Correspondence to:
Professor B K Nicholson,
Chemistry Department,
University of Waikato,
Private Bag 3105, Hamilton 3240,
New Zealand.
Email: b.nicholson@waikato.ac.nz
Fax: 6478384219
Phone: 6478562889
(Chloromethyl)pentacarbonylmanganese(I); a crystal structure with a noncrystallographic centre of symmetry.

Brian K Nicholson*a ${ }^{\text {a }}$, Scott McIndoe ${ }^{\text {b }}$, Dore Augusto Clemente ${ }^{\mathrm{c}}$, and Ward T.
Robinson ${ }^{\text {d }}$
${ }^{a}$ Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand.
${ }^{b}$ Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, V8W 3V6, Canada.
${ }^{c}$ Department of Materials and Natural Resources, Applied Chemistry Division, University of Trieste at Pordenone, Via Prasecco 31A, 33170 Pordenone, Italy.
${ }^{d}$ Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch.

Running title: (Chloromethyl)pentacarbonylmanganese(I)

Abstract

There are two molecules in the asymmetric unit of the $\mathrm{P}_{2} / \mathrm{c}$ unit cell $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$, the first halomethyl complex of manganese to be structurally determined. The molecules are crystallographically independent, despite an apparent local centre of symmetry. The average bond parameters include $\mathrm{Mn}^{-\mathrm{C}_{\text {alkyl }}} 2.128$ (8) \AA, C-Cl 1.811(8) \AA and $\mathrm{Mn}-\mathrm{C}-\mathrm{Cl} 116.7(4)^{\circ}$.

Keywords: Chloromethyl, manganese carbonyl, crystal structure, noncrystallographic symmetry

Introduction.

Haloalkyl complexes of transition metals $\mathrm{ClCH}_{2} \mathrm{ML}_{\mathrm{n}}$ are useful in the synthesis of other derivatives and are of interest as substrates for α-elimination of CH_{2} fragments, and for preparations of methylene compounds [1]. Structures of ClCH_{2} derivatives of chromium [2] iron [3] cobalt [4] and zinc [5] have been reported for the 3d elements, but none previously for manganese. Only four earlier X-ray structures of ClCH_{2} derivatives of metal carbonyls have appeared, namely $\mathrm{ClCH}_{2} \mathrm{Co}(\mathrm{CO})_{3} \mathrm{PPh}_{3}[4 \mathrm{a}], \mathrm{ClCH}_{2} \mathrm{CoCp}(\mathrm{CO}) \mathrm{Cl}[4 \mathrm{~b}], \mathrm{ClCH}_{2} \mathrm{FeCl}(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}[3]$ and $\mathrm{ClCH}_{2} \mathrm{IrCp}^{*}(\mathrm{CO})_{2}[6]$.

Experimental.

Preparation: Triethanolamine ($0.34 \mathrm{~g}, 2.3 \mathrm{mmol}$) and triethylamine (ca 1 mL , excess) were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ dichloromethane solution $(15 \mathrm{~mL})$ of $\mathrm{Cl}_{3} \mathrm{SiMn}(\mathrm{CO})_{5}(0.75 \mathrm{~g}, 2.27 \mathrm{mmol})$. The mixture was allowed to warm to room temperature and stirred for 18 h . The solvent was evaporated quickly under vacuum, and the residue was extracted with diethylether. The solvent was removed from the
filtered extract and the residue sublimed without heating, under a static vacuum, on to a cold finger. Transparent, well-formed crystals were produced and identified by the X-ray structure determination as $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}(\mathbf{1})(0.036 \mathrm{~g}, 7 \%)$. Infrared spectrum: $v(\mathrm{CO})$ (hexane, $\left.\mathrm{cm}^{-1}\right) 2120 \mathrm{w}, 2024 \mathrm{~s}, \mathrm{br}, 2001 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.58$ $\left(\mathrm{CH}_{2}\right)$.

Structure determination: Suitable crystals of $\mathbf{1}$ were obtained by sealing a small amount of sample in an evacuated glass ampoule (ca 0.5 mL) and allowing crystals to grow by sublimation - body heat was sufficient to cause the crystals to sublime from one end of the ampoule to the other. Crystal data are summarised in Table 1. Data were collected on a Siemens P4 diffractometer and processed using standard software. The structure was solved with SHELXS-97 and refined (on F^{2}) using SHELXL-97 [7]. All non-hydrogen atoms were treated anisotropically and CH_{2} hydrogen atoms were included with a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H}) 0.99 \AA, \mathrm{U}_{\mathrm{iso}}=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. ORTEP-3 was used for the Figure [8].

Results and Discussion.

In an attempt to prepare a silatrane derivative of $\mathrm{Mn}(\mathrm{CO})_{5}$, triethanolamine was reacted with $\mathrm{Cl}_{3} \mathrm{SiMn}(\mathrm{CO})_{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with excess $\mathrm{Et}_{3} \mathrm{~N}$ present. However the only tractable species isolated was $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$, in somewhat low yields (Scheme 1). Presumably the ClCH_{2} ligand is derived from the solvent, by nucleophilic attack of $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$generated in situ from cleavage of the Si-Mn bond by the amine. A more rational synthesis of $\mathbf{1}$ from $\mathrm{ClCH}_{2} \mathrm{I}$ and pre-formed $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$is available [9]. $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$ is surprisingly very volatile, so required X-ray data collection at low temperature, 158(2) K. It forms beautiful diamond-like crystals by vacuum sublimation with very mild warming.

The X-ray crystal structure determination of $\mathbf{1}$ revealed two crystallographically independent molecules in the asymmetric unit (see below for a detailed analysis of the relationship between the two molecules). The structure is shown in Figure 1 for one of the molecules (the other does not differ significantly). There is the expected pseudo-octahedral coordination around the Mn atom. The average Mn-C bond to the alkyl group is $2.128(8) \AA$, longer than the corresponding distance in $\mathrm{ClCH}_{2} \mathrm{Co}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)$ of $2.022(3) \AA[4]$, as expected for the larger manganese atom; the $\mathrm{M}-\mathrm{C}-\mathrm{Cl}$ angles for the two are $117.0(4)$ and 116.4° respectively. Only limited comparisons with simpler $\mathrm{RMn}(\mathrm{CO})_{5}$ molecules are possible because of a paucity of data for examples where R is bonded through an sp^{3} carbon atom; attempts to define the parent $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ were thwarted by disorder [10]. However the $\mathrm{Mn}-\mathrm{C}$ bond length of 2.128 (8) \AA is shorter than those in $\mathrm{PhOOCCH}=\mathrm{CHCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}(2.214 \AA[11])$ or $1,2-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}(2.196 \AA$ [12]), and similar to that in $(\mathrm{PhO})_{2} \mathrm{CHMn}(\mathrm{CO})_{5}(2.141 \AA[13])$, which are also bonded through sp^{3} carbon atoms.

In $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$ the average $\mathrm{Mn}-\mathrm{C}_{\text {axial }}$ distance (trans to ClCH_{2} group) of 1.847(9) \AA is shorter than the average $\mathrm{Mn}-\mathrm{C}_{\text {equatorial }}$ distance of 1.864(9) \AA, as expected trans to a non- π-accepting alkyl ligand. The average C - Cl distance of $1.811(8) \AA$ is normal for a $\mathrm{Cl}-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond. There is therefore no indication of any η^{2} contribution towards the bonding, of the type analysed for XCH_{2} substituents by Siegbahn [14], presumably because the manganese atom has already achieved an eighteen-electron configuration.

The equatorial carbonyl groups are bent towards the alkyl group, so that the average C-Mn-C equatorial angle is $86.2(4)^{\circ}$. This 'umbrella' effect is well established [15].

A careful examination of the two independent molecules in the asymmetric unit revealed an apparent relationship, which raised the possibility of a mis-assigned space group [16] so a more detailed analysis was carried out. The corresponding atoms from the two molecules showed them to be closely related as $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $1 / 2-\mathrm{x}$, $3 / 4-y$, -z , which is not a crystallographic relationship between coordinates in $\mathrm{P} 2_{1} / \mathrm{c}$ but does correspond to an apparent centre of symmetry at $1 / 4 ; 3 / 8 ; 0$. This is a noncrystallographic or local centre of symmetry, but it is not unusual to find such local centres. For example Marsh et al. have found several structures, having space group $\mathrm{Pca} 2_{1}$ or $\mathrm{Pna} 2_{1}$ with more than one molecule in the asymmetric unit, containing local centres of symmetry [17], and Dalhus and Henrik report another example, also in Pca_{1} [18]. A situation similar to that observed for $\mathbf{1}$ was reported for 2methylpyrazine [19] which crystallizes in the tetragonal space group I-4 with two independent molecules in the asymmetric unit. The two molecules are approximately related as $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $1 / 2-\mathrm{x}, \mathrm{y},-1 / 4+\mathrm{z}$; which is not a crystallographic symmetry operation. However 2-methylpyrazine crystallizes as twinned crystals with a twin law $\mathrm{R}=(010,100,00-1)$, i.e. the two twin domains are related by a two-fold axis along [110]. The R factors using standard refinement methods (i.e. without twin) were $\mathrm{wR}_{2}=0.272, \mathrm{R}_{1}=0.104$, but with the introduction of the twin law the R factors dropped to $\mathrm{wR}_{2}=0.0676, \mathrm{R}_{1}=0.0271$ [19].

Considering that in the crystals of $\mathbf{1}$ investigated in the present paper a^{*} and c^{*} are nearly equal it is possible that twinning by merohedry may also be present here, that there are two domains with two reciprocal lattices exactly coincident. Thus we tried a twin-refinement with the original cell parameters and space group $\mathrm{P} 2_{1} / \mathrm{c}$ using the twin law $\mathrm{R}=(001,0-10,100)$, covering the situation where the two domains (if they existed) would be related by a two-fold axis along [101]. However, the batch
scale factor refined to 0.0048 , suggesting that a second twin-domain does not exist. We also attempted a second twin-refinement with the original cell parameters and space group $\mathrm{P} 2_{1} / \mathrm{c}$ using the twin law $\mathrm{R}=(001,0-10,100)$, for the case where the two domains would be related by a two-fold axis along [-101]; again the batch scale factor refined to 0.0048 . Other more complicated twin refinements were examined without success. It is noted that the reflections are very strong when $\mathrm{h}=$ odd and $\mathrm{k}=$ $2,6,10,14 \ldots$ or when $\mathrm{h}=$ even and $\mathrm{k}=4,8,12,16$, but this behaviour is completely explained by the presence of the two independent molecules related by the noncrystallographic center at $1 / 4 ; 3 / 8 ; 0$. The situation in (h01) is more complicated because the reflections with $\mathrm{h}+\mathrm{l}=2 \mathrm{n}+1$ are weak, which may suggest an n -glide, however there are 10 h 01 reflections (but not strong) with $\mathrm{h}+\mathrm{l}=2 \mathrm{n}+1$ and with $\mathrm{I}>$ $3 \sigma(\mathrm{I})$, so this unusual systematic extinction in $\mathrm{P} 2_{1} / \mathrm{c}$ is not significant. We therefore conclude that the refinement reported here is correct in $\mathrm{P} 2_{1} / \mathrm{c}$, with $\mathrm{Z}^{\prime}=2$.

Supplementary material

CCDC 673810 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Rd, Cambridge CB2 1EZ, UK; email: deposit@ccdc.cam.ac.nz.

References.

1. Friedrich, H. B.; Moss, J. R., Adv. Organometal. Chem., 1991, 33, 235.
2. Ogino, H.; Shoji, M.; Abe, Y.; Shimura, M.; Shimoi, M., Inorg. Chem., 1987, 26, 2542; Abe, Y.; Ogino, H., Bull. Chem. Soc. Jpn., 1989, 62, 56;
3. Kandler, H.; Bidell, W.; Janicke, M.; Knickmeier, M.; Veghini, D.; Berke, H., Organometallics, 1998, 17, 960.
4. (a) Galamb, V.; Palyi, G.; Boese, R.; Schmid, G., Organometallics, 1987, 6, 861; (b) Olson, W. L.; Nagaki, D. A.; Dahl, L. F., Organometallics, 1986, 5, 630; (c) Geremia, S.; Calligaris, M.; Randaccio, L., Eur. J. Inorg. Chem., 1999, 981; (d) Lee, S.; Espenson, J. H.; Bakac, A., Inorg. Chem., 1990, 29, 3442; (e) Lopez, C.; Alvarez, S.; Solans, X.; Font-Bardia, M., Polyhedron, 1992, 11, 1637; (f) Polson, S. M.; Cini, R.; Pifferi, C.; Marzilli, L. G., Inorg. Chem., 1997, 36, 314; (g) Dreos, R.; Nardin, G.; Randaccio, L.; Siega, P.; Tauzher, G.; Vrdoljak, V., Inorg. Chem., 2003, 42, 6805.
5. Charette, A. B.; Marcoux, J. F.; Molinaro, C.; Beauchemin, A.; Brochu, C.; Isabel, E., J. Am. Chem. Soc., 2000, 122, 4508; Charette, A. B.; Molinaro, C.; Brochu, C., J. Am. Chem. Soc., 2001, 123,12160.
6. Einstein, F. W. B.; Glavina, P. G.; Pomeroy, R. K.; Rushman, P.; Willis, A. C., J. Organometal. Chem., 1986, 317, 255.
7. Sheldrick G.M., 1997. SHELX--97. Programs for the Solution andRefinement of Crystal Structures. Universität Göttingen, Germany.
8. Farrugia, L. J., J. Appl. Cryst., 1997, 30, 565.
9. Moss, J. R.; Pelling, S., J. Organometal. Chem., 1982, 236, 221.
10. Andrews, M. A., Eckert, J., Goldstone, J. A., Passell, L.; Swanson, B., J. Am. Chem. Soc., 1983, 105, 2262.
11. Masters, A. P., Richardson, J. F.; Sorensen, T. S.; Can. J. Chem., 1990, 68, 2221.
12. Lindner, E., Wassing, W.; Fawzi, R.; Steimann, M., Z. Naturforsch., 1993, B48, 1651.
13. Lowe, C.; Huttner, G.; Zsolnai, L.; Berke, H., Z. Naturforsch., 1988, B43, 25.
14. Siegbahn, P. E. M., J. Am. Chem. Soc., 1994, 116, 7722.
15. Jackson, S. A.; Eisenstein, O.; Martin, J. D.; Albeniz, A. C.; Crabtree, R. H., Organometallics, 1991, 10, 3062.
16. Marsh, R. E.; Clemente, D. A., Inorg. Chim. Acta, 2007, 360, 4017, and references therein.
17. Marsh, R. E.; Schomaker, V.; Herbstein, F. H., Acta Cryst., 1998, B54, 921.
18. Dalhus, B.; Henrik, C., Acta Cryst., 2000, B56, 715.
19. Boese, R.; Gehrke, A.; Kapon, M.; Herbstein, F. H., Acta Cryst., 2000, B56, 677.

Table 1. Crystal data and structure refinement details for $\mathbf{1}$.

Molecular formula	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{ClMnO}_{5}$
Formula weight	244.47
Temperature	158(2) K
Wavelength	0.71073 A
Crystal system, space group	
Unit cell dimensions	
a (\AA)	11.265(4)
b (\AA)	14.167(14)
c (\AA)	11.715(3)
$\beta\left({ }^{\circ}\right)$	111.36(1)
Volume (\AA^{3})	1741.2(18)
Z	8
Density (calc.) $\mathrm{g} \mathrm{cm}^{-3}$	1.865
Absorption coefficient (mm^{-1})	1.806
$F(000)$	960
Crystal size (mm^{3})	$0.46 \times 0.42 \times 0.35$
θ range for data collection (${ }^{\circ}$)	2.4 to 25.0 deg.
Reflections collected	3384
Unique reflections	$3018[\mathrm{R}(\mathrm{int})=0.0881]$
Completeness to $\theta=26.31$	98.4\%
Absorption correction	psi-scan
Max. and min. transmission	0.571 and 0.490
Data / restraints / parameters	3081/0/235

Goodness-of-fit on F^{2}	1.038
R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0640, \mathrm{wR}_{2}=0.1458$
R indices (all data)	$\mathrm{R}_{1}=0.1048, \mathrm{wR}_{2}=0.1545$
Largest diff. features $\left(\mathrm{e} \AA^{-3}\right)$	0.71 and -1.32

Figure 1. The structure of molecule 1 of $\mathrm{ClCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$, with ellipsoids plotted at the 50\% level.

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.
Molecule $1 \quad$ Molecule 2

Mn1-C1	$2.125(10)$	$2.130(10)$
Mn1-C2	$1.83610)$	$1.856(11)$
Mn1-C3	$1.864(9)$	$1.855(8)$
Mn1-C4	$1.883(9)$	$1.861(9)$
Mn1-C5	$1.843(9)$	$1.849(9)$
Mn1-C6	$1.862(8)$	$1.893(9)$
C1-Cl1	$1.806(8)$	$1.817(8)$
Mn1-C1-C11	$117.0(4)$	$116.4(4)$

(1)

Scheme 1

