

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://waikato.researchgateway.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the
Degree of Master of Science at the University of Waikato.

March 2009

© Adam D. Lynam 2009

Prediction of Oestrus in Dairy
Cows: An Application of

Machine Learning to
Skewed Data

Adam D. Lynam

ii

Abstract

The Dairy industry requires accurate detection of oestrus(heat) in dairy cows

to maximise output of the animals. Traditionally this is a process dependant

on human observation and interpretation of the various signs of heat. Many

areas of the dairy industry can be automated, however the detection of oestrus

is an area that still requires human experts.

This thesis investigates the application of Machine Learning classification tech-

niques, on dairy cow milking data provided by the Livestock Improvement

Corporation, to predict oestrus. The usefulness of various ensemble learn-

ing algorithms such as Bagging and Boosting are explored as well as specific

skewed data techniques.

An empirical study into the effectiveness of classifiers designed to target skewed

data is included as a significant part of the investigation. Roughly Balanced

Bagging and the novel Under Bagging classifiers are explored in consider-

able detail and found to perform quite favourably over the SMOTE technique

for the datasets selected. This study uses non-dairy, commonplace, Machine

Learning datasets; many of which are found in the UCI Machine Learning

Repository.

iv

Acknowledgements

I would like to thank my Masters supervisor, Bernhard Pfahringer, for putting

up with me through the time it took to complete this work and for all the

valuable help he provided throughout the thesis work.

I want to thank all the friends and family who supported me while I was

working on the thesis. Most specifically, Helen Lynam, my Mum, and my two

younger sisters: Sara and Emma Lynam. I really appreciated having such a

great family to head home to when I needed to escape work.

I would also like to note two awesome flatmates I have lived with during most

of my time at University and, most recently, while I was working on this thesis:

Steven Loveridge and Scott Sutherland. I am glad to have had you guys around

to keep me on track!

I feel its important to mention Russell Knutson, from LIC, for all his work in

helping me get started and Tania Smith and Bevin Harris, also from LIC, for

helping finalise everything on the LIC end of the work.

vi

Contents

1 Introduction 1

1.1 Research Goal . 1

1.2 Explanation of Terms . 2

1.3 Thesis Structure . 3

2 Related Work 7

2.1 The New Zealand Dairy Industry 7

2.1.1 Daily Data Recording 7

2.1.2 Detection of Heat Traditionally 8

2.2 Machine Learning Generally 8

2.2.1 WEKA . 8

2.2.2 ARFF File Format . 9

2.2.3 Classifiers . 10

2.2.3.1 J48 (C4.5) . 10

2.2.3.2 Näıve Bayes 11

2.2.3.3 Averaged One-Dependence Estimators 12

2.2.3.4 Logistic Regression 12

2.2.3.5 Support Vector Machines 13

2.2.3.6 Bagging . 14

2.2.3.7 Random Forests 14

2.2.3.8 AdaBoostM1 15

2.2.4 Precision-Recall and ROC Curves 16

2.3 Agricultural Industry and Machine Learning 17

2.4 Detection of Heat in Machine Learning 18

3 Skewed Class Problems 21

3.1 Classifiers Designed to Target Skewed Data 23

3.1.1 Unskewed Sampling . 23

3.1.2 SMOTE . 24

3.1.3 Roughly Balanced Bagging 27

3.1.4 Under Bagging . 29

viii

4 Experiments on Skewed Class Problems 31

4.1 Two-Class Skewed Datasets Used 31

4.2 Classifier Comparison Experiment 33

4.3 Parameter Tuning Experiment 42

5 Pre-processing Raw Information 51

5.1 Available Information . 52

5.2 Converting Firebird Databases 52

5.2.1 Export Firebird to SQL Statements 53

5.2.2 Find and Replace Commands 53

5.2.3 Importing SQL Statements to MySQL 57

5.3 Extracting Implicit Information 57

5.4 Outlier Removal . 58

5.5 Attribute Generation/Database Flattening 61

5.6 Creating ARFF Files . 64

6 Experiment Setup 67

6.1 Heat Prediction using a Single Time Window of 7 Days 68

6.2 Heat Prediction using Multiple Time Windows of 7/14/21 Days 69

6.3 Heat Prediction after Adding a 28 Day Window 70

6.4 Addition of Daily Herd Adjustments 70

6.5 Mating Prediction Using Multiple Time Windows 71

6.6 Removal of Standard Deviation Differences 72

6.7 Comparing Effectiveness of Attributes 73

6.8 Application of Classifiers Designed to Target Skewed Data . . 74

7 Experiment Results 75

7.1 Results of Heat Prediction using a Single Time Window of 7 Days 76

7.2 Results of Heat Prediction using Multiple Time Windows of

7/14/21 Days . 78

7.3 Results of Heat Prediction after Adding a 28 Day Window . . 80

7.4 Results of Addition of Daily Herd Adjustments 82

7.5 Results of Mating Prediction using Multiple Time Windows . 86

7.6 Results of Removal of Standard Deviation Differences 90

7.7 Results of Comparing Effectiveness of Attributes 95

7.8 Results of Application of Classifiers Designed to Target Skewed

Data . 100

7.9 Investigation into the Effectiveness of Classifiers on the B-06 Herd104

8 Conclusions 107

Chapter 1

Introduction

Machine Learning is an area of Artificial Intelligence which explores the appli-

cation of algorithms that allow a computer to continuously refine its output

parameters while observing incoming data, often in order to meet some target

goal. Data Mining is the process of extracting patterns from data and the

use of machine learning techniques allows the data extraction to be performed

quickly by a computer and without direct human interaction throughout the

process. Figure 1.1 shows the application of Machine Learning to the Data

Mining process.

1.1 Research Goal

The goal of this investigation was to determine to what degree machine learn-

ing could be used to automate the detection of heat in dairy cows. Saitta

and Neri[1] put forward a very convincing argument for conducting machine

learning investigations in the “Real World”, and, although it was not a direct

inspiration, this investigation is certainly intended to be a step outside of the

world of artificial data and into solving a real life problem.

Milking data was provided by the Livestock Improvement Corporation (LIC)

at the beginning of the investigation. This data has had various manipulations

applied to it over the time of the investigation, of particular note is the con-

2 Chapter 1. Introduction

Figure 1.1: A general overview of the application of Machine Learning to the

Data Mining process.

version of the Firebird databases to MySQL databases. The specifics of these

manipulations will be described as part of Chapter 5.

Having access to the expertise at LIC meant the investigation could be directed

to a considerable degree, of particular importance was the selection of relevant

attributes for learning a classifier model on. Full details on attributes selected

will be provided in Chapter 5 as well.

It was known before this investigation began that a few problems were likely to

cause trouble. The most easily foreseeable was that the data was coming from

a real place; it was not going to be from an artificially created or complete

source. Thus it was presumed that data would contain noise, noise being data

which is not representative, not genuine. With this in mind a solution would

have to be robust with regard to invalid or missing information. The issue of

noise in the data is focused on in Section 5.4.

1.2 Explanation of Terms

In order to understand the chapters of this work it will be important to un-

derstand what is being referred to whenever any of the following terms are

used.

Heat - The term heat is used to refer to a behaviour change in cows called

Standing Heat. It is also commonly known as Oestrus or Estrus (an alterna-

tive spelling), and is the stage in the Oestrous/Estrous Cycle where a cow is

3

accepting of other animals to mount her and acts as a sign of sexual readiness.

Heat Event - A heat event is a recorded note in the LIC database where a

cow has been noted to be in heat by some mechanism. These mechanisms are

briefly outlined in Chapter 2.

Mating Event - A mating event is a recorded note, similar to that of a heat

event, in the LIC database in which a cow has been inseminated as a result

of identifying heat. Heat and mating events both represent indicators of heat,

but through different systems.

1.3 Thesis Structure

This chapter was used to establish the context of the work. It included the

goals of the investigation, a brief introduction to the LIC data the work is

based around and a short glossary of terms important to the work.

Chapter 2 includes details of work that is related to this investigation. It begins

with a general introduction to conventional heat detection in the dairy indus-

try, moves on to explain, in some detail, the machine learning tool, WEKA,

as well as the machine learning techniques relevant to the investigation. The

related work chapter continues as it details some of the work performed by the

Machine Learning discipline on other data from the agricultural sector. Finally

Chapter 2 concludes with details of a very similar investigation completed in

1996.

Chapters 3 and 4 step back from the LIC data to explore the application of

machine learning to skewed dataset problems in a general sense; the discoveries

made will later be tied back to the main investigation during Chapters 6 and 7.

The aim of this general investigation was twofold. The first aim was to explore

the viability of the, novel, Under Bagging classification technique on skewed

class problems using a number of publicly accessible datasets. The second aim

4 Chapter 1. Introduction

was to identify the most appropriate skewed data machine learning techniques,

so that these techniques could be applied to the data in the main investigation;

the detection of heat in cows.

Chapter 5 goes into considerable depth while explaining the pre-processing

that was required to get the LIC data into a form where Data Mining tech-

niques could be applied to it. These steps were: converting Firebird databases

into MySQL databases by way of exporting and importing SQL statements,

extracting values from the data that were not explicitly available, removing

any obvious outlier values from the data, generating attributes as part of com-

pressing multiple tables of data into a single flat file and, finally, generating

ARFF files that could be loaded by WEKA.

Chapter 6 gives an overview of the experiments performed on the LIC data

during the course of the investigation. The first six experiments show the evo-

lution of the experimental process and detail when each step in the refinement

process occurred. There are two additional experiments that were performed

after the experimental process was refined. The first of these experiments was

to quantify the usefulness of each attribute source used to generate attributes.

The second experiment was the application of the most successful skewed data

classifiers from the skewed data experiments in Chapter 4.

Chapter 7 contains the results of Experiments 6.1 - 6.8 from Chapter 6. Graphs

of the classifiers with the highest overall performance and a table summarising

the result values for all classifiers are given for each experiment. In addition

to the experiments outlined in Chapter 6, Chapter 7 also includes a Section

7.9, which investigates the performance of one herd with particularly excep-

tional performance; this section attempts to find an explanation for the results

achieved.

5

Chapter 8, the final chapter, summarises the entire investigation and mentions

specific points relevant to anyone wishing to continue work in the area of

predicting heat in cows.

6 Chapter 1. Introduction

Chapter 2

Related Work

2.1 The New Zealand Dairy Industry

The New Zealand dairy industry is New Zealand’s largest revenue earner in

exported goods; exports valued at $7.5 billon were sent overseas between July

2006 and July 2007[2]. According to New Zealand Dairy Statistics[3], in the

2007/2008 milking season, the New Zealand dairy industry was comprised of

4,012,867 cows; these cows were divided between 11,436 herds. 14,745 million

(14.7 billion) litres of milk from these cows were processed by the industry

over the season.

2.1.1 Daily Data Recording

In the modern New Zealand dairy industry cows are typically milked twice

a day. In the data provided by LIC twice daily milking of animals allows

for twice daily recording of data; there are limitations on what data can be

recorded however. In many cases data cannot be recorded at a location because

specialist equipment, required to conduct the measurement, is not available at

the milking site. A basic example of this is requiring equipment capable of

measuring a cow’s weight in order to record a weight at each milking. It

is also possible a measurement cannot be done at each milking due to time

constraints; this would almost certainly be due to needing some significant

8 Chapter 2. Related Work

human input to measure or record the values.

When the equipment is available at a milking location, and there are no other

limitations on the recording of data, values can be measured for each cow being

milked. Once a value is measured it can be linked to a cow using their unique

Radio-frequency Identification (RFID) tag number and recorded.

2.1.2 Detection of Heat Traditionally

Identifying heat in cows is currently done using visual observation by a skilled

human and is supplemented by systems that tag notable cows that are behav-

ing as if in heat for the skilled person to pay more attention to.

Identifying heat has never been an exact science, as such there are many

specific methods a skilled person can use to identify heat. Foote[4] discusses

some methods for identifying heat, however the most notable method for doing

so is observing cows being mounted by other animals either directly (during

milking time for example) or indirectly by methods such as observing ruffled

hair at the cows rear end or noting a rubbing of tail paint some time after a

mounting has happened.

2.2 Machine Learning Generally

2.2.1 WEKA

This investigation made heavy use of the WEKA Machine Learning suite ex-

plained in detail by Witten and Frank[5].

The WEKA implementations of the classifiers outlined below have been used

throughout the investigation as part of various discussed as well as many ad-

ditional practice experiments. In addition to the important use of classifiers,

data was represented in WEKA’s ARFF file format to allow manipulation us-

ing some of the powerful filters available in WEKA and create refined datasets.

9

The WEKA Explorer included in the suite was used extensively as part of

trial runs of experiments, checking ARFF file integrity and running WEKA

filters to refine datasets. The Explorer was indispensable in this regard as the

ability to quickly perform a mock experiment or remove attributes from an

ARFF file saved much time in coding or running an experiment with improper

parameters specified.

2.2.2 ARFF File Format

An ARFF (Attribute-Relation File Format)[5] file is a plain text, human read-

able, file. The ARFF file format was created to supply instance data to the

WEKA Machine Learning suite. An ARFF file always begins with an ordered

declaration of attributes followed by the learning instances with their associ-

ated, comma separated, attribute values; each instance takes up a single line

in the file.

The ARFF file format allows for the specification of missing values, using the

question mark placeholder. This is important for this investigation as values

are often unspecified in the database; meaning there are gaps in the data.

Classifiers and filters still need to function when there are values missing;

the question mark allows these values to be represented without disrupting

functionality.

Classifiers will have their own way of dealing with missing values. These

solutions can range from a crude approach, such as applying an average value

for the attribute to any missing values, to a more sophisticated approach, like

that of the J48 Decision Tree; Quinlan[6] explains how an instance with a

missing value can travel down all branches of a tree splitting on the missing

attribute but with its weight divided between the branches.

10 Chapter 2. Related Work

2.2.3 Classifiers

Within Data Mining there are a branch of problems known as classification

problems, this investigation has chosen to approach the detection of heat as a

classification problem and used the tools available in WEKA to achieve this

goal.

Classification problems involve a defined set of classes or labels, usually at

least two but sometimes just a single class is defined. Instances, another part

of classification problems, are made up of a combination of attributes, these

attributes are used to represent the current state of some system, and the spe-

cific nature of the attributes will depend on the problem. In this investigation

the instances are made up of attributes which represent the milking of a spec-

ified dairy cow milking at a specified time on a specified day and the classes

are In Heat or Not in Heat.

The act of assigning a class label to an instance of data is known as classifi-

cation and this is performed by a set of computer code instructions called a

classifier. In a general sense at least, all classifiers share the goal that they

need to learn how to classify instances given what is known as a training set,

a set of instances where the class labels are provided. There are many varied

approaches to learning a model from provided data; even the way a classifier

uses a model to assign a class labels can vary from very basic to very complex

approaches.

2.2.3.1 J48 (C4.5)

J48 is the name for the implementation of the C4.5[6] decision tree generation

algorithm in WEKA. C4.5 is a relatively basic machine learning classifier,

but despite its simple methods it is very robust and can often compete well

with other, more complex classifiers, especially when used as part of ensemble

classifiers such as the later discussed bagging and boosting classifiers used in

11

this investigation.

At each node in the construction of the tree the C4.5 algorithm determines

which of the attributes available provides the best option to split the training

instances to maximise the information gain metric. Based on the splitting

attribute chosen by the gain metric the instances are divided into new sets.

Each set follows a different branch and will go on to create new tree branches

with their own split points for the remaining instances in the set. Once a

branch contains only instances of a single class a leaf node is created and

branching ceases, alternatively if the information gained from a split is below

a given threshold then a leaf is created for the majority class.

Once C4.5 has built a full decision tree using the above method there are

options to prune leaf nodes back to avoid tailoring the tree too closely to the

given training data, this is a powerful way to avoid becoming too influenced

by noise in the training data.

2.2.3.2 Näıve Bayes

Näıve Bayes[7] is an extremely simple classifier based on Bayes Theorem[8].

The Näıve Bayes classifier is known in Machine Learning to give surprisingly

accurate predictions[9, 10] despite being algorithmically simple and working

on the, often false, assumption that all attributes in the data are statistically

independent from each other.

The power of Näıve Bayes lies in the statistical independence assumption.

When Bayes Theorem is applied to calculate the probability model for a pre-

diction class, it would normally produce a complex equation; with considera-

tion for all the relationships between attributes included. However, with the

independence assumption, this can be expressed as a much simpler equation

using a single term for each attribute. This simple equation can be computed

very quickly.

12 Chapter 2. Related Work

Finally, to build a Näıve Bayes classifier out of the probability models for each

class, an aggregation method is needed to combine the models into a single

prediction. This is typically as simple as predicting the class for whichever

probability model gives the greatest result for a given set of values for the

attributes of the problem.

2.2.3.3 Averaged One-Dependence Estimators

Averaged One-Dependence Estimators (AODE)[11] is a classification technique

which is very similar to Näıve Bayes; it is also based on the application of Bayes

Theorem[8]. Essentially there are two differences to Näıve Bayes in AODE:

the independence assumption is weakened and the aggregation technique for

probability models is more complex.

The intended goal of the classifier is to get away from the independence as-

sumption of Näıve Bayes. However, in order to take advantage of some the

computational efficiency of Näıve Bayes, this assumption is simply weakened

to allow one level of attribute dependence per probability model. There is

a problem introduced by allowing one level of attribute dependence; there is

more than one probability model for each class value.

In order to deal with more than one probability model AODE can aggregate

any one-attribute dependence models it builds; combining them into one prob-

ability. With a probability for each class, selecting the class with the highest

probability gives a classification.

2.2.3.4 Logistic Regression

Logistic Regression[12] is a classifier which applies a learning process to cal-

culate a set of coefficients; a coefficient is generated for each attribute in a

problem as well as an additional one that is not tied to an attribute. These

coefficients are multiplied by their respective attribute values and summed to

give the risk factor component of the Logistic Function[13]. The 0-1 value

13

produced by the Logistic Function, after thresholding, can be interpreted and

used for classification purposes.

f (z) =
1

1 + e−z
(2.1)

z = β0 + β1x1 + β2x2 + ...+ βkxk (2.2)

The Logistic Function Equation 2.1 and the Risk Factor Equation 2.2 are given.

The risk factor component, z, is calculated by multiplying the β coefficients, by

each of their respective x attribute values, for each of the k attributes from 1 to

k; the β coefficients are learned by running the Logistic Regression classifier.

The final step in calculating the risk factor is adding on the β0 coefficient that

is not associated to an attribute. Once the risk factor component is calculated

the Logistic Function can be evaluated to produce a value between 0 and 1;

this value can be used for prediction in machine learning.

2.2.3.5 Support Vector Machines

Support Vector Machines (SVM)[14] are machine learning classifiers which

represent the separation of class space into areas divided by hyperplanes. Hy-

perplanes are simply the equivalent of lines on a two dimensional graph but

for many more dimensions (one for each attribute being classified to be ex-

act). This hyperplane is actually defined using the closest learning instances

and their associated class; these instances are the support vectors which are

needed to calculate the position of the hyperplane.

A support vector machine will attempt to identify what is known as a maximum-

margin hyperplane, the single hyperplane that maximises the distance from ev-

ery class in order to minimise the chance of misclassification. However in real

world examples a compromise may have to be made as data may contain con-

flicting training instances. The Sequential Minimal Optimization (SMO)[15]

classifier which is available in WEKA was the specific support vector machine

implementation used in this investigation.

14 Chapter 2. Related Work

A transformation kernel can be added to a support vector machine to allow

the linear support vector machine to represent its attributes in a higher di-

mensional or feature space. Feature space allows for more complex attributes;

combinations of attributes or transformations to initial attributes are possible.

Using attributes from feature space it may be possible to find a linear solution

to a problem that corresponds to a non linear solution in normal attribute

space. The Radial Basis Function (RBF)[16] kernel was used with SMO in

this investigation.

2.2.3.6 Bagging

Bagging[17] is a type of ensemble machine learning classifier; it is called an

ensemble because it works by constructing more than one model and combines

the results to make a single classification based on an equally weighted vote

between all the models built. Specifically bagging repeatedly uses a specified

classifier for a given number of iterations with a different set of the training

instances each time. For each iteration, a random sample of training instances

is drawn with replacement.

Bagged Unpruned J48 Trees was the specific type of bagging used in this

investigation. Using J48 trees with pruning options disabled means that this

bagging classifier will be executing a process very similar to the Random Forest

method. One major difference is that each J48 tree will consider all attributes

to split on at each node in the tree instead of only using a subset like Random

Forest.

2.2.3.7 Random Forests

Random Forest[18] is a machine learning classifier that works a little like the

ensemble classification methods do, it works over many iterations of the same

technique but with a different approach. The basic idea is that by repeatedly

building decision trees with randomly generated subsets of learning instances

15

and limited options on attributes to build on at each point in tree construction,

each tree has a greater chance of capturing something the others will not.

An implementation of the Random Forest algorithm involves sampling a lim-

ited number of instances from the set of learning instances with replacement;

which means an instance can be drawn more than once. That set of drawn

instances is used to build an unpruned decision tree. Each time a node needs

to be built in the tree, another subset, this time of the available attributes, is

drawn to compile a list of attributes over which an attribute information gain

metric or similar is run to select the attribute to split on.

2.2.3.8 AdaBoostM1

AdaBoostM1[19] is a type of boosting ensemble classifier. Boosting is the

process of combining many weak classifiers in some fashion in order to create

an overall strong classifier when acting together. AdaBoost, specifically, works

by building many iterations of a specified classifier. After each iteration is

completed, the training instances are re-weighted according to the effectiveness

of the classifiers built so far. If an instance is classified incorrectly by enough

of the classifiers, it will get a higher weight to increase the chance subsequent

classifier iterations will focus on that instance. The idea being that specific

iterations of the base classifier will be given a set of learning instances to focus

on learning an accurate model for instead of learning a less accurate model on

the entire training set.

AdaBoostM1 combines all the classifier models together in a weighted vote

in order to perform an overall classification; this means that some models

will contribute more to the collective vote than others if they have a higher

weight. The weight for a model is higher if it managed to accurately predict

training instances that other models struggled to, thus the models that work

best on instances that were difficult to classify contribute more to the final

classification.

16 Chapter 2. Related Work

AdaBoosted J48 Trees and AdaBoosted Decision Stumps were used in this

investigation. AdaBoosted J48 Trees use the AdaBoostM1 algorithm with

the J48 classifier as the weak learner that is repeated. AdaBoosted Decision

Stumps uses the AdaBoostM1 algorithm with a basic classifier that builds a

very small tree called a decision stump. A Decision Stump is actually just a

single split point on a single attribute, but the AdaBoost algorithm repeats

this process many times which can produce an overall powerful classifier.

2.2.4 Precision-Recall and ROC Curves

In Machine Learning there are many metrics for measuring classifier perfor-

mance over a set of data. Selecting an inferior metric for a particular problem

can make results appear optimistically positive, where in reality the positive

results simply mask a poor model.

Choosing a suitable metric was important for this investigation as it was an

attempt to find information in real data, optimistic theoretical results would

waste time should an implementation of the techniques used ever be attempted.

What was needed was a metric which clearly captured the effectiveness of

machine learning on this data.

Receiver Operator Characteristic Curves (ROC Curves), specifically the Area

Under the Curve (AUC) for the ROC has been used as a comparison metric in

Machine Learning since Spackman[20] first illustrated their use. ROC curves

are created by plotting the True Positive Rate (TPR) on the y-axis and the

False Positive Rate (FPR) on the x-axis while adjusting the threshold value for

what is considered a positive classification. Results will compare ROC AUC

values as part of evaluation. Further details on the effectiveness of ROC area

as a comparison metric can be found in work by Bradley[21].

However, as Davis and Goadrich discuss[22], there are merits to comparing

Precision-Recall values when dealing with skewed data; the Precision-Recall

17

AUC metric is likely the most suitable for this data for this reason. If ROC

AUC was used alone, it would give optimistic results due to the negative class

making up a significant majority of the data available. Precision-Recall is

similar to ROC in that the True Positive Rate is still used, however on the x-

axis this time, and is titled Recall. The difference lies in the y-axis representing

Precision, a value calculated by the number of True Positives divided by the

total number of positively classified instances.

2.3 Agricultural Industry and Machine Learn-

ing

McQueen, Garner, Nevill-Manning and Witten[23] explore the application of

machine learning to real world agricultural data in the form of animal culling

records. Their goal was to use machine learning techniques to predict which an-

imals in a herd would be most sensible to cull, productively speaking. The work

was conducted with specific focus on C4.5 and FOIL classifiers and showed

that pre-processing of the data provided was a key factor in the positive result

they obtained. Results achieved were positive, 95% classification accuracy was

achieved with 30% of available instances being used for training, and the re-

maining 70% being used for testing the model constructed. The decision tree

built to achieve these results was simple and easily human interpretable.

Additionally as part of continued work in the area of agriculture in machine

learning at Waikato University Garner, Cunningham, Holmes, Nevill-Manning

and Witten[24] have compiled further notes on their work with the dairy cow

culling database mentioned above. This work reinforces the importance of pre-

processing data and working closely with experts in the field. They also stress

the importance of having a powerful organisational system for mapping the

many attribute combinations to experiments. When working with agricultural

data an investigator will undoubtedly run many experiments with potential

18 Chapter 2. Related Work

improvements to be gained after each step in their process.

2.4 Detection of Heat in Machine Learning

There is one investigation of considerable relevance that was published in 1996

by Mitchell, Sherlock and Smith[25]. Their investigation was into the appli-

cation of classifiers with human comprehensible output, namely C4.5 (J48 in

WEKA) and FOIL classifiers, to the domain of detecting oestrus (heat) in

dairy cows.

Their investigation contained four experiments, the first three of which are

directly relevant to this study:

Experiment 1 contained instances created with a 3 day sliding window. The

attributes measured over each window were the milk volume deviation from

the herd milk volume mean, the order the cows were milked in, recorded as

a percentage of the way through the milking, and the number of days since

the last heat event. A generated instance was positive if a heat event was

recorded on the last day of the sliding window. Notably, any instances that

were generated within 24 hours of a known heat event were removed in an

attempt to remove noise from the training set. The best results on the test data

were unquestionably with C4.5 rules with 41.0% of the heat events correctly

classified and 34.7% non-heat events incorrectly classified as heat events.

Experiment 2 was mostly the same as the first experiment, but this time the

instances close to heat events that were removed were now included in the

training set. If the milk volume deviation was within one standard deviation

of the running herd mean then it was considered a non-heat event. If there

was more than one standard deviation difference, the instance was treated

as a heat event. Additionally, in the testing phase, if a non-heat event was

classified as a heat event but lay within 24 hours of a heat event then it was

19

considered correct. The best result on the test data was obtained with C4.5

rules again; 44.1% of heat events classified accurately with only 20.1% of non-

heat events misclassified as heat events. This was an improvement over the

first experiments results.

Experiment 3, the final relevant experiment, was different from the other two

experiments in that it used a 5 day sliding window and calculated normalised

differences from herd means for both milk volume and cow milking order. The

treatment of instances within 24 hours of a heat event was mostly similar to

experiment 2. The difference was, that in order to be labelled as a heat event,

the volume deviation now had to be over two standard deviations from the

mean instead of just one. Results for the, arguably, best performing classifier,

C4.5 rules, varied from the first two experiments. Classifying 68.7% of heat

events accurately was certainly a positive result, but the accompanying 73.7%

of non-heat events that were incorrectly classified puts this in perspective.

The results for Experiment 3 are debatably the best they achieved and while

there is a large percentage of failed classifications, their investigation explains

that a failed insemination based on a false classification would incur a relatively

low cost compared to the cost of missing an instance of heat altogether.

20 Chapter 2. Related Work

Chapter 3

Skewed Class Problems

A significant number of problems in Machine Learning can be seen to have

skewed distributions of learning examples. Skewed distribution problems are

characterised by an unequal split between classes for examples. This split is

almost always present in both the training and any test datasets. The skew

of this split could range from a very small skew in a two class problem, where

one class contains 40% of the examples and another contains the remaining

60%, to a very large skew in a two-class problem, where one class contains

0.3% of the examples and the other contains the far more significant 99.7%

of remaining examples. Though the skew in a problem can be small, most

problems would not be called skewed unless there was at least a 1 to 10 split

between two classes. Many datasets based on real world data end up with

skewed class distributions.

Japkowicz[26] justifies alternative approaches to skewed class problems by

showing that it is certainly possible to get improved results with techniques

designed specifically to deal with class imbalance. Random over- and under-

sampling are mentioned specifically and it is shown that more sophisticated

techniques, such as selection of non-outlier examples during the re-sampling

process, are unnecessary for improved results.

22 Chapter 3. Skewed Class Problems

There are two distinct approaches in Machine Learning for dealing with skewed

data.

The first chooses to assign costs to each class (or example directly), effectively

weighting each example prior to classification. This approach can be quite

intuitive if there is an easy to calculate cost for each class or example, but it

can often be tough to assign a cost to at least one of the classes.

Pazzani et al.[27] offer a good introduction to this way of dealing with skewed

class distribution problems and they explore a few implementations of this

approach. However, they got disappointing results when their attempts to

reduce the costs of misclassification errors actually resulted in higher costs.

Positive results with cost sensitive classification can be found in Domingos[28]

work. His MetaCost algorithm can reassign class labels to training examples,

based on the cost metric, so that a classifier applied to it will be encouraged

to better model the majority examples. In this way it blurs the line between

the two approaches to classifying skewed problems.

The second approach, and the one explored in this investigation, is that of

using controlled selection of examples to remove the effects of skew. This

could range from anything as basic as selecting fewer majority class examples,

so skew is reduced, to a literally generating new, synthetic, minority class

examples to boost their presence.

Kubat and Matwin[29] explore the idea of under-sampling of the majority

class over under-sampling of the entire set of data. They call it One-sided

Selection because they are selective about which class to under-sample. Their

results show that classifiers that were normally sensitive to skewed data could

better deal with this type of data once their One-sided Selection algorithm was

applied.

23

Algorithm 3.1 Pseudocode for Unskewed Sampling
Require: Set of all minority class training instances MinorityInstances;

Set of all majority class training instances MajorityInstances;

The number of minority class examples to draw MinorityFraction (represented as a

fraction of the number of minority class examples, MinorityFraction ≥ 0);

The number of majority class examples to draw MajorityFraction (represented as a

fraction of the number of majority class examples, MajorityFraction ≥ 0)

Ensure: A set of re-sampled training instances

1: MinorityClassGoal⇐ size(MinorityInstances)×MinorityFraction

2: MajorityClassGoal⇐ size(MajorityInstances)×MajorityFraction

3: for i⇐ 0; i < MinorityClassGoal; i⇐ i + 1 do

4: Add a random instance from MinorityInstances to UnskewedInstances

5: end for

6: for j ⇐ 0; j < MajorityClassGoal; j ⇐ j + 1 do

7: Add a random instance from MajorityInstances to UnskewedInstances

8: end for

9: return UnskewedInstances

3.1 Classifiers Designed to Target Skewed Data

As skewed problems are common in Machine Learning there has been signif-

icant work in creating techniques which can deal with skewed data appropri-

ately. In WEKA these techniques take the form of meta classifiers which work

on the skewed data, before handing it off to a standard base classifier(s).

This investigation explored the application of four of these meta style classi-

fiers specifically designed to work on two class skewed distribution problems:

Unskewed Sampling, SMOTE, Roughly Balanced Bagging and Under Bagging.

3.1.1 Unskewed Sampling

The first, and most basic, classifier allows for only the two most basic trans-

formations of a skewed dataset. These transformations are under-sampling of

the majority class, the same as One-sided Selection discussed by Kubat and

Matwin[29] and over-sampling of the minority class. Collectively these two

24 Chapter 3. Skewed Class Problems

will be known as Unskewed Sampling. With this basic meta classifier it is

possible to reduce the number of majority class examples and/or duplicate

minority class examples in order to get a more even class distribution in two

class problems.

3.1.2 SMOTE

SMOTE (Synthetic Minority Over-sampling TEchnique), is a method of deal-

ing with class distribution skew in datasets designed by Chawla, Bowyer, Hall

and Kegelmeyer[30]. They show SMOTE to be more successful than under-

sampling alone and, in many of their experiments, better than modified Näıve

Bayes and Ripper implementations (altered to perform better on skewed data).

In order to increase the presence of minority class examples in the problem

the SMOTE process generates brand new minority class examples using the

set of minority training examples as a base. It is somewhat similar to over-

sampling of the minority class, except that entirely new, synthetic, examples

are generated instead of only cloning existing ones.

Each SMOTE step works by selecting an existing minority example as a base

and then selects, by way of a user defined parameter, a number of the example’s

nearest neighbors. From here, the original algorithm selects a neighbor at

random. Finally for each attribute pair in the neighbor and base example a

new synthetic attribute value is generated which falls between the two attribute

values. One approach to generating each new attribute value is to calculate

the difference in attribute values between the two examples, multiply it by a

random number between 0 and 1, then add that value to the lower of the two

existing attribute values.

This investigation has added two additional options to the WEKA implemen-

tation of SMOTE:

1. The first is an optional check that any synthetic examples generated are

25

Algorithm 3.2 Pseudocode for SMOTE
Require: Set of all minority class training instances MinorityInstances;

Set of all majority class training instances MajorityFraction;

The amount of SMOTE to perform SMOTEAmount (represented as a fraction of the

number of minority class examples, SMOTEAmount ≥ 0);

The number of nearest neighbors to consider in the SMOTE step k (k > 0)

Ensure: A set of training instances with SMOTE generated minority examples added

1: Add all MinorityInstances to SMOTEInstances

2: Add all MajorityFraction to SMOTEInstances

3: MinorityGenerationGoal⇐ size(MinorityInstances)× SMOTEAmount

4: for i⇐ 0; i < MinorityGenerationGoal; i⇐ i + 1 do

5: BaseInstance⇐ A random instance from MinorityInstances

6: InstanceNeighbors⇐ The k nearest neighbors for BaseInstance

7: Add the result of SmoteExampleGenerator(BaseInstance, InstanceNeighbors) to

SMOTEInstances

8: end for

9: return SMOTEInstances

{SmoteExampleGenerator - Performs the SMOTE instance generation}

Require: The first instance BaseInstance;

The k nearest neighbors for the passed instance InstanceNeighbors

Ensure: A brand new generated instance

10: RandomNeighbor ⇐ A random neighbor from InstanceNeighbors

11: NumberAttributes⇐ The number of attributes present in BaseInstance

12: for i⇐ 0; i < NumberAttributes; i⇐ i + 1 do

13: BaseV alue⇐ The current attribute value for BaseInstance

14: NeighborV alue⇐ The current attribute value for RandomNeighbor

15: Generate a random number matching the condition (0 ≥ RandomNumber < 1)

16: NewAttribute⇐ NeighborV alue−BaseV alue×RandomNumber

17: Add NewAttribute to GeneratedInstance

18: end for

19: return GeneratedInstance

26 Chapter 3. Skewed Class Problems

actually still representative of the minority class. This is confirmed by

checking that the nearest neighbors for the new example do not include

any majority class examples. This option is known as Synthetic Example

Protection.

2. The second option is called the Neighbor per Attribute approach. The

purpose of this option is to allow for more unique examples to be gener-

ated in the SMOTE step. This is accomplished by allowing the SMOTE

step to select a different random neighbor for each attribute instead of

simply selecting a single neighbor to generate all attributes from. This

can be conceptualised as the difference between picking a random point

inside a multi-dimensional hyper sphere and picking a random point

along a line between two points. Figure 3.1 shows a comparison between

the Neighbor per Attribute approach and the single attribute generation

approach used in the original SMOTE.

(a) Unmodified SMOTE generation space (b) Generation space for SMOTE with the

Neighbor per Attribute approach applied

Figure 3.1: Using simplified instances with two attributes the difference

achieved through using the Neighbor per Attribute approach can be observed.

Figure (a) shows where unmodified SMOTE could generate an example from.

Figure (b) shows where SMOTE using the Neighbor per Attribute approach

could generate an example from.

27

3.1.3 Roughly Balanced Bagging

Roughly Balanced Bagging is another technique designed to deal with skewed

class distributions. Hido and Kashima[31] are the creators of the Roughly

Balanced Bagging classifier where the idea is to apply under-sampling of the

majority class in a controlled bagging setting. The results achieved in their

investigation indicated their Roughly Balanced Bagging classifier was capable

of outperforming AdaBoost and RIPPER techniques on the nine datasets they

applied classifiers to.

Using a Bagging framework, Roughly Balanced Bagging builds a specified

number of instance sets for a number of base classifier iterations to learn from.

In order to work better on skewed datasets, Roughly Balanced Bagging uses

under-sampling of the majority class to get a new, less skewed, distribution

of classes. However, it does not simply apply the method used by Unskewed

Sampling, instead, it uses a negative binomial sampling technique and proba-

bility threshold to control how many examples of each class make it into each

set of instances. The result is that each of the Bagging iterations will contain

almost the same number of instances from each class, but it will vary a little

bit with each one. Hido and Kashima[31] argue their technique better mimics

the intentions of the basic Bagging classifier.

Roughly Balanced Bagging really only has one parameter over the standard

Bagging classifier; the minority example threshold. This value, between 0

and 1, is set to give the chance of drawing a minority class example on each

step of the drawing process. The drawing stops when the size of the set

of minority class examples drawn reaches the number of the minority class

training examples available (this does not mean all the minority examples are

present as selection is performed with replacement), a lower value will mean

more majority class examples make it in, whereas a higher value will mean

less majority class examples make it into each set of instances. The default

28 Chapter 3. Skewed Class Problems

Algorithm 3.3 Pseudocode for Roughly Balanced Bagging
Require: Set of all minority class training instances MinorityInstances;

Set of all majority class training instances MajorityInstances;

The chance of selecting a minority example MinorityChance (represented as a proba-

bility, 0 < MinorityChance ≤ 1)

Ensure: A set of re-sampled training instances for an iteration of the base classifier

1: MinorityClassGoal⇐ size(MinorityInstances)

2: MajorityClassGoal⇐

RoughlyBalancedBaggingMajorityGoalCalculator(MinorityClassGoal, MinorityChance)

3: for i⇐ 0; i < MinorityClassGoal; i⇐ i + 1 do

4: Add a random instance from MinorityInstances to BalancedInstances

5: end for

6: for j ⇐ 0; j < MajorityClassGoal; j ⇐ j + 1 do

7: Add a random instance from MajorityInstances to BalancedInstances

8: end for

9: return BalancedInstances

{RoughlyBalancedBaggingMajorityGoalCalculator - Replicates the negative bino-

mial sampling part of Roughly Balanced Bagging}

Require: The number of minority class examples being drawn MinorityClassGoal; The

chance of a minority class example being selected MinorityChance

Ensure: The number of majority class example to draw

10: MinorityCount⇐ 0

11: MajorityCount⇐ 0

12: while MinorityCount < MinorityClassGoal do

13: Generate a random number matching the condition (0 ≥ RandomNumber < 1)

14: if RandomNumber < MinorityChance then

15: MinorityCount⇐MinorityCount + 1

16: else

17: MajorityCount⇐MajorityCount + 1

18: end if

19: end while

20: return MajorityCount

29

value of 0.5 will produce instance sets with almost exactly the same number

of majority examples as minority examples.

3.1.4 Under Bagging

Under Bagging is essentially a simplified version of the Roughly Balanced

Bagging technique. It was developed during this investigation to deal with

skewed class distribution problems specifically. This is accomplished in much

the same way as Roughly Balanced Bagging, but without the focus on main-

taining the Bagging style of instance selection. The result is a more predictable

classification scheme than Roughly Balanced Bagging, but with the remaining

advantages of the Bagging ensemble method.

Under Bagging, like Roughly Balanced Bagging, uses the Bagging process in-

herently. This means that any specified number of under bagged iterations

can be performed using the Under Bagging instance selection method. How-

ever, unlike Roughly Balanced Bagging, Under Bagging uses a method far

more comparable to Unskewed Sampling to select instances for each of its it-

erations. This method involves sampling with replacement from the minority

and majority class to create a user-specified ratio of minority to majority class

examples.

Like Roughly Balanced Bagging, Under Bagging adds only a single extra pa-

rameter addition over a standard Bagging implementation. However this pa-

rameter works differently due to Under Bagging always using a fixed minority

class example size; the size of the original set of all minority class examples.

The bag size factor parameter allows for selection of the number of majority

class examples in each iteration of bagging as a factor of the number of minor-

ity class examples. A bag size factor value of 1.0 would mean each iteration of

the base classifier would have an equal number of majority and minority class

examples. The size of the training set in each run of the classifier would be

twice the number of minority examples available. By raising (more majority

30 Chapter 3. Skewed Class Problems

Algorithm 3.4 Pseudocode for Under Bagging
Require: Set of all minority class training instances MinorityInstances;

Set of all majority class training instances MajorityInstances;

The number of majority class examples to draw MajorityFraction (represented as a

fraction of the number of minority class examples, MajorityFraction ≥ 0)

Ensure: A set of re-sampled training instances for an iteration of the base classifier

1: MinorityClassGoal⇐ size(MinorityInstances)

2: MajorityClassGoal⇐ size(MinorityInstances)×MajorityFraction

3: for i⇐ 0; i < MinorityClassGoal; i⇐ i + 1 do

4: Add a random instance from MinorityInstances to UnderBaggedInstances

5: end for

6: for j ⇐ 0; j < MajorityClassGoal; j ⇐ j + 1 do

7: Add a random instance from MajorityInstances to UnderBaggedInstances

8: end for

9: return UnderBaggedInstances

class) or lowering (less majority class) the ratio of minority to majority class

examples can be altered.

Chapter 4

Experiments on Skewed Class

Problems

For comparing the simple Under Bagging technique that has been developed

during this investigation to the existing classification techniques described

in Chapter 3, experiments were performed on a number of commonly used

datasets in Machine Learning.

4.1 Two-Class Skewed Datasets Used

These datasets either have a skewed class distribution by default or have been

constructed to have one for the purposes of exploring skewed data classification.

It is important to note that the datasets used contain only two classes, known

as the minority (positive) class or the majority (negative) class. Some of these

datasets have more than two classes in their original form. For some of these,

two classes have been selected to act as the minority and majority class in the

new two class dataset, the smaller obviously being the minority class. In other

cases a single class has been selected as the minority class and all other classes

make up the majority class collectively. The latter can be easily identified

in that they explicitly mention predicting one class versus Others. Table 4.1

contains a breakdown of class representation in the datasets used.

32 Chapter 4. Experiments on Skewed Class Problems

Dataset Positive Negative Ratio

Abalone (Oldest Vs Others) [32] 36 4141 1 : 99

Abalone (Youngest Vs Others) [32] 74 4103 2 : 98

Adult (>$50K Vs <$50K) [32] 7841 24720 24 : 76

Anneal (Class#5 Vs Others) [32] 60 738 8 : 92

Car (VeryGood Vs Others) [32] 65 1663 4 : 96

Glass (Class#7 Vs Others) [32] 29 185 14 : 86

Haberman (Died Vs Survived) [32] 81 225 26 : 74

Hepatitis (Die Vs Live) [32] 32 123 15 : 85

Hypothyroid (Primary Hypothyroid Vs Others) [32] 95 3677 3 : 97

ICDM08 Full (Base Vs Explosion) [33] 623 8072 7 : 93

ICDM08 StationV (Base Vs Explosion) [33] 115 1589 7 : 93

ICDM08 StationW (Base Vs Explosion) [33] 14 763 2 : 98

ICDM08 StationX (Base Vs Explosion) [33] 210 2090 9 : 91

ICDM08 StationY (Base Vs Explosion) [33] 40 1169 3 : 97

ICDM08 StationZ (Base Vs Explosion) [33] 244 2461 9 : 91

Ionosphere (Bad Vs Good) [32] 126 225 36 : 64

Magic (Hadron Vs Gamma) [32] 6688 12332 35 : 65

Phoneme (Oral Vs Nasal) [32] 1586 3818 29 : 71

Pima Indians Diabetes (Positive Vs Negative) [32] 268 500 35 : 65

Satimage (Cotton Crop Vs Others) [32] 479 3956 11 : 89

Satimage (Damp Grey Vs Others) [32] 415 4020 9 : 91

Satimage (Vegetation Stubble Vs Others) [32] 470 3965 10 : 90

Shuttle (High Vs Flow) [32] 6748 34108 16 : 84

Sick (Sick Vs Negative) [32] 231 3541 6 : 94

Table 4.1: Class representation and split ratios for each dataset used

33

4.2 Classifier Comparison Experiment

The first experiment performed was designed to establish the general effective-

ness of Under Bagging, Roughly Balanced Bagging, SMOTE and just plain

Unskewed Sampling. This initial experiment varied parameters on the indi-

vidual classifiers to get an idea of parameter sensitivity for the algorithms. All

classifiers used J48 as their base classifier. The classifiers and parameters used

are outlined in Table 4.2.

The experiments were performed using the WEKA experimenter, a 10x10-fold

cross validation was performed using the above classifiers and the selected

datasets. Tables 4.3 to 4.8 show the mean ROC AUC values along with the

the standard deviation in square brackets.

It can be seen from these ROC area results that Unskewed Sampling and

SMOTE almost never perform better than standard Bagging; the single ex-

ception being on the ICDM08 location Y data. Conversely, the phoneme and

adult datasets are the only datasets for which Under Bagging and Roughly

Balanced Bagging are beaten by Bagging, with Roughly Balanced Bagging

using a 3:1 ratio performing particularly well overall.

In order to fully appreciate the advantages of Under Bagging and Roughly

Balanced Bagging it is important to compare the training time for these clas-

sifiers to that of standard Bagging. The training times are given in Tables 4.9

to 4.14

It can be observed from the training times that both the 3:1 ratio Under

Bagging and 3:1 Roughly Balanced Bagging, while running acceptably on the

smaller datasets, run into time issues on datasets with a large number of

minority examples; shuttle, magic, adult and to a lesser degree phoneme all

take much longer to train than their 1:1 ratio counterparts.

34 Chapter 4. Experiments on Skewed Class Problems

Classifier [Short name] Parameters

Bagging [Bagging] 100 iterations of standard Bagging.

Unskewed Sampling [USS

1x]

Under-sampling the majority class to 50% of its

original size. Minority class example set size un-

changed.

Unskewed Sampling [USS

3x]

Under-sampling the majority class to 50% of its

original size. Minority class example set size over-

sampled to 300% of its original size.

SMOTE [SMT 1] One synthetic minority class example generated for

each existing minority example.

SMOTE [SMT 1se] One synthetic minority class example generated for

each existing minority example. Uses Synthetic

Example Protection (SEP) and the Neighbor per

Attribute Approach (NAA).

SMOTE [SMT 3] Three synthetic minority class examples generated

for each existing minority example.

SMOTE [SMT 3se] Three synthetic minority class examples generated

for each existing minority example. Uses SEP and

NAA.

Roughly Balanced Bagging

[RBB 1:1]

One to one ratio of majority to minority examples.

100 iterations.

Roughly Balanced Bagging

[RBB 3:1]

Three to one ratio of majority to minority exam-

ples. 100 iterations.

Under Bagging [UB 1:1] One to one ratio of majority to minority examples.

100 iterations.

Under Bagging [UB 3:1] Three to one ratio of majority to minority exam-

ples. 100 iterations.

Table 4.2: The classifiers and their parameters for the Classifier Comparison

Experiment (4.2)

35

Classifiers Abalone(Oldest) Abalone(Youngest) Adult Anneal

Bagging 0.8544[0.08] 0.9846[0.02] 0.9073[0.01] 1.0000[0.00]

USS 1x 0.5984[0.18] 0.8386[0.13] 0.8537[0.01] 0.9967[0.02]

USS 3x 0.5442[0.18] 0.8755[0.10] 0.8370[0.01] 1.0000[0.00]

SMT 1se 0.6209[0.18] 0.8836[0.10] 0.8720[0.01] 1.0000[0.00]

SMT 1se 0.6590[0.16] 0.8934[0.10] 0.8751[0.01] 1.0000[0.00]

SMT 3 0.6372[0.16] 0.9071[0.09] 0.8605[0.01] 1.0000[0.00]

SMT 3se 0.6518[0.17] 0.9161[0.09] 0.8635[0.01] 1.0000[0.00]

RBB 1:1 0.8827[0.07] 0.9880[0.01] 0.9126[0.01] 1.0000[0.00]

RBB 3:1 0.8822[0.07] 0.9848[0.02] 0.9090[0.01] 1.0000[0.00]

UB 1:1 0.8822[0.07] 0.9874[0.02] 0.9126[0.01] 1.0000[0.00]

UB 3:1 0.8842[0.07] 0.9849[0.02] 0.9090[0.01] 1.0000[0.00]

Table 4.3: ROC area results for the Classifier Comparison Experiment (4.2) -

Abalone to Anneal Datasets

Classifiers Car Glass Haberman Hepatitis Hypothyroid

Bagging 0.9973[0.00] 0.9556[0.08] 0.6926[0.10] 0.8410[0.13] 0.9997[0.00]

USS 1x 0.9650[0.05] 0.9016[0.12] 0.6162[0.12] 0.7462[0.16] 0.9755[0.04]

USS 3x 0.9753[0.03] 0.9152[0.09] 0.6217[0.11] 0.7393[0.15] 0.9879[0.03]

SMT 1se 0.9989[0.00] 0.9176[0.12] 0.6449[0.10] 0.6989[0.18] 0.9721[0.05]

SMT 1se 0.9988[0.00] 0.9133[0.11] 0.6465[0.09] 0.6630[0.18] 0.9787[0.05]

SMT 3 0.9986[0.00] 0.9023[0.13] 0.6493[0.11] 0.6887[0.19] 0.9772[0.05]

SMT 3se 0.9985[0.00] 0.9104[0.12] 0.6452[0.11] 0.7024[0.19] 0.9796[0.05]

RBB 1:1 0.9996[0.00] 0.9584[0.08] 0.7097[0.10] 0.8591[0.12] 0.9993[0.00]

RBB 3:1 0.9995[0.00] 0.9538[0.09] 0.6927[0.10] 0.8525[0.12] 0.9995[0.00]

UB 1:1 0.9997[0.00] 0.9599[0.08] 0.7112[0.10] 0.8612[0.12] 0.9993[0.00]

UB 3:1 0.9997[0.00] 0.9517[0.09] 0.6937[0.10] 0.8540[0.12] 0.9994[0.00]

Table 4.4: ROC area results for the Classifier Comparison Experiment (4.2) -

Car to Hypothyroid Datasets

36 Chapter 4. Experiments on Skewed Class Problems

Classifiers ICDM08-Full ICDM08-V ICDM08-W ICDM08-X ICDM08-Y

Bagging 0.7165[0.03] 0.7856[0.05] 0.7616[0.16] 0.7061[0.04] 0.5872[0.13]

USS 1x 0.5053[0.02] 0.5375[0.09] 0.5031[0.03] 0.5463[0.07] 0.4994[0.01]

USS 3x 0.6613[0.05] 0.7151[0.08] 0.6071[0.16] 0.6543[0.05] 0.5603[0.11]

SMT 1se 0.5439[0.05] 0.5610[0.11] 0.5000[0.00] 0.5503[0.06] 0.5005[0.01]

SMT 1se 0.5518[0.05] 0.5551[0.10] 0.5000[0.00] 0.5495[0.06] 0.5015[0.02]

SMT 3 0.6464[0.04] 0.6731[0.11] 0.5253[0.10] 0.6419[0.06] 0.5063[0.04]

SMT 3se 0.6422[0.04] 0.6748[0.12] 0.5193[0.08] 0.6358[0.06] 0.5113[0.05]

RBB 1:1 0.7222[0.03] 0.8040[0.05] 0.8344[0.13] 0.7074[0.04] 0.7749[0.07]

RBB 3:1 0.7201[0.03] 0.8011[0.05] 0.8187[0.14] 0.7033[0.04] 0.7728[0.08]

UB 1:1 0.7219[0.03] 0.8038[0.05] 0.8339[0.10] 0.7070[0.04] 0.7700[0.07]

UB 3:1 0.7198[0.02] 0.8007[0.05] 0.8190[0.14] 0.7045[0.04] 0.7748[0.08]

Table 4.5: ROC area results for the Classifier Comparison Experiment (4.2) -

ICDM08-Full to ICDM08-Y

Classifiers ICDM08-Z Ionosphere Magic Phoneme

Bagging 0.5644[0.05] 0.9764[0.02] 0.9331[0.01] 0.9563[0.01]

USS 1x 0.5017[0.02] 0.8611[0.08] 0.8088[0.01] 0.8475[0.02]

USS 3x 0.5143[0.06] 0.8649[0.06] 0.7899[0.01] 0.8509[0.02]

SMT 1se 0.5116[0.04] 0.8766[0.08] 0.8559[0.01] 0.8851[0.02]

SMT 1se 0.5038[0.03] 0.8754[0.07] 0.8602[0.01] 0.8892[0.02]

SMT 3 0.5268[0.05] 0.8777[0.07] 0.8419[0.01] 0.8855[0.02]

SMT 3se 0.5271[0.05] 0.8682[0.07] 0.8504[0.01] 0.8891[0.02]

RBB 1:1 0.5539[0.06] 0.9736[0.03] 0.9338[0.01] 0.9510[0.01]

RBB 3:1 0.5474[0.06] 0.9784[0.02] 0.9348[0.01] 0.9595[0.01]

UB 1:1 0.5567[0.06] 0.9749[0.02] 0.9337[0.01] 0.9510[0.01]

UB 3:1 0.5439[0.06] 0.9775[0.02] 0.9348[0.01] 0.9592[0.01]

Table 4.6: ROC area results for the Classifier Comparison Experiment (4.2) -

ICDM08-Z to Phoneme

37

Classifiers Pima Indians Diabetes Satimage(Cotton Crop) Satimage(Damp Grey)

Bagging 0.8261[0.05] 0.9985[0.00] 0.9509[0.01]

USS 1x 0.6920[0.06] 0.9622[0.02] 0.7645[0.06]

USS 3x 0.6869[0.06] 0.9746[0.02] 0.7726[0.06]

SMT 1se 0.7494[0.05] 0.9720[0.02] 0.7527[0.07]

SMT 1se 0.7430[0.06] 0.9705[0.02] 0.7565[0.06]

SMT 3 0.7377[0.06] 0.9687[0.02] 0.7533[0.06]

SMT 3se 0.7436[0.06] 0.9749[0.02] 0.7602[0.06]

RBB 1:1 0.8316[0.05] 0.9989[0.00] 0.9511[0.01]

RBB 3:1 0.8225[0.05] 0.9988[0.00] 0.9514[0.01]

UB 1:1 0.8318[0.05] 0.9986[0.00] 0.9513[0.01]

UB 3:1 0.8237[0.05] 0.9985[0.00] 0.9517[0.01]

Table 4.7: ROC area results for the Classifier Comparison Experiment (4.2) -

Pima Indians Diabetes to Satimage(Damp Grey) Datasets

Classifiers Satimage(Vegetation Stubble) Shuttle Sick

Bagging 0.9930[0.00] 0.9999[0.00] 0.9954[0.01]

USS 1x 0.8889[0.04] 0.9995[0.00] 0.9399[0.05]

USS 3x 0.9106[0.03] 0.9997[0.00] 0.9637[0.03]

SMT 1se 0.9046[0.03] 0.9996[0.00] 0.9708[0.04]

SMT 1se 0.9081[0.03] 0.9996[0.00] 0.9621[0.04]

SMT 3 0.9078[0.03] 0.9996[0.00] 0.9681[0.03]

SMT 3se 0.9106[0.03] 0.9997[0.00] 0.9646[0.04]

RBB 1:1 0.9917[0.00] 1.0000[0.00] 0.9957[0.00]

RBB 3:1 0.9927[0.00] 1.0000[0.00] 0.9948[0.01]

UB 1:1 0.9916[0.00] 1.0000[0.00] 0.9958[0.00]

UB 3:1 0.9927[0.00] 1.0000[0.00] 0.9954[0.01]

Table 4.8: ROC area results for the Classifier Comparison Experiment (4.2) -

Satimage(Vegetation Stubble) to Sick Datasets

38 Chapter 4. Experiments on Skewed Class Problems

Classifiers Abalone(Oldest) Abalone(Youngest) Adult Anneal

Bagging 2.31[0.07] 1.69[0.07] 229.56[3.76] 0.46[0.02]

USS 1x 0.01[0.00] 0.01[0.00] 1.06[0.04] 0.00[0.00]

USS 3x 0.02[0.00] 0.01[0.00] 2.42[0.10] 0.00[0.00]

SMT 1se 0.04[0.01] 0.03[0.00] 68.53[2.73] 0.02[0.00]

SMT 1se 0.05[0.01] 0.05[0.00] 255.66[3.43] 0.05[0.00]

SMT 3 0.04[0.00] 0.03[0.00] 168.03[4.29] 0.03[0.00]

SMT 3se 0.09[0.01] 0.10[0.00] 729.07[9.57] 0.12[0.00]

RBB 1:1 0.05[0.00] 0.04[0.00] 49.97[0.69] 0.02[0.01]

RBB 3:1 0.10[0.01] 0.11[0.00] 199.65[1.83] 0.05[0.03]

UB 1:1 0.05[0.00] 0.05[0.00] 50.45[0.66] 0.02[0.00]

UB 3:1 0.10[0.00] 0.10[0.01] 197.39[1.76] 0.04[0.01]

Table 4.9: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - Abalone to Anneal Datasets

Classifiers Car Glass Haberman Hepatitis Hypothyroid

Bagging 0.09[0.01] 0.10[0.01] 0.08[0.01] 0.13[0.01] 2.13[0.14]

USS 1x 0.00[0.00] 0.00[0.00] 0.00[0.00] 0.00[0.00] 0.01[0.00]

USS 3x 0.00[0.00] 0.00[0.00] 0.00[0.00] 0.00[0.00] 0.01[0.00]

SMT 1se 0.02[0.00] 0.00[0.00] 0.00[0.00] 0.01[0.00] 0.15[0.02]

SMT 1se 0.04[0.00] 0.00[0.00] 0.00[0.00] 0.01[0.00] 0.37[0.02]

SMT 3 0.02[0.00] 0.00[0.00] 0.00[0.00] 0.01[0.00] 0.18[0.02]

SMT 3se 0.09[0.00] 0.01[0.00] 0.01[0.00] 0.02[0.00] 0.83[0.03]

RBB 1:1 0.01[0.00] 0.03[0.00] 0.04[0.00] 0.05[0.00] 0.10[0.00]

RBB 3:1 0.02[0.00] 0.06[0.00] 0.09[0.00] 0.10[0.00] 0.20[0.01]

UB 1:1 0.01[0.00] 0.03[0.00] 0.04[0.00] 0.05[0.00] 0.10[0.00]

UB 3:1 0.02[0.00] 0.06[0.01] 0.09[0.01] 0.10[0.01] 0.19[0.01]

Table 4.10: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - Car to Hypothyroid Datasets

39

Classifiers ICDM08-Full ICDM08-V ICDM08-W ICDM08-X ICDM08-Y

Bagging 3.22[0.07] 0.38[0.01] 0.09[0.00] 0.67[0.02] 0.19[0.01]

USS 1x 0.02[0.00] 0.00[0.00] 0.00[0.00] 0.00[0.00] 0.00[0.00]

USS 3x 0.04[0.01] 0.00[0.00] 0.00[0.00] 0.01[0.00] 0.00[0.00]

SMT 1se 0.19[0.02] 0.01[0.00] 0.00[0.00] 0.01[0.00] 0.00[0.00]

SMT 1se 0.90[0.02] 0.02[0.00] 0.00[0.00] 0.05[0.00] 0.01[0.00]

SMT 3 0.36[0.02] 0.01[0.00] 0.00[0.00] 0.03[0.00] 0.00[0.00]

SMT 3se 2.46[0.05] 0.05[0.00] 0.00[0.00] 0.13[0.00] 0.01[0.00]

RBB 1:1 0.48[0.01] 0.05[0.00] 0.01[0.00] 0.12[0.00] 0.02[0.00]

RBB 3:1 1.00[0.03] 0.11[0.00] 0.01[0.00] 0.29[0.01] 0.03[0.00]

UB 1:1 0.45[0.01] 0.05[0.00] 0.01[0.00] 0.12[0.00] 0.02[0.00]

UB 3:1 0.98[0.03] 0.10[0.00] 0.01[0.00] 0.26[0.01] 0.03[0.00]

Table 4.11: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - ICDM08-Full to ICDM08-Y Datasets

Classifiers ICDM08-Z Ionosphere Magic Phoneme

Bagging 0.59[0.05] 1.55[0.03] 96.69[3.97] 8.19[0.07]

USS 1x 0.00[0.00] 0.01[0.00] 0.68[0.03] 0.06[0.00]

USS 3x 0.01[0.00] 0.01[0.00] 1.38[0.05] 0.12[0.01]

SMT 1se 0.02[0.00] 0.03[0.00] 8.01[0.32] 0.38[0.01]

SMT 1se 0.06[0.00] 0.05[0.00] 34.99[3.48] 1.13[0.01]

SMT 3 0.04[0.01] 0.06[0.00] 22.03[0.81] 0.97[0.02]

SMT 3se 0.18[0.01] 0.10[0.00] 96.96[12.46] 3.20[0.03]

RBB 1:1 0.11[0.01] 0.91[0.03] 59.98[0.47] 4.33[0.03]

RBB 3:1 0.27[0.02] 1.95[0.05] 154.54[1.96] 9.45[0.05]

UB 1:1 0.10[0.01] 0.90[0.03] 59.12[0.60] 4.29[0.03]

UB 3:1 0.24[0.02] 1.87[0.05] 144.65[2.62] 9.23[0.05]

Table 4.12: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - ICDM08-Z to Phoneme Datasets

40 Chapter 4. Experiments on Skewed Class Problems

Classifiers Pima Indians Diabetes Satimage(Cotton Crop) Satimage(Damp Grey)

Bagging 0.84[0.01] 19.91[0.44] 16.00[0.18]

USS 1x 0.01[0.00] 0.09[0.01] 0.10[0.01]

USS 3x 0.01[0.00] 0.12[0.01] 0.18[0.01]

SMT 1se 0.02[0.00] 0.38[0.03] 0.37[0.01]

SMT 1se 0.05[0.00] 0.89[0.03] 0.84[0.02]

SMT 3 0.06[0.00] 0.60[0.03] 0.72[0.03]

SMT 3se 0.12[0.00] 2.14[0.06] 2.15[0.05]

RBB 1:1 0.61[0.01] 2.40[0.04] 3.68[0.05]

RBB 3:1 1.27[0.02] 6.65[0.15] 6.80[0.06]

UB 1:1 0.57[0.01] 2.23[0.04] 3.54[0.04]

UB 3:1 1.16[0.02] 6.37[0.14] 6.56[0.07]

Table 4.13: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - Pima Indians Diabetes to Satimage(Damp Grey) Datasets

Classifiers Satimage(Vegetation Stubble) Shuttle Sick

Bagging 18.24[0.30] 74.59[3.25] 3.64[0.32]

USS 1x 0.10[0.01] 0.28[0.04] 0.02[0.01]

USS 3x 0.14[0.01] 0.41[0.04] 0.03[0.00]

SMT 1se 0.37[0.02] 5.35[0.35] 0.25[0.04]

SMT 1se 0.92[0.02] 55.73[7.42] 0.75[0.04]

SMT 3 0.67[0.02] 12.87[0.74] 0.36[0.04]

SMT 3se 2.29[0.05] 144.52[17.50] 1.86[0.05]

RBB 1:1 3.32[0.03] 7.89[0.19] 0.43[0.01]

RBB 3:1 6.95[0.08] 31.81[3.26] 1.03[0.05]

UB 1:1 3.12[0.03] 7.68[0.14] 0.41[0.01]

UB 3:1 6.80[0.09] 30.92[1.03] 0.89[0.04]

Table 4.14: Training times(seconds) for the Classifier Comparison Experiment

(4.2) - Satimage(Vegetation Stubble) to Sick Datasets

41

In the worst case, with the magic dataset, the 3:1 ratio Under Bagging and

Roughly Balanced Bagging classifiers actually take longer to train than stan-

dard Bagging! This is easily explained however, as it is due to the magic

dataset having one of the least skewed splits (35% minority class); this means

the dataset started with a 2:1 split and the Under Bagging step is actually sam-

pling more majority examples per minority example than the original dataset

contained. Thus Under Bagging and Roughly Balanced Bagging have effec-

tively become forms of over-sampling.

This indicates that it is important to consider lowering the ratio for datasets

where the number of minority examples is large as high ratios will slow the

skewed data classifiers significantly.

The most interesting conclusion, once reviewing the training times in addition

to the AUC results, is that Under Bagging and Roughly Balanced Bagging are

both capable of getting good AUC results when compared standard Bagging as

well as keeping their training times lower and in most cases significantly lower

than the Bagging baseline. It is also interesting that there does not appear

to be any parameter combination for the skewed data classifiers that performs

the best over all the datasets; the Parameter Tuning Experiment (4.3) explores

this further.

SMOTE appears, in these experiments, to have quite a bad results versus

training time trade-off. Although it is not iteratively applying its base classi-

fier, it is still has quite high training times, sometimes similar to the 1:1 Under

Bagging or Roughly Balance Bagging results which are building 100 models.

Also, using the novel Synthetic Example Protection and the Neighbor per At-

tribute approaches seems to make the situation even worse; the adult dataset

in particular takes over five times as long to train with these options enabled.

As these additional settings appear to improve results on some datasets it is

possible they could be quite effective on some niche problems where the longer

42 Chapter 4. Experiments on Skewed Class Problems

training times are less of a hindrance.

4.3 Parameter Tuning Experiment

Having identified the potential of Under Bagging and confirming that Roughly

Balanced Bagging was performing well, the next step was to find out how

sensitive the results were to varying the classifier. For both Under Bagging and

Roughly Balanced Bagging there is one parameter to select. This parameter

will decide on the class ratio for Under Bagging and the rough class ratio for

Roughly Balanced Bagging.

Classifier [Short name] Parameter Ratio (majority:minority)

Bagging [Bagging] None Default (baseline)

Under Bagging [UB 1:3] 0.33 1:3

Roughly Balanced Bagging [RBB 1:3] 0.75 1:3

Under Bagging [UB 1:2] 0.5 1:2

Roughly Balanced Bagging [RBB 1:2] 0.66 1:2

Under Bagging [UB 1:1] 1.0 1:1

Roughly Balanced Bagging [RBB 1:1] 0.5 1:1

Under Bagging [UB 2:1] 2.0 2:1

Roughly Balanced Bagging [RBB 2:1] 0.33 2:1

Under Bagging [UB 3:1] 3.0 3:1

Roughly Balanced Bagging [RBB 3:1] 0.25 3:1

Table 4.15: The classifiers, their parameters and resulting ratios for the Pa-

rameter Tuning Experiment (4.3)

Some of the parameters chosen would create ratios where there were more

majority class examples to each minority example. For both classifiers there

were parameters set to produce a 1 to 1 ratio. Finally there were a few classi-

fiers running parameters that would leave more minority class examples than

majority. Table 4.15 lists the parameters and classifiers used.

43

Classifiers Abalone(Oldest) Abalone(Youngest) Adult Anneal

Bagging 0.8544[0.08] 0.9846[0.02] 0.9073[0.01] 1.0000[0.00]

RBB 3:1 0.8822[0.07] 0.9848[0.02] 0.9090[0.01] 1.0000[0.00]

RBB 2:1 0.8830[0.07] 0.9845[0.02] 0.9108[0.01] 1.0000[0.00]

RBB 1:1 0.8827[0.07] 0.9880[0.01] 0.9126[0.01] 1.0000[0.00]

RBB 1:2 0.8757[0.07] 0.9896[0.01] 0.9131[0.01] 1.0000[0.00]

RBB 1:3 0.8673[0.07] 0.9881[0.01] 0.9137[0.01] 1.0000[0.00]

UB 3:1 0.8842[0.07] 0.9849[0.02] 0.9090[0.01] 1.0000[0.00]

UB 2:1 0.8853[0.07] 0.9848[0.02] 0.9109[0.01] 1.0000[0.00]

UB 1:1 0.8822[0.07] 0.9874[0.02] 0.9126[0.01] 1.0000[0.00]

UB 1:2 0.8751[0.07] 0.9896[0.01] 0.9131[0.01] 1.0000[0.00]

UB 1:3 0.8640[0.07] 0.9888[0.01] 0.9136[0.01] 1.0000[0.00]

Table 4.16: ROC area results for the Parameter Tuning Experiment (4.3) -

Abalone to Anneal Datasets

Tables 4.16 to 4.21 show the AUC results of the 10x10-fold cross validation

experiment run on these classifiers. All classifiers in this experiment were set

to 100 iterations of bagging and used unpruned J48 trees as the base classifier.

The first observation that can be made from this data is that Under Bag-

ging and Roughly Balanced Bagging continue to be very viable alternatives to

standard Bagging. An Under Bagging or Roughly Balanced Bagging classifier

produces the top ROC area on all but four of the datasets; in these cases Bag-

ging beats the other classifiers by a very slim margin. The performance of the

classifiers seems to be very consistent over all of the parameter combinations

tried.

If a count of significant wins, losses and ties is taken, it turns out, based on

AUC alone, that Under Bagging 1:2, Under Bagging 1:3 and Roughly Balanced

Bagging 1:2 get very similar results overall and are in a tier above the other

classifiers. Somewhat close, but a little further behind, are the other classifiers

with ratios of 1:1 or greater (in favour of the majority class). The classifiers

showing up last include the less than 1:1 classifiers and standard Bagging.

44 Chapter 4. Experiments on Skewed Class Problems

Classifiers Car Glass Haberman Hepatitis Hypothyroid

Bagging 0.9973[0.00] 0.9556[0.08] 0.6926[0.10] 0.8410[0.13] 0.9997[0.00]

RBB 3:1 0.9995[0.00] 0.9538[0.09] 0.6927[0.10] 0.8525[0.12] 0.9995[0.00]

RBB 2:1 0.9997[0.00] 0.9654[0.07] 0.7011[0.10] 0.8560[0.12] 0.9994[0.00]

RBB 1:1 0.9996[0.00] 0.9584[0.08] 0.7097[0.10] 0.8591[0.12] 0.9993[0.00]

RBB 1:2 0.9995[0.00] 0.9628[0.07] 0.7210[0.10] 0.8600[0.12] 0.9992[0.00]

RBB 1:3 0.9994[0.00] 0.9629[0.07] 0.7180[0.09] 0.8628[0.12] 0.9988[0.00]

UB 3:1 0.9997[0.00] 0.9517[0.09] 0.6937[0.10] 0.8540[0.12] 0.9994[0.00]

UB 2:1 0.9996[0.00] 0.9648[0.07] 0.7046[0.10] 0.8603[0.12] 0.9994[0.00]

UB 1:1 0.9997[0.00] 0.9599[0.08] 0.7112[0.10] 0.8612[0.12] 0.9993[0.00]

UB 1:2 0.9995[0.00] 0.9626[0.07] 0.7176[0.10] 0.8569[0.12] 0.9990[0.00]

UB 1:3 0.9993[0.00] 0.9635[0.07] 0.7201[0.09] 0.8628[0.12] 0.9988[0.00]

Table 4.17: ROC area results for the Parameter Tuning Experiment (4.3) -

Car to Hypothyroid Datasets

Classifiers ICDM08-Full ICDM08-V ICDM08-W ICDM08-X ICDM08-Y

Bagging 0.7165[0.03] 0.7856[0.05] 0.7616[0.16] 0.7061[0.04] 0.5872[0.13]

RBB 3:1 0.7201[0.03] 0.8011[0.05] 0.8187[0.14] 0.7033[0.04] 0.7728[0.08]

RBB 2:1 0.7212[0.03] 0.8016[0.05] 0.8233[0.14] 0.7034[0.04] 0.7761[0.08]

RBB 1:1 0.7222[0.03] 0.8040[0.05] 0.8344[0.13] 0.7074[0.04] 0.7749[0.07]

RBB 1:2 0.7216[0.03] 0.8056[0.05] 0.8519[0.10] 0.7097[0.04] 0.7705[0.07]

RBB 1:3 0.7226[0.03] 0.8077[0.05] 0.8559[0.11] 0.7111[0.04] 0.7779[0.07]

UB 3:1 0.7198[0.02] 0.8007[0.05] 0.8190[0.14] 0.7045[0.04] 0.7748[0.08]

UB 2:1 0.7215[0.02] 0.8027[0.05] 0.8253[0.14] 0.7040[0.04] 0.7777[0.07]

UB 1:1 0.7219[0.03] 0.8038[0.05] 0.8339[0.10] 0.7070[0.04] 0.7700[0.07]

UB 1:2 0.7228[0.02] 0.8074[0.05] 0.8543[0.10] 0.7106[0.04] 0.7760[0.07]

UB 1:3 0.7232[0.03] 0.8049[0.05] 0.8528[0.11] 0.7089[0.04] 0.7704[0.07]

Table 4.18: ROC area results for the Parameter Tuning Experiment (4.3) -

ICDM08-Full to ICDM08-Y Datasets

45

Classifiers ICDM08-Z Ionosphere Magic Phoneme

Bagging 0.5644[0.05] 0.9764[0.02] 0.9331[0.01] 0.9563[0.01]

RBB 3:1 0.5474[0.06] 0.9784[0.02] 0.9348[0.01] 0.9595[0.01]

RBB 2:1 0.5512[0.06] 0.9773[0.02] 0.9348[0.01] 0.9568[0.01]

RBB 1:1 0.5539[0.06] 0.9736[0.03] 0.9338[0.01] 0.9510[0.01]

RBB 1:2 0.5571[0.06] 0.9687[0.03] 0.9320[0.01] 0.9442[0.01]

RBB 1:3 0.5579[0.06] 0.9636[0.03] 0.9299[0.01] 0.9387[0.01]

UB 3:1 0.5439[0.06] 0.9775[0.02] 0.9348[0.01] 0.9592[0.01]

UB 2:1 0.5510[0.06] 0.9762[0.02] 0.9347[0.01] 0.9564[0.01]

UB 1:1 0.5567[0.06] 0.9749[0.02] 0.9337[0.01] 0.9510[0.01]

UB 1:2 0.5569[0.06] 0.9683[0.03] 0.9318[0.01] 0.9435[0.01]

UB 1:3 0.5530[0.06] 0.9622[0.03] 0.9298[0.01] 0.9386[0.01]

Table 4.19: ROC area results for the Parameter Tuning Experiment (4.3) -

ICDM08-Z to Phoneme Datasets

Classifiers Pima Indians Diabetes Satimage(Cotton Crop) Satimage(Damp Grey)

Bagging 0.8261[0.05] 0.9985[0.00] 0.9509[0.01]

RBB 3:1 0.8225[0.05] 0.9988[0.00] 0.9514[0.01]

RBB 2:1 0.8259[0.05] 0.9985[0.00] 0.9517[0.01]

RBB 1:1 0.8316[0.05] 0.9989[0.00] 0.9511[0.01]

RBB 1:2 0.8334[0.05] 0.9986[0.00] 0.9494[0.02]

RBB 1:3 0.8289[0.05] 0.9985[0.00] 0.9481[0.02]

UB 3:1 0.8237[0.05] 0.9985[0.00] 0.9517[0.01]

UB 2:1 0.8276[0.05] 0.9983[0.00] 0.9518[0.01]

UB 1:1 0.8318[0.05] 0.9986[0.00] 0.9513[0.01]

UB 1:2 0.8324[0.05] 0.9985[0.00] 0.9487[0.02]

UB 1:3 0.8296[0.05] 0.9984[0.00] 0.9474[0.02]

Table 4.20: ROC area results for the Parameter Tuning Experiment (4.3) -

Pima Indians Diabetes to Satimage(Damp Grey) Datasets

46 Chapter 4. Experiments on Skewed Class Problems

Classifiers Satimage(Vegetation Stubble) Shuttle Sick

Bagging 0.9930[0.00] 0.9999[0.00] 0.9954[0.01]

RBB 3:1 0.9927[0.00] 1.0000[0.00] 0.9948[0.01]

RBB 2:1 0.9923[0.00] 1.0000[0.00] 0.9960[0.01]

RBB 1:1 0.9917[0.00] 1.0000[0.00] 0.9957[0.00]

RBB 1:2 0.9918[0.00] 1.0000[0.00] 0.9951[0.00]

RBB 1:3 0.9914[0.00] 1.0000[0.00] 0.9939[0.00]

UB 3:1 0.9927[0.00] 1.0000[0.00] 0.9954[0.01]

UB 2:1 0.9921[0.00] 1.0000[0.00] 0.9951[0.01]

UB 1:1 0.9916[0.00] 1.0000[0.00] 0.9958[0.00]

UB 1:2 0.9918[0.00] 1.0000[0.00] 0.9949[0.00]

UB 1:3 0.9910[0.00] 1.0000[0.00] 0.9940[0.00]

Table 4.21: ROC area results for the Parameter Tuning Experiment (4.3) -

Satimage(Vegetation Stubble) to Sick Datasets

However, just as in the Classifier Comparison Experiment (4.2), it is important

to take into account the time to train the models. Tables 4.22 to 4.27 show

these training times.

Perhaps it did not stand out in the Classifier Comparison Experiment (4.2),

but it is now quite clear that adding more majority class examples really does

have a notable impact on training times. The adult and magic datasets show

this impact most obviously. However, generally speaking, Under Bagging and

Roughly Balanced Bagging classifiers keep faster training times than standard

Bagging.

It seems as if there is a trade-off between training time and potential AUC.

However, while it is true that training with a set of about 2 or 3 majority class

examples per minority example seems to give the best AUC, trading off a small

amount of AUC by selecting a 1 to 1 example ratio yields a significantly faster

training time. Thus, if maximising AUC was not of paramount importance,

an option that produces a model in less time could be adopted and still be

competing well with standard Bagging.

47

Classifiers Abalone(Oldest) Abalone(Youngest) Adult Anneal

Bagging 2.31[0.07] 1.69[0.07] 229.56[3.76] 0.46[0.02]

RBB 3:1 0.11[0.02] 0.10[0.00] 197.00[5.69] 0.05[0.03]

RBB 2:1 0.08[0.00] 0.08[0.00] 123.42[0.89] 0.03[0.00]

RBB 1:1 0.05[0.00] 0.04[0.00] 52.86[0.64] 0.02[0.00]

RBB 1:2 0.03[0.00] 0.03[0.00] 30.64[0.27] 0.02[0.02]

RBB 1:3 0.03[0.00] 0.02[0.00] 23.98[0.19] 0.02[0.00]

UB 3:1 0.10[0.02] 0.10[0.00] 181.77[3.65] 0.04[0.01]

UB 2:1 0.07[0.00] 0.07[0.00] 104.41[2.69] 0.03[0.01]

UB 1:1 0.05[0.00] 0.05[0.00] 48.22[0.56] 0.02[0.00]

UB 1:2 0.03[0.00] 0.03[0.00] 28.50[0.23] 0.02[0.00]

UB 1:3 0.03[0.00] 0.03[0.00] 22.88[0.17] 0.02[0.00]

Table 4.22: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - Abalone to Anneal Datasets

Classifiers Car Glass Haberman Hepatitis Hypothyroid

Bagging 0.09[0.01] 0.10[0.01] 0.08[0.01] 0.13[0.01] 2.13[0.14]

RBB 3:1 0.02[0.00] 0.06[0.00] 0.09[0.00] 0.10[0.00] 0.19[0.00]

RBB 2:1 0.02[0.00] 0.04[0.00] 0.07[0.00] 0.08[0.00] 0.14[0.00]

RBB 1:1 0.01[0.00] 0.03[0.00] 0.04[0.00] 0.05[0.00] 0.10[0.00]

RBB 1:2 0.01[0.00] 0.02[0.00] 0.03[0.00] 0.04[0.00] 0.07[0.00]

RBB 1:3 0.01[0.00] 0.02[0.00] 0.02[0.00] 0.03[0.00] 0.06[0.00]

UB 3:1 0.02[0.00] 0.06[0.00] 0.09[0.00] 0.10[0.01] 0.19[0.01]

UB 2:1 0.02[0.00] 0.04[0.00] 0.07[0.00] 0.08[0.00] 0.15[0.00]

UB 1:1 0.01[0.00] 0.03[0.00] 0.04[0.00] 0.05[0.00] 0.10[0.00]

UB 1:2 0.01[0.00] 0.02[0.00] 0.03[0.00] 0.04[0.00] 0.07[0.00]

UB 1:3 0.01[0.00] 0.02[0.00] 0.02[0.00] 0.03[0.00] 0.06[0.00]

Table 4.23: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - Car to Hypothyroid Datasets

48 Chapter 4. Experiments on Skewed Class Problems

Classifiers ICDM08-Full ICDM08-V ICDM08-W ICDM08-X ICDM08-Y

Bagging 3.22[0.07] 0.38[0.01] 0.09[0.00] 0.67[0.02] 0.19[0.01]

RBB 3:1 1.00[0.02] 0.11[0.00] 0.01[0.00] 0.29[0.01] 0.03[0.00]

RBB 2:1 0.74[0.02] 0.08[0.00] 0.01[0.00] 0.21[0.01] 0.02[0.00]

RBB 1:1 0.48[0.01] 0.05[0.00] 0.01[0.00] 0.12[0.00] 0.02[0.00]

RBB 1:2 0.33[0.01] 0.04[0.00] 0.01[0.00] 0.09[0.00] 0.01[0.00]

RBB 1:3 0.27[0.01] 0.03[0.00] 0.00[0.00] 0.07[0.00] 0.01[0.00]

UB 3:1 0.97[0.03] 0.10[0.01] 0.01[0.00] 0.25[0.01] 0.03[0.00]

UB 2:1 0.71[0.02] 0.08[0.00] 0.01[0.00] 0.19[0.00] 0.02[0.00]

UB 1:1 0.45[0.01] 0.05[0.00] 0.01[0.00] 0.12[0.00] 0.02[0.00]

UB 1:2 0.30[0.01] 0.04[0.00] 0.01[0.00] 0.08[0.00] 0.01[0.00]

UB 1:3 0.25[0.01] 0.03[0.00] 0.00[0.00] 0.07[0.00] 0.01[0.00]

Table 4.24: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - ICDM08-Full to ICDM08-Y Datasets

Classifiers ICDM08-Z Ionosphere Magic Phoneme

Bagging 0.59[0.05] 1.55[0.03] 96.69[3.97] 8.19[0.07]

RBB 3:1 0.26[0.02] 1.93[0.05] 155.50[3.11] 9.46[0.06]

RBB 2:1 0.20[0.01] 1.50[0.04] 107.81[0.95] 7.08[0.06]

RBB 1:1 0.11[0.01] 0.89[0.03] 60.16[0.44] 4.33[0.03]

RBB 1:2 0.07[0.00] 0.52[0.02] 37.89[0.22] 2.97[0.02]

RBB 1:3 0.05[0.00] 0.38[0.01] 28.95[0.17] 2.38[0.03]

UB 3:1 0.24[0.02] 1.86[0.05] 141.50[4.39] 9.19[0.06]

UB 2:1 0.17[0.01] 1.48[0.03] 103.66[1.97] 6.90[0.05]

UB 1:1 0.10[0.01] 0.90[0.03] 59.00[0.56] 4.29[0.04]

UB 1:2 0.07[0.01] 0.52[0.02] 36.48[0.20] 2.93[0.03]

UB 1:3 0.05[0.00] 0.38[0.01] 28.69[0.15] 2.36[0.02]

Table 4.25: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - ICDM08-Z to Phoneme Datasets

49

Classifiers Pima Indians Diabetes Satimage(Cotton Crop) Satimage(Damp Grey)

Bagging 0.84[0.01] 19.91[0.44] 16.00[0.18]

RBB 3:1 1.26[0.02] 6.58[0.14] 6.67[0.07]

RBB 2:1 1.02[0.01] 4.60[0.10] 5.42[0.06]

RBB 1:1 0.60[0.01] 2.38[0.04] 3.66[0.04]

RBB 1:2 0.41[0.01] 1.57[0.03] 2.81[0.04]

RBB 1:3 0.30[0.01] 1.26[0.02] 2.28[0.03]

UB 3:1 1.15[0.02] 6.19[0.13] 6.41[0.10]

UB 2:1 0.88[0.01] 4.09[0.08] 4.99[0.06]

UB 1:1 0.56[0.01] 2.20[0.04] 3.44[0.07]

UB 1:2 0.37[0.01] 1.43[0.03] 2.55[0.03]

UB 1:3 0.30[0.01] 1.14[0.02] 2.11[0.03]

Table 4.26: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - Pima Indians Diabetes to Satimage(Damp Grey) Datasets

Classifiers Satimage(Vegetation Stubble) Shuttle Sick

Bagging 18.24[0.30] 74.59[3.25] 3.64[0.32]

RBB 3:1 6.89[0.08] 30.78[2.89] 1.01[0.05]

RBB 2:1 5.32[0.06] 18.13[1.12] 0.73[0.03]

RBB 1:1 3.28[0.04] 8.13[0.14] 0.42[0.01]

RBB 1:2 2.42[0.03] 4.71[0.06] 0.29[0.01]

RBB 1:3 2.08[0.04] 3.68[0.03] 0.23[0.01]

UB 3:1 6.62[0.10] 29.93[2.96] 0.87[0.04]

UB 2:1 4.82[0.05] 17.18[0.82] 0.65[0.02]

UB 1:1 3.06[0.03] 7.61[0.26] 0.40[0.01]

UB 1:2 2.24[0.04] 4.50[0.12] 0.27[0.01]

UB 1:3 1.95[0.04] 3.57[0.05] 0.23[0.01]

Table 4.27: Training times(seconds) for the Parameter Tuning Experiment

(4.3) - Satimage(Vegetation Stubble) to Sick Datasets

50 Chapter 4. Experiments on Skewed Class Problems

After considering all the results available it seems that, in the absence of any

additional information, it makes sense to approach a skewed problem with a

specific classifier designed to deal with the skew. When selecting parameters it

does not make sense to select a ratio which gets more minority class examples

than majority. Starting with two majority class examples for every minority

class example seems like a good balance between training time and AUC result.

Chapter 5

Pre-processing Raw Information

It is no exaggeration to say that pre-processing of information has been re-

sponsible for the majority of the time consumed in this investigation. This

is due, most significantly, to the continuous improvements made to the code

responsible for the various pre-processing stages and the necessity of running

the modified results of any changes made to a stage through the entire remain-

ing pre-processing stages again. To further complicate changes, the nature of

pre-processing is that very little can be parallelised; this is because each stage

in pre-processing is performed one after another for any single herd.

The various stages to the pre-processing of the given data can be summarised

into five areas: converting the databases, extracting implied information, out-

lier detection and removal, attribute generation and generating ARFF files.

Conversion of the Firebird database files into MySQL databases is performed

first, for primarily logistical reasons. Next, processing was done on milking

times in order to add an explicit label specifying if data belonged to a morning

or afternoon milking period. Then, in order to remove some of the obviously

present outlier data, an outlier removal process was performed in an attempt

to clean up the errors in the data. Various attributes are then generated from

the cleaned data after a database flattening query is executed. Finally the

attributes generated from the flattened database are collected as learning in-

stances and added to an ARFF file in preparation for feeding into a classifier.

52 Chapter 5. Pre-processing Raw Information

5.1 Available Information

Database
Season

Herd Has Daily Heat Mating

Name Size Weights Milk Yields Events Events

A-06 2006 506 cows yes yes 468 535

B-06 2006 582 cows yes yes 240 344

B-07 2007 591 cows yes yes 536 539

C-07 2007 904 cows no yes 1 741

D-07 2007 1005 cows yes no 2 880

Table 5.1: Information about the data available for each herd

The data provided by LIC for the purposes of this investigation was in the

form of Firebird databases. Data for five herds was provided; some with data

from the 2006 milking season and some from the 2007 season with one provid-

ing both. Worth noting is that the C-07 herd does not contain daily weight

recordings while the D-07 herd does not contain a set of daily milk yield values.

Therefore these herds do not have the attributes generated from this informa-

tion present in experiments run on them. A summary of the relevant details

for each herd can be found in Table 5.1

5.2 Converting Firebird Databases

The first step in pre-processing the data was to change the provided Firebird

databases to MySQL databases. The advantages of MySQL database files

over Firebird files are twofold. The first and most significant advantage is that

MySQL was supported on the computers available at the University of Waikato

where the investigation was being completed. The second advantage was that

MySQL is considerably better supported in the public domain, popular tools

such as phpMyAdmin were available and Java and PHP access of MySQL

was much more commonly used by the development community; therefore a

solution to any problems encountered could be found in more reasonable time.

53

5.2.1 Export Firebird to SQL Statements

The first step in the conversion is to export an existing Firebird database

table structure and its rows of data to SQL CREATE TABLE and INSERT

statements through a piece of software capable of loading a Firebird database

and with the functionality to export it to SQL statements. The software

used to accomplish this goal in this investigation was EMS SQL Manager for

Interbase/Firebird Databases[34].

5.2.2 Find and Replace Commands

The next step was to perform some limited alterations to the generated SQL

file to make it suitable for the MySQL import process. This is not a foolproof

process however as there are sometimes characters or single SQL statements

with a strange syntax that causes the import process to stop even after per-

forming the general modifications. The answer in this case is that human

interaction is required to find a solution that lets the import continue with-

out compromising the values of the data preventing the import and without

modifying any other data as a side effect. There is no universal solution and

whenever something stopped the import process it was assessed on a per case

basis and altered to allow the import to continue.

The general alterations are simply a list of find and replace commands executed

using the ’sed’[35] program, which is available on most UNIX installations. The

find–>replace statements are shown below followed by an explanation of why

the replace statement needs to occur.

REPLACE:

/*

WITH:

#

REPLACE:

54 Chapter 5. Pre-processing Raw Information

*/

WITH:

#

The ‘/*’ and ‘*/’ comment syntax used in a Firebird SQL file needs to be

replaced with the ‘#’ style comment syntax of MySQL to allow import.

REPLACE:

CHARACTER SET NONE

WITH:

<blank>

REPLACE:

COLLATE NONE

WITH:

<blank>

The ‘CHARACTER SET NONE’ and ‘COLLATE NONE’ options on a column

are not supported in MySQL and thus must be removed, as this does not

compromise data values it is safe to simply remove (as is represented by <blank

>).

REPLACE:

IBBOOL

WITH:

ENUM (’T’, ’F’)

MySQL does not have a Boolean data type and thus the IBBOOL type from

Firebird needs to be replaced. This replace statement turns Boolean types

into MySQL enumerated types with true and false values.

REPLACE:

BLOB SUB_TYPE 1

WITH:

55

TEXT

MySQL does not have a BLOB type; the replacement to a TEXT type allows

values to be unaltered.

REPLACE:

current_time

WITH:

CURRENT_TIMESTAMP

The MySQL equivalent of current time is the CURRENT TIMESTAMP de-

fined variable, a simple switch to this produces the correct result in MySQL.

REPLACE:

"INIT"

WITH:

INITIAL

REPLACE:

INIT

WITH:

INITIAL

REPLACE:

"SQL"

WITH:

SEQUEL

REPLACE:

SQL

WITH:

SEQUEL

56 Chapter 5. Pre-processing Raw Information

In MySQL INIT and SQL are keywords, however the original Firebird databases

used INIT and SQL as column names, renaming these columns to longer names

allows import while maintaining column name meanings.

REPLACE:

"NAME"

WITH:

NAME

The opposite problem to the above, NAME is a keyword in Firebird databases

and thus the export to SQL process escapes the column name using quote

marks, however, in MySQL a column name with quote marks is not the same

as the column name without the quotes, so in order to make all INSERT

statements work the quote marks must be removed.

REPLACE:

INSERT

WITH:

REPLACE

Firebird databases appears to be case sensitive, where MySQL is not, unfor-

tunately there was not enough time for a person to fix every case where this

was an issue and the choice to simply overwrite conflicts was made, all IN-

SERT statements become REPLACE statements which will overwrite a data

row with the same values.

REPLACE:

’\’

WITH:

’\\’

Finally, in a few places a slash will be present in the exported SQL file that

needs to be escaped to remain a literal slash when imported.

57

5.2.3 Importing SQL Statements to MySQL

The last step in the conversion process is to import the altered export files into

an empty MySQL database with an appropriate name. The basic command

line client provided with an installation of MySQL is capable of performing

an import, in the form of SQL statements, without the need to use additional

software. This stage is very simple assuming the provided files contain MySQL

compliant statements. Failing that, there will be an error during the import

and the database will not be completely recreated.

5.3 Extracting Implicit Information

Within the raw data provided there were a few pieces of information which

were not explicitly specified but would be important to know. Cow milking

typically occurs twice daily with effectively a morning and an afternoon milking

every day. It was necessary to know what time separated the morning and

afternoon milking periods, and related to this was which milk period each

recorded milking event belonged to. Once all milking dates could be assigned

to a milking period it would then be possible to calculate the order the cows

were milked in.

In order to associate a row of milking data to its relevant milking period it

was necessary to come up with a time threshold to separate the morning and

afternoon milking periods. This choice was made by manually inspecting the

milking times for a suitable dividing time based on the distances between

milking times, the value chosen based on this analysis was midday. It was

considered that a dynamic time might have to be chosen for each herd or

even each day but midday appeared to be accurate for most examples. Thus

milking times before midday were attributed to the morning milking period

and those after midday were considered part of the afternoon milking period.

This process was used to assign milking period information to cow weight and

58 Chapter 5. Pre-processing Raw Information

milk yield data as well, this was an important step for the database flattening

process.

Having a way to associate a milking time and date to a specific milking period

meant it was possible to generate the order the cows were milked in during

any single milking period. This step was performed for all milking periods in

preparation for the creation of milking order attributes during the attribute

generation process described later. Thus the explicit milking date and time

information was transformed; making the milking order and milk period infor-

mation explicit.

5.4 Outlier Removal

This outlier removal section will actually cover two related transformations

made to the raw data. The first is concerned with the identification and

removal of outliers, however, as the second transformation shows, the outliers

are not actually removed from the data; they are simply marked for the second

step in the overall process. This second step is actually an attempt to clean

up the data before the attribute generation by filling in gaps where values are

missing in the data, and also the marked outlier data identified in the first

step, with suitable replacement values.

The step that is the real outlier detection phase is performed on both the

weight and yield data provided by the unprocessed database files. The basic

reasoning behind performing this outlier removal phase is that upon inspection

by an informed human the available weight and yield information is obviously

flawed. Reasoning may include an unrealistic change in cows weight between

daily measurements or impossibly large amounts of milk production recorded;

explanations for the errors may vary from human recording error to faulty

calibration of measurement tools. Unfortunately, although an informed human

could identify faults in the recorded data, it is not realistic for a human to sift

59

through tens of thousands of records finding each offending value.

The automated technique used in this investigation to identify outliers involved

moving a sliding time window of 11 days over the available weight or yield data

and finding each median over this window. The 6th value in the window was

the one being assessed relative to the five values before and after it in time.

Each time a value was known for a milking period it was compared to the

median of the 11 day window; if the value was found to be more than 10%

different from the median it was marked as an outlier. 10% was picked as a

threshold by having a human view data graphs with outliers marked on while

the threshold was varied.

The second step in the overall outlier removal process was intended to make

use of the fact that the data was time series data and had a logical progression

over time; this knowledge meant data values between known values in time

could be extrapolated and filled in. The process involved starting from the

earliest known value in time, for both weight and yield information, and, one

day at a time, progressed towards the last known value estimating missing

values and replacing outlier values as it progressed.

Whenever a value for a day was known it was left unmodified. However, if a

value was either not available or was marked as an outlier, then the value of

the previous day was stored and a sub process began counting the number of

days until another value was available. Once the sub process had identified

the next known value it now knew how many days lay between the last known

value and the value it had finally arrived at. In order to extrapolate the

values in between the sub process calculated the difference between the two

known values and divided it by the number of days it had counted. The

final step in the sub process was to go back to the first unknown day, add

the divided difference to the day previous and assign it to the unknown day.

The sub process would continue adding the divided difference until all of the

60 Chapter 5. Pre-processing Raw Information

(a) A set of values containing an outlier (b) Identifying the outlier

(c) Removing the outlier (d) The values after the outlier is removed

Figure 5.1: An example of identifying, removing, and replacing an outlier with

extrapolated values. Figures (a), (b), (c), (d) show the steps in this process

61

unknown days were assigned a value. Then the main process would resume

until it reached the final day; initiating the sub process whenever a day had

no associated value. A simplified example of this linear interpolation process

can be seen in Figure 5.1.

5.5 Attribute Generation/Database Flattening

The final major transformation step in the pre-processing of the data was the

act of generating attributes and as a result flattening the database tables. The

process known as flattening a database is the process of generating a single

table of data from a series of tables with some common link. To flatten this

database a single table is created with each row in the table representing a

single milking period for a single cow with its relevant milking order, weight

measurement and yield measurement associated, assuming they are all avail-

able for the period. Once this flattening has been performed the attribute

generation can begin.

Flattening this database was done using a single large JOIN SQL statement

executed on the MySQL database. This JOIN statement was executed for

each animal in the herd, over all the milking dates available and gathered the

milking order, weight and yield information for both the morning and after-

noon milking periods each day. Once the statement completed, the flattened

data for that animal could be processed by the attribute generation steps.

With the exception of the actual daily values for a given milking period, all

attributes are calculated over a time window. These time windows represent

values over the days before the milking period the attributes are being gener-

ated for. In all cases the last day in a time window is the day the window is

generated for. The size of the time windows are 7 days, 14 days, 21 days and,

although not present in early experiments, 28 days.

62 Chapter 5. Pre-processing Raw Information

In this investigation there are four sources of attributes: the milking order,

the animal weight, the milk yield and the milking speed. When speaking

of generated attributes they are known as the rank, weight, yield and speed

attributes. Each of these sources is used to generate the attributes described

below. The attributes used in each experiment will be clearly shown in the

experiment setup chapter as not all attributes were used in every experiment.

As more information was available, additional attributes were added and some

existing attributes were modified. A description of these attributes and how

they were generated follow.

Morning and Afternoon Values - These attributes are the only ones to

exist outside of a time window and there are two per attribute source. These

attributes represent the rank, weight, yield or speed values for the morning and

afternoon milking periods for the day attributes are being generated for. In

later experiments, in an attempt to remove daily herd variance, these attributes

were modified to instead represent how the values of the current cow compared

to those of the entire herd. This was achieved originally by subtracting the

mean value of the entire herd from the unmodified value for the current animal

and then dividing by the herd standard deviation. Later this method was

refined to only subtracting the mean and not diving by the standard deviation,

the reason being that dividing by the standard deviation would create very

small numbers which could lose precision during the later ARFF processing

stages.

Mean Value over a Window - For each window size and each attribute

source there is an attribute generated which represents the mean value of all

the days in the entire time window. This value is calculated by taking the mean

of all the morning values present in the time window, the use of the morning

value is due to information provided by LIC that the morning milking values

are less likely to be affected by day to day changes such as weather conditions

or the amount of food consumed by the herd.

63

Standard Deviation over a Window - Another window attribute, the

standard deviation, is a simple statistic measured over each window size to

capture the variance of an attribute source during the period the window

covers.

Distance/Deviations between Morning and Afternoon Values - This

attribute underwent a name change when it had its calculation altered. Orig-

inally, just like the base morning and afternoon values with the herd mean,

it was calculated by subtracting the afternoon value from the morning value

and dividing by the standard deviation of the window. However, the attribute

simply represented the distance between the two values once the division by

the standard deviation was later removed. Because the Morning and After-

noon values are outside of the time windows, when this change occurred, this

attribute no longer varied between the windows; this meant it was duplicated

in each window.

Distance/Deviations from Mean - This attribute is an adjustment, similar

to the daily herd adjustment performed on the base morning and afternoon

values, on a per cow basis. To calculate the attribute, the mean of the window

is subtracted from the base morning value. Just as the deviations between

morning and afternoon attribute began as the distance divided by the window

standard deviation, so too did the distance from mean attribute. Similarly, it

was also renamed when the calculation was altered.

Min and Max Values over a Window - These two attributes are simple,

they simply hold the smallest and largest, respectively, morning values over

the time window for each of the four attribute sources, rank, weight, yield and

speed. Aside from changing implicitly when the base morning attribute was

adjusted for the daily herd variances these attributes have remained the same

in all experiments.

64 Chapter 5. Pre-processing Raw Information

Range of Values over a Window - This attribute is present in addition to

the min and max attributes to show how wide the gap in values is. Although

this information is available implicitly, through the min and max attributes,

some classifiers must be explicitly informed of this distance to be able to use

it in learning a model.

Is Heat/Mating - Two potential class attributes are generated in the same

way, the first being if the cow was recorded as being in heat on the current day,

the second being if the cow was recorded as being mated on the current day.

These class attributes are generated as the target for the classifier to learn;

if more than one is generated only one should be present after the ARFF file

generation step.

5.6 Creating ARFF Files

This is the final step before actually using a generated ARFF file to run experi-

ments on various classifiers. Although a trivial step once all the pre-processing

steps above are completed, the actual generation of an ARFF file is not com-

pletely straight forward. Until this step all pre-processing attempted to keep

as much data as possible, however it is sensible at this point to use the knowl-

edge we have about dairy farming to make the dataset of machine learning

instances as specific as possible.

The first key to the dataset generation is to use the knowledge gained from

introspection of the database and confirmed by LIC experts. That knowledge

is that, with only an insignificant number of exceptions, it can be assumed

that all dairy cows in a herd will be in heat within a three month window

for the data provided. This was between October 1st and December 31st for

both available seasons. With this information the data used to create each

ARFF file for a herd can be narrowed to simply be anything falling between

these months. This can save considerable amounts of time when running

65

experiments. Additionally, by limiting the number of non-heat instances in

the dataset the strongly skewed distribution of heat to non-heat events is, at

least slightly, reduced.

Secondly, if there are any values which were not replaced as part of the out-

lier removal process and remain without values after the attribute generation

process then these values must be given the question mark denotation for a

missing value in the ARFF file. This might occur if the weight or yield at-

tribute sources are simply not available for a herd or if they are not available

for the entire four month heat period discussed above. With the missing values

represented in the ARFF file it is possible to use a replace missing values filter

inside WEKA to replace all missing values with the mean value for the given

attribute and generate a new dataset with values for all attributes.

The third and final part of the ARFF file generation step is to select which

of the generated class attributes to use. Either heat or mating events can be

added as the class attribute to be learned by the machine learning classifiers;

both cannot be added simultaneously as they are directly correlated and would

give very optimistic results to the prediction of the other. Each experiment

will mention which of the class variable it was predicting.

66 Chapter 5. Pre-processing Raw Information

Chapter 6

Experiment Setup

Over the time this investigation was conducted, many experiments were per-

formed. These experiments started from experiments on various classifiers us-

ing a single 7 day time window of attributes. Eventually experiments became

larger and focused on the most successful classifiers with attributes generated

over four lengths of time: 7 day, 14 day, 21 day and 28 day windows were used

for generating attributes in the most robust experiments.

In addition to the attribute pool evolving as the investigation progressed, there

was also a point at which it became known that using mating events as the

prediction goal was an option and that potentially training examples would be

more accurate using mating events instead of the originally used heat events.

The basic justification for the improvement in training examples was that

mating events represent a service, a cow insemination attempt, to the farmer

who was recording the data. It was suspected that data might be better

recorded when this service was performed as it represented an event of financial

significance to the farmer. This is in obvious contrast to the heat events, which

are meant to be recorded by a farmer when he is made aware of a sign of heat

in a cow through some means. It is certainly believable an event could be

recorded inaccurately, or not at all, for a sign of heat.

68 Chapter 6. Experiment Setup

Finally, as more time passed, there was opportunity for more data to be used

in experiments. Initially experiments could only be conducted on the two

2006 herds available from the start of the investigation. However, as time

progressed, three new herds were introduced allowing for 2007 herd data to be

experimented on as well.

More specific details of the refinement steps in experiment parameters are

outlined in the experiment summary sections.

6.1 Heat Prediction using a Single Time Win-

dow of 7 Days

Although there were plenty of informal experiments performed before any of

the experiments described here, the first notable round of experiments per-

formed were those intended to predict heat events using attributes generated

over a time window of 7 days.

The choice to use attributes generated over a time window was strongly in-

spired by the work by Mitchell, Sherlock and Smith[25] (described in detail in

Section 2.4). A slightly wider window, based over a week, was chosen in an

attempt to capture longer term trends than the 5 day windows used in their

investigation. For every day with data available, a 7 day window representing

the current day and the previous 6 days is used to generate attributes for the

instance to represent the state of the current day. This is important as it

ensures experiment instances do not represent any future data at any given

time.

In these early experiments the basic morning and afternoon measurement at-

tributes did not have the daily herd adjustment, discussed in Section 5.5,

applied to them. As the other attributes contrast these daily milking values to

the aggregated values over the windows all attributes were affected as a result.

69

As this was the first set of official experiments, heat events were used as the

experiment target class for all experiments at this time. As explained generally,

in Section 5.5, an instance in an experiment is only considered a heat event

when the final day in a time window has been recorded as a heat event in the

data. These experiments were performed on the 2006 herd data as the 2007

data was not yet available.

While the number of time windows to use was being explored, during the first

three experiments, the only classifier used was Random Forest.

6.2 Heat Prediction using Multiple Time Win-

dows of 7/14/21 Days

The next set of formal experiments increased the number of attributes available

to classifiers in an attempt to expand representation of each day of milking.

The information added came in the form of additional time windows; 14 day

and 21 day windows. By including data that contrasted the daily measurement

to those further in the past it was hoped that any longer term trends might be

captured. Again, it was important that these new time windows only looked

at the past 14 and 21 days, respectively, as it would not be meaningful to

predict heat using future information.

As these experiments were among the earliest conducted they were predicting

heat events and were conducted on the 2006 herds, A-06 and B-06, only. As

with the previous experiment the morning and afternoon values were not yet

being adjusted to remove the daily herd variance.

As this was the second experiment conducted and the number of time windows

to use was still being explored at this stage the Random Forest classifier was

the only one applied to the data.

70 Chapter 6. Experiment Setup

6.3 Heat Prediction after Adding a 28 Day

Window

After reporting on the attributes used in the previous experiments to some

experts at LIC it was made known that a cow’s oestrus cycle can be longer than

21 days for some animals. This meant there could be details lost outside the

largest 21 day windows that were currently being used. It seemed important

to expand time windows by another level, this came in the form of a 28 day

window to generate attributes over. This new window represented the previous

27 days and the current day for a day attributes were being generated for.

The first experiments conducted after adding the 28 day window didn’t include

the daily herd adjustments and they were only conducted on the 2006 herd

data. All experiments were still predicting heat at this stage; however these

were the last few experiments to do so.

This was the last of the initial three experiments to explore the correct number

of time windows to use; making this the last experiment to only apply the

Random Forest classifier to its data.

6.4 Addition of Daily Herd Adjustments

Possibly the most significant alteration to the experiment parameters was the

addition of the daily herd adjustment to the morning and afternoon values

for each day. This adjustment is discussed in greater detail as part of Section

5.5. The basic idea is to remove the variance common to the entire herd

for each daily measurement, on a day by day basis. The intended result is

that any trends discovered for a specific cow will better apply to the entire

herd. Additionally, and perhaps more importantly, this adjustment should

help prevent a model finding trends which are basically changes observed in

the entire herd, perhaps as a result of a change in paddock or food.

71

It was at the time of adding the daily herd adjustment to the data values

that access to the first 2007 herd became available. The first 2007 herd was

actually the 2007 data for the existing B-06 herd. This was very good because

it provided a chance to see how the data for a herd varied between years.

The widest array of classifiers of any experiment was applied when the daily

herd adjustment was introduced. The original Random Forest classifier re-

mains from the previous three experiments and is joined by the following ad-

ditional classifiers: AdaBoostM1 with J48 as a base classifier, two Bayesian

based classifiers: AODE and Näıve Bayes, Bagging with unpruned J48 trees as

the base classifier, Logistic Regression, SMO with the RBF Kernel and, finally,

just straight J48 running without an ensemble classifier.

6.5 Mating Prediction Using Multiple Time

Windows

The next significant change to the experimental procedure, second only to the

addition of the daily herd adjustments, was the choice to use mating events as

the prediction class. A more detailed explanation for the change is described

in the attribute generation step, but basically the advantage is that mating

events are considered to be better recorded by farmers. This means that a

classifier predicting mating events over heat events should be able to produce

a more concise model. These experiments were performed on the three sets of

data available: the A-06, the B-06 and the B-07 herd.

The number of classifiers applied in this experiment was cut down; only clas-

sifiers which had preformed well in the Addition of Daily Herd Adjustments

Experiment (6.4) were used. These classifiers were: AdaBoostM1 with J48

trees, Bagging with unpruned J48 trees, Random Forest and SMO with the

RBF Kernel. Additionally, as it was suspected it might perform well, Ad-

72 Chapter 6. Experiment Setup

aBoostM1 using Decision Stumps as a base classifier was applied to the data

as well.

6.6 Removal of Standard Deviation Differences

The final minor attribute parameter adjustment was to stop representing the

distance from window mean and distance between morning and afternoon val-

ues in terms of standard deviations and simply record the values as straight

differences. The reasoning behind this was that it was suspected that some

of the very small numbers produced by dividing by the standard deviations

were being rounded when being written to disk as an ARFF file. As it wasn’t

important to represent the difference attributes in terms of the number of stan-

dard deviations it was decided that this process be dropped to avoid losing any

attribute precision during classification.

Around the time of this change access to the C-07 and D-07 had be gained,

this gave two more 2007 herds to apply classification to as part of this round

of experiments. The advantage of having these extra herds was that results

should better reflect the effectiveness of the process in predicting heat on other

unseen herds. In its simplest form, it allowed for better comparison between

results by having more herds to compare against.

As classifier performance had been well established by this point there were

only four classifiers applied. The four classifiers were: Bagged unpruned J48

trees, Random Forest, SMO with the RBF Kernel and AdaBoostM1 using

Decision Stumps as a base classifier. Due to the performance of the Decision

Stumps over J48 trees the AdaBoostM1 with J48 trees was dropped from the

list of classifiers to apply.

73

6.7 Comparing Effectiveness of Attributes

The experiment process had now become refined well enough to start reaching

some real conclusions about the data and techniques being applied. It was

suspected that the effectiveness of the attributes that were being given to

classifiers might have been quite mixed. This was based on the split nodes of

J48 trees and the weights applied to attributes by the support vector machines.

It seemed the attributes were not all contributing the same predictive power

and perhaps some were contributing very little.

In order to test the effective predictive power of each of the attribute sources

it was necessary to look at each attribute source in the absence of the others.

Thus, the first step was to generate three new ARFF dataset files for each

of the three attribute sources, the rank (milking order), the weight and the

milk yield. The yield also included the milking speed as it seemed incorrect to

deal with the two separately. Once these new, single attribute source, datasets

were generated there were a total of 15 data files; a rank, weight and yield

dataset for each herd that data was available for. However, due to the data

not being present, the weight dataset for the C-07 herd and the yield dataset

for the D-07 herd contained no instances. The result was 13 usable datasets,

a complete 5 sets for rank, 4 for weight and 4 for yield.

The experiments performed to explore the effectiveness of each attribute on

their own used all the modifications made to the experiment process thus far.

This meant that mating events were being predicted, the daily herd adjust-

ment had been applied, attributes were being generated over all four window

sizes, right up to the 28 day window, and access to data for all the herds was

available.

As this experiment was about comparing the effectiveness of attributes it was

important to only pick one classifier to compare with. Bagging with unpruned

J48 trees as the base classifier was selected to be applied to each set of data.

74 Chapter 6. Experiment Setup

6.8 Application of Classifiers Designed to Tar-

get Skewed Data

Chapter 3 mentions the use of classifiers designed specifically to target skewed

datasets. As the data provided by LIC contains a skewed class distribution it

made sense to apply the general techniques for skewed problems to this data.

The actual skew present in each herd varied a little, but all were close to 1%

mating event days versus 99% non-mating event days.

As Under Bagging and Roughly Balanced Bagging were the classifiers which

seemed to provide the best results on the datasets used in Chapter 4 they were

selected to be used in this experiment. It was expected that, as in the results of

Chapter 4, a ratio of two or three majority examples for each minority example

would give the best results. There was also a good chance the AUC for one

or both of these techniques would compete with standard Bagging on the LIC

herd data as well.

This experiment was conducted with the same settings as the experiments in

Section 6.6 and Section 6.7. Mating events were predicted, the daily herd

adjustment and 28 days of windowed attributes were generated and, as there

was access to all five herds, all herds were used in the experiment.

This experiment applied the Under Bagging and Roughly Balanced Bagging

skewed data classifiers to the data as well as the Bagging with unpruned J48

regular classifier for comparison purposes. The parameters to use with Under

Bagging and Roughly Balanced Bagging were selected so that classifiers were

running with ratios of: 1 majority:1 minority, 2 majority:1 minority and 3

majority:1 minority. These selections were based on the success of these ratios

in Chapter 4.

Chapter 7

Experiment Results

This chapter will advance through the results as the experimental process and

attribute pool was refined over time. Results follow the same structure as

Chapter 6, thus each section of results refers to a single experiment setup

section. A brief explanation of each experiment will be given for each section.

However, for the full experiment setup, please refer to the relevant section in

Chapter 6.

Each set of results has been graphed to show ROC curves as well as calculating

the AUC for each ROC curve. ROC has been selected as a comparison measure

as it is a well respected metric in the Machine Learning field.

Additionally, and probably far more relevant, Precision-Recall graphs have

been generated using the minority class (heat or mating events) as the positive

class. Along with the graphs comes an estimate of the AUC for these curves.

AUC is not as simple to calculate in the case of Precision-Recall, hence the

use of an approximation. The reasoning for showing Precision-Recall curves is

that ROC curves can often appear optimistic on highly skewed problems.

A table of summarised results will be included to aid in comparison of the

various AUC values between classifiers. This should help comparing the values

from a single experiment and, by comparing these tables between sections,

76 Chapter 7. Experiment Results

show the change in graph AUC as the experimental process was refined.

Finally, a few paragraphs about observations that can be seen in the results

will be given. Whenever possible, and relevant, the implications of these ob-

servations will be explained in this area as well.

7.1 Results of Heat Prediction using a Single

Time Window of 7 Days

This was the first serious experiment undertaken during this investigation. As

the first it was executed with the least number of attributes, being just the

attributes generated over a 7 day window. There was no daily herd adjustment

used at this stage and classifiers were still building models to predict heat

events. This experiment only had the 2006 herds available; the B-06 and A-06

herds.

Figure 7.1: Random Forest ROC graph for Heat Prediction using a Single

Time Window of 7 Days Experiment (6.1)

77

Figure 7.2: Random Forest Precision-Recall graph for Heat Prediction using

a Single Time Window of 7 Days Experiment (6.1)

Classifier
B-06 A-06

ROC PR ROC PR

Random Forest 0.7716 0.1510 0.6575 0.0294

Table 7.1: Summarised Results for Heat Prediction using a Single Time Win-

dow of 7 Days Experiment (6.1)

78 Chapter 7. Experiment Results

The ROC and Precision-Recall graphs for Random Forest, the only classifier

used in this experiment, are Figures 7.1 and 7.2 respectively.

As this is the first experiment, there is little to conclude aside from that

Precision-Recall results for both herds are unacceptable. Results for the A-06

ROC area show little improvement over simply guessing if a cow is in heat or

not; this may indicate that for this herd predicting heat is difficult.

These results showed that there would need to be some serious refinement of

the experimental procedure in order to get reasonable values. This experiment

was the first of three to explore the number of time windows to use.

7.2 Results of Heat Prediction using Multiple

Time Windows of 7/14/21 Days

A first attempt at improving results tried adding more time windows. As

a result there were more attributes for each instance which would hopefully

improve results. The Random Forest classifiers in this experiment were still

predicting heat events and the daily herd adjustment was not being used yet.

As with the Heat Prediction using a Single Time Window of 7 Days Experiment

(6.1), this experiment only had the 2006 herds available.

Classifier
B-06 A-06

ROC PR ROC PR

Random Forest 0.8112 0.1518 0.6943 0.0371

Table 7.2: Summarised Results for Heat Prediction using Multiple Time Win-

dows of 7/14/21 Days Experiment (6.2)

Random Forest was, again, the only classifier used in these early experiments.

The ROC and Precision-Recall graphs are Figures 7.3 and 7.4.

79

Figure 7.3: Random Forest ROC graph for Heat Prediction using Multiple

Time Windows of 7/14/21 Days Experiment (6.2)

Figure 7.4: Random Forest Precision-Recall graph for Heat Prediction using

Multiple Time Windows of 7/14/21 Days Experiment (6.2)

80 Chapter 7. Experiment Results

It is reassuring to observe that adding additional time windows has increased

the Precision-Recall and ROC areas for the B-06 herd by a reasonable amount.

ROC area for the B-06 herd has improved; raising from 0.7716 to 0.8112. The

A-06 herd has moved towards a more acceptable ROC area but Precision-

Recall area still remains very poor.

These results suggest there is much to be gained from refining the experiment

process. As this was only the second step in the refinement of the experimental

process it was still possible for the results to improve even further.

7.3 Results of Heat Prediction after Adding a

28 Day Window

It was originally thought that the 21 day window would be getting all the

necessary long term information. However, it became known, through con-

sulting with LIC experts, that cows could experience an oestrus cycle that

lasted longer than 21 days. Therefore, in case there was some information

being missed, a 28 day window was added.

The full set of window sizes was now present but the daily herd adjustment

had not yet been applied. The only herds available at this stage were the two

2006 herds. Classifiers predicted heat events for this experiment.

Classifier
B-06 A-06

ROC PR ROC PR

Random Forest 0.8052 0.1435 0.6590 0.0370

Table 7.3: Summarised Results for Heat Prediction after Adding a 28 Day

Window Experiment (6.3)

This is the final experiment where the only classifier used was Random Forest.

The ROC and Precision-Recall graphs are Figures 7.5 and 7.6.

81

Figure 7.5: Random Forest ROC graph for Heat Prediction after Adding a 28

Day Window Experiment (6.3)

Figure 7.6: Random Forest Precision-Recall graph for Heat Prediction after

Adding a 28 Day Window Experiment (6.3)

82 Chapter 7. Experiment Results

It can be observed in Table 7.3 that the results for both the herds have generally

deteriorated, as a result of adding the 28 day window. In the case of the A-06

herd the ROC area has dropped back to the 7 day window value. However,

the other values have not lowered so drastically.

As the values have shifted around a little having added the 28 day time win-

dow, it is possible that that not all the time windows are contributing to

predicting heat. However, the logical next step is applying more classifiers to

the experiment to get an idea of the general effectiveness of classifiers, rather

just looking at results from Random Forest.

7.4 Results of Addition of Daily Herd Adjust-

ments

This is the first experiment to include daily herd adjusted attributes. This

means the attributes for each cow were adjusted to remove variance present in

the entire herd. The goal was to help classifiers build more generalised models;

models that would more accurately model the entire herd.

This experiment was the last to predict heat events and the first to include

the B-07 herd. This brought the number of herds up to 3; the B-06, A-06 and

now the B-07.

As this experiment introduced multiple classifiers, and showing them all would

rather clutter the display, only the highest performing classifiers, Bagged J48

and Random Forests, have been selected to show graphs for. Essentially the

shape of the curves is the same for the other graphs, just with less area beneath

them. One could imagine them being shifted down towards the x-axis.

This experiment was the first to introduce the B-07 herd. This allowed for

comparison between the previously more successful B-06 herd and its 2007

83

Figure 7.7: Bagged Unpruned J48 ROC graph for Addition of Daily Herd

Adjustments Experiment (6.4)

Figure 7.8: Bagged Unpruned J48 Precision-Recall graph for Addition of Daily

Herd Adjustments Experiment (6.4)

84 Chapter 7. Experiment Results

Figure 7.9: Random Forest ROC graph for Addition of Daily Herd Adjust-

ments Experiment (6.4)

Figure 7.10: Random Forest Precision-Recall graph for Addition of Daily Herd

Adjustments Experiment (6.4)

85

Classifier
B-06 A-06 B-07

ROC PR ROC PR ROC PR

AdaBoosted J48 0.7248 0.1331 0.6380 0.0277 0.7672 0.0605

AODE 0.7474 0.0815 0.6500 0.0192 0.8001 0.0613

Bagged Unpruned J48 0.7524 0.1598 0.7075 0.0352 0.8272 0.0910

J48 0.5768 0.0788 0.4485 0.0099 0.6337 0.0360

Logistic Regression 0.7097 0.0695 0.6583 0.0229 0.7632 0.0646

Näıve Bayes 0.5529 0.0195 0.6130 0.0169 0.6663 0.0281

Random Forest 0.7696 0.1412 0.6623 0.0321 0.7737 0.0622

SMO with RBF Kernel 0.7200 0.0976 0.6128 0.0190 0.7043 0.0495

Table 7.4: Summarised Results for Addition of Daily Herd Adjustments Ex-

periment (6.4)

counterpart. The results were unexpected. While the B-07 herd performs very

well in terms of ROC area, surpassing its 2006 counterpart with all but the

SMO classifier, it achieves lower areas for Precision-Recall on all but the Näıve

Bayes classifier.

In addition to the unexpected results seen for the new data, the B-07 herd,

there was still much to gain from this experiment as it was the first to start

using multiple classifiers. It can be seen by viewing Table 7.4 how each classifier

performed. Bagged J48 trees have come out on top for all herds in terms

of Precision-Recall area, followed quite closely by Random Forest; the only

classifier to beat Bagged J48 for one of the ROC areas. AODE does very well

in terms of ROC area but falls far short when it comes to Precision-Recall.

AdaBoosted J48, Logistic Regression and SMO using an RBF Kernel are all

very close in performance. The performance of classifiers in this experiment

dictated which classifiers were used in future experiments.

86 Chapter 7. Experiment Results

7.5 Results of Mating Prediction using Multi-

ple Time Windows

This experiment is the first to use mating events instead of heat events. The

reason for predicting mating events instead of heat events is that mating events

should be better recorded ensuring more accurate models are built. See Section

5.5 where the choice to use mating events is explained in full detail.

The three herds mentioned already, the B-06, A-06 and B-07 herds, were used

in this experiment. The daily herd adjustment was used for this experiment.

Figure 7.11: AdaBoosted Decision Stumps ROC graph for Mating Prediction

using Multiple Time Windows Experiment (6.5)

AdaBoosted Decision Stumps, Bagged J48 and Random Forests were the high-

est performing classifiers in this experiment, thus, in the interest of avoiding

so many similar graphs, these are the ones shown. The graphs for the other

classifiers are, again, very similar in shape.

The effects of using mating events are immediately noticeable on the B-06

herd; showing a dramatic increase in ROC and Precision-Recall areas. Unfor-

87

Figure 7.12: AdaBoosted Decision Stumps Precision-Recall graph for Mating

Prediction using Multiple Time Windows Experiment (6.5)

Figure 7.13: Bagged Unpruned J48 ROC graph for Mating Prediction using

Multiple Time Windows Experiment (6.5)

88 Chapter 7. Experiment Results

Figure 7.14: Bagged Unpruned J48 Precision-Recall graph for Mating Predic-

tion using Multiple Time Windows Experiment (6.5)

Figure 7.15: Random Forest ROC graph for Mating Prediction using Multiple

Time Windows Experiment (6.5)

89

Figure 7.16: Random Forest Precision-Recall graph for Mating Prediction us-

ing Multiple Time Windows Experiment (6.5)

Classifier
B-06 A-06 B-07

ROC PR ROC PR ROC PR

AdaBoosted J48 0.7874 0.1890 0.5908 0.0120 0.7784 0.0825

AdaBoosted Stumps 0.8684 0.1881 0.6829 0.0203 0.8191 0.0852

Bagged Unpruned J48 0.8124 0.2104 0.6663 0.0158 0.8225 0.1065

Random Forest 0.7968 0.1922 0.5591 0.0113 0.7847 0.0724

SMO with RBF Kernel 0.7856 0.1559 0.5863 0.0106 0.7226 0.0697

Table 7.5: Summarised Results for Mating Prediction using Multiple Time

Windows Experiment (6.5)

90 Chapter 7. Experiment Results

tunately, the A-06 herd seems just as resistant to the changes in experimental

procedure in this experiment as in previous ones, in this case it has even lost

ROC and Precision-Recall area where the other herds made some gains at

least.

In terms of classifier performance, Bagged J48 has done well, but has not

beaten the other classifiers on every item this time. The newly introduced

AdaBoosted Decision Stumps classifier has taken some top places. There is no

clearly best classifier between these two and both have quite close area values

on all three herds. Additionally, because the AdaBoost with Decision Stumps

classifier appeared to be doing better than AdaBoost with J48, the J48 based

AdaBoost was dropped from later experiments.

7.6 Results of Removal of Standard Deviation

Differences

This experiment introduced the remaining two herds; the C-07 and D-07 herds.

These herds are less complete than the three herds that had already been in use.

The C-07 herd contained no weight information, while the D-07 herd contained

no milk yield information. This meant attributes for these particular sources

could not be added to learning instances.

Additionally this experiment changed the way some attributes were repre-

sented. Instead of dividing distances between values by the standard devia-

tions (to get the number of standard deviations difference) the numbers were

simply given without modification. This was done because it was suspected

these distance values might be losing precision when being saved to a file as a

result of being very small fractions of standard deviations.

The daily herd adjustment was applied to the values in this experiment and

the classifiers built models to predict mating events.

91

Figure 7.17: AdaBoosted Decision Stumps ROC graph for Removal of Stan-

dard Deviation Differences Experiment (6.6)

Classifier
B-06 A-06 B-07

ROC PR ROC PR ROC PR

AdaBoosted Stumps 0.8617 0.1856 0.6926 0.0222 0.8147 0.0783

Bagged Unpruned J48 0.8083 0.2086 0.6625 0.0176 0.8331 0.1123

Random Forest 0.8043 0.1904 0.5739 0.0119 0.7789 0.0721

SMO with RBF Kernel 0.7826 0.1501 0.6052 0.0114 0.7091 0.0648

Table 7.6: Summarised Results for Removal of Standard Deviation Differences

Experiment (6.6) - A-06, B-06 and B-07 herds

AdaBoosted Decision Stumps, Bagged J48 and Random Forest ROC and

Precision-Recall graphs are given. This experiment really only added new

herds so the same classifiers were picked to be graphed.

There was no significant change in the values for the three old herds. A little

increase in the A-06 herd shows it has recovered from the loss in the values

experienced when mating events were introduced in the Mating Prediction

Using Multiple Time Windows Experiment (6.5). Despite this turnaround the

92 Chapter 7. Experiment Results

Figure 7.18: AdaBoosted Decision Stumps Precision-Recall graph for Removal

of Standard Deviation Differences Experiment (6.6)

Figure 7.19: Bagged Unpruned J48 ROC graph for Removal of Standard De-

viation Differences Experiment(6.6)

93

Figure 7.20: Bagged Unpruned J48 Precision-Recall graph for Removal of

Standard Deviation Differences Experiment (6.6)

Figure 7.21: Random Forest ROC graph for Removal of Standard Deviation

Differences Experiment (6.6)

94 Chapter 7. Experiment Results

Figure 7.22: Random Forest Precision-Recall graph for Removal of Standard

Deviation Differences Experiment (6.6)

Classifier
C-07 D-07

ROC PR ROC PR

AdaBoosted Stumps 0.7089 0.0852 0.8052 0.0716

Bagged Unpruned J48 0.7115 0.1133 0.8069 0.0851

Random Forest 0.6676 0.0756 0.7469 0.0628

SMO with RBF Kernel 0.5892 0.0256 0.6236 0.0194

Table 7.7: Summarised Results for Removal of Standard Deviation Differences

Experiment (6.6) - C-07 and D-07 herds

95

A-06 herd still shows the worst results of all the herds available.

The newly introduced herds seem to follow the trends of the B-07 herd more

than the B-06 herd (this is best seen in Figures 7.18, 7.20 and 7.22). This leads

to the suspicion that the B-06 herd has captured some special information in

its attributes that is not available to classifiers for the other herds. This

led directly into the next experiment; an experiment to identify how much

predictive power each attribute source has.

7.7 Results of Comparing Effectiveness of At-

tributes

This experiment was conducted to evaluate the effectiveness of individual at-

tributes. The parameters of the experiment can be summarised as follows.

Each of the three attribute sources, rank, weight and yield (yield and speed

are combined) are used, individually, to generate a dataset for each herd.

These single attribute source files are then used to build a model with the

same classifier. Bagged J48 trees were picked as the comparison classifier due

to its reliably high results in previous experiments.

The Bagged J48 classifiers were predicting mating events, had the daily herd

adjustment applied and were used on all five herds worth of data.

Attribute
B-06 A-06 B-07

ROC PR ROC PR ROC PR

Rank 0.7229 0.1444 0.5697 0.0116 0.7270 0.0579

Weight 0.7300 0.0474 0.6081 0.0114 0.7407 0.0443

Yield 0.7242 0.0293 0.5448 0.0093 0.7259 0.0626

Table 7.8: Summarised Results for Comparing Effectiveness of Attributes Ex-

periment (6.7) - A-06, B-06 and B-07 herds

96 Chapter 7. Experiment Results

Figure 7.23: Rank Attribute ROC graph for Comparing Effectiveness of At-

tributes Experiment (6.7)

Figure 7.24: Rank Attribute Precision-Recall graph for Comparing Effective-

ness of Attributes Experiment (6.7)

97

Figure 7.25: Weight Attribute ROC graph for Comparing Effectiveness of

Attributes Experiment (6.7)

Figure 7.26: Weight Attribute Precision-Recall graph for Comparing Effec-

tiveness of Attributes Experiment (6.7)

98 Chapter 7. Experiment Results

Figure 7.27: Yield Attribute ROC graph for Comparing Effectiveness of At-

tributes Experiment (6.7)

Figure 7.28: Yield Attribute Precision-Recall graph for Comparing Effective-

ness of Attributes Experiment (6.7)

99

Attribute
C-07 D-07

ROC PR ROC PR

Rank 0.6829 0.0926 0.7832 0.0746

Weight n/a n/a 0.7497 0.0317

Yield 0.5607 0.0142 n/a n/a

Table 7.9: Summarised Results for Comparing Effectiveness of Attributes Ex-

periment (6.7) - C-07 and D-07 herds

Two graphs are given for each attribute, one showing ROC, the other showing

Precision-Recall curves. All graphs are for Bagged J48 trees. The reason for

the null values in the graphs is that C-07 and D-07 do not have weight and

yield values respectively, thus no results are available.

It can be clearly seen from Figures 7.23 through to 7.28 that the Rank at-

tributes are what put the B-06 herd so far ahead of the others when comparing

Precision-Recall values. These results seem to show that with the Weight or

Yield attributes only the lead that the B-06 herd has over the other herds is

significantly diminished.

More generally it seems that models based on rank are more useful than those

on weight, weight is more useful than yield and yield based models perform

poorly overall. The sole exception to this conclusion is the B-07 herd where

results for ROC areas seem to be almost constant between all sets of attributes

and for Precision-Recall the Yield experiment comes out the best! The un-

expected bump in the B-07 herd Precision-Recall curve, seen in Figure 7.28,

suggests the B-07 herd gains more from the yield attributes than the other

herds.

100 Chapter 7. Experiment Results

7.8 Results of Application of Classifiers De-

signed to Target Skewed Data

This experiment was performed hoping to achieve the same successes on the

LIC Data as were found on the various skewed datasets in Chapter 4 when

learning a model using a classifier designed to work with skewed data. As the

LIC data is heavily skewed it makes sense that the skewed data techniques

should perform well when applied to the dairy herd data.

Under Bagging and Roughly Balanced Bagging were selected as the classifiers

to apply due to their success in Chapter 4. A range of classifier parameters

were selected to be used based on results of the Parameter Tuning Experiment

(4.3). It was expected that two or three majority class examples per minority

example would perform the best overall. All five herds worth of data and the

daily herd adjustments were used in these experiments. These experiments

predicted mating events. Standard Bagging is included in these results for

comparison. J48 was used as the base classifier in all cases.

Figure 7.29: Under Bagging 3:1 Ratio ROC graph for Application of Classifiers

Designed to Target Skewed Data Experiment (6.8)

101

Figure 7.30: Under Bagging 3:1 Ratio Precision-Recall graph for Application

of Classifiers Designed to Target Skewed Data Experiment(6.8)

Once again, both the ROC and Precision-Recall graphs are provided for the

classifier examples selected. As the graph results were all very similar between

parameter combinations only a single example of each skewed data classifier has

been provided here. The 3:1 ratio classifiers for Under Bagging and Roughly

Balanced Bagging were selected due to Under Bagging 3:1 performing well in

the overall summary. As the experiment process is unaltered at this point,

the results for Bagging Unpruned J48 shown in Figures 7.19 and 7.20 from

the Removal of Standard Deviation Differences Experiment (6.6) apply to this

experiment as well.

It can be observed in Tables 7.10 and 7.11 that there is no single parameter

combination for the skewed data classifiers that excels over all the herds when

it comes to Precision-Recall or ROC area. Although the highest values are

marked it should be noted that all the skewed classifiers got results that were

very close to the highest values for a given herd, with most within 0.01 of that

maximum value.

102 Chapter 7. Experiment Results

Figure 7.31: Roughly Balanced Bagging 3:1 Ratio ROC graph for Application

of Classifiers Designed to Target Skewed Data Experiment (6.8)

Figure 7.32: Roughly Balanced Bagging 3:1 Ratio Precision-Recall graph for

Application of Classifiers Designed to Target Skewed Data Experiment (6.8)

103

Classifier
B-06 A-06 B-07

ROC PR ROC PR ROC PR

Bagged Unpruned J48 0.8083 0.2086 0.6625 0.0176 0.8331 0.1123

Under Bagging 1:1 0.8247 0.1860 0.7084 0.0223 0.8379 0.0852

Roughly Balanced 1:1 0.8230 0.1980 0.7047 0.0233 0.8373 0.0881

Under Bagging 2:1 0.8257 0.1953 0.6971 0.0218 0.8452 0.1007

Roughly Balanced 2:1 0.8243 0.1934 0.6990 0.0223 0.8445 0.1011

Under Bagging 3:1 0.8276 0.2005 0.6930 0.0247 0.8477 0.1097

Roughly Balanced 3:1 0.8208 0.2041 0.6929 0.0208 0.8480 0.1056

Table 7.10: Summarised Results for Application of Classifiers Designed to

Target Skewed Data Experiment (6.8) - A-06, B-06 and B-07 herds

Attribute
C-07 D-07

ROC PR ROC PR

Bagged Unpruned J48 0.7115 0.1133 0.8069 0.0851

Under Bagging 1:1 0.7434 0.1142 0.8169 0.0814

Roughly Balanced 1:1 0.7373 0.1165 0.8168 0.0840

Under Bagging 2:1 0.7298 0.1148 0.8156 0.0850

Roughly Balanced 2:1 0.7301 0.1196 0.8191 0.0837

Under Bagging 3:1 0.7302 0.1119 0.8177 0.0884

Roughly Balanced 3:1 0.7291 0.1230 0.8200 0.0885

Table 7.11: Summarised Results for Application of Classifiers Designed to

Target Skewed Data Experiment (6.8) - C-07 and D-07 herds

104 Chapter 7. Experiment Results

A rather interesting observation can be made when comparing the ROC areas

for the skewed data classifiers to the standard Bagging classifier; all the skewed

classifiers out perform standard Bagging in terms of ROC area. However,

when comparing Precision-Recall areas, it is clear that standard Bagging is

ahead. Bagging manages to get the top value for Precision-Recall on the B-06

and B-07 herds and is always very close to the skewed classifiers in terms of

Precision-Recall area for the other herds.

7.9 Investigation into the Effectiveness of Clas-

sifiers on the B-06 Herd

With the B-06 herd outperforming the other herds by a large margin in all

experiments, especially in terms of Precision-Recall area, it seemed important

to conduct an investigation and find out exactly why classifiers could predict

heat so well for this herd.

The first hint to what might explain the difference in results lay in the results

for the Comparing Effectiveness of Attributes Experiment (6.7). The Rank

attribute was clearly shown to be necessary to bring the Precision-Recall area

for the B-06 herd above the values for the other herds.

Having identified the source of the improved results in the B-06 herd it was

then a matter of inspecting the database tables for the rank information. The

data rows were grouped by cow and sorted from earliest to latest milking date

to put all milking periods in chronological order. It was immediately obvious

that the source of the higher performance lay in what appeared to be some

change in the milking procedure when cows were identified as ready to be

inseminated.

The procedure, which appeared to be present in a large number of cases,

seemed to involve cows being milked two or three hours later in the afternoon

105

of a day they were identified as being in heat. Additionally, the same cows

would be milked about two or three hours later during the morning milking

following the day they had been identified as being in heat. This information

would have been seen by all classifiers in the form of large rank values as the

attribute generation step would assume all of the milking had occurred as part

of a single milking period. Thus, the vast majority of cows in the B-06 herd

that had mating events would appear to have large afternoon rank values for

the day it was recorded.

Typically having a powerful predictor like the milking times discovered here

would be a positive thing in a machine learning problem. However, it was

initially suspected, and then later confirmed (with expertise from LIC) that

this milking procedure was a reaction by the farmer to identifying heat himself.

As a result, it was not effective to use this information to identify heat in the

first place as it would not exist!

106 Chapter 7. Experiment Results

Chapter 8

Conclusions

It was identified in Chapter 3 that Unskewed Sampling and SMOTE were

both outperformed by the iteratively applied Bagging techniques of the stan-

dard Bagging, Roughly Balanced Bagging and Under Bagging classifiers. In

the case of SMOTE this is even true while taking a similar time to train as the

iterative classifiers. However, it is worth noting that there may be room for

optimisations in the SMOTE code to improve performance and that it is pos-

sible SMOTE could outperform Bagging classifiers in some problem domain

that was not explored as part of this investigation.

In contrast to the results for Unskewed Sampling and SMOTE were the re-

sults for the Bagging based skewed data approaches. The Roughly Balanced

Bagging and Under Bagging techniques, both based on the Bagging iteratively

applied classification technique, achieved relatively similar results to one an-

other in the Chapter 3 experiments. What is most useful is that these classifiers

can achieve, on skewed datasets, at least equal and often better performance

than the standard Bagging classifier with a considerably lower training time.

This lower training time is only true when parameters are chosen that will cre-

ate a suitable ratio of majority to minority examples. Ratios of two or three

majority examples for each minority example seemed to give the best results.

108 Chapter 8. Conclusions

The data provided by LIC was skewed data; just like the datasets explored in

Chapter 3. It seemed reasonable to use the Roughly Balanced Bagging and

Under Bagging techniques that were successful on the skewed datasets used in

Chapter 3 on the LIC data as well in hopes of getting similar successes. The

Application of Classifiers Designed to Target Skewed Data Experiment (6.8)

explored this idea. While there were positive results in terms of ROC areas

when applying the skewed data classifiers, with the added Precision-Recall

measure available on the LIC data it was shown that Roughly Balanced Bag-

ging and Under Bagging did not make a significant improvement over standard

Bagging when comparisons between Precision-Recall areas were made.

Throughout all of the experiments performed on the LIC data the B-06 herd

outperformed all the other herds in terms of ROC area and, to an even greater

degree, outperformed the other herds in terms of Precision-Recall area. It

was disappointing to find, when the Investigation into the Effectiveness of

Classifiers on the B-06 Herd (7.9) was completed, the reason the herd had

been getting such positive results was because heat had already been identified

by the farmer. Because the farmer made changes to the milking order of the

cows, by milking the cows later, classifiers were able to easily predict which

cows were in heat; this is not helpful for automating the prediction of heat

though.

While it is certainly possible that other procedural differences could exist, sim-

ilar to changes made to the B-06 herd where the milking order for cows identi-

fied as being in heat, the results of the Comparing Effectiveness of Attributes

Experiment (6.7) showed how much each attribute source was contributing

to a classification. With one exception, the B-07 herd, the attributes based

on the rank attribute source appeared to be the most powerful when it came

to predicting heat. It was also probable that the weight attribute source con-

tributed more than the yield attribute source, but there is less data supporting

this as complete weight data was not available for the C-07 herd and complete

109

yield information was not available for the D-07 herd.

Despite the continually refined experimental process for the LIC data, industry

changing results were never achieved. Results looked promising in terms of

ROC area at times, but when looking at the Precision-Recall curves it was

clear there was little chance of predicting heat accurately enough to be useful.

This does not mean the process refinement was not effective; it was simply

not good enough to make the results usable in a real application. The reality

may be that using rank, weight and yield information is simply not sufficient to

predict when cows are in heat. LIC has made it clear there is still advancement

occurring in the area of dairy farming automation and that as technologies are

disseminated to farms it is likely more data will be recorded on a daily basis.

Perhaps, as more information is made available for each milking, detection of

heat by a human expert could be replaced by machine learning methods at

some time in the future.

Another explanation, or at least one that may partially explain the disappoint-

ing results, is that the data provided by LIC, for whatever reason, had some

obvious flaws. These flaws came to light when performing outlier detection

and replacement and consisted of a large number of missing values and outlier

data. While the steps performed to remove outliers in Section 5.4 made it pos-

sible to use machine learning techniques on the data, it is certainly possible

that attributes that would have been strong predictors of heat were compro-

mised by the state of the data provided. There are many possible reasons for

the data being incomplete or containing outlier values; possible explanations

include: inaccurate data being recorded due to faulty equipment, a human

error such as forgetting to activate a piece of recording equipment or even,

especially in the case of scales, more than one animal using the equipment at

the same time.

110 Chapter 8. Conclusions

While it is true that this work has shown Machine Learning, in the forms it was

applied, to be insufficient to automate the detection of oestrus in dairy cows,

it is unreasonable to say the work added nothing to the discipline. The first,

and perhaps the most significant fact to keep in mind, is that there was only

a very small amount of herd data available and over a very limited number of

attribute sources. An investigation into automating the detection of oestrus

could still be very successful on other dairy cows; perhaps in a more controlled

environment. Also, if it were possible to get additional data values that were

recorded on a daily basis there would be room for further Machine Learning

applications. Additional values, that could be measured daily, might include

milk solid levels or the temperature of milk at milking time.

Aside from the dairy specific section of this investigation, there is much room

for general work in the area of skewed data problems. It would be very bene-

ficial to the discipline to have a broad comparison of algorithms in the area of

skewed problems; a benchmarking experiment scaled up considerably from the

skewed data investigation undertaken as part of this work. It would be impor-

tant to consider many algorithms, including the successful Roughly Balanced

Bagging and Under Bagging (developed during this investigation) classifiers

as part of such a comparison.

Given the work conducted by Davis and Goadrich[22] supports the use of

Precision-Recall curves on skewed data, and that this investigation has shown

Precision-Recall curve areas to give a interesting additional measure for com-

paring classifiers, it would be a beneficial to see the use of Precision-Recall

curves increase within Machine Learning. Additionally, if a large scale skewed

data classifier comparison investigation was performed, it would be a pos-

itive addition to such an investigation to show results as Precision-Recall

curves/areas in addition to ROC curves/areas.

References

[1] L. Saitta and F. Neri. Learning in the Real World. Machine Learning,

30(2):133–163, 1998.

[2] New Zealand Ministry of Foreign Affairs and Trade. New Zealand External

Trade Statistics. Statistics New Zealand, June 2007.

[3] Livestock Improvement Corporation Limited. New Zealand Dairy Statis-

tics 2007-2008. Livestock Improvement Corporation Limited, 2008.

[4] R.H. Foote. Estrus Detection and Estrus Detection Aids. Journal of

Dairy Science, 58(2):248, 1975.

[5] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, 2nd edition, 2005.

[6] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[7] George H.J. and P. Langley. Estimating Continuous Distributions in

Bayesian Classifiers. In Eleventh Conference on Uncertainty in Artificial

Intelligence, pages 338–345. Morgan Kaufmann, 1995.

[8] M. Bayes. An Essay towards Solving a Problem in the Doctrine of

Chances. Communicated by Mr. Price, in a letter to John Canton. Philo-

sophical Transactions, 53:370–418, 1763.

[9] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learn-

ing, 3(4):261–283, 1989.

[10] P. Langley, W. Iba, and K. Thompson. An Analysis of Bayesian Clas-

sifiers. In National Conference on Artificial Intelligence, pages 223–228,

1992.

[11] G.I. Webb, J.R. Boughton, and Z. Wang. Not So Naive Bayes: Aggregat-

ing One-Dependence Estimators. Machine Learning, 58(1):5–24, 2005.

[12] S. le Cessie and J.C. van Houwelingen. Ridge Estimators in Logistic

Regression. Applied Statistics, 41(1):191–201, 1992.

112 References

[13] P.F. Verhulst. Notice sur la loi que la population suit dans son accroisse-

ment. Correspondance Mathématique et Physique, 10:113–121, 1838.

[14] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A Training Algorithm for

Optimal Margin Classifiers. Computational Learning Theory, pages 144–

152, 1992.

[15] J.C. Platt. Sequential Minimal Optimization: A Fast Algorithm for Train-

ing Support Vector Machines. Advances in Kernel Methods-Support Vec-

tor Learning, pages 185–208, 1999.

[16] M.D. Buhmann. Radial Basis Functions: Theory and Implementations.

Cambridge University Press, July 2003.

[17] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[18] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[19] Y. Freund and R.E. Schapire. Experiments with a New Boosting Algo-

rithm. In Proceedings of the 13th International Conference on Machine

Learning, pages 148–156. Morgan Kaufmann, 1996.

[20] K.A. Spackman. Signal Detection Theory: Valuable Tools for Evaluating

Inductive Learning. In Proceedings of the 6th International Workshop on

Machine Learning, pages 160–163. Morgan Kaufmann, 1989.

[21] A.P. Bradley. The Use of the Area Under the ROC Curve in the Evalu-

ation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145–

1159, 1997.

[22] J. Davis and M. Goadrich. The Relationship Between Precision-Recall

and ROC Curves. In Proceedings of the 23rd International Conference on

Machine Learning, pages 233–240. Association for Computing Machinery,

2006.

[23] R.J. McQueen, S.R. Garner, C.G. Nevill-Manning, and I.H. Witten. Ap-

plying Machine Learning to Agricultural Data. Computers and Electronics

in Agriculture, 12(4):275–293, 1995.

[24] S.R. Garner, S.J. Cunningham, G. Holmes, C.G. Nevill-Manning, and

I.H. Witten. Applying a Machine Learning Workbench: Experience with

Agricultural Databases. In Practice Workshop of the 12th International

Conference on Machine Learning, 1995.

113

[25] R.S. Mitchell, R.A. Sherlock, and L.A. Smith. An Investigation Into the

use of Machine Learning for Determining Oestrus in Cows. Computers

and Electronics in Agriculture, 15(3):195–213, 1996.

[26] N. Japkowicz. The Class Imbalance Problem: Significance and Strate-

gies. In Proceedings of the 2000 International Conference on Artificial

Intelligence, volume 1, pages 111–117, 2000.

[27] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Re-

ducing Misclassification Costs. In Proceedings of the 11th International

Conference on Machine Learning, pages 217–225, 1994.

[28] P. Domingos. MetaCost: A General Method for Making Classifiers Cost-

Sensitive. In Proceedings of the 5th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 155–164. Associa-

tion for Computing Machinery, 1999.

[29] M. Kubat and S. Matwin. Addressing the Curse of Imbalanced Training

Sets: One-Sided Selection. In Proceedings of the 14th International Con-

ference on Machine Learning, pages 179–186. Morgan Kaufmann, 1997.

[30] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE:

Synthetic Minority Over-sampling Technique. Journal of Artificial Intel-

ligence Research, 16(3):321–357, 2002.

[31] S. Hido and H. Kashima. Roughly Balanced Bagging for Imbalanced Data.

In Proceedings of the SIAM International Conference on Data Mining,

pages 143–152, 2008.

[32] UCI Machine Learning Data Repository.

http://ics.uci.edu/~mlearn/MLRepository.html.

[33] IEEE International Conference on Data Mining.

http://cs.uu.nl/groups/ADA/icdm08cup/data.html.

[34] EMS SQL Manager for InterBase/Firebird.

http://sqlmanager.net/en/products/ibfb/manager.

[35] D. Dougherty and A. Robbins. sed & awk. O’Reilly Media, 2 edition,

1997.

