electronic reprint

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
Editors: W. Clegg and D. G. Watson

Tris(tert-butylisonitrile)hexacarbonyl- μ_{3}-ethylidyne-triangulotricobalt(I)(3 Co-Co)

Jolene M. Brown and Brian K. Nicholson

[^0]
Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris(tert-butylisonitrile)hexacarbonyl-μ_{3}-ethylidyne-triangulo-tricobalt(I)(3 Co-Co)

Jolene M. Brown and Brian K. Nicholson*

Chemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
Correspondence e-mail: B.Nicholson@waikato.ac.nz
Received 10 September 2007; accepted 11 September 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; disorder in main residue; R factor $=0.025 ; w R$ factor $=0.059$; data-to-parameter ratio $=14.9$.

The title molecule, $\left[\mathrm{Co}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{3}(\mathrm{CO})_{6}\right]$ or $\left[\mathrm{Co}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{CCH}_{3}\right)\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{3}(\mathrm{CO})_{6}$, lies on a threefold rotation axis. The three isonitrile ligands each occupy an equatorial site on each of the three Co atoms. The average $\mathrm{Co}-\mathrm{Co}$ bond length is 2.4769 (6) A. The tert-butyl groups are disordered over two orientations, with site occupancies of $c a$ 0.6:0.4.

Related literature

For details of the synthesis, see Newman \& Manning (1974). For the structure of the parent nonacarbonyl cluster, see Sutton \& Dahl (1967). Other examples of equatorially trisubstituted derivatives of $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{9}\right]$ include the $(\mathrm{MeO})_{3} \mathrm{P}$ derivative (Dawson et al., 1979). Axial substitution appears to be favoured only by very bulky or chelating ligands (D'Agostino et al., 1991; Renouard et al., 1996).

Experimental

Crystal data

$\left[\mathrm{Co}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{3}(\mathrm{CO})_{6}\right] \quad Z=6$
$M_{r}=621.29$
$Z=6$
Trigonal, R3c
Mo $K \alpha$ radiation
$a=16.9804$ (6) A
$\mu=1.73 \mathrm{~mm}^{-1}$
$c=17.4605(11) \AA$
$T=293$ (2) K
$V=4360.0(4) \AA^{3}$
Data collection
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.672, T_{\text {max }}=0.830$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.059$
$S=1.00$
1991 reflections
134 parameters
1 restraint
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
with 989 Friedel pairs
Flack parameter: 0.01 (2)

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

The authors thank Dr Jan Wikaira, University of Canterbury, New Zealand, for the collection of the X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2355).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
D’Agostino, M. F., Frampton, L. S. \& McGlinchey, M. J. (1991). Organometallics, 10, 1383-1390.
Dawson, P. A., Robinson, B. H. \& Simpson, J. (1979). J. Chem. Soc. Dalton Trans. pp. 1762-1768.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Newman, J. \& Manning, A. R. (1974). J. Chem. Soc. Dalton Trans. pp. 25492553.

Renouard, C., Rheinwald, G., Stoeckli-Evans, H., Süss-Fink, G., Braga, D. \& Grepioni, F. (1996). J. Chem. Soc. Dalton Trans. pp. 1875-1883.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sutton, P. W. \& Dahl, L. F. (1967). J. Am. Chem. Soc. 89, 261-268.

supplementary materials

Tris(tert-butylisonitrile)hexacarbonyl- $\hat{\beta}_{3}$-ethylidyne-triangulo-tricobalt(I)(3 Co-Co)

J. M. Brown and B. K. Nicholson

Comment

The title compound is the first structurally characterized isonitrile derivative of a $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{9}\right]$ cluster. The three CNBu^{t} ligands have displaced three equatorial CO ligands in the parent molecule, to give a molecule with C_{3} symmetry. The substitution has had little effect on the parameters of the cluster core with average $\mathrm{Co}-\mathrm{Co}$ and $\mathrm{Co}-\mathrm{C}$ distances (2.4769 (6) and 1.908 (3) \AA respectively) that do not differ significantly from those of parent (2.467 (7) and 1.90 (2) \AA, (Sutton \& Dahl, 1967) though the low precision of the earlier study would mask any small changes.

Experimental

The compound was prepared by thermal reaction between $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{9}\right]$ and CNBu^{t} (Newman \& Manning, 1974). X-ray crystals were grown from pentane.

Refinement

The tert-butyl groups are disordered over two orientations which refined to a $0.64: 0.36$ occupancy ratio; this accounts for the large differences between the displacement parameters of the C 4 carbon atom and the attached CH_{3} carbon atoms. All H-atoms were positioned geometrically and refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA, U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Structure of $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CCH}_{3}\right)(\mathrm{CO})_{6}\left(\mathrm{CNBu}^{t}\right)_{3}\right]$ with diplacement parameters drawn at the 30% probability level. Only the major disorder component of the t-butyl group is shown.

Fig. 2. A view down the threefold axis. Only the major disorder component of the t-butyl group is shown.

supplementary materials

tris(tert-butylisonitrile)hexacarbonyl- μ_{3}-ethylidyne- triangulo-tricobalt(I)(3 Co—Co)

Crystal data
$\left[\mathrm{Co}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{3}(\mathrm{CO})_{6}\right]$
$M_{r}=621.29$
Trigonal, R3c
Hall symbol: R 3-2"c
$a=16.9804$ (6) \AA
$b=16.9804$ (6) \AA
$c=17.4605(11) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=4360.0(4) \AA^{3}$

Data collection

Siemens SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
multi-scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.672, T_{\text {max }}=0.830$
10767 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=1.00$
1991 reflections
134 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$Z=6$
$F_{000}=1908$
$D_{\mathrm{x}}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 5750 reflections
$\theta=2.4-26.4^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Hexagonal rod, black
$0.54 \times 0.13 \times 0.11 \mathrm{~mm}$

1991 independent reflections
1757 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=26.4^{\circ}$
$\theta_{\text {min }}=2.4^{\circ}$
$h=-21 \rightarrow 20$
$k=-21 \rightarrow 21$
$l=-21 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0388 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}
Extinction correction: none
Absolute structure: Flack (1983), with 989 Friedel pairs

Flack parameter: 0.01 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Col	0.92643 (2)	0.01828 (2)	0.164850 (14)	0.04289 (10)	
N1	0.91952 (19)	0.17320 (19)	0.24181 (17)	0.0676 (7)	
C1	1.0000	0.0000	0.2372 (3)	0.0441 (9)	
C2	1.0000	0.0000	0.3218 (3)	0.0698 (14)	
H2A	1.0116	0.0581	0.3401	0.105*	0.333
H2B	1.0466	-0.0116	0.3401	0.105*	0.333
H2C	0.9419	-0.0466	0.3401	0.105*	0.333
C3	0.92327 (19)	0.1150 (2)	0.21234 (18)	0.0557 (7)	
C4	0.9179 (2)	0.2509 (2)	0.27631 (19)	0.0684 (9)	
C11	0.9168 (2)	0.0388 (2)	0.06419 (19)	0.0593 (7)	
O11	0.9109 (2)	0.0514 (2)	0.00155 (15)	0.0992 (9)	
C12	0.8144 (2)	-0.0659 (2)	0.18837 (19)	0.0618 (8)	
012	0.74179 (17)	-0.1194 (2)	0.2037 (2)	0.1022 (10)	
C5	0.9649 (10)	0.3290 (5)	0.2265 (6)	0.120 (5)	0.640 (16)
H51	0.9328	0.3171	0.1788	0.180*	0.640 (16)
H52	1.0255	0.3405	0.2172	0.180*	0.640 (16)
H53	0.9676	0.3812	0.2506	0.180*	0.640 (16)
C6	0.9631 (13)	0.2680 (9)	0.3533 (7)	0.166 (8)	0.640 (16)
H61	0.9298	0.2155	0.3853	0.249*	0.640 (16)
H62	0.9643	0.3197	0.3768	0.249*	0.640 (16)
H63	1.0243	0.2797	0.3470	0.249*	0.640 (16)
C7	0.8180 (6)	0.2243 (6)	0.2791 (9)	0.135 (6)	0.640 (16)
H71	0.7858	0.1729	0.3124	0.202*	0.640 (16)
H72	0.7926	0.2086	0.2285	0.202*	0.640 (16)
H73	0.8126	0.2745	0.2980	0.202*	0.640 (16)
C5A	1.0165 (10)	0.3310 (10)	0.2776 (15)	0.126 (10)	0.360 (16)
H51A	1.0400	0.3441	0.2263	0.188*	0.360 (16)
H52A	1.0533	0.3150	0.3083	0.188*	0.360 (16)
H53A	1.0176	0.3836	0.2989	0.188*	0.360 (16)
C6A	0.8664 (11)	0.2787 (10)	0.2206 (10)	0.100 (7)	0.360 (16)
H61A	0.8968	0.2940	0.1719	0.150*	0.360 (16)
H62A	0.8646	0.3304	0.2407	0.150*	0.360 (16)
H63A	0.8054	0.2290	0.2142	0.150*	0.360 (16)
C7A	0.875 (2)	0.2261 (16)	0.3488 (9)	0.154 (13)	0.360 (16)
H71A	0.9097	0.2094	0.3820	0.231*	0.360 (16)
H72A	0.8149	0.1754	0.3432	0.231*	0.360 (16)
H73A	0.8727	0.2766	0.3706	0.231*	0.360 (16)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.03864(19)$	$0.04002(19)$	$0.05232(16)$	$0.02140(15)$	$-0.00286(15)$	$-0.00329(17)$
N1	$0.0639(16)$	$0.0525(15)$	$0.0928(18)$	$0.0338(14)$	$-0.0040(15)$	$-0.0173(14)$
C1	$0.0416(13)$	$0.0416(13)$	$0.049(2)$	$0.0208(7)$	0.000	0.000

supplementary materials

C2	$0.077(2)$	$0.077(2)$	$0.055(3)$	$0.0386(11)$	0.000	0.000
C3	$0.0456(15)$	$0.0494(16)$	$0.0751(18)$	$0.0259(14)$	$-0.0041(13)$	$-0.0059(14)$
C4	$0.078(2)$	$0.0545(18)$	$0.081(2)$	$0.0398(18)$	$-0.0010(18)$	$-0.0181(16)$
C11	$0.0538(18)$	$0.0548(17)$	$0.067(2)$	$0.0257(14)$	$-0.0064(14)$	$0.0037(14)$
O11	$0.105(2)$	$0.111(2)$	$0.0676(16)$	$0.0438(19)$	$-0.0143(14)$	$0.0177(15)$
C12	$0.0504(19)$	$0.0576(18)$	$0.083(2)$	$0.0312(16)$	$0.0002(15)$	$0.0059(14)$
O12	$0.0457(14)$	$0.0793(18)$	$0.171(3)$	$0.0234(13)$	$0.0190(16)$	$0.0303(18)$
C5	$0.169(15)$	$0.064(5)$	$0.121(6)$	$0.054(7)$	$0.021(7)$	$0.002(4)$
C6	$0.29(2)$	$0.143(12)$	$0.095(7)$	$0.132(15)$	$-0.076(12)$	$-0.049(8)$
C7	$0.096(6)$	$0.085(6)$	$0.237(18)$	$0.056(5)$	$0.031(7)$	$-0.024(8)$
C5A	$0.087(9)$	$0.075(9)$	$0.21(3)$	$0.038(7)$	$-0.026(10)$	$-0.075(13)$
C6A	$0.104(14)$	$0.079(11)$	$0.141(12)$	$0.063(12)$	$-0.024(10)$	$-0.024(9)$
C7A	$0.31(4)$	$0.132(16)$	$0.074(13)$	$0.15(2)$	$0.067(19)$	$0.015(11)$

Geometric parameters ($A,{ }^{\circ}$)

Col-C12	1.764 (3)
Col-C11	1.815 (3)
Col-C3	1.865 (3)
Col-C1	1.908 (3)
Col-Col ${ }^{\text {i }}$	2.4769 (6)
N1-C3	1.143 (4)
N1-C4	1.464 (4)
C1-C2	1.477 (8)
C2-H2A	0.9600
C2-H2B	0.9600
C2-H2C	0.9600
C4-C7A	1.413 (16)
C4-C5	1.446 (8)
C4-C6	1.503 (10)
C4-C7	1.522 (9)
C4-C6A	1.532 (14)
C4-C5A	1.541 (14)
C11-O11	1.129 (4)
C12-O12	1.139 (4)
C12-Co1-C11	102.54 (15)
C12-Co1-C3	96.66 (13)
C11-Co1-C3	102.54 (14)
C12-Co1-C1	104.04 (11)
C11-Co1-C1	143.23 (15)
C3-Col-C1	99.12 (12)
C12-Col- $\mathrm{Col}^{1}{ }^{\text {i }}$	150.03 (10)
C11-Col-Col ${ }^{\text {i }}$	96.93 (10)
C3-Col-Col ${ }^{\text {i }}$	101.12 (9)
C1-Col-Col ${ }^{\text {i }}$	49.53 (8)
C12-Co1-Col ${ }^{\text {ii }}$	92.89 (10)
C11-Col-Col ${ }^{\text {ii }}$	104.41 (11)

C5-H51	0.9600
C5-H52	0.9600
C5-H53	0.9600
C6-H61	0.9600
C6-H62	0.9600
C6-H63	0.9600
C7-H71	0.9600
C7-H72	0.9600
C7-H73	0.9600
C5A-H51A	0.9600
C5A-H52A	0.9600
C5A-H53A	0.9600
C6A-H61A	0.9600
C6A-H62A	0.9600
C6A-H63A	0.9600
C7A-H71A	0.9600
C7A-H72A	0.9600
C7A-H73A	0.9600
O12-C12-Co1	$179.1(3)$
C4-C5-H51	109.5
C4-C5-H52	109.5
H51-C5-H52	109.5
C4-C5-H53	109.5
H51-C5-H53	109.5
H52-C5-H53	109.5
C4-C6-H61	109.5
C4-C6-H62	109.5
H61-C6-H62	109.5
C4-C6-H63	109.5
H61-C6-H63	109.5

C3-Col-Col ${ }^{\text {ii }}$	148.64 (9)	H62-C6-H63	109.5
Col ${ }^{\text {i }}-\mathrm{Col-Col}{ }^{\text {ii }}$	60.0	C4-C7-H71	109.5
C3-N1-C4	176.9 (4)	C4-C7-H72	109.5
C2-C1-Col	131.45 (10)	H71-C7-H72	109.5
$\mathrm{Co1}{ }^{\text {iii- }} \mathrm{C} 1-\mathrm{Col}$	80.95 (16)	C4-C7-H73	109.5
C1-C2-H2A	109.5	H71-C7-H73	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H72-C7-H73	109.5
H2A-C2-H2B	109.5	C4-C5A-H51A	109.5
C1-C2-H2C	109.5	C4-C5A-H52A	109.5
H2A-C2-H2C	109.5	H51A-C5A-H52A	109.5
H2B-C2-H2C	109.5	C4-C5A-H53A	109.5
N1-C3-Col	178.6 (3)	H51A-C5A-H53A	109.5
C7A-C4-N1	109.7 (8)	H52A-C5A-H53A	109.5
C5-C4-N1	109.2 (4)	C4-C6A-H61A	109.5
C5-C4-C6	111.5 (7)	C4-C6A-H62A	109.5
N1-C4-C6	107.7 (6)	H61A-C6A-H62A	109.5
C5-C4-C7	108.3 (8)	C4-C6A-H63A	109.5
N1-C4-C7	105.4 (4)	H61A-C6A-H63A	109.5
C6-C4-C7	114.5 (9)	H62A-C6A-H63A	109.5
C7A-C4-C6A	112.1 (14)	C4-C7A-H71A	109.5
N1-C4-C6A	106.7 (5)	C4-C7A-H72A	109.5
C7A-C4-C5A	114.7 (15)	H71A-C7A-H72A	109.5
N1-C4-C5A	107.4 (5)	C4-C7A-H73A	109.5
C6A-C4-C5A	105.9 (11)	H71A-C7A-H73A	109.5
O11-C11-Co1	179.9 (4)	H72A-C7A-H73A	109.5

Symmetry codes: (i) $-x+y+2,-x+1, z$; (ii) $-y+1, x-y-1, z$.

Fig. 1

Fig. 2

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
 For further information see http://journals.iucr.org/services/authorrights.html

