one ML algorithm being used as the input of another ML 

algorithm. 

At the same time some attributes that do not contain useful information are also 

removed from the datasets. This includes all attributes related to the Z-axis (both 

velocity and relative position) because, although tanks can be allowed to „jump‟ 
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(described in Section 2.3.2), this is disabled during testing so changes on the Z-

axis only occur when a tank blows up (at which point the living tank‟s actions 

become rather irrelevant until the dead player re-spawns, at least in a one-on-one 

match). 

isObscured is also removed from all the datasets because, while this attribute 

contains useful information during the experiments described in Chapter 3, once 

the obstacle in the world is removed (described in Section 4.1.2) this value is 

always „false‟ because there are no obstacles to obscure the opponent‟s tank. 

  



64 

 

 

Name Description Shoot Speed Rot. 

MyVelocity 

(X,Y) 

Velocity of player‟s tank along the axis. X  X 

EnemyVelocity 

(X,Y) 

Velocity of opponent‟s tank along the 

axis. 
X X X 

RelativePosition 

(X,Y) 

Position of opponent‟s tank on the axis, 

relative to player‟s tank. 
X X X 

EnemyDistance Straight-line distance from the centre of 

player‟s tank to the centre of opponent‟s 

tank. 

X X X 

AngleDifference Difference between the current rotation 

of the player‟s tank and the rotation 

which would point player‟s tank straight 

at opponent‟s tank (How far player‟s tank 

must rotate to be facing opponent‟s tank). 

X X X 

ShotRelative 

(X,Y) 

Position of opponent‟s projectile on the 

axis, relative to the player‟s tank 

(Missing if opponent does not have an 

active shot). 

X X X 

ShotVelocity 

(X,Y) 

Velocity of opponent‟s projectile along 

the axis (Missing if opponent does not 

have an active shot). 

X X X 

ShotDistance Straight-line distance to opponent‟s 

projectile (Missing if opponent does not 

have an active shot). 

X X X 

MyRotation Orientation of player‟s tank.   X 

FiringStatus Integer value, tank can only fire when 

value is 1 (meaning „ready‟). 
X   

Fire (Class) Boolean value – True when a shot is 

fired, false otherwise. 
X   

Speed (Class) Desired speed of player‟s tank.  X  

NewRotation 

(Class) 

Desired rotation of player‟s tank.   X 

Table 4.2 Datasets Used for Independent Static Model Training 
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Shooting 

 

Table 4.2 shows the attributes used in the shooting dataset (indicated with an „X‟ 

in the shoot column). Attributes that relate to the Z-axis (EnemyVelocityZ, 

RelativePositionZ, ShotRelativeZ, and ShotVelocityZ) which are present in the 

dataset shown in Table 4.1 have been removed, as well as the now irrelevant 

isObscured attribute.  

Both MyRotation and MySpeed attributes, which are present in the dataset shown 

in Table 4.1, have also been removed. Though neither value is the direct output of 

an ML algorithm (they measure the tank‟s current values, not its „desired‟ values 

given by the algorithms), they are obviously strongly affected by predictions of 

the other algorithms, and so are removed to ensure the independence of the 

shooting ML algorithm. 

 

Speed 

 

The speed dataset shown in Table 4.1 does not include the MySpeed attribute. 

This is because, as discussed in Section 3.3.1, changes in speed happen less 

frequently than continuation of the current speed. If the algorithm uses this fact, it 

may predict a value based on the current speed that results in the tank never 

moving (because the initial speed is zero).  

The MyVelocity attributes however are still present in the dataset shown in 

Table 4.1. The MyVelocity attributes are not directly affected by the speed ML 

algorithm‟s predictions because they refer to the tank‟s velocity along the world 

axes, whereas the speed ML algorithm controls the tank‟s speed in the direction it 

is facing. However, it is possible the performances of the speed ML algorithms 

are worse because they are using these attributes for prediction. Both cross-

validation and in-game tests are performed to determine if inclusion of the 

MyVelocity attributes has a detrimental effect on speed ML algorithm 

performance.  



66 

 

 

Figure 4.11 Percentage of Instances Correctly Classified in the Speed Dataset 

with MyVelocity Attributes Removed 

 

Figure 4.11 shows the percentage of correctly classified instances in the speed 

dataset (using 10-fold cross-validation). The algorithms are trained on the same 

dataset shown in Table 4.1 with all three MyVelocity attributes removed (indicated 

with „NoVel‟). For ease of comparison the results obtained on the speed dataset 

shown in Table 4.1 are duplicated in Figure 4.11. As in Section 4.2.2, both the 

„full‟ dataset and the „even‟ dataset (with approximately even numbers of all 

classes) are tested.  

These results do not show a strong indication the performance is improved by the 

removal of the MyVelocity attributes, with all algorithms performing the same or 

in some cases worse than the results obtained on the datasets that include 

MyVelocity. However, many of the algorithms classify more than 90% of the 

instances correctly, so achieving much higher performance is difficult. To get a 

more indicative measure of any performance difference the algorithms trained on 

the dataset with the MyVelocity attributes removed are tested for in-game 

performance. 
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Figure 4.12 Score After 100 Kills Using ML Algorithm to Control Tank 

Speed (With and Without MyVelocity Attributes)  

 

Figure 4.12 shows the results of the same five algorithms used for the tests 

described in Section 4.2.3. Only the full datasets are tested since the algorithm 

trained on the full dataset generally performs better in cross-validation tests. For 

ease of comparison the results from Section 4.2.3 (Figure 4.5) are duplicated in 

Figure 4.12. 

These results show that removing the MyVelocity attributes from the training 

dataset can improve an algorithm‟s in-game performance. The change in 

performance is most notable in the RandomForest and RandomTree algorithms, 

both of which are capable of matching the in-game performance of robot-pilot 

when trained on the dataset with MyVelocity attributes removed. JRip and 

REPTree perform slightly worse with MyVelocity attributes removed but the 

decline in performance is minor compared to the improvement of the other 

algorithms. 

Table 4.2 shows the data used in the speed dataset (indicated with an „X‟ in the 

speed column). The speed dataset has all attributes removed that relate to the Z-

axis, as well as the isObscured attribute. MyRotation is also removed from the 

dataset to ensure the algorithm‟s independence. Based on the results discussed 
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previously and shown in Figure 4.11 and Figure 4.12 the MyVelocity attributes are 

also removed from the dataset. 

 

Rotation 

 

Table 4.2 shows the dataset used for training algorithms to control tank rotation 

(indicated with an „X‟ in the Rot. column). As with the other two datasets in 

Table 4.2 all the attributes relating to the Z-axis are removed, as well as 

isObscured. MySpeed is also removed from the dataset to ensure the independence 

of the rotation ML algorithm. 

It should be noted that while the speed dataset shown in Table 4.2 has MySpeed 

removed, the rotation dataset still includes MyRotation. This is because, while the 

tank‟s speed does not change frequently, rotation changes relatively often and, as 

discussed in Section 3.1, MyRotation measures the tank‟s actual orientation, not 

its turning speed as given by the algorithm. 

 

4.4.2 Single Static Model 

 

Figure 4.12 indicates the difference a change to the dataset can have on ML 

algorithm performance. Because of this, the algorithms are tested again using both 

10-fold cross-validation and in-game tests. 

All experiments in this section use the same data as in Section 4.2.1, meaning that 

all instances are the same but some attributes have been removed (discussed in the 

previous section). The world configuration is the same as that used previously in 

this chapter (described in Section 4.1). 

For the sake of completeness, some ML algorithms overlooked in the first half of 

this chapter are added to the test-set. PART is included due to its good 

performance during tests described in Section 3.2.3. Two versions of IBk, a 

nearest-neighbour algorithm, are also included in the test-set. One version uses 1 
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nearest-neighbour, the other uses a setting of 2 nearest-neighbours (labelled as 

„IBk(2)‟). 

 

Speed 

 

Figure 4.13 shows the percentages of correctly classified instances in the speed 

dataset described in Section 4.4.1 (using 10-fold cross-validation). As with the 

experiments described in Section 4.2.2, two datasets are used, one with all the 

instances included and the second (indicated with „(Even)‟) with approximately 

even numbers of each class. 

The results discussed in Section 4.2.3, and those in Figure 4.12, show that 

algorithms with similar performance on the dataset in cross-validation tests do not 

necessarily have similar performance during in-game tests. Because of this, 

algorithms trained on the even dataset are considered independently, regardless of 

the performance of the algorithm trained on the full dataset. 

 

 

Figure 4.13 Percentage of Instances Correctly Classified in the Independent 

Speed Dataset  
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Also because of the difference between the cross-validation test results and the in-

game test results, any algorithm that scores over 90% in the cross-validation test is 

tested for in-game performance rather than taking the top five algorithms (as in 

the experiments in Section 4.2). 

Figure 4.14 shows in-game results of the ML algorithms trained on the datasets 

described in Section 4.4.1. For easier comparison, the relevant results from 

Figure 4.5 are duplicated here as „Previous Results‟. Note that 

MultilayerPerceptron(Even) did not score above 90% in the cross-validation test 

described previously and so is not included in the in-game test-set. 

These results show the removal of attributes (discussed in Section 4.4.1) has 

generally improved performance of the algorithms during in-game tests. The 

results also show that while algorithms trained on the even dataset have 

performance similar or worse than algorithms trained on the full dataset, the in-

game results show that some algorithms have better in-game performance after 

being trained on the even dataset. 

 

 

Figure 4.14 Score After 100 Kills Using ML Algorithm to Control Tank 

Speed 
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Rotation 

 

Figure 4.15 shows very little difference between the algorithms trained on the 

even and full datasets. This is probably due to the even spread of the rotation data; 

whereas the speed data has a non-uniform distribution (full speed forward is the 

majority class). 

Experiments described in this chapter show that ML algorithms can have different 

levels of in-game performance despite having similar scores in cross-validation 

tests. Because of this, algorithms trained on both the even and full datasets are 

considered independently. As with speed described previously, all algorithms that 

score higher than 90% in the cross-validation test are tested for in-game 

performance. 

 

 

Figure 4.15 Percentage of Instances Correctly Classified in the Independent 

Rotation Dataset 
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Figure 4.16 Score After 100 Kills Using ML Algorithm to Control Rotation 

 

Figure 4.16 shows that, as with speed discussed previously, despite almost 

identical performance of the algorithms during cross-validation tests, there is 

often a difference in in-game performance between algorithms trained on the full 

dataset and those trained on the even dataset. The figure also shows that, despite 

the rotation data being evenly spread across all classes, some algorithms still 

perform better when trained on the even dataset. This is most notable in REPTree 

and RandomForest, with a difference of at least 10 points between the algorithms 

trained on the even and full datasets. 

 

 

Figure 4.17 Percentage of Instances Correctly Classified in the Independent 

Shooting Dataset 
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Shooting 

 

Figure 4.17 shows results of the cross-validation tests of the algorithms trained on 

the independent shooting dataset (shown in Table 4.2). Because of the large 

number of negative instances in the shooting dataset (as mentioned in Section 

3.2.3), only the even dataset is used for training. 

Unlike the speed and rotation results discussed previously, very few algorithms 

score higher than 90% in the cross-validation tests. Because of this, the top five 

algorithms are tested for in-game performance instead of only those above 90%. 

Figure 4.18 shows in-game results of the algorithms that score the five highest 

results in the cross-validation tests described previously. These results are similar 

to those shown in Figure 4.7, with OneR performing better than any of the other 

algorithms tested and, unlike the results in Figure 4.7, OneR now actually out-

performs robot-pilot in the one-on-one match.  

 

 

Figure 4.18 Score After 100 Kills Using ML Algorithm to Control Shooting 
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AngleDifference: 

< 0.0686315 -> True 

>= 0.0686315 -> False 

Figure 4.19 Rule-Set Created By OneR 

 

Inspection of the rule-set created by OneR, displayed in Figure 4.19, reveals that it 

makes use of the AngleDifference attribute. This shows an excellent form of 

generalization, where robot-pilot has a much more complex consideration before 

firing a shot. 

Another difference from the results in Figure 4.7 is that REPTree now performs 

almost equal against robot-pilot. This is a good indication that REPTree over-fits 

when trained on the dataset shown in Section 4.2.1, so removal of irrelevant 

attributes improves the algorithm‟s in-game performance. 

 

4.4.3 Dual Static Models 

 

The results presented in the previous section show the in-game performance 

improves when irrelevant attributes are removed from the training datasets. The 

results for both speed and rotation, displayed in Figure 4.14 and Figure 4.16, show 

it is possible for an ML algorithm to control one aspect of tank behaviour 

sufficiently well to match robot-pilot‟s performance. The shooting results, 

displayed in Figure 4.18, show that it is even possible for a tank using an ML 

algorithm to handle one aspect of tank control to out-perform robot-pilot. 

This section discusses experiments to determine if this level of performance can 

be maintained or exceeded by using two ML algorithms together to control two 

aspects of tank behaviour simultaneously. 
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Algorithm Selection 

 

The number of algorithms tested in combination has to be limited because of the 

time consuming nature of testing and the large number of combinations available. 

Only OneR and REPTree are used to control shooting. This is for two reasons; 

firstly it limits the number of combinations to test, and secondly because of the 

large difference in the performance of the shooting ML algorithms shown in 

Figure 4.18. 

To reduce the time needed for testing, only the speed+shooting and 

shooting+rotation combinations are considered at this stage. These results are then 

used to determine which ML algorithms perform well together and the 

combinations to use for controlling all three aspects of tank behaviour in the next 

section. 

As described in the Section 4.4.2, in-game performance of an algorithm can be 

quite different depending on whether it is trained on the full or even dataset. 

Because of this, ML algorithms trained on the full dataset are considered 

independently of those trained on the even dataset. 
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Speed and Shooting 

 

Figure 4.20 shows in-game performance of the ML algorithm combinations. Note 

that MultilayerPerceptron is not tested using the even dataset because it scores 

less than 90% in the cross-validation tests shown in Figure 4.13. 

Unlike the individual in-game speed results shown in Figure 4.14, where 

algorithms trained on the even dataset out-perform algorithms trained on the full 

dataset in almost half the tests, here we see that algorithms trained on the full 

dataset generally out-perform algorithms trained on the even dataset. The only 

exceptions to this are RandomTree+OneR which performs better when trained on 

the even dataset, and PART+REPTree which performs about the same regardless 

of the dataset. 

 

 

 

 

Figure 4.20 Score After 100 Kills Using ML Algorithms to Control Speed and 

Shooting 
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This difference from the results in Figure 4.14 could indicate the non-uniform 

distribution of speed instances is an important component for ML algorithm 

performance, or alternatively the difference may indicate that algorithms trained 

on the full dataset perform better because it has more instances available and thus 

the algorithms are better equipped to infer the correct response in situations not 

presented by autopilot. Further experimentation could be done to determine the 

exact reason but this is outside the scope of this report and remains a possible 

topic for future work. 

The results in Figure 4.20 also show an improvement over those in Figure 4.8, 

with all algorithms managing to score over 40 points in at least one configuration. 

The combination of RandomForest and OneR however is the only one that 

manages to out-perform robot-pilot (though only slightly with a score of 52). 
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Shooting and Rotation 

 

Figure 4.21 shows in-game performance of the shooting+rotation ML algorithm 

combinations. These results show a small improvement over the results given in 

Figure 4.9, with four combinations scoring at least 40 points against robot-pilot. 

The only combination that comes close to equalling robot-pilot‟s performance is 

DecisionTable trained on the even dataset using OneR to control shooting with a 

score of 48. 

The shooting+rotation combinations do not have the same level of in-game 

performance increase as the speed+shooting combinations discussed earlier; 

however, as noted in Section 4.3.3, it is possible for a combination of algorithms 

to perform better than either of the algorithms alone. So, it is possible that while 

the shooting+rotation combinations do not out-perform robot-pilot, the 

combination of all three ML algorithms may improve in-game performance. 

 

 

Figure 4.21 Score After 100 Kills Using ML Algorithms to Control Shooting 

and Rotation 
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4.4.4 Triple Static Models 

 

Based on the in-game results described in the previous section, the best two-

algorithm combinations are combined into three-algorithm combinations. For 

example; Figure 4.20 shows that JRip performs best with REPTree when trained 

on the full speed dataset, while Figure 4.21 shows that DecisionTable performs 

best with REPTree when trained on the even rotation dataset. Based on this the 

JRip(Even)-REPTree-DecisionTable(Even) speed-shoot-rotation combination is 

tested, but combinations such as JRip-REPTree-DecisionTable, and JRip(Even)-

REPTree-DecisionTree are not tested. 

To reduce the time required for in-game tests, the combinations are first tested up 

to 30 kills. The best performing combinations are then tested again up to 100 kills. 

Figure 4.22 shows in-game performance of the combinations which use REPTree 

to control shooting. Although these results indicate an improvement over the 

results in Figure 4.10, they are still quite poor. The random nature of BZFlag 

means the score after 30 kills between two evenly matched opponents may not be 

close to 15, because it often takes a longer run for scores to even out (as more 

world states are encountered). However, it is not unrealistic to expect a score of at 

least 10 if the tanks are equally matched. 

 

 

Figure 4.22 Score After 30 Kills Using ML Algorithms to Control Speed, 

Shooting (REPTree), and Rotation 

0
2
4
6
8

10
12
14
16

Jrip(Even) PART(Even) J48(Even) REPTree

Algorithm Controlling Tank Speed

Score After 30 Kills Using ML Algorithms to Control Speed, 
Shooting (REPTree), and Rotation

J48

PART

RandomTree

JRip

Rotation Algorithm



80 

 

 

 

Figure 4.23 Score After 30 Kills Using ML Algorithms to Control Tank 

Speed, Shooting (REPTree), and Rotation 

 

Figure 4.23 clearly shows the best combinations are those that use OneR to 

control tank shooting and DecisionTable(Even) to control rotation. All 

combinations with these two algorithms out-perform or match all other 

combinations shown in Figure 4.22 and Figure 4.23. 

Based on the results in Figure 4.23, all combinations that score more than 8 points 

are used for a full in-game test up to 100 kills. 
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Figure 4.24 Score After 100 Kills Using ML Algorithms to Control Speed, 

Shooting (OneR), and Rotation (DecisionTable(Even)) 

 

Figure 4.24 shows the best performing combinations are only capable of scoring 

around 40 points against robot-pilot and, given that robot-pilot can be beaten by 

even an intermediate human player, are unsuitable to be used as an opponent for a 

human player. 

 

4.5 Chapter Summary 
 

Chapter 4 describes experiments to control a tank in BZFlag using static 

prediction models. It is possible to equal the performance of autopilot using a 

static model to control one aspect of tank behaviour, and in some cases it is even 

possible to out-perform robot-pilot. 

A combination of two ML algorithms can perform better than either algorithm 

alone, but none of the combinations tested are able to easily out-perform robot-

pilot. The performance when using three ML algorithms to control all aspects of 

tank behaviour is worse, with none of the combinations tested being able to match 

the performance of the standard robot-pilot. 
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It is possible that further „fine tuning‟ of algorithm parameters or attributes in the 

training datasets could improve in-game performance. However, since all three-

algorithm combinations tested are unable to match robot-pilot it seems unlikely 

that any performance improvements achieved by this would be sufficient to easily 

beat robot-pilot, and therefore be suitable for testing against human players. 
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5 Continuous Learning 
 

This chapter describes experiments to determine whether the in-game 

performance achieved in Chapter 4 can be improved using continuous learning 

(CL) with one of the machine learning (ML) algorithms. This includes selection 

of the algorithm combinations and testing in-game performance. 

Section 5.1 describes the configuration used to train the ML algorithms. Section 

5.2 discusses selection of algorithms used for testing in-game CL. Section 5.3 

discusses the results of short duration in-game tests and Section 5.4 goes on to 

discuss the results of longer duration tests. Section 5.5 gives a brief summary of 

this chapter. 

All experiments in this chapter use the same world configuration and scoring 

mechanism described in Section 4.1 (400x400 plane, jumping and flags disabled, 

no obstacles). 

 

5.1 Offline Training Configuration 
 

The configuration used to train the ML algorithms is similar to that described in 

Section 3.3.5; BZFlag sends world state information to WEKA-Server and awaits 

a response. WEKA-Server then uses the most recently trained ML algorithm to 

determine the value to send to BZFlag. All instances received by WEKA-Server 

are sent to ClassifierBuilder. ClassifierBuilder retrains the ML algorithm when 

required and sends the updated version to WEKA-Server. 

The configuration used for experiments in this chapter differs from that in Section 

3.3.5 in that ClassifierBuilder starts with some instances already loaded. The 

starting instances are from the relevant datasets (described in Section 4.4.1). Both 

even and full datasets are used depending on the algorithm (except for shooting 

which always uses the even dataset). WEKA-Server starts with an ML algorithm 

trained on the initial instances. Each instance sent from WEKA-Server to 

ClassifierBuilder also has its class value set to the predicted value from the ML 

algorithm in WEKA-Server. 
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Put another way, the ML algorithm starts with a number of instances for training 

and then adds new training instances with its predicted class value. As one might 

expect, this does not improve performance if the algorithm is already performing 

poorly but, if the algorithm performs sufficiently, performance can be improved 

using this method [Vega and Bressan, 2003]. 

 

5.2 Algorithm Selection 
 

No studies could be found that suggest any particular ML algorithms are better 

suited to CL than any other ML algorithms. To confirm this, a small test is 

conducted using CL with the rotation ML algorithm while the standard autopilot 

controls speed and shooting. The algorithms tested are the same as those shown in 

Figure 4.21, using the dataset that gives the best performing static model for the 

initial training. 

 

 

Figure 5.1 Score Per 100 Kills Using CL to Control Rotation 
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Figure 5.1 shows in-game performance using CL to control rotation with (Even) 

after the algorithm name indicating the even dataset is used. Each in-game test is 

run until the total kill count reaches 300, this number is arbitrary but allows for 

the effect of CL to become apparent without taking an excessive amount of time. 

The score is recorded after each 100 kills. 

Figure 5.1 also shows DecisionTable(Even) is the best performing algorithm 

tested. This is expected because, as noted in Section 5.1, any performance 

increases during CL are dependent on the initial performance of the algorithm 

itself, and the results in Figure 4.27 show that DecisionTable(Even) is the best 

performing rotation ML algorithm. 

The performance of DecisionTable(Even) also improves steadily during the test, 

whereas some of the other algorithms show more volatile changes in performance 

that may indicate a reduced ability to improve long term performance. 

These results are by no means a comprehensive study of each algorithm‟s 

suitability for CL, but with no studies found to indicate the contrary it is assumed 

that algorithms with the best performance in experiments discussed in Section 

4.4.4 are likely to have the best performance when used with CL. 

 

5.3 Short Duration In-Game Testing 
 

Each test is run until the total kill count reaches 300 with the score recorded after 

each 10 kills. This creates 30 data points, referred to as 10-kill blocks. The ability 

for each algorithm to improve performance is determined by plotting these data 

points and comparing the slope of the linear trend lines. 300 is an arbitrary 

number but is selected to be large enough that increases in performance are 

detectable but small enough so as not to require excessive time for testing. 

Section 5.2 states the assumption that algorithms that perform well in the 

experiments described in Section 4.4.4 are the most likely to improve 

performance using CL. Based on this assumption there is little to be gained by re-

testing performance of single and dual algorithms for in-game performance, so the 
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best three-algorithm combinations are tested using CL to determine if the 

performance improves over that achieved using static models (described in 

Section 4.4.4). All combinations tested in this section use DecisionTable(Even) as 

the rotation algorithm and, although OneR is clearly the best performing shooting 

algorithm, some combinations that use REPTree to control shooting are also 

included for completeness. 

Only one of the three algorithms uses CL for these tests. This is because it 

simplifies testing and it is unlikely that a CL algorithm which performs poorly 

when combined with static models will perform better when combined with other 

CL algorithms. 

Experiments in this chapter use CL on the speed and rotation ML algorithms only. 

This is because experiments in Chapter 4 show that these two controls have the 

most detrimental effect on in-game performance, and thus are the areas that must 

be improved in order to match the performance of robot-pilot. 
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5.3.1 Continuous Speed Learning Algorithms 

 

CL is first trialled for algorithms that control speed. All combinations trialled in 

this section use DecisionTable(Even) to control rotation.  

 

 

 

 

Figure 5.2 Points Scored Using CL to Control Speed 
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Combinations Using OneR to Control Shooting 

 

Figure 5.2 shows the performance when CL is used to control speed and OneR to 

control shooting. In Chart A the grey line shows the score achieved by autopilot 

(i.e. how many times autopilot shot the opponent during the last 10 kills), with the 

black line showing the linear trend of the score. If the two tanks have similar 

performance the score should vary around five points. The five combinations 

tested have scores closer to three points, indicating worse performance than robot-

pilot. Chart C shows the combination using RandomTree is the only one of the 

five that manages to score more than five points in any 10-kill block, but the 

overall score is still not adequate to match robot-pilot. 

Chart B and Chart D show that both PART and JRip have sudden drops in 

performance in a few 10-kill blocks. The exact reason for this is unclear but it 

may be simply an „unlucky‟ set of random starting states for the particular 

algorithm. 

The linear trend lines show that, although all the combinations tested are unable to 

match the performance of robot-pilot, the performance does increase over time 

when using CL. The one exception to this is MultilayerPerceptron shown in Chart 

E, which has more or less constant performance regardless of the duration. 

 

 

Figure 5.3 Slope of Trend Lines Using CL to Control Speed 
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For easier comparison the slopes of the trend lines in Figure 5.2 are displayed 

together in Figure 5.3. JRip clearly has the largest performance increase, with a 

slope over twice as large as the other algorithms.  

MultilayerPerceptron has a slope of zero, indicating the performance does not 

change regardless of the duration (as noted previously). The reason for this is not 

known but may indicate the algorithm is not suited for CL. 

The remaining three algorithms have similar slopes. Interestingly RandomForest 

does worse than RandomTree despite the similarity of the algorithms. The 

underlying reasons why some algorithms show greater performance increases 

using CL are beyond the scope of this report and remains a possible topic for 

future work. 

 

Combinations Using REPTree to Control Tank Shooting 

 

Figure 5.4 shows the performance of the combinations when CL is used to control 

speed and REPTree to control shooting. Comparing Figure 5.4 with Figure 5.2 

shows the choice of algorithms used in the combination can have a large impact 

on the effectiveness of CL. This is expected because an algorithm‟s ability to 

improve performance depends heavily on its initial performance (as noted in 

Section 5.2) and Section 4.3.2 shows the performance of a single algorithm is 

affected by other algorithms used in combination with it. 
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Figure 5.4 Points Scored Using CL to Control Speed (REPTree for Shooting) 

 

These results also help confirm the assumption made in Section 5.2; the best 

performing static model combinations are the most likely to perform well when 

using CL. The best performing combinations in Section 4.4.4 are those that use 

OneR to control shooting and that result emerges again here. 

Interestingly the performance of some combinations in Figure 5.4 perform better 

than their OneR counterparts in Figure 5.2, yet the linear trend lines in Figure 5.4 

show the performance has little, if any, improvement and even declines over time 

in Chart B. This is difficult to explain but may indicate that REPTree does not 

allow the CL speed algorithm to improve beyond the initial performance. This is 

not investigated because there is negligible performance increase in the 

combinations using REPTree for shooting so it is not useful for improving tank 

performance but could be a topic of future work.  
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Figure 5.5 Slope of Trend Lines Using CL to Control Speed (REPTree for 

Shooting) 

 

For easier comparison, Figure 5.5 shows the slopes of the trend lines shown in 

Figure 5.4. This confirms the performance of the combinations using REPTree for 

shooting have a much lower rate of improvement than the combinations using 

OneR shown in Figure 5.3. RandomForest and RandomTree show a minimal level 

of increase, while the performance of the combination using PART declines over 

time. 

These results are consistent with expectations based on the results discussed in 

Section 4.4.4 that show combinations using OneR clearly out-perform 

combinations which use REPTree to control tank shooting. 
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5.3.2 Continuous Rotation Learning Algorithm 

 

Section 5.3.1 shows the combinations that perform best in the experiments 

described in Section 4.4.4 are the same ones that perform best when one of the 

algorithms uses CL. As a result, DecisionTable(Even) is the only algorithm used 

for the tests described in this section. 

The results in Section 5.3.2 also show the performance achieved by CL can be 

strongly affected by the other ML algorithms used in the combination. Because of 

this, and the results discussed in Section 5.3, no combinations that use REPTree to 

control shooting are tested, so all experiments in this section use OneR to control 

shooting.  
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Figure 5.6 Points Scored Using CL to Control Rotation 
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Figure 5.6 shows the performance of combinations that use OneR to control 

shooting and CL on the rotation algorithm (DecisionTable(Even)). The speed and 

shooting algorithms are the same as the static models described in Section 4.4.4. 

The performance of these combinations is generally worse than combinations that 

use CL speed algorithms (Figure 5.2). In Figure 5.2 all the combinations manage a 

score of five in at least one 10-kill block, yet in Figure 5.6 PART (Chart B) is the 

only combination that manages to score five points in any 10-kill block. 

Three of the five combinations tested still have a performance increase over time, 

but the performance is worse than when CL is used to control speed (in 

Figure 5.2). 

For easier comparison, the slopes of the trend lines in Figure 5.6 are displayed 

together in Figure 5.7. This shows a similar ordering to the slopes in Figure 5.3 

with the exception that RandomTree performs much worse in Figure 5.7. JRip has 

the largest performance increase in both tests, though the increase is not as large 

in Figure 5.7. MultilayerPerceptron performs poorly in both tests, which may 

indicate the algorithm is not well suited for CL. The exact reason for this is 

outside the scope of this report and remains a possible topic for future work. 

 

 

Figure 5.7 Slope of Trend Lines Using CL to Control Rotation 
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5.4 Long Duration In-Game Testing 
 

Using results from Section 5.2 and Section 5.3, the combinations that perform 

best with CL are tested until the total kill count reaches 1000. This gives more 

time for improvements from CL to become apparent. 

As with the experiments in the previous sections, only one of the three algorithms 

uses CL because if the algorithm cannot improve its performance when combined 

with two static models it is unlikely that it will do better when combined with 

other CL algorithms. 

 

5.4.1 Continuous Learning Speed Algorithm 

 

Based on the results shown in Figure 5.3, the three combinations with the highest 

rates of improvement are; JRip-OneR-DecisionTable(Even), RandomTree-OneR-

DecisionTable(Even), and PART-OneR-DecisionTable(Even) (speed-shoot-

rotation, best to worst). To determine the performance increase that can be gained 

these three combinations are tested for in-game performance until the total kill 

count reaches 1000.  
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Figure 5.8 Points Scored Using CL to Control Speed (Long Duration) 
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Figure 5.8 shows the performance when CL is used to control speed. All the 

combinations use OneR to control shooting and DecisionTable(Even) to control 

rotation (static models the same as those described in Section 4.4.4). 

Chart B in Figure 5.8 shows the combination using RandomTree has the best 

performance of the combinations tested, managing to score six points against 

robot-pilot several times towards the end of the experiment. All three 

combinations show an improvement over time, though none of them are able to 

match the performance of robot-pilot during testing. 

Figure 5.9 shows the slopes of the trend lines in the charts in Figure 5.8 for easier 

comparison. Figure 5.9 shows the performance increase during long duration 

testing is far lower than it is in the short duration testing discussed in Section 5.3. 

This may indicate that in a CL system the performance increase drops off as the 

duration increases, however the rotation algorithm may not exhibit this effect. 

 

 

Figure 5.9 Slope of Trend Line Using CL to Control Speed (Long Duration) 
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5.4.2 Continuous Rotation Learning Algorithm 

 

The results in Figure 5.7 show the combinations with the highest rates of 

improvement that use CL on the rotation algorithm are; JRip-OneR-

DecisionTable(Even), RandomForest-OneR-DecisionTable(Even), PART-OneR-

DecisionTable(Even) (speed-shoot-rotation, best to worst). These combinations 

are tested for in-game performance until the total kill count reaches 1000 to 

determine the performance increase. 
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Figure 5.10 Points Scored by Using CL to Control Rotation (Long Duration) 
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Figure 5.10 shows the performance when CL is used to control rotation. All three 

combinations use DecisionTable(Even) to control rotation and OneR to control 

shooting. The performance of all three combinations is quite low, with the 

combination that uses RandomForest (shown in Chart B) the only one to score 

more than five points in any 10-kill block, but this happens only once. 

For easier comparison the slopes of the trend lines of the three graphs shown in 

Figure 5.10 are reproduced in Figure 5.11. This clearly shows that all three 

combinations using CL on the rotation algorithm (DecisionTable(Even)) have a 

decrease in performance as the duration of the test continues. 

This may be because the algorithm only learns from its own predictions, meaning 

that if the algorithm performs sufficiently it will eventually converge and the 

performance increase drops (as in Section 5.4.1), or if the algorithm does not 

perform sufficiently the accuracy of the model decays and ultimately results in a 

decline in performance over time (as in this section). 

 

 

Figure 5.11 Slope of Trend Line Using CL to Control Speed (Long Duration) 
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5.5 Chapter Summary 
 

This chapter describes experiments to improve the in-game performance achieved 

in Chapter 4 by using continuous learning on one of the ML algorithms. It is 

shown that in-game performance can be increased using continuous learning 

during short duration tests. 

 When used in long duration tests the rate of improvement observed for short tests 

is not maintained, dropping close to zero or becoming negative. This may indicate 

that an algorithm with sufficient performance converges, resulting in a „plateau‟ in 

the rate of improvement, while the performance of an algorithm that does not 

perform sufficiently decreases over time. It is possible that the results in this 

chapter could be improved with further experimentation, but even with the short 

duration tests the performance gain is not sufficient to out-perform or even match 

robot-pilot. 

This indicates that continuous learning can be used during short tests to improve 

performance of an ML algorithm, but over time the rate of improvement drops. 

Given the results shown in the long duration tests it is unlikely that the 

performance could be improved sufficiently to match robot-pilot so no further 

experimentation is conducted using CL. 
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6 Reinforcement Learning 
 

This chapter describes experiments to determine if a reinforcement learning (RL) 

agent can learn to control a tank in BZFlag. Two reinforcement learning 

frameworks are used; Connectionist and PIQLE. These two frameworks are 

chosen because both are written in Java and as such can easily be integrated into 

the WEKA-Server program described in Section 3.3.3. 

Section 6.1 describes Connectionist and outlines configurations used and results 

observed. Similarly Section 6.2 describes PIQLE, configurations used and results 

observed. Section 6.3 is a brief summary of this chapter. 

 

6.1 Connectionist 
 

Recall from Section 2.5.3 that Connectionist is a Q-Learning framework which 

uses a neural network to implement learning and dictate the actions of an agent. 

Because values are used as inputs to a neural network they do not have to be 

discretized. 

Available actions are a combination of speed (forward, stop, backward), rotation 

(left, straight, right), and shooting (shoot, hold), based on the class values 

discussed in Section 4.2.1. This gives a total of 18 possible actions (3 x 3 x 2 = 

18). For example, Forward-Straight-Shoot and Backward-Right-Hold are two 

possible actions. This gives the agent the same degree of control that a human 

user has when using a keyboard to control a tank. The list of actions is set at the 

start of the experiment and all 18 actions are assumed to be available at every 

time-step. 

Connectionist works in two phases. In the first phase it receives all input values 

(sensors in Figure 2.2), as well as the reward value from the actions previously 

taken which is used to adjust the neural network. In the second phase the output of 

the neural network is produced and the agent carries out the specified action. 
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The „brain‟ in Connectionist has four parameters that are set at the start of the 

experiment; Alpha, Gamma, Lambda, and Random Actions (RA). Alpha is the 

„learning rate‟ or „step size‟ of the algorithm. The learning rate is how much effect 

each new update has on previously learned values. The alpha parameter can be set 

in the range [0.0 to +1.0]. If the alpha is set too high the algorithm may not 

converge because of the large adjustments made at each step, while if it is set too 

low the agent may learn very slowly (or not at all if the value is 0.0). 

Gamma is the „discount‟ of the expected reward for future actions and can be set 

in the range [0.0 to +1.0]. A value close to zero makes the agent more „myopic‟, 

focusing on immediate reward values, while a value close to one makes the agent 

more „far-sighted‟, focusing on an expected reward in the future [Sutton and 

Barto, 1998]. 

Lambda is the eligibility trace forget rate and can be set in the range [0.0 to +1.0]. 

This causes actions taken closer to receiving a reward to be rewarded (or 

punished) more strongly than actions taken earlier. 

RA is the probability of selecting a random action rather than the best known 

action. This can be set anywhere from 0% to 100%, but typically a low value (5% 

to 10%) is used to ensure the agent continues to explore the state space without 

sacrificing too much „exploit‟ behaviour. 
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6.1.1 Initial Configuration 

 

Name Description Conn. PIQLE 

MyVelocity 

(X,Y) 

Velocity of the agent‟s tank along the axis. X  

EnemyVelocity 

(X,Y) 

Velocity of the opponent‟s tank along the 

axis. 

X  

RelativePosition 

(X, Y) 

Position of the opponent‟s tank on the axis, 

relative to the agent‟s tank. 

X X 

EnemyDistance Straight-line distance from the centre of 

the agent‟s tank to the centre of the 

opponent‟s tank. 

X  

AngleDifference Difference between the current rotation of 

the agent‟s tank, and the rotation that 

would point the agent‟s tank straight at the 

opponent‟s tank (i.e. How far the agent‟s 

tank must rotate to be facing the opponent 

tank). 

X X 

ShotRelative 

(X,Y) 

Position of the opponent‟s projectile on the 

axis, relative to the player‟s tank (zero if 

the opponent does not have an active shot). 

X  

ShotVelocity (X, 

Y) 

Velocity of the opponent‟s projectile along 

the axis (zero if the opponent does not 

have an active shot). 

X  

ShotDistance Straight-line distance to the opponent‟s 

projectile (zero if the opponent does not 

have an active shot). 

X  

MySpeed Current speed of the player‟s tank in the 

virtual world. 

X  

MyRotation Current orientation of the player‟s tank in 

the virtual world. 

X  

FiringStatus Integer value, tank can only fire when 

value is 1 (meaning „ready‟). 

X X 

Table 6.1 Attributes used for Reinforcement Learning 
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The world configuration is the same as that used in Section 4.1, with a size of 200 

(400x400 plane) and no obstacles. Table 6.1 shows the inputs that are given to the 

Connectionist agent at each time-step (marked with an „X‟ in the Conn. column). 

The values and ranges are the same as those described in Section 4.2.1. The only 

change is that missing values are represented with 0.0 because Connectionist 

cannot handle missing inputs. 

The initial parameters for the Connectionist „brain‟ are; alpha 0.5, gamma 0.9, 

lambda 0.2, RA 10%. These values are selected as a starting point because they 

are the used in one of the demo programs provided with Connectionist called 

„wanderbot‟. The reward scheme used is +1 for killing the opponent and -1 for 

being killed. All other times the reward is 0.  
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6.1.2 Results 

 

Figure 6.1 shows the score achieved by the tank controlled by Connectionist every 

10 kills up to 15,000 kills. The black line is a moving average with a sliding 

window of 50 data points (i.e. 50 10-kill blocks or 500 kills). The moving average 

shows some variance in the performance over time with no sign of a steady 

increase. The moving average also shows the performance reaches a maximum at 

around 3200 kills, and gradually decreases after 11,000 kills possibly indicating 

the agent is starting to explore a poor area of the search space. 

Observation of game-play shows the Connectionist tank fires as often as possible 

(immediately after each reload), regardless of the opponent‟s position. This is 

obviously detrimental to performance but the reward scheme described in Section 

6.1.1 does not discourage such behaviour. 

 

 

Figure 6.1 Score per 10 Kills Using Connectionist 
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6.1.3 Altered Configuration 

 

The reward scheme is altered to „punish‟ reloading time to deter the agent from 

firing as often as possible. The new reward scheme is +1 for killing the opponent, 

-1 for being killed, -0.1 for all states when the tank is reloading, and 0 in all other 

states. 

The parameters are also altered to help stabilize learning. Alpha (learning rate) is 

reduced to 0.1 to reduce fluctuations in performance, lambda is increased to 1.0 to 

make the Connectionist tank as far-sighted as possible (given the large number of 

time-steps needed to kill the opponent), and RA is reduced to 5% to also help 

reduce fluctuations in performance. Gamma is left at 0.9. 

 

6.1.4 Results 

Due to time constraints the altered configuration is only run until the total kill 

count reaches 4000. Figure 6.2 shows the performance using the altered 

configuration is much worse than the performance using the initial configuration. 

The moving average appears to increase slightly over time, but without extending 

the duration of the experiment it is difficult to determine the long term trend. 

 

 

Figure 6.2 Score per 10 Kills Using Connectionist (Altered Configuration) 
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However, it seems unlikely the performance would have a sudden increase if the 

duration was extended, thus it would take a large number of episodes before the 

performance would match that in Figure 6.1. 

Observation of the game-play shows the tank does not fire as often as it does 

when using the configuration described in Section 6.1.1. The poor performance 

seems to indicate a lack of „lucky‟ shots that occur when the tank fires as often as 

possible, rather than a drop in „intelligent‟ performance. 

 

6.1.5 Backups 

 

Backups of the neural network‟s weights (described in Section 2.5.3) are 

introduced in an attempt to improve performance. This is done by comparing the 

score achieved after each 100 kills. If the score is higher than, or equal to, the 

maximum score achieved, the maximum value is adjusted and the current weights 

are saved, otherwise the last saved weights are restored. 

 

6.1.6 Results 

 

Figure 6.3 shows performance when backups are used. Performance clearly 

improves over that shown in Figure 6.2, even during the first 1000 kills. However, 

performance is not as good as that in Figure 6.1, with the agent never scoring 

more than three points in any 10-kill block. The moving average shows less 

variance than that in Figure 6.1. This may indicate a more „stable‟ performance, 

possibly indicating more intelligent game-play rather than „lucky‟ shots. 

The moving average does not show a steady increase in performance, indicating it 

would take an extremely large number of episodes before the performance would 

approach that of robot-pilot, let alone a human opponent. 
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Figure 6.3 Score per 10 Kills Using Connectionist with Backups 
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agent cannot take into account times during game-play when shooting is not 

available and alter its behaviour accordingly. The other limitation is the 

Connectionist „brain‟ is designed for environments with instant (or very quick) 

reward values, but BZFlag can have very long episodes (in terms of time-steps) 

before either tank dies, making it difficult to correctly assign reward values to the 

appropriate actions. 

 

6.2 PIQLE 
 

PIQLE is a Q-Learning framework that uses state-action pairs to determine the 

action for an agent to take. The state-action pairs are stored in a hash table to 

reduce memory requirements. State-action pairs need to match future occurrences 

exactly and, because of the large number of states possible in complex 

environments, can require that attributes be discretized. A more detailed 

description of PIQLE is given in Section 2.5.2. 

PIQLE allows for available actions to be determined for each world state. Thus 

there is less need to penalize the agent for firing inappropriately so the reward 

mechanism is the same as that used in Section 6.1.1 (+1 for kill, -1 for being 

killed). 

PIQLE also uses the notion of „terminal‟ states. This allows for long episodes to 

be terminated only when one of the tanks is killed, thus state-action pairs that lead 

to a reward should be correctly rewarded. Note that because rewards are only 

received in „terminal‟ states the reward will never be 0 like the Connectionist 

reward scheme. 
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6.2.1 Initial Configuration 

 

The world configuration is the same as that described in Section 6.1.1. Only a 

small subsection of the possible attributes are used to represent the world state. 

This simplifies initial testing and (as noted in Section 6.2) the state-action pairs 

must match exactly, so reducing the number of variables results in faster 

convergence for the algorithm. 

Table 6.1 shows the values used to represent world state for the PIQLE agent 

(marked with an „X‟ in the PIQLE column). This is a much smaller set of 

attributes than those used previously but is sufficient to distinguish world states 

with minimal memory requirements. 

The RelativePosition attributes are rounded off to the nearest 10, giving 81 

possible values using the world configuration described in Section 4.1 (size 200, 

no obstacles). The AngleDifference attribute is rounded to the nearest 0.5, giving a 

range of 12 values (0 to +6.0). FiringStatus is an integer value with only three 

possible values so is left unchanged. 

This rounding off (or discretization) is used as an initial starting point for tests to 

limit the time and memory requirements but may limit the agent‟s maximum 

performance, for instance AngleDifference is only accurate to 0.5 radians 

(approximately 29 degrees) which may limit the ability of the agent to target the 

opponent. 
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6.2.2 Results 

 

Figure 6.4 shows the performance of the PIQLE agent using the configuration 

described in Section 6.2.1. The experiment is stopped after 2000 kills because of 

the agent‟s poor performance, scoring zero for most of the experiment. 

The reason for this poor performance is most likely the large number of unique 

world states available. Using the configuration described in Section 6.2.1, the 

world can have over 23,000 unique states. Even assuming that the agent can never 

fire (i.e. always reloading) the agent has nine actions available, resulting in over 

two million unique state-action pairs. This is detrimental to reinforcement 

learning where the agent must visit each state-action pair numerous times in order 

for the algorithm to converge. 

 

 

Figure 6.4 Score per 10 Kills Using PIQLE to Control Tank 
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6.2.3 Changes to Configuration 

 

The configuration is changed to overcome the limitations observed in Section 

6.2.2. The RelativePosition values shown in Table 6.1 are rounded off to the 

nearest 40. This gives a range of 21 possible values (-400 to +400) using the 

world configuration described in Section 4.1. This decrease in the number of 

possible values results in close to 16,000 unique world states and, with 18 

possible actions, gives a maximum of close to 286,000 unique state-action pairs. 

 

6.2.4 Results 

 

Figure 6.5 shows in-game performance of the PIQLE agent with the configuration 

changes. The experiment is also run for a much longer duration to allow each 

state-action pair to be visited more often. The data points are now 100-kill blocks 

because of the large amount of data. The performance of the agent is clearly 

improved over the previous configuration shown in Figure 6.4. 

 

 

Figure 6.5 Score per 100 Kills Using PIQLE with Increased Discretization 
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Figure 6.5 also shows a gradual increase in performance over time, with the agent 

scoring six points once in the first 25,000 kills, but scoring six points several 

times (and even seven and eight points) during the last 25,000 kills. The moving 

average confirms this gradual increase, with a value between one and two up to 

around 80,000 kills, after which the value is often over two. 

For easier comparison Figure 6.6 shows the performance of Connectionist from 

Figure 6.1 and the performance of PIQLE from Figure 6.5. The PIQLE values are 

taken from the last 15,000 kills in Figure 6.5. This shows that while the PIQLE 

agent may have a more reliable increase in performance, its overall performance is 

less than the Connectionist agent. 

This seems to indicate that, if given sufficient runtime, the PIQLE agent‟s 

performance would improve faster than the Connectionist agent, but the 

Connectionist agent would have superior performance during the start of the test. 

The performance of both agents is still far below that of robot-pilot however. 

Even with the best performance of the two agents (in Figure 6.6) the 

Connectionist agent scores a maximum of 13 points against robot-pilot, while  

PIQLE scores a maximum of only eight. 

 

 

Figure 6.6 Score per 100 Kills Connectionist and PIQLE 
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6.3 Chapter Summary 
 

Reinforcement learning shows the highest rate of performance increase of all the 

methods discussed in this report, but the initial performance is lower than methods 

that use supervised learning. Even assuming the rate of improvement remained 

constant it would take many hundreds of thousands, possibly millions, of episodes 

before the performance of the reinforcement agents would approach that of robot-

pilot, let alone a human player. 

This may be acceptable for training against a computerised opponent, but it calls 

into question whether a reinforcement learning agent that has learned to beat a 

human opponent could adapt fast enough when faced with a new opponent. 

Unfortunately time constraints make it unfeasible for further experimentation with 

reinforcement learning during this study and it remains an open topic for future 

work. 
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7 Summary and Future Work 
 

7.1 Summary 
 

This thesis investigates the use of machine learning (ML) techniques to develop a 

game-AI system capable of adapting to a human opponent when given the same 

degree of control and information as the human player. 

 Numerous game-AI systems have been developed but academic game-AI systems 

often focus on relatively simple games, either 2D board games or simplified 3D 

games. Game-AI created by game developers is used in all manner of games, but 

the focus is not on learning but rather on providing the „appearance of learning‟ to 

the human player. This somewhat unexplored area of AI systems in competitive 

3D environments provides an interesting area of ML research. 

Chapter 3 describes initial attempts to integrate an ML algorithm into BZFlag to 

control a tank and describes many issues that arise, such as the selection of data 

and algorithms to use during experiments. The online training approach is also 

described which highlights some constraints placed on an ML algorithm when it is 

used in a real-time 3D game and the offline training approach developed to help 

overcome those limitations. 

Chapter 4 describes attempts to create an AI system using static prediction 

models. The single models provide similar performance to robot-pilot in many 

cases. When using two models the performance is similar to single models except 

combinations of rotation and speed controls which result in extremely poor 

performance. This is believed to be a result of the dependency of the algorithms 

on each other; that is, the outputs of one algorithm influence the inputs of the 

other algorithm. The datasets were altered to prevent this effect which did not 

have a detrimental effect on performance of the one and two algorithm 

combinations though due to time considerations the speed and rotation 

combinations were not tested again. Combinations using three algorithms to 

control the tank are tested, and the performance is not terrible but is less than that 

of robot-pilot and it was deemed unlikely that tuning the algorithm parameters or 
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the training dataset would provide a sufficient increase in performance to match a 

human player. 

Chapter 5 describes experiments using continuous learning (CL) to improve the 

performance observed in Chapter 4. A brief test is conducted that confirms the 

static prediction models with the best performance are the most likely to improve 

performance when CL is used. The three-algorithm combinations with the best 

performance in Chapter 4 are tested again using CL on one of the algorithms for a 

short duration. The results are generally positive and several combinations show 

an improvement in performance over time. The experiments are then conducted 

again for a longer duration. CL on the speed algorithm shows much lower rates of 

improvement which may indicate there is a „plateau‟ effect to performance gains 

from CL. The longer duration experiments using CL on the rotation algorithm 

however show a decline in performance over time, indicating there is a limit to 

how much improvement can be gained using CL. 

Chapter 6 describes experiments using reinforcement learning (RL) to create an 

agent that is able to adapt to the opponent‟s game-play. Initial experiments using 

the neural-network approach with Connectionist show a decline in performance 

over time and observation of the game-play shows that the agent fires as often as 

possible (given reloading delays) regardless of the opponent‟s position. The 

reward function is altered to slightly penalize firing, which has the desired effect 

of reducing the number of shots fired by the agent. The performance with the 

altered reward function shows a small improvement over time, though the overall 

score is lower because of fewer „lucky‟ shots. Backups of the neural network 

weights are used with the aim of improving the performance, and although these 

increase the overall score achieved the rate of improvement is unchanged. This 

poor improvement rate may be a result of limitations (such as all actions being 

available at all times) due to the implementation of the Connectionist framework, 

rather than the neural network approach itself but this remains a topic for future 

work. 

PIQLE is experimented with to determine whether better performance can be 

achieved using the state-action pair RL method. The initial configuration has very 

poor performance. This shows a limitation of the state-action pair method; each 
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state-action pair must be visited several times in order for the algorithm to 

converge. This means a large number of possible states can require either a very 

long runtime or alternatively quite coarse discretization of attributes. The second 

experiment is conducted using both a longer duration and coarser discretization, 

with the results showing an increased rate of improvement but the performance is 

still far from being able to match robot-pilot, let alone a human player. 

 

7.2 Conclusions 
 

This research shows that ML techniques can be used in a modern game with a 

complex 3D environment without have a detrimental effect on game performance. 

Experiments in Chapter 4 show that static prediction models used in isolation can 

give similar or even better performance than a rule-based agent. It is difficult to 

create an agent using only static prediction models that can out-perform an 

intermediate human player, but with fine tuning the algorithm parameters and 

selection of data the static model approach may be useful as an alternative means 

for creating simple computer opponents. 

Chapter 5 shows that CL can be used to improve the performance of a single static 

model, but this improvement is both small and short-lived, making it of little 

benefit for use in game-AI. 

The experiments with RL in Chapter 6 show the most promise, with the highest 

rate of performance increase, but the experiments also highlight a limitation of 

RL; it requires thousands or millions of episodes in order for the learning to 

converge. Because of the demands this places on time it was not possible to 

investigate the use of RL more thoroughly, but this does raise questions about the 

usefulness of RL for game-AI; because RL „learns‟ very slowly, it may require 

many games against a human opponent before it successfully adapts to the 

human‟s strategy. Human players however are unlikely to play hundreds of 

identical games against a computer opponent (particularly because it performs 

poorly during initial learning), so it seems RL could be useful in producing an 
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agent that can play the game well, but may not be able to adapt to a new opponent 

quickly. 

This also serves to highlight a fundamental difference between ML applied to 

traditional problems and ML applied to game-AI; traditional machine learning is 

generally geared towards finding the optimum solution. Reinforcement learning is 

guaranteed to explore the entire search space (provided sufficient runtime and 

random exploration is not stopped), and as such is proven to converge on the 

optimum solution. When playing against a human opponent however, a sub-

optimal solution found quickly is far more preferable to an optimal solution found 

over a large number of iterations. 

 

7.3 Future Work 
 

There are many directions for further investigation mentioned in this thesis as they 

arise, some of which are observations from results that raise interesting questions 

but are outside the main goals of this thesis. 

The requirement for fast adaptation by game-AI may limit the usefulness of RL, 

one possible solution to this that could be investigated is to use some form of 

genetic algorithm to produce the agent‟s behaviour. RL could be used to produce 

agents that perform well in different situations (such as attack or defence) and 

then the agent used against human opponents could be created by combining 

known „good‟ behaviours. 

Using a large number of players in „death-match‟ style gameplay may speed up 

learning, since the number of episodes in a given amount of time will be 

increased. This could be particularly useful if genetic algorithms are used. That is, 

a „knock out‟ type competition could be used, where each time an agent dies they 

are replaced by a new agent derived from the current two top agents. 

Team games are another possible configuration for testing. All the experiments 

described in this report use one-on-one games but it may be possible that using 
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ML techniques with teams of agents may be able to produce simpler, emergent 

behaviour that performs better than single-player agents. 

The separation of controls used in the experiments of Chapter 3 through Chapter 5 

simplifies decision making for the separate algorithms but it may also hinder the 

creation of an overall strategy. An alternative approach is to use a hierarchical 

system of decision making. For instance, the agent first decides between the high-

level concepts of „fight or flight‟ based on the current world state. Once that 

decision is made, it leads to a lower-level decision, such as run or hide. Eventually 

the bottom level of the hierarchy has a direct action (such as move forward, turn 

left, or shoot). This approach is more complex to set up, but allows for simple 

decision making at each level while giving the agent an overall strategy to follow. 

All the approaches used in this report and those described in this section give the 

agent the same level of control and information as the human player. It might be 

beneficial however, to have the agent start with an advantage over the opponent 

player (such as the „cheating‟ game-AI described in Section 2.1.1). Once the agent 

can beat the opponent using an advantage the advantage can gradually be reduced 

and eventually removed. This could aid in learning because the agent may find a 

successful strategy more quickly when it is given an advantage over its opponent. 
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