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A Single Mechanism Can Explain the Speed Tuning
Properties of MT and V1 Complex Neurons

John A. Perrone
Department of Psychology, The University of Waikato, Hamilton 3240, New Zealand

A recent study by Priebe et al. (2006) has shown that a small proportion (27%) of primate directionally selective, complex V1 neurons are
tuned for the speed of image motion. In this study, I show that the weighted intersection mechanism (WIM) model, which was previously
proposed to explain speed tuning in middle temporal neurons, can also explain the tuning found in complex V1 neurons. With the
addition of a contrast gain mechanism, this model is able to replicate the effects of contrast on V1 speed tuning, a phenomenon that was
recently discovered by Priebe et al. (2006). The WIM model simulations also indicate that V1 neuron spatiotemporal frequency response
maps may be asymmetrical in shape and hence poorly characterized by the symmetrical two-dimensional Gaussian fitting function used
by Priebe et al. (2006) to classify their cells. Therefore, the actual proportion of speed tuning among directional complex V1 cells may be
higher than the 27% estimate suggested by these authors.
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Introduction
It has been a long-standing puzzle in the biological and visual
sciences as to how local visual motion is encoded by the nervous
system. One way of probing the motion processing capabilities of
visual neurons is to test them with a range of spatial and temporal
frequencies using moving sine-wave gratings. This technique can
be used to map out the spatiotemporal frequency (STF) response
profiles of neurons. This has been done with middle temporal
(MT) neurons (Perrone and Thiele, 2001; Priebe et al., 2003), and
recently Priebe et al. (2006) applied this technique to monkey V1
neurons. They found that some directionally selective, complex
V1 neurons are “speed tuned.”

Previous studies of the motion sensitivities of visual neurons
classified a cell as being speed tuned if it responded selectively to
a particular speed when tested with a “broadband” stimulus, such
as a moving bar or edge. Using this criterion, it was found that the
majority of MT cells are speed tuned (Maunsell and Van Essen,
1983). When the study of neural motion processing was extended
to the STF (Fourier) domain (Perrone and Thiele, 2001; Priebe et
al., 2003), the definition of speed tuning was made more specific.
Hence, for a neuron to be truly speed tuned, the spatial frequency
(sf) and temporal frequency (tf) that stimulate it the most should
be related by the following equation: tf � v � sf, where v is a
constant (equal to the optimum grating speed). When plotted in
the form of an STF tuning surface (see Fig. 2b), the output of a
speed-tuned neuron has a peak of maximum activity that forms
an oriented ridge with slope v. A line drawn through the peak

regions passes through the origin when plotted on linear axes
(Perrone and Thiele, 2001).

Priebe et al. (2006) examined the STF response maps of V1
neurons under a range of stimulus conditions and developed a
“speed tuning index” (�), which was designed to quantify the
degree of speed tuning present in their sample of V1 cells (see
Materials and Methods). They discovered that a shift from high-
to low-contrast stimuli often reduced the degree of speed tuning
in a particular neuron. The STF response maps of the neurons
underwent a systematic change; STF maps that were not speed
tuned (separable) under low-contrast conditions became more
speed tuned (inseparable) at higher contrast levels.

Priebe et al. (2006) suggested that the STF response map
changes they observed in their V1 and MT neurons (Priebe et al.,
2003) could be a result of some unspecified mechanism that al-
tered the contrast gain in various parts of the response field of the
neurons. We have previously proposed a model, the weighted
intersection mechanism (WIM), that outlines how separable,
“non-speed tuned” STF response fields can be transformed into
inseparable speed-tuned fields (Perrone and Thiele, 2002; Per-
rone, 2004, 2005). In this study, I will show that this model is able
to replicate key aspects of the V1 speed-tuning data of Priebe et al.
(2006).

Materials and Methods
The WIM model. The main details of the model were described previously
(Perrone and Thiele, 2002; Perrone, 2004, 2005). Features of the WIM
model used in the simulations reported in this study that differ from the
published version are mainly described here. We have shown that the
oriented STF response surfaces found in MT neurons can be generated
from two V1 neurons, one with low-pass temporal frequency tuning (S)
and another with bandpass temporal frequency tuning (T) (Perrone and
Thiele, 2002). In the time domain, the S type has a unimodal temporal
response profile that extends for the duration of the stimulus (sustained),
and the T type has a biphasic profile with the response primarily at
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stimulus onset and offset (transient). The spatiotemporal energy (Adel-
son and Bergen, 1985; Watson and Ahumada, 1985) outputs from the S
and T neurons are combined using the following equation:

WIM�sf, tf � �
log��T � S � ��

�log �T � log S� � �
. (1)

The overall S and T responses are determined by the multiplicative com-
bination of their separate temporal and spatial frequency sensitivity
functions (see below, Spatial frequency tuning). The � and � parameters
are constants that control the overall tuning of the WIM sensor (Perrone
and Thiele, 2002). The � parameter can be used to control the range of
spatial frequencies that the sensor will respond to, and the � parameter is
used to set the gain and speed tuning bandwidth of the sensor. The
optimum speed tuning for the sensor can be controlled using � (Perrone,
2005). For Figure 1 simulations, the values of �, �, and � were 0.1, 0.7,
and 1.0, respectively. The peak spatial frequency tuning of the S neuron
was set at 2.77 cycles/degree (c/deg). For Figure 2 and 3 simulations, the
peak spatial frequency tuning of the S neuron was set to 2.0 c/deg, and �,
�, and � were set to 0.5, 2.4, and 0.5 (Fig. 2) and 1.0, 1.8, and 1.0 (Fig. 3),
respectively.

Temporal frequency tuning. In previous versions of the model, the
low-pass S-neuron temporal frequency tuning function was based on a
function derived by Watson (1986). A simpler function, based on a
Gaussian, was used in the simulations reported in this study. In the
frequency domain, the equation used was as follows: f̃sust (tf ) �
exp(�0.5tf 2� 2)cos(2	tf
) � exp(�0.5tf 2� 2)sin(2	tf
)i, where tf is
the temporal frequency measured in hertz and i � ��1. The 
 term
(phase) controls the temporal delay (lag) of the response, and � controls
the spread of the Gaussian.

The T-neuron temporal frequency tuning function is bandpass in
shape and is given by the following equation: f̃trans(tf ) � k f̃sust(tf )tfi.
The magnitudes of both of these functions are good matches (Perrone,
2005) to the temporal frequency tuning functions often observed in V1
neurons (Foster et al., 1985; Hawken et al., 1996). For all of the simula-
tions reported here, � � 0.06, 
 � 0.07, and k � 0.25.

Spatial frequency tuning. The spatial frequency tuning functions used
in the WIM model are based on the difference of difference of Gaussians
with separation function used by Hawken and Parker (1987) to fit their
V1 spatial frequency tuning data (Perrone, 2004). The T-neuron spatial
frequency tuning function, ũtrans(sf ), differs in a special way from the
S-neuron spatial frequency function, ũsust(sf ), so that when they are
combined with the S and T temporal frequency tuning functions, a WIM
sensor is generated that has an oriented (inseparable) STF response sur-
face (Perrone and Thiele, 2002). For all of the model simulations in this
study, the sustained and transient spatiotemporal energy (S and T in Eq.
1) was determined from the combined magnitudes of the spatial and
temporal frequency functions [i.e., S(sf, tf ) � �ũsust(sf )� � � f̃sust(tf )� and
T(sf, tf ) � �ũtrans(sf )� � � f̃trans(tf )�].

Contrast sensitivity. Previously published versions of the WIM model
assumed that the contrast of the stimulus was 100%, and no mechanism
was included to allow for any effects of contrast. For the simulations in
this study, an additional component was added to the model so that the
effect of stimulus contrast could be assessed. The gain of the S and T input
neurons (see Fig. 2a) was controlled using a modified Naka-Rushton
equation: gain � pc/(c � s), where c is the contrast of the grating, p is the
peak response, and s is the semi-saturation constant (Thompson et al.,
2006). For Figure 1–3 simulations, the p and s values used in the gain
equation for the S neuron were 2.6 and 2.0, respectively. For the T neu-
ron, p and s were set to 1.0 and 0.1, respectively. The s values are all in the
range of the physiologically determined estimates for the average semi-
saturation constants of parvocellular and magnocellular cells (Kaplan
and Shapley, 1986) and for V1 neurons (Sclar et al., 1990). Similar con-
trast sensitivity functions to those shown in Figure 2a have been used
successfully to model human perceptual effects of contrast on speed
perception (Thompson et al., 2006).

Fitting functions and STF sampling. The model STF response surfaces
were fit using the same function adopted by Priebe et al. (2006; their Eq.
3). It is a modified two-dimensional Gaussian function in which the

preference for temporal frequency can be made to depend on the stimu-
lus spatial frequency. The WIM model outputs were fit with this function
using the “nlinfit” function in MatLab (MathWorks, Cambridge, MA).
The main estimated parameter of the fitted function is � (the exponent of
a power-law relationship between preferred temporal frequency and the
stimulus spatial frequency). The value of � can range from 0 (no speed
tuning) to 1.0 (“perfect” speed tuning). A neuron with no speed tuning
has STF response surface contours with major axes that are aligned with
the spatial- and temporal-frequency axes. When plotted on linear axes,
the major axis of the peak STF response-surface contour is vertical, and
this type of STF surface is commonly described as being “separable.”
Under the rating system of Priebe et al. (2006), a neuron with perfect
speed tuning (� � 1) has a tilted STF response map (inseparable), and
each spatial frequency is tuned to the same speed (form invariance). This
latter requirement is an important part of the definition of speed tuning,
because a neuron can have an inseparable (tilted) STF response map and
still not be speed tuned. For the simulations shown in Figure 1, the spatial
frequency was sampled at 1, 2, 4, and 8 c/deg. The temporal frequency
was sampled at 0.25, 0.5, 1, 2, 4, 8, 16, and 32 Hz. This was designed to
match the Log2 sampling of frequency space used by Priebe et al. (2006).
For Figure 2, b and c, the spatial frequency ranged from 0 to 4 c/deg in
0.25 c/deg steps. The temporal frequency ranged from 0 to 20 Hz in 0.25
Hz steps. For Figure 3a, the spatial frequency ranged from 0.25 to 8 c/deg
in 0.25 c/deg steps, and the temporal frequency ranged from 0.25 to 32
Hz in 0.25 Hz steps.

Contrast gain. To simulate the contrast gain plots of Priebe et al.
(2006), we followed their convention of taking the ratio (high contrast/
low contrast) of the two response maps. The resulting contrast gain map
is divided into quadrants with the origin corresponding to the peak of the
low-contrast map. In Figure 1c, the origin lies at 2.0 c/deg and 2.0 Hz.
Following Priebe et al. (2006), the mean contrast gain is found for each
quadrant, and these values are normalized by the mean contrast gain
across the entire response field.

Results
V1 STF response surfaces and the effect of contrast
The motion sensors in the WIM model have STF response sur-
faces that closely match the maps found by Priebe et al. (2006) for
their directional, complex V1 neurons (Fig. 1a). The different
types of STF response surfaces (separable to inseparable) appar-
ent in the Priebe et al. (2006) data set were easily replicated by
varying the contrast of the stimulus, the peak spatial frequency
tuning of the WIM sensors, and/or their optimum speed tuning.

Priebe et al. (2006) found that when they reduced the contrast
of their grating stimuli from 32 to 8%, the STF response surface
for a particular neuron became less oriented (more separable)
with a concomitant downward shift in the temporal frequency
value of the peak. They also found that “contrast gain” contour
plots that show the ratio of the two fields (32% contrast/8% con-
trast) tended to have peak values in the top right and bottom left
part of the maps. The WIM model is able to replicate both of these
results (Fig. 1). The values of � for Figure 1, a and b, response
maps are 0.42 and 0.1, respectively, which is an exact match to the
mean values found by Priebe et al. (2006) for their sample of
complex V1 neurons.

For Figure 1c, the mean normalized contrast gain values (see
Materials and Methods) for the northeast and southwest quad-
rants were 1.61 and 4.12, respectively. For the northwest and
southeast quadrants, the values were 0.02 and 0.67, respectively.
The result of larger values in the northeast and southwest quad-
rants is consistent with the trend found by Priebe et al. (2006)
over their sample of complex V1 cells.

Origin of the contrast effects
The WIM model also offers an explanation for why Priebe et al.
(2006) obtained their contrast effects. A reduction in contrast
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changes the relative magnitude of the S and T outputs (Fig. 2a),
which alters the value of � in Equation 1. This drives the sensor to
a lower optimum speed (Perrone, 2005), and so the STF response
surface for 8% contrast has a peak with a temporal frequency
value that is shifted downward relative to the 32% contrast con-
dition (Fig. 1a,b). This explains one of the trends (a downward
shifted peak) noticed by Priebe et al. (2006) in their V1 data.

In addition, as the size of the S and T energy outputs drop (as
a result of decreasing contrast), the WIM output tends toward
log(�T � S � �)/�. At high contrast levels, this only happens
when �T � S (i.e., when the relationship tf � v � sf holds) (Fig.
2b). However, at low contrast levels, the WIM output tends to-
ward log(�T � S � �)/� for cases in which tf � v � sf, because
both S and T are very small and thus abs(log�T � logS) � 0 (see
Eq. 1). An STF response map for very low (4%) contrast inputs
[WIM(sf,tf) � log(�T � S � �)/�] is shown in Figure 2c. It is
approximately separable (Perrone and Thiele, 2002), and it ac-
counts for the shift noted by Priebe et al. (2006) toward separable
response maps for their low-contrast condition.

Detecting speed tuning in STF response maps
While performing the model simulations, we were often sur-
prised at the low values of � that were generated for some STF
response maps that we knew to be definitely speed tuned. To
investigate this more fully, we tested the WIM sensors with a
greater range of spatial and temporal frequencies. Figure 3a
shows the STF response map for a WIM sensor tuned to 2°/s and
tested at 32% contrast. It has been plotted on log axes using the
convention adopted by Priebe et al. (2006). However, the spatial
and temporal frequencies tested were in linear steps (0.25 c/deg,
0.25 Hz), and the shading has been removed to better visualize
the structure of the maps.

There is a ridge of peak activity in the central part of the map
that clearly lies along the 2°/s iso-speed line (Fig. 3a, dashed line).
The best-fitting, two-dimensional Gaussian function map (see
Materials and Methods) is shown in Figure 3b. The Priebe et al.
(2006) index, � for the Figure 3a map is only 0.12 (i.e., the sensor
is non-speed tuned according to their criterion). The fitting func-

tion used by Priebe et al. (2006) is not iso-
lating the speed-tuned central region of
the STF response map of the sensor. The
reason for this is that the fitting function is
symmetrical in log–log space. The WIM
sensor map is not symmetrical; there are
regions away from the tilted central por-
tion that are almost separable (Fig. 3a, top
and bottom). To accommodate these re-
gions, the fitting function ends up rotated
counterclockwise and closer to the
vertical.

The problem with the fits is also appar-
ent in Figure 3c, in which the output of the
WIM sensor is plotted against the speed of
the moving grating for three different spa-
tial frequencies (1, 2, and 8 c/deg). Each
spatial frequency is tuned to the same
speed (2°/s), and the peaks of the curves
(Fig. 3c, solid lines) all line up at this speed.
One would therefore expect this sensor to
have a � of 1.0 (rather than 0.12). It is ap-
parent from the misalignment between
the model data curves and the best-fitting
Gaussian function curves (Fig. 3c, dashed

lines) that the asymmetry in the data and the peaked nature of the
data curves are causing problems for the fitting procedure.

This analysis shows that the particular fitting function
adopted by Priebe et al. (2006) is unsuited for some STF response
surfaces. The tests also indicate that the value of the � index used
by Priebe et al. (2006) is likely to be very sensitive to the range of
the spatial and temporal frequencies sampled. The size of � is
expected to be influenced by just how much of the asymmetrical
part of the response map is included in the analysis. This predic-
tion was verified experimentally by trying different sampling
schemes for the test spatial and temporal frequencies. Log2 sam-
pling over the same range (see Materials and Methods) increased
� to 0.36 (from 0.12 for linear sampling). When linear sampling
was used and the highest temporal frequency was decreased from
32 to 16 Hz, the value of � increased to 0.72. With less of the
separable region at the top of the map (Fig. 3a), the fitting func-
tion showed less of a shift to the vertical.

All of these results indicate that the � speed tuning index
adopted by Priebe et al. (2006) is very sensitive to the type of
sampling scheme used when the STF response map is not two-
dimensional Gaussian in form. We have already shown that MT
neuron STF maps can be well fit using the WIM model (Perrone
and Thiele, 2002), and so some MT maps are likely to have asym-
metries similar to those apparent in Figure 3a. There is also a
possibility that some V1 neuron STF maps have similar asymme-
tries. As long as that possibility exists, the statistical technique of
Priebe et al. (2006) cannot be considered a reliable method for
assessing the extent of speed tuning in V1 (or MT).

Discussion
Evidence for the WIM model
The discovery of speed-tuned neurons in V1 by Priebe et al.
(2006) is a significant breakthrough and goes a long way toward
revealing the transformations that occur at different stages of the
visual system. The close match between the Priebe et al. (2006)
data and the model output supports the idea that a WIM-like
process (Perrone and Thiele, 2002) may be at work within V1
itself. The high- to low-contrast stimuli results of Priebe et al.

Figure 1. STF response maps for a WIM model sensor tuned to 1.4°/s. The model details can be found in Materials and Methods.
a, The response field shows clear speed tuning. The contrast is 32%. b, The map shows less speed tuning. The contrast is 8%. c,
Contrast gain modulation map obtained by dividing map a by map b. The dashed lines indicate the peak of the low-contrast map.
The largest gain increases occur in the top right and bottom left quadrants, consistent with the data of Priebe et al. (2006) from
directional, complex V1 neurons.
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(2006) (replicated in Fig. 1) suggest the involvement of at least
two classes of neurons in the development of speed-tuned
neurons.

The WIM model simulations show that the speed-tuned V1
neurons detected by Priebe et al. (2006) could arise from the
combination of two separate classes of neurons (also within V1):
nondirectional neurons with low-pass temporal frequency tun-
ing and directional neurons with bandpass temporal frequency
tuning. The simulations also suggest that the former class has
contrast sensitivity functions that match those found in
parvocellular-projecting ganglion cells (Kaplan and Shapley,
1986). The latter class (transient type) has a saturating contrast
sensitivity function (Fig. 2a) similar to that found in
magnocellular-projecting ganglion cells (Kaplan and Shapley,
1986).

These two neuron classes (both with separable STF tuning)
could act together to form a separate category of speed-tuned
neurons with inseparable STF tuning (Perrone and Thiele, 2002).
We would expect all of the neurons that are formed from the
combination of these two classes (using something like the WIM

model rule given by Eq. 1) to be speed tuned. Our hypothesis that
there is an interaction between parvo- and magno-type neurons
within V1 is not new. For example, De Valois and Cottaris (1998)
looked at V1 neuron properties in the space–time domain (as
apposed to the frequency domain considered here) and mapped
out the spatiotemporal receptive fields of V1 neurons using
flashed bars. They demonstrated that spatiotemporal-oriented
cells (directional cells equivalent to the T units in the WIM
model) could be constructed from subunits with sustained
(parvo-like) and transient (magno-like) temporal frequency tun-
ing properties. In addition to the neurons considered by De Va-
lois and Cottaris (1998), the WIM model makes use of another
broad class of V1 neurons that are nondirectional (i.e., lacking
spatiotemporal orientation) and that have parvo-like (low-pass)
temporal frequency tuning. This latter class would be the equiv-
alent to the S units of the model.

Figure 2. The effects of image contrast on speed tuning. a, Contrast sensitivity curves used in
the WIM model for the S and T V1 neurons. The T/S ratio � 2.1 for the 32% contrast condition
and 4.4 for the 8% condition. This change in the T/S ratio results in a sensor tuned to slower
speeds (Perrone, 2005). b, STF response map for a WIM sensor tuned to 4°/s (32% contrast). The
solid diagonal line shows the points where tf � 4 � sf. c, Response map for the same sensor,
but at very low (4%) contrast. It is approximately separable (the S and T neurons have slightly
different peak spatial frequency values), and it lacks speed tuning. The map has been normal-
ized to have a peak of 1.0 so that the structure is more readily apparent. Figure 3. Problems with the fitting function of Priebe et al. (2006). a, STF response map for

a WIM sensor tuned to 2°/s. The diagonal dashed line shows combinations of spatial and tem-
poral frequencies that produce 2°/s. b, Best-fitting two-dimensional Gaussian. c, Speed-tuning
curves (solid lines) for three spatial frequencies (4 c/deg overlaps the 1 c/deg curve and has been
omitted for clarity). The WIM sensor is speed tuned (the peaks line up vertically), but the fitted
Gaussian function (dashed lines) does not correctly register the tuning.
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The amount of speed tuning in V1 and MT
The WIM model simulations reveal that it is difficult to correctly
measure the STF response surfaces of neurons; inadequate sam-
pling of the frequency space will often fail to reveal the true struc-
ture of the response maps, and measures such as the � statistic
used by Priebe et al. (2006) do not accurately capture the actual
underlying speed tuning. The speed-tuning curves of MT neu-
rons obtained with moving bars are quite peaked with concave
regions on either side of the peak (Maunsell and Van Essen, 1983;
Lagae et al., 1993). The WIM model sensors were designed to
have similar “peaky” speed-tuning curves [Perrone and Thiele
(2002), their Fig. 5]. As shown in the Figure 3 simulations, loga-
rithmic Gaussians do a poor job of fitting such peaked functions
and tend to produce an underestimate of the actual amount of
speed tuning.

This may account for some of the controversy that has arisen
over the extent of speed tuning in primate MT (Perrone and
Thiele, 2001; Priebe et al., 2003) and in the Pigeon Accessory
Optic System (Crowder et al., 2003; Winship et al., 2006). The
simulations reported in this study raise the possibility that the
estimates for the proportion of speed-tuned cells in V1 (Priebe et
al., 2006) and MT (Priebe et al., 2003) are likely to be on the
conservative side; speed tuning may be more prevalent in these
areas than some of the current data suggest.
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