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Abstract 
 

In recent years, due to growing environmental awareness, considerable attention has been 

given to the development and production of natural fibre reinforced polymer (both 

thermoset and thermoplastic) composites. The main objective of this study was to 

reinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improved 

composites by optimising the fibre treatment methods, composite processing methods, 

and fibre/matrix interfacial bonding. 

An investigation was conducted to obtain a suitable fibre alkali treatment method to: 

(i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet 

(UV) radiation) and hemicelluloses (sensitive to moisture) to improve long term 

composites stability 

(ii) roughen fibre surface to obtain mechanical interlocking with matrices 

(iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding with 

matrices  

(iv) separate the fibres from their fibre bundles to make the fibre surface available for 

bonding with matrices 

(v) retain tensile strength by keeping fibre damage to a minimum level and  

(vi) increase crystalline cellulose by better packing of cellulose chains to enhance the 

thermal stability of the fibres. 

An empirical model was developed for fibre tensile strength (TS) obtained with different 

treatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3) 

concentrations, treatment temperatures, and digestion times) by a partial factorial design. 

Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT), 

scanning electron microscopy (SEM), zeta potential measurements, differential thermal 

analysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction 

(WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, a 

treatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment 
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temperature of 120oC and a digestion time of 60 minutes, was found to give the best 

combination of the required properties. This alkali treatment produced fibres with an 

average TS and Young’s modulus (YM) of 463 MPa and 33 GPa respectively. The fibres 

obtained with the optimised alkali treatment were further treated with acetic anhydride 

and phenyltrimethoxy silane. However, acetylated and silane treated fibres were not 

found to give overall performance improvement.  

Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE) 

composites were studied and it was found that the addition of fibres into epoxy resin 

increased the reaction rate and decreased the curing time. An increase in the nucleophilic 

activity of the amine groups in the presence of fibres is believed to have increased the 

reaction rate of the fibre/epoxy resin system and hence reduced the activation energies 

compared to NE. 

The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE) 

samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFE 

samples supporting that there was a stronger interface between alkali treated fibre and 

epoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of 

1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), and 

finally for 1:0.6 (E1C0.6).  

Long and short fibre reinforced epoxy composites were produced with various processing 

conditions using vacuum bag and compression moulding. A 65 wt% untreated long 

fibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of 

165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa, 

impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found to 

be the best in contrast to the trend of increased IFSS for ATFE samples. This is 

considered to be due to stress concentration as a result of increased fibre/fibre contact 

with the increased fibre content in the ATFE composites compared to the UTFE 

composites.  

Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxy 

composites (produced by curing at 70oC) showed that long fibre/epoxy composites were 

more resistant than short fibre/epoxy composites and ATFE composites were more 

resistant than UTFE composites towards hygrothermal ageing environments as revealed 
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from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA, 

and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated long 

fibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFE 

composites were more resistant than UTLFE composites towards hygrothermal ageing 

environments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIR 

test results.  

IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA) 

samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. The 

increase in the formation of hydrogen bonding and mechanical interlocking of the alkali 

treated fibres with PLA could be responsible for the increased IFSS for ATPLA system 

compared to UFPLA system.  

Long and short fibre reinforced PLA composites were also produced with various 

processing conditions using compression moulding. A 32 wt% alkali treated long fibre 

PLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexural 

strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2 

was found to be the best. This could be due to the better bonding of the alkali treated 

fibres with PLA. The mechanical properties of this composite have been found to be the 

best compared to the available literature. 

Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated long 

fibre/PLA composites ATPLA composites were more resistant than UFPLA composites 

towards hygrothermal and accelerated ageing environments as revealed from diffusion 

coefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry 

(DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation and 

mechanical interlocking of the alkali treated fibres with PLA could be responsible for the 

increased resistance of the ATPLA composites. 

Based on the present study, it can be said that the performance of natural fibre composites 

largely depend on fibre properties (e.g. length and orientation), matrix properties (e.g. 

cure kinetics and crystallinity), fibre treatment and processing methods, and composite 

processing methods.  
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Abstract 
 

In recent years, due to growing environmental awareness, considerable attention has been 

given to the development and production of natural fibre reinforced polymer (both 

thermoset and thermoplastic) composites. The main objective of this study was to 

reinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improved 

composites by optimising the fibre treatment methods, composite processing methods, 

and fibre/matrix interfacial bonding. 

An investigation was conducted to obtain a suitable fibre alkali treatment method to: 

(i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet 

(UV) radiation) and hemicelluloses (sensitive to moisture) to improve long term 

composites stability 

(ii) roughen fibre surface to obtain mechanical interlocking with matrices 

(iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding with 

matrices  

(iv) separate the fibres from their fibre bundles to make the fibre surface available for 

bonding with matrices 

(v) retain tensile strength by keeping fibre damage to a minimum level and  

(vi) increase crystalline cellulose by better packing of cellulose chains to enhance the 

thermal stability of the fibres. 

An empirical model was developed for fibre tensile strength (TS) obtained with different 

treatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3) 

concentrations, treatment temperatures, and digestion times) by a partial factorial design. 

Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT), 

scanning electron microscopy (SEM), zeta potential measurements, differential thermal 

analysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction 

(WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, a 

treatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment 
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temperature of 120oC and a digestion time of 60 minutes, was found to give the best 

combination of the required properties. This alkali treatment produced fibres with an 

average TS and Young’s modulus (YM) of 463 MPa and 33 GPa respectively. The fibres 

obtained with the optimised alkali treatment were further treated with acetic anhydride 

and phenyltrimethoxy silane. However, acetylated and silane treated fibres were not 

found to give overall performance improvement.  

Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE) 

composites were studied and it was found that the addition of fibres into epoxy resin 

increased the reaction rate and decreased the curing time. An increase in the nucleophilic 

activity of the amine groups in the presence of fibres is believed to have increased the 

reaction rate of the fibre/epoxy resin system and hence reduced the activation energies 

compared to NE. 

The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE) 

samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFE 

samples supporting that there was a stronger interface between alkali treated fibre and 

epoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of 

1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), and 

finally for 1:0.6 (E1C0.6).  

Long and short fibre reinforced epoxy composites were produced with various processing 

conditions using vacuum bag and compression moulding. A 65 wt% untreated long 

fibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of 

165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa, 

impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found to 

be the best in contrast to the trend of increased IFSS for ATFE samples. This is 

considered to be due to stress concentration as a result of increased fibre/fibre contact 

with the increased fibre content in the ATFE composites compared to the UTFE 

composites.  

Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxy 

composites (produced by curing at 70oC) showed that long fibre/epoxy composites were 

more resistant than short fibre/epoxy composites and ATFE composites were more 

resistant than UTFE composites towards hygrothermal ageing environments as revealed 
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from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA, 

and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated long 

fibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFE 

composites were more resistant than UTLFE composites towards hygrothermal ageing 

environments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIR 

test results.  

IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA) 

samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. The 

increase in the formation of hydrogen bonding and mechanical interlocking of the alkali 

treated fibres with PLA could be responsible for the increased IFSS for ATPLA system 

compared to UFPLA system.  

Long and short fibre reinforced PLA composites were also produced with various 

processing conditions using compression moulding. A 32 wt% alkali treated long fibre 

PLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexural 

strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2 

was found to be the best. This could be due to the better bonding of the alkali treated 

fibres with PLA. The mechanical properties of this composite have been found to be the 

best compared to the available literature. 

Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated long 

fibre/PLA composites ATPLA composites were more resistant than UFPLA composites 

towards hygrothermal and accelerated ageing environments as revealed from diffusion 

coefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry 

(DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation and 

mechanical interlocking of the alkali treated fibres with PLA could be responsible for the 

increased resistance of the ATPLA composites. 

Based on the present study, it can be said that the performance of natural fibre composites 

largely depend on fibre properties (e.g. length and orientation), matrix properties (e.g. 

cure kinetics and crystallinity), fibre treatment and processing methods, and composite 

processing methods.  
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Chapter One 

1 Introduction 

1.1  Introduction 

A composite is a material that has two or more distinct constituents or phases, where one 

or more of the phases are dispersed in another continuous phase called the matrix. The 

matrix can be a ceramic, metal or polymer. Generally, ceramic matrices are stiff, brittle, 

and survive the highest temperatures, metal matrices are strong and intermediate in 

stiffness, and polymer matrices are low in strength and stiffness but low in density and 

easily formed. The reinforcing phase of a composite can be either fibrous or particulate, 

the difference being that a particle has almost equal dimensions in all directions, whilst a 

fibre has a much greater length than its cross-section. Both of these reinforcements have 

been used to produce composites. However, fibrous reinforcements have drawn much 

attention in recent times due to their high tensile strength (TS) and Young’s modulus 

(YM), low density, and ability to give useful properties to the end products. In fibre 

reinforced composite materials, fibres are used to carry the loads while the matrices are 

used to bind the fibres together, transfer the stresses from one fibre to the next and keep 

them in the desired location and orientation; the matrices also protect the fibres from 

abrasion and environmental damage upon exposure to elevated temperature and humidity. 

Many fibre reinforced polymer matrix composite (PMC) materials offer a combination of 

strength and stiffness that are comparable to, or even better than, some traditional 

metallic materials.  

Fibres can be divided into two major classes, namely synthetic and natural. Though 

synthetic fibres are strong and stiff, recently, due to increasing environmental awareness, 

depletion of petroleum resources, disposal problems after use, and the introduction of 

new rules and regulations by legislative authorities, the production and use of traditional 

composite materials made with synthetic fibres like glass, aramid and carbon with 

matrices of polyester, polyurethane, or phenolics, have been criticised [1]. On the other 
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hand, usage of natural fibres like hemp, flax, jute, and sisal in composites production are 

drawing increasing attention due to their low cost, low density, recyclability, and 

biodegradability. Both conventional thermoset (e.g. epoxy, polyester, phenolics) and 

thermoplastic (e.g. polypropylene (PP), polyethylene (PE), polystyrene) matrices are used 

with natural fibre in composites production. Meanwhile, bio-derived matrix materials like 

polylactic acid (PLA), polycaprolactone, and polyhydroxy butyrate (PHB) seek to remedy 

the issues regarding raw material sources as well as disposal at the end of the product life 

cycle.  

Besides the properties of fibre and matrix, the interface between the two constituents also 

plays an important role in composite materials. The interface has to be sufficiently strong 

for the load to be transferred from the matrix to the reinforcing fibres if the composite is 

to be stronger than its unreinforced matrix. As far as toughness is concerned, the 

interfacial strength has to be such that it can allow toughening mechanisms like 

debonding and pull-out to occur.  

Fibre length and orientation of the reinforcing fibres are particularly important in 

contributing to the enhancement in mechanical properties. Though fibre breakage and 

fibre damage are very common due to mechanical shearing and mixing actions, short 

fibres can be processed with ease by using extrusion and injection moulding. Also, for 

shorter length and random or less controlled orientation, composites produced with short 

fibre exhibit relatively poor mechanical properties and are currently not suitable for use in 

most structural components.  

More controlled orientation of long or continuous fibres leads to composites with higher 

mechanical properties. The high degree of orientation of long fibres can be achieved by 

creating yarns through textile processing. The yarns need to have sufficient level of twist 

to obtain good mechanical strengths. However, the extent of permeability of resins into 

the yarns decreases with the increasing degree of twist resulting in weak mechanical 

strength of the composites [2]. Moreover, the yarn production involves high cost. 

Therefore, simple carding process can be used to obtain good orientation in fibres with 

large fibre separation and almost no twist that enables the fibres to permeate into the 

resins with ease resulting in good mechanical properties of the composites. Long fibre 

reinforced thermoset composites can be processed with hand lay-up, vacuum bag, and 

filament winding techniques, which are suitable for short production runs and are 
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expensive. However, both thermoplastic and thermoset composites of intricate shape can 

be processed by compression moulding into articles. 

1.2  Historical Background of Natural Fibre 
Composites (NFCs) 

The production and use of composite materials can be traced back to early human 

existence. Composites produced with natural plant matter and its constituents like stem 

and fibre were used to make shelter, tools, clothes, and weapons. In ancient Egyptian 

times, some 3000 years ago, straw was used to reinforce clay bricks to build walls. These 

composites were produced by placing the structural elements on top of one another to 

produce the desired design.  

Later on, natural fibre composites (NFCs) lost much of their interest, due to the 

introduction of more durable construction materials like metals and ceramics. The history 

of modern composites can be considered to begin in 1937 (when salesmen from the 

Owens Corning Fibreglass Company began to sell fibreglass to interested parties around 

the United States). The pace of composites development accelerated during the World 

War II, when the United States Government became concerned that the supplies of metals 

for aircraft might not be available and instructed the engineers to try to determine the 

current best practices in composites production [3]. However, the spur to the rapid 

development of large scale production of composite materials began in the early 1960s, 

due to the development of carbon fibres in the UK and boron fibres in the USA. These 

fibres used to reinforce both thermoset and thermoplastic polymer matrices for use in 

automotive applications [4]. 

Over the last few years, natural fibres have attracted attention as substitutes for synthetic 

fibres in composites production largely due to increased emphasis on sustainability. 

These natural fibres are low in cost and density, and high in specific strength. They are 

renewable, nonabrasive, and their specific properties are comparable with the most 

commonly used reinforcing glass fibres. 
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1.3  Natural Fibre Reinforced Thermoset and 
Thermoplastic Composites 

Glass is the most common of all reinforcing fibres for use in polymer (thermoset and 

thermoplastic) matrix composites. The major advantage of glass fibre includes low price, 

high TS, high chemical resistance and relative ease of processing. However, it suffers 

with many disadvantages. It has low YM, relatively high specific gravity among other 

conventional fibres, sensitivity to abrasion with handling, relatively low fatigue 

resistance, and high hardness which causes excessive wear on moulding dies and cutting 

tools [5]. The biggest problem with glass and other conventional fibres is that they are not 

biodegradable or easily recyclable and their disposal is difficult. Alternative synthetic 

fibres such as aramid and carbon are limited to applications in industries such as 

aerospace and ballistics, where cost of the product is less important than maximising the 

performance (high strength, stiffness and low density) to an extremely higher level.  

The use of natural fibres as reinforcement in PMCs to replace conventional fibres like 

glass is currently receiving increasing attention because of the growing environmental 

awareness and advantages (low cost, low density, high specific properties, abundant 

availability) they possess. The annual agricultural crop fibres (e.g. hemp, flax) have 

higher mechanical strength as compared to commonly used wood based fibres (e.g. wood 

flour, wood fibre) and the PMCs produced using these fibres as reinforcements can result 

in significant property improvements. Recent research on the use of annual growth 

agricultural crop lignocellulosic fibres suggests that they have the potential to be used as 

reinforcement both in thermoset and thermoplastic matrices. Of these fibres, hemp is the 

least used fibre in the production of PMCs and yet according to Hughes [6], it has the best 

mechanical and thermal properties.  However, there are a number of problems associated 

with incorporating natural fibre into polymer matrices namely: (i) poor compatibility of a 

hydrophilic fibre and a hydrophobic matrix that results in poor mechanical properties of 

the composites, (ii) high sensitivity of natural fibre towards moisture that results in 

composite dimensional instability and loss in mechanical properties through swelling [7], 

and (iii) relatively poor thermal stability.  

Thermoset resins (e.g. epoxy, polyester, phenolic, and polyurethane) are used for NFCs in 

applications where higher performance is required. These thermoset polymers contain 
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reactive functional groups that aid the development of an interface with the natural fibres. 

Thermoset composites have superior thermal stability and lower water absorption 

compared to thermoplastic composites. Epoxy and phenolic are known to have the ability 

to form covalent bonds with plant cell walls through -OH groups [8]. Moreover, 

composites manufacture can be achieved using low viscosity epoxy that cure at room 

temperature and the polymerisation of epoxy (curing reaction) is carried out by addition 

reaction without evolution of volatiles which is a desirable property to prepare void-free 

products. Therefore, although epoxy resins are relatively expensive than polyesters, they 

have good potential for the development of NFCs [9]. 

Thermoplastic composites are recyclable, have low processing costs and the ability to be 

moulded into complex parts when compared to thermoset composites. Composites based 

on petroleum originated thermoplastic matrices such as PP and PE are very common 

today and are being extensively used in automotive applications, building materials, and 

household products. However, growing environmental awareness is forcing the industries 

to find more environmentally friendly materials for their products. Therefore, materials 

derived from natural resources of plant origin (e.g. cellulose and starch), synthetic 

polymers from natural monomers (e.g. PLA), and polymers from microbial fermentation 

(e.g. PHB) are being assessed by researchers [10-14] for use as potential matrices in bio-

degradable and ecologically friendly composites. The study of PLA and especially of 

natural fibre/PLA composites is very limited [15, 16]. However, Bodros et al. [17] 

showed that the TS and YM of PLA/flax composites are higher than PP/flax composites 

and that the specific TS and modulus of flax/PLA composite are very close to 

glass/polyester composites. 

For natural fibres to be able to compete with synthetic fibres, improvement of the 

mechanical and thermal properties of the composites is necessary. This can be achieved 

by obtaining better adhesion between fibre and matrix and also by using better composite 

processing conditions.  
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1.4  Future Aspects of Natural Fibre 
Composites 

About seventy years ago, natural fibres such as hemp and flax were used mostly in textile 

and paper industries. Currently, the market for natural fibres has expanded to the extent 

that most European car producers now use natural fibres for interior components because 

of their low density, acceptable mechanical properties, low wear on tools, and low 

processing costs. Applications of natural fibres as reinforcement in automotives can be 

seen in Table 1.1 [18]. 

Table 1.1 The use of natural fibres as serial parts in the automotive industry (1997-2001). 

Manufacturers/Customers Model/Application (dependent on model) 
Audi TT, A2, A3, A4 Avant (1997), A4 Variant (1997), A6, A8 (1997), 

Roadster, Coupe/Seat back, side and back door panels, parcel 
tray, boot lining, rear flap lining, rear storage panel, spare tyre 

lining 
BMW 3, 5 and 7 Series and others/Door inserts/door panels, headliner 

panel, boot lining, seat back 
Citroen C4 (2001)/Door inserts 

Daimler Chrysler A-Klasse, C-Klasse, E-Klasse, S-Klasse/Door inserts, 
Windshield/dashboard, business table, column cover 

Fiat Punto, Brava, Marea, Alfa Romeo 146, 156, Sportwagon 
Ford Mondeo CD 162 (1997), Cougar (1998), Mondeo (2000), 

Focus/Door insets, B-column cover, Parcel tray, in the future also 
motor protection (cover undershield) 

MAN Bus (1997)/Headliner panel 
Mitsubishi Miscellaneous models (since 1997) 

Nissan Miscellaneous models 
Opel Astra, Vectra, Zafira/Headliner panel, door inserts, column cover, 

instrument panel, rear shelf panel 
Peugeot New model 406 
Renault Clio, Twingo 
Rover Rover 2000 and others/Insulation, rear storage panel 
Saab Coupe (1998)/Door inserts 
SEAT Door inserts, seat backs 
Toyota Miscellaneous models 

Volkswagen Golf A4, Golf 4 Variant (1998), Passat Variant, Bora/Door inserts, 
seat backs, rear flap lining, parcel tray 

Volvo C70, V70, Coupe (1998)Door inserts, parcel tray 

The market for natural fibres has been growing at an increasing rate, especially for 

automotive applications [18]. For instance, the German automotive industry increased its 

usage of natural fibres from 4,000 tons in 1996 to 18,000 tons in 2003. From 1996 to 

2002, there was almost a linear increase in quantities used, with yearly growth rates of 
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between 10 and 20% [19]. It has been projected that the usage of natural fibre by the 

European automotive industry may increase to more than 100,000 tons by 2010.  

Compared to Europe, the Asian markets have also been using natural fibres for many 

years. For example, jute is a common reinforcement for composites in India. Jute fibre 

with polyester resins are used in buildings, elevators, pipes, and panels [20]. 

It is apparent that considerable opportunities may be opening up for injection moulded 

components based on short natural fibre reinforced polymer granules. However, this 

technology has limited commercial production and marketing. This technology can be 

equally suitable with hemp, flax or jute, with a view of targeting a new range of hard 

interior components. According to Ellison and McNaught [21], the same injection 

moulding technology may bring wider opportunities in the plastics market for items such 

as computer, audio and television casings. NFCs can also be very cost effective materials 

for applications in building and construction (e.g. walls, ceiling, partition, window and 

door frames), storage devices (e.g. bio-gas containers, post boxes), furniture (chairs, 

stools, tables), electronic devices (outer casing of mobile phones), automobile and 

railway coach interior parts (inner fenders and bumpers), toys and other miscellaneous 

applications (helmets, suitcases).   

1.5  Objective of the Study 

The principal reasons for using natural fibres are their economical feasibility, enhanced 

sustainability and good specific mechanical properties. The advantage of using long 

fibres is in their ability to make composites of high mechanical properties while short 

fibres (e.g. wood fibre), are very difficult to make composites with comparable 

mechanical properties. The objective of the current work is to produce hemp/epoxy 

composites (HECs) and hemp/PLA composites (HPCs) of high quality for potential use in 

elaborate engineering applications. In this study, hemp fibre will be used to reinforce two 

matrix systems, epoxy and PLA. In order to remove lignin, hemicelluloses and pectin 

from the fibre surface to improve long term stability of the composites, alkali treatment of 

the fibres will be carried out in the production of both HECs and HPCs. As fibre surface 

treatment plays an important role in the composites performance, the hemp fibre surface 

will also be treated with acetic anhydride and organosilane for the production of HECs. 
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The principal objective of this thesis is to assess the viability of several processing 

techniques to produce HECs and HPCs. Based on the critical literature review, the study 

has been broken down into the following objectives: 

(1) Treatment of the fibres with alkali and derivation of an empirical model by fractional 

factorial design for the TS of alkali treated fibre, and characterisation of the fibre surface 

treatments (alkali, acetic anhydride and organosilane) by TS of single fibre, wide angle 

X-ray diffraction (WAXRD), Fourier transform infrared (FTIR), scanning electron 

microscopy (SEM), thermogravimetric/differential thermal analysis (TGA/DTA), and 

zeta potential. 

(2) Investigation of the influence of alkali fibre treatment on the interfacial shear strength 

(IFSS) of HECs and HPCs, and an assessment of the cure kinetics and variation of the 

epoxy to curing agent ratio on the IFSS of HECs. 

(3) The use of different methods for the production of HECs and HPCs and the 

investigation of mechanical, thermal, morphological, and physical properties of the 

produced composites. 

(4) Determination of the influence of the fibre surface treatment on the end use properties 

(accelerated ageing and water absorption behaviour) of the HECs and HPCs. 

1.6  Thesis Organisation 
This thesis contains seven chapters. An introduction to investigate the rationale of the 

present study (influence of fibre processing and treatments on hemp fibre/epoxy and 

hemp fibre/PLA composites) and its objectives are described in Chapter 1. A 

comprehensive literature review related to the present work is included in Chapter 2. 

Details of the relevant test methods, experimental procedures, results and discussion, and 

conclusions are incorporated within individual chapters from Chapter 3 to 5. Chapter 3 

deals with industrial hemp fibre treatment and characterisation. Chapter 4 covers the 

influence of fibre treatment and processing on industrial hemp fibre/epoxy composites. 

Chapter 5 shows the influence of fibre treatment and processing on hemp fibre/PLA 

composites. Chapter 6 provides a conclusion of the results described in Chapter 3 to 5. 

Finally, Chapter 7 includes some recommendations and future work based on the current 

study. 
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Chapter Two 

2 Literature Review 

2.1  Summary 

This chapter describes 

• the source and classification of natural fibres, and a comparison of 

cellulose fibres 

• the properties of industrial hemp fibre and its constituents 

• the nature of matrix, its types and role in composites 

• the major factors affecting the performance of composites 

• the fibre treatments and characterisations to modify fibre/matrix interface 

as it plays an important role in the mechanical properties of the composites 

• the cure kinetics of hemp/epoxy composites, the interfacial shear strength 

(IFSS) of the composites, the strength predictions of the composites, and 

the processing methods of the composites 

• the degradation behaviour of composites (by hygrothermal and accelerated 

ageing) mentioning some previous work in these fields.  

2.2  Natural Fibres: Source and 
Classification 

Natural fibres can be sourced from plants, animals and minerals. An overview of 

natural fibres is presented in Figure 2.1 [22]. Generally, plant or vegetable fibres 

are used to reinforce polymer matrices and a classification of vegetable fibres is 
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given in Figure 2.2 [23]. Plant fibres are a renewable resource and have the ability 

to be recycled. The plant fibres leave little residue if they are burned for disposal, 

returning less carbon dioxide (CO2) to the atmosphere than is removed during the 

plant’s growth. 

e.g. abaca
e.g. sisal
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yucca, phormium

e.g. para

e.g. bamboo
e.g. coir

e.g.
kapok
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Figure 2.1 Overview of natural fibres. 
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Figure 2.2 Classification of natural fibre that can be used as reinforcements in polymers. 

The leading driver for substituting natural fibres for glass is that they can be 

grown with lower cost than glass. The price of glass fibre is around US $1.96 per 
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kg and has a density of 2.5 g/cc. On the other hand, natural fibre costs US $ 0.2-

0.5 per kg and has a density of 1.2-1.5 g/cc. As can be seen from Table 2.1 [22], 

the TS of natural fibres is substantially lower than that of glass fibres though the 

modulus is of the same order of magnitude. However, when the specific modulus 

of natural fibres (modulus per unit specific gravity) is considered, the natural 

fibres show values that are comparable to or even better than glass fibres. Material 

cost savings, due to the use of natural fibres and high fibre filling levels, coupled 

with the advantage of being non-abrasive to the mixing and moulding equipment 

make natural fibres an exciting prospect. These benefits mean natural fibres could 

be used in many applications, including building, automotive, household 

appliances, and other applications. 

Table 2.1 Properties of glass and natural fibres. 

Fibre Properties 
E-glass 

fibre 
Hemp Flax Jute Sisal Coir Ramie 

Density, g/cc 2.55 1.48 1.4 1.46 1.33 1.25 1.5 
TS, MPa 2400 550-

900 
800-
1500 

400-
800 

600-
700 

220 500 

YM, GPa 73 70 60-80 10-30 38 6 44 
Specific 
modulus 

29 47 26-46 7-21 29 5 2 

FS (%) 3 1.6 1.2-1.6 1.8 2-3 15-25 2 

Moisture 
absorption (%) 

- 8 7 12 11 10 12-17 

2.3  Comparison of Cellulose Fibres 

Chemical composition, surface characteristics, structural defects, strength, 

stiffness, and costs are some of the important parameters in selecting natural 

cellulose fibres for use in polymer composites. The prices of natural fibres 

fluctuates considerably depending on a number of factors like supply, demand, 

quality, and exchange rate [23]. Table 2.2 [24] shows a comparison of prices for 

commonly used fibres. 
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Table 2.2 The prices of some fibres. 

Fibre Price (USD/kg) 
Jute 0.4-0.7 

Hemp 0.5-1.5 
Flax 0.4-0.8 
Sisal 0.6-1.0 
Wood 0.2-0.4 
Glass 1.5-2.5 

Carbon 10-100 

Wood is the most abundantly used natural cellulose fibre because of its extensive 

use in pulp and paper industries. However, for better strength and stiffness 

cellulose fibres like hemp, flax, jute, kenaf and sisal are becoming increasingly 

important in composites production. Commercially available cellulose fibres and 

their sources are listed in Table 2.3 [25].  

Table 2.3 Commercially available fibre sources and their production. 

Fibre 
source 

Species World production (103 tonnes) Origin 

Wood (>10,000 species) 1,750,000 Stem 
Bamboo (>1250 species) 10,000 Stem 

Cotton lint Gossypium sp. 18,450 Fruit 
Jute Corchorus sp. 2,300 Stem 

Kenaf Hibiscas cannabinus 830 Stem 
Flax Linum usitatissimum 830 Stem 
Sisal Agave sislana 378 Leaf 

Roselle Hibiscus sabdariffa 250 Stem 
Hemp Cannabis sativa 214 Stem 
Coir Cocos nucifera 100 Fruit 

Ramie Boehmeria nivea 100 Stem 
Abaca Musa textilis 70 Leaf 

Sunn hemp Crotolaria juncea L. 70 Stem 

Hemp, flax, jute and kenaf are called bast fibres, as they develop in the inner bark 

(phloem) of the stem of dicotyledonous plants. Some physical characteristics of 

bast fibres are given in Table 2.4 [22].  

Table 2.4 Physical characteristics of bast fibres. 

Fibre Length of 
textile fibre 

(mm) 

Length of 
ultimate 

fibre (mm) 

Diameter 
(µm) 

Weight per 
length 

Density 
(g/cc) 

Hemp 1000-3000 5-55 16-50 3.20 1.4 
Flax 300-900 13-60 12-30 1.7-17.8 1.4 
Jute 150-360 0.8-6 5-25 13.27 1.4 
Sisal 600-1000 0.8-8 100-400 9-400 1.2-1.45 

Ramie 1500 40-250 16-125 4.6-6.4 1.4 
Kenaf 900-1800 1.5-11 14-33 50 - 
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Hemp, flax, and jute have similar morphologies and can have similar functions in 

composite materials. Cellulose, hemicelluloses, and lignin are the basic 

components of natural fibres and govern the physical properties of fibres. Gassan 

and Bledzki [24] reported that cellulose, lignin, hemicelluloses, and pectin cell 

walls differ in their composition and structure depending on the climatic 

conditions and age. The chemical composition of some cellulose fibres are given 

in Table 2.5 [22]. 

Table 2.5 Percentage chemical composition of cellulose fibres. 

Fibre Cellulos-
e 

Hemicellul
-oses 

Lignin Pectin Water 
solubles 

Fat and 
wax 

Moistu
-re 

Hemp 67.00 16.10 3.30 0.80 2.10 0.70 10.00 
Flax 64.10 16.70 2.00 1.80 3.90 1.50 10.00 
Jute 64.40 12.00 11.90 0.20 1.10 0.50 10.00 
Sisal 65.80 12.00 9.90 0.80 1.20 0.30 10.00 

Ramie 68.60 13.10 0.60 1.90 5.50 0.30 10.00 
Sunn 67.80 16.60 3.50 0.30 1.40 0.40 10.00 
Abaca 63.20 19.60 5.10 0.50 1.40 0.20 10.00 

The chemical constituent of plant fibres is important, since it can affect their 

ultimate utilisation. Robson [25] reported that the chemical constituents of plant 

fibres have specialised functions in the cell wall. Cellulosic microfibrils form 

crystalline regions and impart enormous strength and stiffness, cellulose and 

hemicelluloses form semi-crystalline and amorphous regions which provide 

necessary flexibility while the amorphous regions of lignin give rigidity and a 

degree of hydrophobia [22].  

2.4  Industrial Hemp Fibre 

Industrial hemp (cannabis sativa L.) is one of the oldest crops known to humans, 

and there is evidence of its use by ancient and modern civilizations. Many hemp 

fibre products (dating back to around 600-800 BC) have been discovered—

commonly in the forms of rope, canvas and cordage. The earliest discovered 

article was a 10,000 year old piece of hemp fabric found in Taiwan [26]. Due to 

the similar leaf shape, hemp is frequently confused with marijuana. Although both 

plants are from the same species, cannabis, industrial hemp can be grown with 

little or none of the psychoactive properties of marijuana by utilizing low-THC 

(delta-9-tetrahydrocannabinol) varieties.  
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Hemp is a bast fibre plant similar to flax, kenaf, jute and ramie. Long slender 

primary fibres on the outer portion of the stalk characterise bast fibre plants. The 

primary hemp fibre is attached to the core fibre by pectin—a glue-like soluble 

gelatinous carbohydrate. This fibre can be used for production of composites—

ropes, textiles specialty pulp and paper. The fibre from the wood-like core can be 

used for animal bedding, garden mulch, fuel and an assortment of building 

materials. The seed contains between 25-35% oil by weight, which is rich in 

essential fatty acids considered to be necessary to maintain health [27] and 

cannabinoids for medical, spiritual and recreational purposes.  

The commercial production of hemp originated in Central Asia [28] but has been 

cultivated from the Equator to the polar circle [29]. Chinese writings state that the 

emperor Shen Nung first taught the people of China to cultivate hemp and 

produce cloth around 2,800 BC. They are the earliest known civilization to use 

hemp (in the Sung dynasty around 500 AD). The Spaniards brought hemp to the 

Western Hemisphere in 1545. In 1645 it was introduced to the USA by the 

Puritans in New England as a fibre source for household spinning and weaving. 

At the end of the 18th century, Australia and New Zealand were considered as 

ideal places by England to grow hemp, reducing their dependency on Russian 

hemp. 

The start of hemp’s decline was in the early 1800s when cheaper alternative fibres 

such as jute and sisal became more readily available from India, Bangladesh and 

China. Hemp’s popularity was also affected by technological breakthroughs in the 

late 1800s such as the cotton gin. Around this time, methods for creating paper 

from trees allowed new products that were cheaper or more desirable than hemp 

to be produced [30]. The rise of the petrochemical industries at the start of the 

20th century brought further competition while the final nail in hemp’s coffin 

came in 1937 when the United States Government’s Marijuana Tax Act was 

introduced. The act required the registration and licensing of all hemp growers 

with the federal government in an effort to restrict production of marijuana. Many 

other countries followed the USA’s lead and made hemp production and 

possession illegal. Production restrictions were slightly lifted to support the war 

effort from 1943-1945. However, it was not until 1992 that a number of countries 
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started officially passing legislation allowing restricted cultivation of low-THC 

industrial hemp. 

 Since 1961, industrial hemp cultivation has been illicit in New Zealand due to the 

introduction of the Misuse of Drugs Act. It was not until late 2001, that a new bill 

was passed to allow the cultivation of industrial hemp under licence with levels of 

no more than 0.3% THC. Where hemp has become legal again a dramatic increase 

in industrial hemp growth has occurred. Therefore, now is the right time for New 

Zealand to get the benefits from the rising popularity of hemp. 

2.4.1  Plant and Bast Fibre Morphology 

Industrial hemp is an annual plant and normally dioecious, meaning the species 

has separate male and female plants. A female hemp plant can be seen in Figure 

2.3. However, monoecious varieties (male and female parts on the same plant) can 

also be grown through breeding and selection. Hemp is sensitive to day length and 

the plant matures as days get shorter. Its growing season is from the middle of 

April to the middle of September and it can be grown as a fibre, seed, or dual 

purpose crop. 

 

Figure 2.3 Female hemp plant. 
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The cross-section of hemp is almost orbicular at the bottom and angular at the top. 

The stalk is generally 4-10 mm thick and 1.5-2.5 m high. The interior of the stalk 

is hollow, surrounded by woody cores called hurds, Figure 2.4. The hurd fibres 

are very thin walled, weak, brittle, and comparatively shorter than bast fibre and 

therefore are not considered for composite production. Outside the cambium layer 

where cells grow and differentiate is the phloem or parenchyma layer, which 

contains the valuable long cells known as bast fibre. 

Epidermis
∗ The thin outside
protective layer 
of plant cells

Hollow core 
∗ Except  at joints

Pith
∗ A layer composed of thick
woody tissue used to support 
the plant
∗ The product from this area 
is called hurds and is 60-75% 
of total mass

Cambium (growth area)
∗ Produces hurds on inside
and bast  and bark on outside-- 
the differentiation layer
∗ Also an abscission layer where fibre 
and hurds separate during the 
retting/breaking process

Cortex
∗ A layer of thin
walled cells having
no fibre but containing
chlorophyll

Not to scale

Phloem or parenchyma
∗ Short cells containing
chlorophyll and long cells 
that are the bast fibres

 

Figure 2.4 Cross section of a hemp stem. 

Hemp seeds are smooth and about one-eighth to one-fourth of an inch long. The 

seeds usually contain from 29 to 34% oil. The oil is similar in composition to 

drying oils such as linseed and tung and consists primarily of three fatty acids: 

linoleic (54-60%), linolenic (15-20%), and oleic (11-13%). Both the fibre and 

seed can be used in a wide range of applications.  

Industrial hemp can be grown in a variety of soils, but it does best in loose, well-

drained loam soils with high fertility and abundant organic matter. Plants require 

plentiful moisture throughout the growing season, especially during the first 6 

weeks [31]. Hemp also needs substantial amounts of nutrients to produce high 

yields.  

Hemp diseases are not widespread and occur sporadically. They are usually 

caused by seed- and soil-borne fungi which can be controlled by seed treatment 

before planting or by rotation [31]. Under favourable conditions, hemp is very 
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competitive with weeds, so herbicides are generally unnecessary in hemp fibre 

production. The hemp fibres can be considered as composites as they consist of 

cellulose microfibrils wound in amorphous materials like lignin and 

hemicellulose. The primary cell of the fibre cell wall is located on the outside of 

the fibre and is relatively thin consisting of pectin, lignin and cellulose. The 

secondary cell wall is composed of two or three layers that make up most of the 

fibre diameter, and consists of highly crystalline cellulose microfibrils and 

amorphous celluloses [32]. The technical fibre is simply a smaller part of a bast 

fibre bundle. The elementary fibre, also called ultimate or single fibre, is one cell 

of the bast fibres. The principle of the different levels of fibres in the plant is 

described in Figure 2.5 [15]. 

 

Figure 2.5 Composition of hemp stem. 

2.4.2  Factors Affecting Fibre Mechanical Properties 

Several structural aspects like crystallinity and amorphousness, orientation of 

molecular chains, and imperfections (e.g. pits and nodes) affect the mechanical 

strength of hemp fibres like other natural fibres. The variation in chemical 

composition and structural imperfections develops in hemp fibres due to growth 

conditions and harvest procedures. Therefore, a large variation in mechanical 

strength occurs in fibres and differs between different parts of a plant as well as 

from one plant to another.  
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There are other factors that may also affect the fibre properties including, maturity 

of the plants, fibre separation process, type of soil and the climate under which 

they were grown. The crystalline structure of cellulose makes the fibres stiff and 

strong in tension but also susceptible to kink band formation under compressive 

loading which significantly reduces fibre strength [33]. 

2.4.3  Growing Conditions 

Hemp is a high yield commercial fibre crop that flourishes in areas with 

moderately cool climates. It can be grown on a wide range of soils, but tends to 

grow best on soil that is well drained, high in organic matter and non-acidic.  The 

plants are distinctly male or female and they generally flower between June and 

October. Hemp requires limited pesticides as it grows quickly, attracting few 

pests. Hemp’s extensive root system is very beneficial, as it is effective in 

preventing erosion, aiding in the removal of toxins and improving the soil 

structure by aerating the soil for future crops. Another remarkable environmental 

benefit of growing hemp is that it consumes carbon dioxide and it is an ideal 

rotation crop. Hemp grows successfully at a density of up to 150 plants per square 

meter and reaches a height of between two and five meters in a three-month 

growing season. 

2.4.4  Harvesting 

Hemp crops are harvested at different times; for example, harvesting stalks for 

high quality primary fibre occurs as soon as the crop flowers, and harvesting for 

seed production and stalks occur 4–6 weeks after flowering, when male plants 

begin to shed their pollen [34]. Harvesting hemp for paper pulp and textiles occurs 

as the female plant is in flower and before seed formation, utilising specialised 

cutting equipment.  

The moisture content at the time of harvest is about 54%. For storage of dry hemp, 

the moisture content must be less than 15% to avoid fibre decay by micro-

organisms. The crop is cut, and then the stalks are allowed to rett in the field to 

loosen the fibres. During this process, most of the nutrients extracted by the plant 
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are returned to the soil as the leaves decompose. The stalks are turned and then 

baled with hay harvesting equipment.  

Hemp grown for fibre is harvested at early to mid flowering stage using 

specialised equipment. Hepworth et al. [35] reported that early harvesting of hemp 

is beneficial, resulting in stiffer composites. This is because of the fibre bundles in 

the tissue which are stuck to the epidermis and these tissue strips result in a single 

large fibre. If hemp is harvested late in the season for bast fibre production, drying 

conditions are often poor, with subsequent loss of fibre yield and quality in the 

drying swath.  

2.5  Hemp Fibre Constituents 

The constituents of hemp fibre vary with origin, area of production, variety, and 

maturity of the plant. The major constituents of fully developed hemp fibre cell 

walls are cellulose, hemicelluloses, lignin, and pectin. The pectins occur in most 

mature plant cell walls with the exception of hurd fibres, wherein extensive 

secondary cell wall thickening replaces almost all of the pectin with lignin.  

2.5.1  Cellulose  

The long thin crystalline microfibrils in the secondary cell wall are made of 

cellulose. It is the reinforcing material and is responsible for the high mechanical 

strength of fibres. It consists of a linear polymer of D-anhydroglucose units where 

two adjacent glucose units are linked together by β-1,4-glycosidic linkages with 

elimination of one water molecule between their -OH groups at carbon atoms 1 

and 4. Chemically, cellulose is defined as a highly crystalline segment alternating 

with regions of non-crystalline or amorphous cellulose [32, 36]. 

The glucose monomers in cellulose form hydrogen bonds both within its own 

chain (intramolecular) forming fibrils and with neighbouring chains 

(intermolecular), forming microfibrils. These hydrogen bonds lead to formation of 

a linear crystalline structure with high rigidity and strength. The amorphous 

cellulose regions have a lower frequency of intermolecular hydrogen bonding, 

thus exposing reactive intermolecular -OH groups to be bonded with water 
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molecules. Amorphous cellulose can therefore be considered as hydrophilic in 

nature due to their tendency to bond with water. On the other hand, very few 

accessible intermolecular –OH are available in crystalline cellulose and it is far 

less hydrophilic than amorphous cellulose. Crystalline microfibrils have tightly 

packed cellulose chains within the fibrils, with accessible –OH groups present on 

the surface of the structure. Only very strong acids and alkalis can penetrate and 

modify the crystalline lattice of cellulose. 

2.5.2  Hemicelluloses 

Hemicelluloses in hemp fibres are polysaccharides (excluding pectin) bonded 

together in relatively short and highly branched chains. Hemicelluloses differ 

from cellulose in three different ways. Firstly, unlike cellulose (containing only 

1,4-β-D-glucopyranose units) they contain several different sugar units. Secondly, 

they exhibit a considerable degree of chain branching, whereas cellulose is a 

linear polymer. Thirdly, the degree of polymerization of native cellulose is ten to 

hundred times higher than that of hemicelluloses. Unlike cellulose, the 

constituents of hemicelluloses differ from plant to plant. Hemicelluloses contain 

substituents like acetyl (-COCH3) groups and glucoronic acid. By attaching ferulic 

acid and p-coumaric residues, hemicelluloses can form covalent bonds to lignin 

[37]. Due to this linking ability of hemicelluloses, degradation of it leads to 

disintegration of the fibres into cellulose microfibrils resulting in lower fibre 

bundle strength [38].  

Mainly the acid residues attached to hemicelluloses make it highly hydrophilic 

and increase the fibres’ water uptake, which increases the risk of microbiological 

fibre degradation. It has been found that hemicelluloses thermally degrade more at 

lower temperatures (150-180°C) than cellulose (200-230°C) [39].  

2.5.3  Lignin 

Together with cellulose, lignin is the most abundant and important polymeric 

organic substance in the plant world. Lignin increases the compression strength of 

plant fibres by gluing the fibres together to form a stiff structure, making it 

possible for trees of 100 meters to remain upright. Lignin is essentially a 
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disordered, polyaromatic, and cross-linked polymer arising from the free radical 

polymerisation of two or three monomers structurally related to phenylpropane 

[40]. Free radical coupling of the lignin monomers gives rise to a very condensed, 

reticulated, and cross-linked structure. The lignin matrix is therefore analogous to 

a thermoset polymer in conventional polymer terminology. The dissolution of 

lignin using chemicals aids fibre separation. When exposed to ultraviolet light, 

lignin undergoes photochemical degradation [41]. Since hemp belongs to the 

angiosperm phylum, it contains hardwood lignin of coniferyl alcohol, sinapyl 

alcohol and a minor content of p-coumaryl alcohol [32]. It was shown by 

treatment of hemp with P. radiata Cel that degradation of lignin and pectin 

(presumably) reduces the fibre bundle TS slightly [32]. Therefore lignin seems to 

act like a matrix material within the fibres, making stress transfer on a micro-fibril 

scale and single fibre scale possible.  

2.5.4  Pectin 

Pectin is a complex branched structure of acidic structural polysaccharides, found 

in fruits and bast fibres. The majority of the structure consists of homopolymeric 

partially methylated poly-α-(1-4)-D-galacturonic acid residues, but there are 

substantial 'hairy' non-gelling areas of alternating α-(1-2)-L-rhamnosyl-α-(1-4)-D-

galacturonosyl sections containing branch-points with mostly neutral side chains 

(1-20 residues) of mainly L-arabinose and D-galactose (rhamnogalacturonan I). 

Pectin is the most hydrophilic compound in plant fibres due to the carboxylic acid 

groups and is easily degraded by defibration with fungi [32]. Tests on hemp fibres 

(single fibres as well as fibre bundles) show that treatment with pectinase 

enzymes can result in pectin degradation which might lead to a slight reduction in 

fibre strength [32]. Pectin along with lignin and hemicelluloses present in natural 

fibres can be hydrolysed at elevated temperatures. 

2.6  Matrix 

The matrix plays an important role in the performance of fibre reinforced polymer 

composites. Both thermosets and thermoplastics (including bio-derived ones) are 

attractive as matrix materials in the production of composites. 
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2.6.1  Thermosets 

Much of the early work used thermosetting resins as matrix material for 

composite production. Products like tufnol which is made from cotton fibres and 

epoxy resin, have been available for some time, having good stiffness and strength 

[25]. In the last few years there has been renewed interest in these products for use 

in automotive applications [42]. To achieve reinforcing effects in composites it is 

necessary to have good adhesion between the fibres and resins. Epoxy and 

phenolic thermosetting resins are known to be able to form covalent cross-links 

with plant cell walls via -OH groups [8]. Composite manufacture can be achieved 

using low viscosity epoxy and phenolic resins that cure at room temperature. In 

addition epoxy resin does not produce volatile products during curing which is 

most desirable in production of void free composites. Therefore, although epoxy 

resins are relatively more expensive than polyester, they have potential for the 

development of high added value plant fibre composites, where long fibres at a 

high content are required.  

The functional group in epoxy resins is called the oxirane, a three-membered 

strained ring containing oxygen. Epoxy resins, depending on their backbone 

structure, may be low or high viscosity liquids or solids. In low viscosity resin, it 

is possible to achieve a good wetting of fibres by the resin without using high 

temperature or pressure. The impregnation of fibres with high viscosity resins is 

done by using high temperature and pressure.  

A wide range of starting materials can be used for the preparation of epoxy resins 

thereby providing a variety of resins with controllable high performance 

characteristics. These resins generally are prepared by reacting to a polyfunctional 

amine or phenol with epichlorohydrin in the presence of a strong base. The 

commerically available diglycidyl ether of bisphenol-A (DGEBA), Figure 2.6, is 

characterised by epoxy equivalent weight, which can be determined either by 

titration or quantitative infrared spectroscopy. The presence of glycidyl units in 

these resins enhances the processability but reduces thermal resistance.  
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Figure 2.6 Chemical structure of DGEBA. 

The most widely used curing agents for epoxy resins are primary and secondary 

amines. The overall reaction rate of an amine with an epoxide is influenced by the 

steric hindrance and the electron withdrawing or electron donating groups present 

in the amine [43].  

During curing, epoxy resins can undergo three basic reactions.  

1. Epoxy groups are rearranged and form direct linkages between themselves. 

2. Aromatic and aliphatic -OHs link up to the epoxy groups. 

3. Cross-linking takes place with the curing agent through various radical groups. 

The advantages of epoxy resins are low polymerisation shrinkages unlike 

polyesters during cure, good mechanical strength, excellent resistance to 

chemicals and solvents, and excellent adhesion to fibres. The epoxy molecule also 

contains two ring groups at its centre, which are able to absorb both mechanical 

and thermal stresses better than linear groups, giving epoxy resin very good 

stiffness, toughness and heat resistance.  

The primary disadvantages of the epoxy resins are that they require long curing 

times and, in general, their mould release characteristics are poor. The epoxy 

resins are characterised by their high adhesive strengths. This property is 

attributed to the polarity of aliphatic -OH groups and ether groups that exist in 

both the initial resin and cured system. The polarity associated with these groups 

promotes electromagnetic bonding forces between epoxy molecules and the polar 

fibres. 
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2.6.2  Bio-derived Thermoplastic Matrices 

Cellulose fibres (e.g. hemp, flax, jute) are widely used with conventional 

thermoplastic polymers (e.g. PP, PE) as reinforcement in composite production to 

improve mechanical properties. In fact, the history of composites from renewable 

resources is far longer than conventional polymers. The study and utilization of 

natural polymers is an ancient science. Typical examples, such as paper, silk, skin, 

and bone arts, can easily be found in museum around the world. In the biblical 

Book of Exodus, Moses’s mother built the ark from rushes, pitch and slime- a 

kind of fibre reinforced composite, according to the current classification of 

material. During the opium war more than 1000 years ago, the Chinese built their 

castles to defend against invaders using a kind of mineral particle reinforced 

composite made from gluten rice, sugar, calcium carbonate and sand [44].  

However, the availability of petroleum at a lower cost and the bio-chemical 

inertness of petroleum based products have proven disastrous for the market of 

natural polymers. It is only about last two decades when the significance of eco-

friendly materials has been realized. Now polymers from renewable resources 

have started drawing an increasing amount of attention. The two main reasons for 

that are environmental concerns [45], and the realization that the petroleum 

resources are limited.  

Generally, polymers from renewable resources can be classified into three groups: 

(1) natural polymers such as starch, protein, and cellulose (2) synthetic polymers 

from natural monomers, such as PLA and (3) polymers from microbial 

fermentation, such as polyhydroxy butyrate (PHB). Like numerous other 

petroleum based polymers, many properties of polymers from renewable 

resources can be improved through composite production [44].  

The development of synthetic polymers like PLA using monomers from natural 

resources has been a driving force for the development of biodegradable polymers 

from renewable resources. Therefore, in today’s world PLA is the most promising 

among bio-derivable polymers [44]. PLA can be processed (e.g. compression 

moulding, pultrusion, extrusion and injection moulding) like petroleum based 

polyolefins and its mechanical property is better than the widely used polymer PP 
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[46]. On degradation PLA does not emit any carbon dioxide to the environment 

like other biodegradable materials from renewable resources. The degradation 

occurs by hydrolysis to lactic acid, which is metabolized by micro-organisms to 

water and carbon dioxide. If PLA is comprised together with other biomass, the 

biodegradation occurs within a couple of weeks and the material can fully 

disappear within a month [47]. Chemically, it is a linear aliphatic polyester of 

lactic acid which can be obtained by fermentation of renewable agricultural 

materials like corn, sugarcane and sugar beets. Lactic acid is converted to a cyclic 

lactide dimer which is then polymerised to PLA through a ring opening reaction. 

The major applications of PLA products are in household wastes as plastic bags, 

barriers for sanitary products and diapers, planting, and disposable cups and 

plates. However, a number of authors reported the possibilities of developing fully 

bio-degradable composite products by using biodegradable polymers as matrix 

and natural fibres as reinforcements [48, 49]. Keller et al. [50] reported that PLA 

should produce fibre reinforced composites with high mechanical properties for 

light weight construction materials. Oksman et al. [51] observed that PLA had 

good potential as a polymer matrix in flax fibre reinforcement for composites 

production. They reported that the composite strength produced with PLA/flax 

was about 50% better than that of PP/flax composites. Due to the increasing 

commercial interest for natural fibre reinforced polymer composites for use in 

automotive applications and building constructions as well as demands for 

environmentally friendly materials, the development of fully biodegradable 

composites for many applications could be an interesting area of research. 

2.7  Natural Fibre Reinforced Polymer 
Composites 

Natural fibre reinforced polymer composites are hybrid with their properties, with 

characteristics of both natural fibres and polymers. Incorporation of natural fibres 

into polymer is now a standard technology to improve the mechanical properties 

of polymers. Mechanical properties like TS and YM are enhanced in the end 
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products (composites) as the fibres in the composites determine the TS and YM of 

the materials [52]. 

2.7.1  Factors Affecting the Use of Natural Fibres in 
Composites 

Natural fibres are very attractive reinforcement materials for composites, as they 

are readily available, renewable, cost effective, and have good specific properties. 

However, the processing and properties of composite materials depend on the 

properties and proportions of the matrix and the reinforcement as discussed 

below: 

2.7.1.1 Wettability and Interfacial Bonding 

Interfacial bonding largely depends on the adhesion between the reinforcement 

and the matrix. The adhesion plays an important role to transfer the stress from the 

matrix to the fibre and thus contributes towards the properties of the composites. 

Poor surface adhesion due to insufficient wetting is the principal reason for the 

formation of a weak or ineffective interface between the fibre and the matrix. 

Most thermoplastics (e.g. PP and PE) are generally non-polar (hydrophobic) in 

nature, which makes them incompatible with polar (hydrophilic) natural fibres and 

thus results in an inefficient fibre matrix bonding. On the other hand, thermosets 

like epoxy and phenolic are known to be able to form covalent cross-links with 

plant cell walls via -OH groups [8]. However, due to the presence of unstable non-

cellulosic components like hemiclluloses and lignin, untreated natural fibre have 

performed well below their potential abilities. Therefore, to increase long term 

stability of the composites, surface treatment of untreated fibre is necessary. 

Sometimes, to improve the composite properties by increasing the utilisation of 

the mechanical properties of reinforcing fibres in the composites, bonding 

between fibres and matrix are improved by using various fibre and matrix 

treatments. When the fibre and matrix are brought into close contact, a number of 

different bonding mechanisms may occur (namely, mechanical interlocking, 

electrostatic bonding, chemical bonding, and reaction or interdiffusion bonding). 

It is noted that more than one bonding mechanism may be operative at the same 
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time for a given system and the bonding mechanism may change during the 

various production stage or during service [4]. 

2.7.1.2 Thermal Stability 

Natural fibres have low thermal stability that results in the exclusion of some 

manufacturing processes, and also limits the use of the composites to low 

temperature applications. The low thermal stability increases the possibility of 

cellulosic degradation and possibility of emissions of volatile materials that could 

adversely affect the composite properties. Processing temperatures are thus 

limited to about 200oC, although it is possible to use higher temperature for short 

periods of time. This apparently limits the type of thermoplastics that can be used 

with natural fibres [53]. 

2.7.1.3 Dispersion of the Fibre in the Matrix 

The incorporation of natural fibres into polymeric matrices is often associated 

with poor dispersion of the fibres, due to the large differences in polarity as well 

as strong hydrogen bonds between adjacent molecules of the fibres. Good 

distribution of fibres within the matrix is necessary in order to obtain satisfactory 

properties of the composites. A good distribution implies that the fibres are fully 

separated from one another, and each fibre is fully surrounded by the matrix. 

Insufficient fibre dispersion can lead to clumping and agglomeration of the fibres, 

resulting in an inhomogeneous mixture of matrix-rich and fibre-rich areas. This 

segregation is undesirable as the matrix rich areas are weak while fibre rich areas 

are susceptible to microcracking. Micro cracks are responsible for inferior 

mechanical properties of composites. It is therefore, necessary for the composites 

to be homogeneous in fibre and matrix distribution to ensure good mechanical 

properties. 

Strong intermolecular hydrogen bonding between fibres and the fibre length are 

the two main factors that affect the extent of fibre distribution and dispersion in a 

composite. To separate the fibres from their fibre bundles it is necessary to 

dissolve the pectins and lignins joining the individual fibres together. Fibre 

separation can easily be performed by digesting the fibre with strong alkali [54]. 
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Fibre separation also occurs during compounding with the thermoplastic matrix. 

Several factors contribute to this fibre attrition, such as the shearing forces 

generated in the compounding equipment, residence time, temperature, and 

viscosity of the mix [53]. 

The use of a surface active agent such as stearic acid or pre-treating the fibre with 

acetic anhydride can also improve composite properties, as fibre clumping is not 

as severe a problem with treated fibres as it is with untreated fibre [55]. The 

length of the fibres used in the composites is a critical factor during processing by 

the compounding equipments where shear forces generated. Excess length leads to 

entanglements, resulting in clumping and reduction in composite strength. If the 

fibres are very short, the stress transfer area will be too small to effective 

reinforcement. As fibre lengths reduce during composites processing by shear, the 

compression moulding is generally recommended [56] as this is a process with the 

least amount of shear produced during processing. To produce efficient 

composites with well dispersed fibres, it is necessary to make careful selection of 

the initial fibre lengths, processing aids, techniques, and conditions. 

2.7.1.4 Biodegradability 

Natural fibres degrade easily when exposed to nature. Some methods for 

degradation include biological, chemical, mechanical, thermal, photochemical and 

aqueous. The biodegradability of natural fibre is often put forward as a positive 

advantage justifying the use of these fibres. However, for many outdoor 

applications it is necessary for the composites to be serviceable for several years. 

In order to increase their service life it is necessary to control this natural 

degradation. One way of preventing or slowing down the natural degradation 

process is by modifying the cell wall chemistry. Undesirable natural fibre 

properties such as dimensional instabilities, flammability, biodegradability, and 

chemical degradation can be eliminated or slowed down in this manner [57]. 

Chemical treatments can reduce the water uptake in the fibres, and can therefore 

reduce the amount of fibre swelling and biological degradation by blocking the 

available –OH group on the fibre surface [58]. It is reported in the literature that 

encasing in thermoplastic reduced water uptake [58].   
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2.7.1.5 Effect of Fibre Orientation 

Natural fibre reinforced composites are made with random and oriented fibres. 

Composites made with oriented fibre in the test direction are generally stronger 

and stiffer than randomly oriented fibre. Both the failure strain (FS) and the 

maximum stress of fracture decrease with increasing angle of the fibre orientation 

axis with the test direction. The composite TS decreases by four times when the 

angle between the fibre orientation axis with the test direction increases by about 

26o while the composites YM decreases by only two times [39]. 

2.7.1.6 Influence of Humidity 

Water on the fibre surface and on the matrix like PLA, can act like a separating 

agent between the fibre and matrix during the formation of the fibre/matrix 

interface. Therefore, fibre and matrix drying is necessary prior to processing. On 

top of that evaporation of the water during composites processing over 100oC 

leads to the formation of voids, the most undesirable phenomenon of composite 

production. Thus, reduces the mechanical properties of composites. Gassan et al. 

[59] reported an increase of TS of 10% and YM of 20% for jute/epoxy composites 

when they dried the fibre to minimise the humidity content of jute fibre from 10 to 

1 prior to the composites processing. The hydrophilic fibres also absorb moisture 

during the service life of composites. Moisture absorption leads to fibre swelling 

which causes micro-cracking of the composites, resulting in degradation of 

mechanical properties. Joseph et al. [7] showed that moisture absorption of NFCs 

can be reduced significantly by improving the interfacial bonding through 

chemical treatment of the fibres and/or matrices. 

2.7.1.7 Fibre Aspect Ratio 

The fibre length to diameter ratio or fibre aspect ratio, is a critical parameter in a 

composite material. For each short fibre composite system, there is a critical fibre 

aspect ratio, which may be defined as the minimum fibre aspect ratio in which the 

maximum allowable fibre stress can be achieved for a given load [60]. Along with 

the fibre and matrix properties, the critical fibre length also depends on the quality 

of the fibre/matrix interface. To attain maximum reinforcement, the fibre aspect 
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ratio of any composite system should be above its critical value to ensure 

maximum stress transfer to the fibres before the composite fails. If the fibre aspect 

ratio is lower than its critical value, insufficient stress will be transferred and 

reinforcement of the fibre will be insufficient (i.e. the fibres are not loaded to their 

maximum stress values) [60]. By contrast, if the fibre aspect ratio is too high, the 

fibres may get entangled during mixing resulting in poor fibre dispersion. An 

aspect ratio in the range of 100-200 after composite processing is recommended 

for high performance short fibre composites [60]. 

2.7.1.8 Fibre Volume Fraction 

The mechanical properties of composites are strongly influenced by the content of 

the reinforcing fibre. Composites properties change with variations in fibre 

content, particularly TS and YM can be predicted using failure prediction models 

such as the “modified rule of mixtures (MROM)”. 

21KKMVMVM ffmmc += ∗

 
(2.1) 

where, cM  is the TS or YM of the composite, fM  is the TS or YM of the fibre, 

mV  is the volume fraction of the matrix, fV  is the volume fraction of the fibre, 1K  

is the orientation factor, 2K  is a factor dependent on the stress transfer between 

the matrix and the fibres, and ∗
mM  is the tensile contribution of the polymer 

matrix at the FS of the fibres or the YM of the polymer matrix. The mechanical 

properties of short fibre composites are more difficult to predict than continuous 

fibre composites. This is due to the complexity of determining parameters such as 

fibre dispersion, orientation and geometry of the fibres within the composites, 

fibre and matrix volume fractions, and the IFSS between the fibre and the matrix 

[36]. 

At low fibre volume fractions, a decrease in TS is usually observed. This is due to 

the introduction of flaws created by the fibre ends. These flaws act as stress risers, 

and cause the bonds between the fibre and matrix to break. At higher volume 

fractions, the matrix is sufficiently restrained and the stress is more evenly 
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distributed. This results in the reinforcing effect outweighing the effects of the 

stress concentrations [58]. 

As the fibre volume fraction is further increased, the tensile properties gradually 

increase until they surpass those of the matrix. The corresponding fibre volume 

fraction at which the strength properties of the composite cease to decline and 

start to increase is known as the critical fibre volume fraction. At high fibre 

volume fractions, the TS of the composites start to decrease due to insufficient 

filling of the matrix material. Nishino et al. [61] produced a kenaf/poly-L-lactic 

acid composite, and found that strength increases linearly with an increase of fibre 

volume fraction of up to about 70 vol%, after which there was a reduction in 

strength. Fu et al. [62] reported another explanation for the decrease in composite 

mechanical properties at high volume fractions. During extrusion and injection 

moulding of short fibre reinforced polymers, fibre damage takes place as a result 

of fibre polymer interaction, and fibre contact with the surface of the processing 

equipment. At high volume fractions, there is an increase in fibre-fibre interaction 

and fibre equipment contact, resulting in reduction of fibre length and fibre 

efficiency. High fibre contents therefore lead to reduction in the mean fibre 

length, and if the mean fibre length is very different than the critical fibre length, 

the reinforcement efficiency is reduced. 

2.8  Chemical Treatment of Fibres 

2.8.1  Alkali Treatment of the Fibres 

2.8.1.1 Empirical Model for the Tensile Strength (TS) of Alkali 

Treated Fibre by Partial Factorial Design 

Experimental design deals with conducting a series of tests in which changes are 

made purposefully to input variables (factors) of a process in order to observe the 

corresponding changes of the outputs (responses). The process is defined as some 

combination of equipment, materials, methods, and some other resources which 

when used together transforms inputs into outputs. Thus, experimental design is a 

scientific approach which enables the researcher a better understanding of a 
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process, and to determine which input variables are most influential on the outputs 

and where to set those influential input variables so that the outputs can be 

optimized. Though the concept of experimental design has been used for a long 

time in science, industry only started using around 1940 [63]. In recent years, 

however, due to its great success in Japan, this method has gained great popularity 

[63].  

In the treatment of fibres, a number of factors could affect the fibre strength. A 

large number of experiments are necessary to optimise the parameters. The 

experimental design could be an effective tool in optimising the parameters of 

fibre treatment processes. 

The major constituent of natural fibre is crystalline cellulose. It also contains 

hemicelluloses, lignin and waxy substances [64]. However, lignin and 

hemicelluloses can degrade over time [65]. Therefore, to increase the long-term 

stability of NFCs and to improve interfacial bonding, researchers have attempted 

various surface treatments. These include alkali treatment [66-69], anhydride 

modification [70], organosilane treatment [71], and the use of various coupling 

agents [72, 73] of which, alkali treatment has been found to be the most feasible 

[74]. Meanwhile, several researchers have reported improvement in properties of 

natural fibres at different alkali concentration, and digestion time and temperature.  

Bledzki et al. [75] applied a NaOH concentration of 22% at temperatures 4, 10, 

and 20oC on hemp fibre and a NaOH concentration of 29% on flax fibres while 

Wang and Postle [76] applied 1.9% NaOH solution with Na2SO3 and Na2CO3 at 

two different temperature (95 and 120oC) with a digestion time of 45 and 50 

minutes to remove surface impurities from Australian hemp fibres. Geethamma et 

al. [77] used a 5% NaOH solution to remove surface impurities from oil palm and 

short coir fibres. Alkali treatment of fibres has also been seen to increase the 

percentage crystallinity [65] and molecular alignment of cellulose and thus has the 

potential to improve fibre strength by removing amorphous noncellulosic 

substances. 

From the available literature, it was observed that different researchers used 

combinations of different concentrations of NaOH, digestion time, and 
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temperature to treat natural fibres. Moreover, sodium sulfite (Na2SO3) is also used 

with alkali during the production of pulp to soften the lignin in pulp and paper 

industry [78]. Thus, the fibre treatment method can be presented as shown in 

Figure 2.7:  

 

 

 

 

 

 

 

 

 

Figure 2.7 Testing for optimum treatment condition for the TS of hemp fibres. 

It is clear from Figure 2.7 that an extensive study is necessary to develop an 

optimum alkali fibre treatment method. The present study aims at performing an 

experimental design to obtain an optimum fibre treatment and to derive a 

regression equation to predict the fibre strength. 

2.8.1.2 Selection of the Levels of Treatment Factors 

Four variables (concentration of NaOH, concentration of Na2SO3, time and 

temperature) were selected for treatment of the Retted UK hemp (untreated) fibre 

by using a statistically designed experiment. The purpose of conducting this 

designed experiment was to determine which of the four factors (concentration of 

NaOH, concentration of Na2SO3, time and temperature) are influential in 

optimizing fibre strength. 

To study four factors, each at four levels, a full factorial design would consist of 

44 = 256 runs. The obvious disadvantage of this design is the cost, time, and 

resources needed. In order to reduce the number of runs necessary, a fractional 

factorial design was conducted. Each of the four variables was investigated at two 
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levels to observe if the fibre strength changed as the independent variable moved 

from one level to another. Since only a straight line can be fitted through two 

points, it would only be possible to estimate the linear effect of each variable with 

a two-level experiment. To use more than two levels for each variable would 

require too many runs and hence very time consuming. 

The selection of the two levels to be used for each variable is very important. 

When the levels are too close, the change in fibre strength might be found so 

small that it might remain undetected in the experiment. When the levels are too 

far, the estimated change in the fibre strength might again be negligible, if the 

levels are located on either side of a maximum or minimum [79]. 

In the present work, regions of experiments were identified (from physical 

intuition) which would lead to useless results such as combinations of low 

concentrations of alkali with low temperatures and short digestion times (e.g. 5 

wt% NaOH at 30oC for 30 min) which would insufficiently digest non-cellulose 

components as well as concentrations of high alkali with high temperatures and 

long digestion times (e.g. 20 wt% NaOH at 180oC for 360 min) which would 

damage the fibre.  

Alkali fibre treatments using NaOH improve adhesion characteristics of natural 

fibres by removing lignin, pectin, and hemicelluloses; which then provide the 

fibre surface with a rough texture, the rough and clean fibre surface facilitates 

mechanical interlocking and improves wetting ability with the matrix [80]. NaOH 

also assists separation of the elementary fibre as well as exposure of active OH 

groups for hydrogen and covalent bonding with the matrix [81]. The Bledzki et al. 

[75] investigated the influence of alkali treatment of hemp fibres on the properties 

of unidirectional epoxy resin model composites and reported an increase in 

flexural modulus of up to about 100% and flexural strength of up to about 50% for 

unidirectional hemp-epoxy composites. Gassan and Bledzki [68] reported that 

treating the fibre surface with 26 wt% NaOH for 20 minutes at 20°C improves the 

mechanical properties of unidirectional jute/epoxy composite up to 60% when 

compared to untreated fibre composite, at a fibre content of 40 vol%. Prasad et al. 

[69] studied the alkali treatment of coir fibre with 5 wt% NaOH for 72-96 hours at 
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28°C. The alkali treatment of the coir fibre improved the flexural strength of the 

polyester resin composites by 40%.  

2.8.2  Acetylation of the Fibres 
Fibre treatment with acetic anhydride is an effective method of reducing the 

hydrophilic characteristics of natural fibres [24]. Acetic anhydride is a 

compatibiliser that lowers the surface energy of the fibre to make it non-polar and 

more similar to the thermoplastic matrix [82]. Acetylation has been shown to 

reduce swelling of wood in water [83]. Reduction of about 50 and 65% moisture 

uptake of acetylated jute and pine fibres, respectively has been reported in 

literature [24]. Hill et al. [84] noted that acetylation of coir fibre resulted in a 

slight increase in TS, YM, and impact energy (IE) of coir/polyester composites 

compared to unmodified coir/polyester composites. Rong et al. [85, 86] showed 

that the TS of acetylated sisal/epoxy composite was slightly higher than the 

untreated sisal epoxy composites. 

2.8.3  Silane Treatment of the Fibres 
More recently, organic-inorganic silane coupling agents have been used to couple 

cellulose fibres to thermoplastic like PP though they have been used for over 50 

years to couple glass fibres with polymeric matrices [87]. Yan et al. [88] showed 

the influence of silane treatment of fibre on the performance of sisal textile 

reinforced vinylester composites. Sisal fibre was treated with 3-

aminopropyltriethoxy silane and γ-methacryloxypropyl trimethoxy silane solution 

in acetone with a concentration of 6 wt% for 24 hours. A small increase in TS 

(about 3%) and tensile modulus (about 14%) of the composites was observed 

compared to untreated fibre composites. The flexural strength and flexural 

modulus of silane treated fibre composites were found to increase by 15% and 

30%, respectively compared to untreated composites. However, silane treatment 

of the fibres did not influence the IE. Mäder and Gliesche [89] treated flax and 

ramie with 3 wt% aqueous γ-aminopropyl triethoxy silane solution at 80oC. They 

observed a reduction in the flexural strength and an increase in flexural modulus 

of flax/epoxy composites, and did not observe any remarkable increase in the 

flexural strength on ramie/epoxy composites as compared to untreated fibre 
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composites. However, they observed an increase of about 20% in the flexural 

modulus of ramie/epoxy composites. 

2.9  Interfacial Shear Strength (IFSS) of 
Composites  

In a composite material, fibre ensures the strength, the matrix helps to keep the 

desired location, and the interface, as a key element of the composite, transfers the 

load from the matrix to the fibres, and is responsible for the reinforcing effect. 

Thus, the processing behaviour and the mechanical properties of fibre reinforced 

polymer composites are influenced by the properties of both the bulk materials 

and the interface. However, the interface is the key region that determines the 

characteristics of fibre reinforced composites to some extent. Several test methods 

(e.g. single fibre pull-out, fragmentation, microindentation, and push out) have 

been developed to characterise the interface and improve understanding of the 

adhesion between fibre and matrix resin [90, 91]. Of the methods, single-fibre 

pull-out test is the most commonly used method because of its ease of application 

and versatility. Perhaps, it is the oldest direct measurement technique which was 

developed in the early stages of composite research when the fibres were large 

and easy to handle [92]. The test is involved with pulling a single fibre out of a 

block of resin and has gained a large degree of popularity since the 1980s and is 

used with many fibre-matrix combinations [93].  

In single fibre pull-out test, the debonding process generally starts at the fibre 

entry point and gradually extends along the fibre until the debonding of the fibre 

ends [94]. The main advantage of this test is that the debonding force and 

embedded length are monitored during the pull-out process and the maximum 

pull-out force is converted to an apparent IFSS according to the following 

Kelly/Tyson equation [95]: 
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where, Fmax is the maximum debonding force, r is the radius and l is the embedded 

length of the fibre. 

Another advantage of this method is that since the matrix is in compression during 

this test, the strength of the matrix is not a significant factor allowing brittle 

matrices like epoxy resin and PLA to be used [96]. 

The whole procedure of pull-out test involves the assumption that the interfacial 

loading is a shear mode, the shear stress along the fibre is homogeneous and the 

friction between debonded fibre and matrix is negligible [97]. This can be true in 

the case of a ductile matrix. However, for ideal elastic fibre and matrix behaviour 

and a brittle interface fracture, strong stress field inhomogeneities are developed 

at the entry and end of the fibre [98]. Thus, the apparent shear stress obtained 

using Equation (2.2) decreases with increasing fibre length for elastic fibre and 

matrix behaviour, whereas it is independent from the fibre embedded length for a 

very ductile matrix.  

There is an ample literature available with synthetic fibre/polymer matrix system 

to measure IFSS by single fibre pull-out tests [99-101]. However, very limited 

work has been reported so far to measure IFSS for natural fibres especially by this 

technique. Herrera-Franco et al. [102] used different surface treatments to treat 

henequen fibres and measured IFSS of henequen/PE fibre systems by single fibre 

pull-out test to use as an indicator of the fibre-matrix adhesion improvement. They 

reported an increase of IFSS with different surface treatments. Arbelaiz et al. 

[103] also used different surface treatment to modify flax fibres and carried out 

single fibre pull-out test of flax/PP systems to calculate apparent IFSS. They 

observed that IFSS values were higher for alkali treated and maleated 

polypropylene (MAPP) treated fibre/PP systems. The aim of this study is to 

investigate the effects of alkali fibre treatment of hemp fibre on the IFSS of 

hemp/epoxy and hemp/PLA composites obtained by single fibre pull-out test.  
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2.10  Cure Kinetics of Hemp/Epoxy 
Composites (HECs) 

Thermosetting epoxies possess many desirable properties such as high TS and 

modulus, excellent chemical and solvent resistance, dimensional and thermal 

stability, good creep resistance, and excellent fatigue properties [5]. These 

characteristics make them ideal candidates as matrices for many important 

applications including adhesives, electronic encapsulants, and matrix for high 

performance fibre reinforced composites [5]. The physical properties of 

thermosetting system including epoxy resins are dependent on the extent of cure, 

which depends on the curing conditions, the time and temperature of cure. 

Therefore, the kinetic study of a curing reaction is important in order to obtain 

epoxy resins with controlled physical properties, and for establishing optimum 

curing conditions. Although epoxy resins can be cured with different group of 

curing agents, most studies performed to date have been with amine curing agents 

[104-106]. 

Epoxy resins are characterised by the presence of a three membered ring 

containing two carbons and an oxygen (epoxy group or epoxide or oxirane ring). 

Schlack reported the first liquid diepoxide, Figure 2.8, as the reaction product of 

bisphenol-A with an excess of epichlorohydrin [107]. 
 

 

Figure 2.8 2,2 – bis [4 - (2′,3′ –epoxy propoxy) phenyl] propane (DGEBA). 

This resin is commonly called as DGEBA. The higher molecular weight 

homologs are represented by the structure showed in Figure 2.9. 
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Figure 2.9 Higher molecular weight homologues of epoxy resins. 

n is the number of repeating unit and its value in liquid resins is less than 2.5 and 

may be as high as 18 in high melting point solid resins. DGEBA, Figure 2.8, is 

used extensively in industry due to its fluidity, ease of processing, and good 

physical properties of the cured resin. As the value of n increases, the fluidity of 

resin decreases and, therefore, in the composites industry the general-purpose 

epoxy resins have a maximum degree of polymerisation up to four only [9].  

The choice of curing agent depends on processing method, curing conditions, i.e. 

curing temperature and time, physical and chemical properties desired, 

toxicological and environmental limitations, and cost. A variety of curing agents 

containing active hydrogen atom such as aliphatic and aromatic amines, 

polyamide amines, polyamides, anhydrides, dicyandiamide, isocyanate, 

polysulphides, mercaptans, melamine-formaldehyde, and urea formaldehyde have 

been used [9]. 

For curing epoxy resins, aliphatic amines are the most widely used. These are 

highly reactive, low molecular weight curing agents that result in tightly cross-

linked network [9]. Generally, the curing of amine with DGEBA involves three 

main reactions: a primary amine group addition to the epoxy ring, a secondary 

amine group addition, Figure 2.10, and etherification.  
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Figure 2.10 Curing of epoxy resin with primary and secondary amines 

This is an autocatalytic process as the hydroxylic molecules are formed as one of 

the reaction products, partly protonating the oxygen atom of the epoxy group, 

facilitating the ring opening reaction. As a result, the reaction kinetics determines 

the structure of the epoxy network that forms. On the other hand, a change in the 

structure of the epoxy network on addition of other polymers, might also influence 

the reaction kinetics. The addition of natural cellulose fibres to epoxy resins is 

thus expected to alter the cure kinetics. While the cure kinetics of various neat 

epoxy (NE) resins and epoxy resins with other fillers have been extensively 

studied mostly by using differential scanning calorimetry (DSC) [108-111], the 

cure kinetics of epoxy resins with natural fibres has not yet been studied.  

The basic assumption for the application of DSC to the cure of epoxy resin is that 

the measured heat flow (dH/dt) is proportional to the reaction rate (dα/dt). All 

kinetic model start with the basic rate equation of the form: 
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where, 
dt
dα  is the rate of conversion, )(Tk  is the reaction rate constant and )(αf  

is a kinetic model function that depends on the conversion. An integrated form of 

the above equation often appears as  
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where, )(αg  is the integrated form of the conversion dependence function. 

The rate constant )(Tk depends on temperature and has the Arrhenius form: 

)exp()(
RT
E

ATk a−=
 

(2.5) 

 

where, A is the pre-exponential factor, Ea is the activation energy, and R is the gas 

constant, and T is the absolute temperature. 

Techniques using DSC can use two basic approaches: an isothermal approach 

where a single cure temperature is used at a given cure cycle and a dynamic 

approach where the rate of heating is kept constant for a given cure cycle. The 

isothermal cure method monitors the conversion and the rate of conversion 

continuously, as the uncured resin is curing isothermally, over the entire course of 

the reaction. 

Both in dynamic and isothermal techniques, it is assumed that the rate of 

conversion 
dt
dα  is directly proportional to the rate of heat flow, ϕ  generated in 

the curing reactions according to the equation: 
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where, HΔ  is the enthalpy of the curing reaction. The conversion at time t (αt) is 

taken to be the heat evolved at time t (∆Ht) divided by the total heat of reaction 

(∆Htot):  
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2.10.1  Non-isothermal or Dynamic Kinetic Models 

The dynamic kinetic models proposed by Kissinger [112, 113] and Ozawa-Flynn-

Wall [114, 115] are based on multiple-heating-rates. These models assume that 

the conversion value is constant at the exothermic peak temperature in a DSC 
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analysis, and is independent of the heating rate [116, 117]. According to Kissinger 

[112], the activation energy can be calculated from maximum reaction rate 

(where, dt
dt
dd /)( α  is zero under the condition of constant heating rate) from the 

following relation: 
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where, mT  is the exothermic peak temperature, q is the constant heating rate, and 

R is the universal gas constant (8.314 kJ mol-1 K-1). Therefore, a plot of )/ln( 2
mTq  

versus mT/1  gives the activation energy without a specific assumption of the 

conversion dependent function. It is simplistic to assume a single reaction 

occurring during the curing process given the complexity of the reaction.  

Based on Doyle’s approximation [118] for the integral of p(E/RT) (a p-function 

defined by Doyle) an alternative kinetic model was developed by Flynn-Wall-

Ozawa [114, 115] for the calculation of activation energy. They expressed the 

function )(αg  as 
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where, mT  is the exothermic peak temperature and A is the frequency factor. 

Using the above equation the activation energy aE  can be calculated from a plot 

of qlog  versus 1/ mT .  

2.10.2  Isothermal Kinetic Model: Autocatalytic Model 

The autocatalytic model is a phenomenological approach. It assumes that at least 

one of the reaction products is involved in the propagating reaction, and thus is 

characterised by an accelerating isothermal conversion rate, which typically 

reaches its maximum between 20 and 40% conversion. For the determination of 

the cure kinetics by means of this autocatalytic, the isothermal cure reactions of 
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NE and epoxy with fibre was carried out at four different temperatures (25, 50, 70, 

and 120oC). The kinetics of autocatalysed reactions are described by the following 

equation [119]: 

nmk
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d )1(' ααα
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(2.10) 

where m and n are the reaction orders and 'k  is the specific reaction rate constant. 

According to this model, the rate is zero or very small initially and attains a 

maximum value at some intermediate conversion, typically between 20–40% 

conversion [120]. The initial rate of autocatalytic reactions may not be necessarily 

zero, as there is a possibility that reactants can be converted into products via 

alternative paths, only one of which is autocatalytic. To take into account these 

autocatalytic characteristics, a generalised expression can be used as follows: 
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Such a model has also been successfully applied to autocatalytic polymerisation 

reactions [119, 121]. In this case, the influence of the reaction products on the 

conversion rate is given by the term mk α2 .  

In this work, cure kinetics were studied by using two dynamic kinetic models 

(Kissinger [112] and Flynn-Wall-Ozawa [114, 115, 122] models were used 

because of their wide applicability and the kinetic parameters can be quantified 

without prior knowledge of reaction mechanism) and one isothermal model (the 

phenomenological model developed by Kamal [119]). Both dynamic and 

isothermal models were used to investigate the cure kinetics of an epoxy system 

containing DGEBA and aliphatic amine as curing agent. The effects of addition of 

40 wt% untreated fibre in the same epoxy resin (DGEBA) curing agent (aliphatic 

amine) system on the cure kinetics were also studied.  
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2.11  Processing of Fibre Reinforced 
Composites 

There is an extensive range of well established processing methods available for 

fibre reinforced composites. These vary from simple labour intensive methods 

suitable for one-offs to automated methods for rapidly producing large numbers of 

complex components. The method of production depends on the factors such as 

cost, shape of component, number of components and required performance. 

2.11.1  Hand Lay-up 

In hand lay-up, the reinforcement is put down to line a mould, previously treated 

with a release agent to prevent sticking and perhaps a gel coat to give a decorative 

and protective surface. The reinforcement can be in many forms including woven 

rovings and chopped strand mat. The liquid thermosetting resin is mixed with a 

curing agent and applied with a brush or roller taking care to work it into the 

reinforcement. The most commonly employed resins are polyesters and curing is 

usually performed at room temperature. A prime consideration is the viscosity and 

the working time of the resin. 

Hand lay-up requires little capital equipment but is labour intensive. It is 

particularly suited for one-offs or short production runs and can be used for large 

components such as hulls of boats and swimming pools. The main disadvantages 

of this method are the low reinforcement content of about 30 vol% and the 

difficulty in removing all of the trapped air, hence the mechanical properties are 

not good. 

2.11.2  Compression Moulding 

Compression moulding is the most common method of processing thermosets and 

thermoplastics. It is used to produce large and relatively flat composite parts with 

good mechanical properties. Compression moulding basically involves the hot 

pressing of randomly oriented or aligned fibre mats, either chopped or in 

continuous form, with a thermoset or a thermoplastic material. 
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In the case of thermosets, a fibre mat soaked in thermoset resin is placed onto the 

bottom half of a compression mould cavity which can be pre-heated to the desired 

cure temperature. Then the top half of the mould is lowered at a constant rate until 

the desired process pressure is reached to cure the composite. Once the composite 

has been cured, it is cooled and removed from the mould. 

In the case of thermoplastics, the compression moulding operation begins with the 

placement of a fibre-mat and thermoplastic sheets onto the bottom half of a pre-

heated mould cavity. The top half of the mould is lowered at a constant rate until 

the desired process pressure is reached, thus causing the melting and consolidation 

of the composite. Once the composite has been consolidated, it is cooled and 

removed from the mould. 

2.11.3  Film Stacking Technique 
Film stacking is a technique with which thermoplastic composites can be prepared 

[123]. Film stacking is very similar to compression moulding. The only difference 

of film stacking with compression moulding is that, in film stacking thermoplastic 

matrix in the form of film (instead of in the form of sheet) is used. Thus, in film 

stacking fibre tows arranged in sheet form are sandwiched between matrix 

polymer films. This assembly is then placed within a press where temperature 

transforms the film into a polymer melt. Pressure is then applied and forces the 

melt to impregnate the fibre tow. Appropriate process conditions must be used in 

order to sufficiently reduce the matrix viscosity without thermally degrading the 

actual composite or de-align the fibrous reinforcement. Insufficient heat input 

and/or pressure will typically result in un-wetted fibre and a high void content 

within the final material. Therefore, careful selection of process parameters such 

as pressure and heat are required to achieve composites with good mechanical 

properties. 

2.11.4 Vacuum Bag 
In this method the heated pre-impregnated reinforcement, which is sealed to the 

mould by a flexible sheet or membrane, is forced in to the mould as air is 

removed. The mould may be male or female and the vacuum is maintained until 

the curing process has reached completion. 
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2.12  Modelling of Tensile Strength (TS) 
of Composites 

A simple way of predicting the TS of unidirectional, continuous fibre-reinforced 

polymer composites in the axial direction is to use the “rule of mixtures (ROM)” 

[124, 125]. According to this model, the equation for TS is as follows: 

mmffc VV σσσ +=   (ROM) (2.12)

where cσ  is the TS of the composite, fσ is the mean TS of the fibre, and mσ  is the 

TS of the polymer matrix and fV  and mV  are the volume fractions of the fibre and 

matrix, respectively. 

Equation (2.12) is also known as the Parallel model and it assumes that iso-strain 

conditions exist for both polymer matrix and fibre. A basic concept in the ROM is 

the evaluation of each contribution of the fibre and matrix based on their 

strengths, and calculation of the ultimate strength of the composite as the sum of 

contributions according to their relative volumetric properties. The traditional way 

of predicting transverse TS is to use the series model of the ROM which can be 

expressed as follows: 

mffm
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c VV σσ
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σ

+
=   (Series Model) 

(2.13)

The schematic representations of parallel and series models are given in Figure 

2.11. 
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Figure 2.11 Schematic representation of parallel and series models. 

The Parallel model can be regarded as an upper bound and the Series Model 

represents the lower bound for the TS of achievable strength [124]. 

However, the ultimate TS of a composite is affected by not only the fibre and 

matrix fractions and strengths but also the microgeometry of the composite 

components, and interfacial bonding. It is very important how the two phases are 

mixed and interconnected to form a composite of continuous phase. It is assumed 

in the ROM that the fibres in composites are perfectly oriented along the direction 

of tensile load, and are also uniformly distributed. In reality, there are some 

misalignments and non-homogeneity in the distribution of fibres even in a 

unidirectional composite. Thus, the ROM often overestimates the ultimate TS of 

unidirectional fibre (both long and short) composites [125, 126]. Moreover, the 

ROM indicates that the strength of a composite increases linearly with an increase 

in the fibre volume fraction which is not true as the strength of a real composite 

deviates from the ROM in a non-linear fashion and usually begins to decrease at 

or above a fibre volume fraction of 80% [125]. 

2.12.1 Modified Rule of Mixtures (MROM) 

The ROM model has been further modified to account for the influence of fibre 

orientation and fibre/matrix interfacial strength on the TS of the composites [124, 

125]. According to this model: 

21
* KKVV ffmmc σσσ +=   (2.14)
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where, cσ , fσ , are the TS of the composite and fibre, respectively; *
mσ  is the TS 

of the polymer matrix at the failure strain (FS) of the composite; fV  and mV  are 

the volume fractions of the fibre and matrix, respectively; K1 is an orientation 

factor, and K2 is a factor dependent on the stress transfer between the matrix and 

the fibres. K1 has a value of unity for axially aligned fibre composites, yields a 

value of 0.375 for planar random configuration, and it has the value of 0.2 for a 

three dimensional randomly oriented fibre composites, K2 has the value of unity 

for continuous fibre composites with a perfect interface [127].  

2.13  Degradation and Environmental 
Effects 

Natural fibres are widely used for reinforcing polymers. There are many 

applications of natural fibre composites in everyday life (discussed earlier in 

section 1.4). However, the main disadvantage of natural fibres is their hydrophilic 

nature. They also have poor environmental and dimensional stability that prevent 

a wider use of natural fibre composites. The possibility for using these materials 

in outdoor applications makes it necessary to analyse their mechanical behaviour 

under the influence of weathering action [128] 

2.13.1  Hygrothermal Ageing of the Composites 

Natural fibres such as hemp, flax, jute and kenaf have received considerable 

attention as an environmentally friendly alternative for the use of glass fibres in 

engineering composites [128]. These plant fibres have a number of techno-

ecological advantages over traditional glass fibres since they are renewable, can 

be incinerated with high energy recovery and CO2 neutral life cycle, show less 

concern with safety and health (e.g. skin irritation) and give less abrasive wear to 

processing equipments such as extruders and moulds. In addition they exhibit 

excellent mechanical properties especially when their low density and price are 

taken into account [129, 130]. Although natural fibres have a number of 

ecological advantages over glass fibres they also possess some disadvantages such 

as higher moisture absorption which brings about dimensional changes, leading to 
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microcracking, poor thermal stability which may lead to thermal degradation 

during processing [53, 131], poor wettability, and insufficient adhesion between 

untreated fibres and the polymeric matrix lead to debonding with age [132-134]. 

On the moisture effect, the mechanical properties of natural fibre reinforced 

composites can be reduced to great extent under moist conditions [135, 136]. This 

is a serious concern as there are potential outdoor applications such as decking 

and railing [137, 138], where moisture absorption can have significant influence 

for these materials. The interfacial bonds between the natural fibres (which 

contain -OH, carboxyl (-COOH), and other polar groups) and the relatively 

hydrophobic polymer matrices would be weakened with higher water uptake. The 

weakened interface causes the reduction in the mechanical properties of the 

composites.  

The change in dimension of natural fibres with moisture gain is attributed to the 

interaction of the cell-wall polymers containing -OH, -COOH, and other polar 

groups with water molecules via hydrogen bond formation [139]. The 

hemicelluloses and amorphous regions of the cellulose are generally responsible 

for the moisture absorption properties of fibres. Therefore, alkali treatment is 

generally done to remove hemicelluloses from natural fibres because along with 

being largely hydrophilic they are non-load carrying as well. The study of the 

water absorption behaviour of composites is necessary in order to estimate not 

only the consequences that the water absorption of fibres may have on the 

composite properties, but also how this water uptake can be minimized. The way 

in which composite materials absorb water depends upon many factors, such as 

temperature, fibre volume fraction, orientation of the reinforcing fibres, fibres 

permeability, exposed area of the surface, diffusivity, and reaction between water 

and matrix [140, 141]. 

Moisture absorption in composite materials can be conducted by several different 

mechanisms. The main process consists of diffusion water molecules inside the 

microgaps between polymer chains. The other common mechanisms are capillary 

transport into the gaps and flaws at the interfaces between fibres and polymer, due 

to the incomplete wettability and impregnation; and transport by microcracks in 

the matrix, formed during compounding process [142, 143]. In spite of the fact 
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that all three mechanisms are active jointly during moisture exposure of the 

composite materials, the overall effect can be modelled conveniently using the 

diffusional mechanism only.  

There are three different categories of diffusion behaviour [143]. Case I, or 

Fickian diffusion, in which the rate of diffusion is much less than that of the 

polymer segment mobility. The equilibrium inside the polymer is rapidly reached 

and it is maintained with independence of time. Case II, in which penetrant 

mobility is much greater than other relaxation processes. This diffusion is 

characterised by the development of a boundary between the swollen outer part 

and the inner core of the polymer. The boundary advances at a constant velocity 

and the core diminishes in size until an equilibrium penetrant concentration is 

reached in the whole polymer. Non-Fickian or anomalous diffusion occurs when 

the penetrant mobility and the polymer segment relaxation are comparable. It is 

then an intermediate behaviour between case I and case II diffusion. 

These three cases of diffusion can be distinguished theoretically by the shape of 

the sorption curve represented by  

nt kt
M
M

=
∞  

(2.15) 

where tM  is the moisture content at time t; ∞M  is the moisture content at the 

equilibrium; and k and n are constants.  

The value of coefficient n shows different behaviour between cases; for Fickian 

diffusion n = ½, while for case II n = 1. For anomalous diffusion, n shows an 

intermediate value (1/2<n<1). Moisture absorption in natural fibre reinforced 

composites usually follows case I or Fickian behaviour. Loos and Springer [144] 

investigated the moisture absorption behaviour of several resins used for making 

PMCs. They reported that the materials exhibited Fickian diffusion behaviour at 

higher temperatures. The characteristics of Fickian diffusion have been 

summarized as (a) the absorption curves are linear in the initial stages and (b) 

above the linear portion both absorption and desorption curves are concave to the 

abscissa [145]. 
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Equation (2.15) can be written in the following logarithmic form, 

tnk
M
M t loglog)log( +=

∞  

(2.16) 

The analysis of the diffusion mechanism and kinetics can be performed on the 

basis of Fick’s theory and adjusting the experimental values in Equation (2.16). 

The diffusion coefficient, D is the most important parameter of the Fick’s theory, 

as this shows the ability of solvent to penetrate into the composite structure. For 

small time ( )5.0≤
∞M

M t , the following equation can be used [146]. 

2
2 16)(
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M t

π
=

∞  

(2.17) 

where L is the thickness of the sample.  

The diffusion processes are activated by an increase in temperature most likely 

due to the increased mobility of the molecules in the process. In case of Fickian 

diffusion, the diffusion coefficient follows an exponential Arrhenius type relation 

with temperature expressed by  

)exp(0 RT
E

DD a−=
 

(2.18) 

where D0 is the permeability index, Ea is the activation energy of the diffusion 

process, R is the universal gas constant and T is the absolute temperature. 

As mentioned before, apart from diffusion, two other minor mechanisms are 

active in moisture exposure of composite materials. The capillary mechanism 

involves the flow of water molecules into the interface between fibres and matrix. 

It is particularly important when the interfacial adhesion is weak, and the 

debonding of fibres and matrix has started. On the other hand, transport by 

microcracks includes the flow and storage of water in the cracks, pores or small 

channels in the composite structure. These imperfections can be originated during 

the processing of the materials or due to environmental and service effects. The 
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objective of this study is to relate kinetics and characteristics of the water 

absorption in hemp fibre/epoxy and hemp fibre/PLA composites. Water uptake 

leads to the degradation of the fibres and the fibre-matrix interface resulting in a 

loss of mechanical performance. Therefore, the effects of hygrothermal ageing on 

mechanical properties of the composites will also be studied. 

2.13.2  Accelerated Ageing of the Composites 

NFCs offer many advantages over conventional structural materials. They have 

high strength and modulus to weight ratios, fatigue and corrosion resistant, 

tailorable and require low maintenance. However, because of their unknown long 

term properties when exposed to a combination of in-service loads and 

environments, designers are still reluctant to use NFCs in primary load bearing 

structures [147]. The effect of exposure to moisture, heat, and ultra-violet (UV) 

radiation, and more importantly a combination of these parameters may degrade 

the material’s stiffness and strength.  

The photodegradation of natural fibres like wood is attributed to the degradation 

of its components namely cellulose, hemicelluloses, and lignin according to 

Dence [148]. Lignin and hemicelluloses are more prone to degradation than 

cellulose by various means [149]. Lignin degrades upon exposure to UV-light and 

hemicelluloses degrade upon moisture absorption and biological means [150]. The 

UV-degradation process is known to be triggered by the formation of free radicals 

and probably starts with the oxidation of phenolic -OHs [151]. Moreover, singlet 

oxygen that can be formed by oxygen quenching of photoexcited lignin plays a 

role in the degradation of lignocellulosic natural fibres like wood [151]. The 

formed singlet oxygen is a source of peroxides [152], which can initiate the auto-

oxidation of carbohydrates and cleavage of lignin [153, 154]. The oxidative 

reactions initiated by UV-radiation can be represented as in Figure 2.12 [64]. 
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Initiation 

•⎯→⎯ RRH hν
  

Propagation 

•• →+ ROOOR 2  
•• ′+→′+ RROOHHRROO  

 

 

Branching 

OHROROOH h •• +⎯→⎯ ν  

OHROROOROOH 22 ++→ ••  

 
 

Figure 2.12 Oxidation reactions initiated by UV-radiation. 

In PLA the active oxygen species initiate the degradation reaction by attacking 

neighbouring polymer chain and the degradation process extends into the polymer 

matrices through the diffusion of these reactive oxygen species [155]. 

Photodegradation leads to a discoloration of epoxy resin and to a deterioration of 

its physical properties [156]. The main photooxidative pathway of the epoxy resin 

involves the abstraction of the hydrogen atom on the secondary carbon atom 

situated in the α position to the ether bond [157]. It has been shown that the 

photoinitiating species essentially derive from the phenoxy part, whereas the 

propagation principally depends on the amine concentration and on the electron 

density at the nitrogen atom [158]. 

Ideally, composite materials and their structures that are intended for long term 

use, should be tested in real time and with realistic in-service environments. Often 

this is not viable because the time involved would significantly delay product 

development and accelerated ageing techniques are required [147]. During 

accelerated weathering, measured variables can include exposure time, exposure 

to UV irradiation over a specific wavelength range, and exposure to moisture as 

number of cycles or time. It is recommended that the performance of the materials 

after weathering be reported after a specific radiant exposure, the time integral of 

irradiance [159]. 
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The use of NFCs in non-structural (e.g. siding, roofing), or structural (e.g. 

decking) materials has resulted in concern about the durability of these products 

when exposed to environments [160]. Durability of the composites upon exposure 

to UV-light is of particular concern as UV-light can cause the changes in the 

surface chemistry of the composites commonly known as photodegradation [161, 

162]. The degradation ranges from mere surface discoloration affecting the 

aesthetic appeal in indoor applications to extensive loss of mechanical properties 

[163, 164]. Moreover, the combination of light, moisture, and temperature in 

outdoor applications can completely destroy the lignocellulosic network, limiting 

the performance of unprotected wood in outdoor applications[165].  

2.14  Fibre and Composites 
Characterisation Methods 

2.14.1  Wide Angle X-ray Diffraction (WAXRD) 
WAXRD is a well established method for determining the crystallinity of partially 

crystalline materials [166, 167]. Hermans and Weidinger [166] conducted the first 

quantitative investigation into the crystallinity of cellulose fibres by means of 

WAXRD. WAXRD patterns of crystalline cellulose show reflections 

superimposed on a diffuse background, and the ratio of the sum of the relative 

integrated intensities and the total intensity provides a measure of the degree of 

crystallinity. WAXRD has been widely applied to study the crystallinity of pulp 

and cellulose fibres [168-170]. Mwaikambo and Ansell [171] measured the 

crystallinity index of hemp, kapok, sisal, and flax fibres by using WAXRD 

method. They showed that the increase in crsytallinity index obtained by 

WAXRD was, in fact, an increase in the order of the crystalline packing rather 

than an increase in the intrinsic crystallinity. Mathew et al. [11] studied the 

crystallinity of PLA by using WAXRD method and showed that heat treatment of 

PLA increased its crystallinity. 
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2.14.2  Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR is a powerful tool for identifying types of chemical bonds in a molecule by 

producing an infrared absorption spectrum that is like a molecular "fingerprint". 

FTIR is most useful for identifying chemicals that are either organic or inorganic. 

It can be utilised to quantitate some components of an unknown mixture. It can be 

applied to the analysis of solids, liquids, and gasses. The term FTIR refers to a 

fairly recent development in the manner in which the data is collected and 

converted from an interference pattern to a spectrum. FTIR is perhaps the most 

powerful tool for identifying types of chemical bonds (functional groups). The 

wavelength of light absorbed is characteristic of the chemical bond as can be seen 

in this annotated spectrum. By interpreting the infrared absorption spectrum, the 

chemical bonds in a molecule can be determined. FTIR spectra of pure 

compounds are generally so unique that they are like the molecular "fingerprint" 

[172].  

FTIR spectroscopy has been shown to be a useful tool for investigating the fine 

structural characterisation of cellulose and its chemical modification [173-175]. 

Sahoo et al. [176] modified jute fibre chemically and demonstrated the difference 

between unbleached and bleached pulp from the difference in peaks in IR-spectra. 

By FTIR study Ray and Sarkar [177] found an increased amount of -OH groups in 

jute fibres due to chemical changes upon alkali treatment. From FTIR spectra 

Mwaikambo and Ansell [171] showed that kapok was the most reactive followed 

by jute, sisal, and then hemp fibre. Wong et al. [178] used FTIR spectroscopy to 

monitor hydrogen bonding in polyhydroxy butyrate-flax composites. 

2.14.3  Zeta Potential Measurements 

Electrokinetic properties can describe the electrical potential adjacent to a solid 

surface, if this is moved in respect to the surrounding liquid phase [179]. It is 

described by the zeta potential (ζ), this is the potential at the border line between 

the stationary and mobile liquid phase. It depends on the chemical properties of 

the fibre surface as well as the liquid phase. This is on the one hand, the chemical 

nature of dissociable surface groups (the adsorption of ions like hydroxyl groups) 
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at the solid surface and on the other hand, the ionic strength and the pH value of 

the liquid phase [180, 181].  

When a solid is immersed in a liquid, Figure 2.13 [182], an electrochemical (or 

Nernst) potential (ε) is developed between the body of the solid and the body of 

the liquid; this potential is proportional to the ionic activity or to the loss of ions at 

the surface in contact with the liquid. The ions formed on the surface AB of the 

solid attract oppositely charged ions from the liquid and so form two different 

layers of which the outer layer becomes more diffuse. If the solid and its surface is 

moved, the ABCD portion of this diffuse layer moves with it. In effect, CD then 

defines the boundary and thus the effective volume of the solid, as far as flow is 

concerned. The two differently charged layers which lie between this boundary 

CD and the surface of the solid AB are known as double (or Stern-Gouy) layer 

[182].  
 

 

Figure 2.13 Electrokinetic, ε and zeta potentials, ζ of surfaces with different thicknesses 

of the double layer. 

In this double layer the potential decrease from the surface potential to the 

equilibrium in the bulk phase. The general features and properties of the electric 

double layer at the solid/liquid boundary in an aqueous medium are described by 

several researchers [183-185]. Since the surface potential cannot be measured 

directly, use is generally made of the experimentally accessible zeta potential (ζ). 

When investigating solid surfaces like fibres, the zeta potential is calculated from 

the measured streaming potential. 
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It can be assumed that the surface potential is mainly responsible for different 

kind of sloid liquid interactions.  Natural cellulose fibres exhibit a highly polar 

surface due to the presence of hydroxyl and carboxyl groups. These groups enable 

the formation of hydrogen and some times covalent bonds in the interface of the 

reinforced composite materials. Hydroxyl groups are mainly part of celluloses. 

Carboxyl groups are the part of unstable hemicelluloses and often removed by 

various surface treatments like alkali treatment. The surface treatment also 

removes some lignin, pectin, and waxy substances along with hemicelluloses and 

thus exposes cellulose hydroxyl groups. The high polarity of the cellulose fibres is 

the reason for their hydrophilic behaviour. The adsorption of water or electrolyte 

solutions causes an interfibrillar swelling of the surface layers and therefore the 

size of the active surface is increased. However, the nature of dissociable groups 

should not change. The swelling itself causes a reduction of the ζ, because of the 

shift of the shear plane into the liquid phase and can therefore be used for 

characterisation of the accessibility of the dissociated groups by means of 

measured pH-ζ functions [186]. 

ζ has become a useful parameter to monitor changes in electrochemical 

behaviour. The ζ is generally measured as a function of pH, showing a plateau in 

the basic region where all the acid groups are dissociated or a maximum number 

of hydroxyl group or other anions are adsorbed. Reducing the pH causes the 

association of acid groups and dissociation of alkaline groups, as well as 

desorption of anions and adsorption of cations, so that a situation of charge 

equilibrium is reached. This point is known as the isoelectric point (IEP), at which 

ζ is zero. If it is independent of the ionic strength of the electrolyte then it is the 

point of zero charge. The IEP can be used to determine surface chemistry by 

comparing shifts in the IEP after reaction. For example, a shift to lower pH for a 

wood fibre indicates that more sites, such as hydroxyl groups, are available for 

bonding. The plateau region can indicate whether a material is hydrophilic or 

hydrophobic [186]. 

According to Aranberri-Askargorta et al. [187] the performed ζ measurements 

clearly reflect differences in the degree of hydrophilicity of the natural fibres. On 

the basis of the experimental value of zeta potential Bismarck et al. [188] showed 
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that the retting of green flax fibres reduced the hydrophilicity of the fibres as 

retted fibres contained a relatively high amount of wax on their surfaces. From the 

ζ measurements of the untreated and treated fibres Pothan et al. [189] reported 

that chemical modification alters the polarity of the already acidic cellulose fibres. 

2.14.4  Thermal Analysis 
Thermal analysis comprises a group of techniques in which a physical property of 

a substance is measured as a function of temperature, while the substance is 

subjected to a controlled temperature programme. It is an important analytical 

method in understanding the structure-property relationship and industrial 

production of different polymeric materials, especially fibre reinforced 

composites. Moreover, it is a useful technique to determine the thermal stability of 

the materials. In addition, it is possible to quantify the amount of moisture and 

volatiles present that can cause deformation in composites. 

2.14.4.1 Differential Thermal Analysis/Thermogravimetric 

Analysis (DTA/TGA) 

In DTA, the temperature difference that develops between a sample and an inert 

reference material is measured, when both are subjected to identical heat 

treatments. DTA involves heating or cooling a test sample and an inert reference 

under identical conditions, while recording any temperature difference between 

the sample and reference. This differential temperature is then plotted against 

time, or against temperature. Changes in the sample which lead to the absorption 

or evolution of heat can be detected relative to the inert reference. TGA indicates 

a number of stages of thermal breakdown and weight loss of the material in each 

stage. 

Both DTA and TGA can be used to study the thermal behaviour of natural fibre 

and its composites [190, 191]. Several researchers [192, 193] studied the influence 

of chemical treatment and of cellulose on its thermal degradation by using DTA. 

Rana et al. [194] carried out TGA analysis to study the thermal behaviour of 

acetylated jute fibre and to compare it with the control and found that acetylated 

jute had better thermal stability than the control. 
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2.14.4.2 Differential Scanning Calorimetry (DSC) 

In DSC, the heat flow rate is associated with a thermal event that can be measured 

as a function of time and temperature. It relies on differences in energy required to 

maintain the sample and reference at an identical temperature. DSC can be used to 

study the thermal behaviour, crystallinity, and cure kinetics of natural fibres and 

natural fibre reinforced composites [74, 195, 196]. 
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Chapter Three 

3 Fibre Treatment and 

Characterisation 

3.1  Summary 

This chapter describes the materials, methods and results for the: 

• treatment of hemp fibre with alkali to obtain an optimum alkali treatment 

method and development of an empirical model for the tensile strengths of 

various alkali treated fibres by fractional factorial design 

• comparison of untreated and alkali treated hemp fibre by single fibre 

tensile testing as well as SEM, zeta potential, DTA/TGA, WAXRD, FTIR 

and lignin analysis 

• effect of alkali treatments on fibre diameter, tensile strength (TS) and 

Young’s modulus (YM) 

• treatment of the optimised alkali treated fibre by silane and acetic 

anhydride, and comparison of silane treated and acetylated fibres in terms 

of SEM, zeta potential, DTA/TGA, WAXRD, and FTIR analysis. 

3.2  Experimental Details 

3.2.1  Materials 

Retted hemp bast fibre was supplied by Hemcore, UK. Analytical grade Na2SO3, 

98% NaOH pellets, 99% acetic anhydride, and 94% phenyltrimethoxy silane were 

used for the treatment of the fibres. 
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3.2.2  Methods 

3.2.2.1 Treatment of the Fibres with Alkali 

The pieces of the woody cores presented in the retted hemp bast fibre were 

removed manually. After weighing, fibres were placed into stainless steel 

canisters of 1L capacity. Pre-weighed NaOH and Na2SO3 solution was then 

poured into the canisters such that the fibre to Na2SO3 and NaOH solution ratio 

was 1:2:10 by weight. The canisters were then placed into a small lab-scale pulp 

digester at a required digestion temperature and time for alkali treatment of the 

fibres. Fibres were washed in a pulp and paper fibre washer for about 45 minutes 

after the alkali treatment to remove chemical residues until a fibre pH of 7 was 

obtained. Fibres were then dried in an oven for 48 hours at 70oC. 

3.2.2.2 Treatment of the Fibres with Acetic Anhydride 

Alkali treated fibres were dried at 80oC for 24 hours prior to the treatment. They 

were then placed in a sufficient amount of acetic anhydride to cover the fibre 

before removal and transfer to a beaker for heat treatment in a pre-heated oven at 

120oC for 3 hours. They were then left in the air stream to evaporate the solvent 

and further placed in a pre-heated oven at 100oC for 6 hours. Fibres were washed 

in a pulp and paper fibre washer for about 45 minutes after the acetylation to 

remove chemical residues until a fibre pH of 7 was obtained. Fibres were then 

dried in an oven for 48 hours at 70oC. 

3.2.2.3 Treatment of the Fibres with Silane 

Alkali treated fibres were dried at 80oC for 24 hours prior to the treatment. Then 

they were vacuum impregnated with a 5 wt% solution of phenyltrimethoxy silane 

in methanol for about an hour and then they were left in the solution at ambient 

temperature for 24 hours. The fibres were then separated from the solution and the 

solvent was allowed to evaporate by using air stream at room temperature for 6 

hours. Subsequently, they were heat treated in a pre-heated oven at 100oC for 6 

hours. Fibres were washed in a pulp and paper fibre washer for about 45 minutes 

after the silane treatment to remove chemical residues until a fibre pH of 7 was 

obtained. Fibres were then dried in an oven for 48 hours at 70oC. 
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3.2.2.4 Zeta Potential Measurement 

The zeta potential of untreated and alkali treated fibres was determined in a 

1.00×10-3 M potassium chloride (KCl) electrolyte solution at room temperature 

using a Mutek SZP 06 System based on the streaming potential method. The pH 

of the electrolyte solution was varied from 11 to 3. The pH of 11 was obtained 

using 0.1M potassium hydroxide (KOH) solution and then decreased 

incrementally using 0.1M hydrochloric acid (HCl) solution. 

3.2.2.5 Scanning Electron Microscopy (SEM) 

The morphology of the untreated and alkali treated fibres was studied using a 

Hitachi S-4000 Field Emission SEM operated at 5 kV. Carbon tape was used to 

mount the samples on aluminum stubs. The samples were then sputter coated with 

platinum and palladium to make them conductive prior to SEM observation. 

3.2.2.6 Wide Angle X-ray Diffraction (WAXRD) 

0.5 g of fibre was compressed into a tablet using a hydraulic press at 20 MPa 

pressure. A Philips X-ray diffractometer, employing CuKα (λ = 1.54) radiation 

and a graphite monochromator with a current of 40 mA and a voltage of 40 mV 

was used with a diffraction intensity in the range of 6 to 60o (2θ-angle range). 

WAXRD analysis of the acetylated and silane treated fibres were carried out after 

doing alkali treatment of those fibres. 

The percentage crystallinity index (CrI) was determined using the Segal empirical 

method [197] according to the following equation: 

100
002

002 ×
−

=
I

amII
CrI                                                                                          (3.1) 

where, 002I  is the maximum intensity of the 002 lattice reflection (the highest 

peak for native cellulose) of the cellulose crystallographic form at 2θ = 22.5o 

[198] and amI  is the intensity of diffraction of the amorphous material at 2θ = 

18.5o. 
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3.2.2.7 Thermal Analysis  

DTA and TGA were carried out using an SDT 2960 Simultaneous DTA-TGA 

analyzer. All the measurements were taken whilst maintaining a static air flow of 

150 mL/min with a constant heating rate of 10oC/min in an open alumina crucible. 

The weight of the specimens was around 10 mg, with a scanned temperature range 

of 25 to 600oC. 

3.2.2.8 Lignin Analysis of the Fibres 

The lignin analysis was carried out at the Environmental Chemistry Laboratory at 

Landcare Research New Zealand Limited, in accordance with the terms of 

International Accreditation New Zealand. 

3.2.2.9 Fourier Transform Infrared (FTIR) Spectra  

Infrared spectra were obtained using an FTIR Digilab FTS-40 spectrometer. 

Untreated and alkali treated fibres were ground into small particles in liquid 

nitrogen and mixed and compressed with potassium bromide (KBr) into a thin 

disc using a hydraulic press at 8 MPa pressure. 

3.2.2.10 Single Fibre Tensile Testing (SFTT) 

Alkali treated single hemp fibres were tensile tested according to American 

Society for testing and materials (ASTM) D3379-75 standard test method for TS 

and YM for high-modulus single filament materials. Fibres were separated by 

hand and attached to cardboard mounting-cards with 10 mm holes punched into 

them to give a gauge length of 10 mm. Polyvinyl acetate (PVA) glue was used to 

hold the fibres in place. A sketch of SFTT specimen can be seen from Figure 3.1. 
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Figure 3.1 Single fibre tensile test specimen. 

The fibres were then placed under an optical microscope and inspected with a 

calibrated eyepiece at 200× magnification to determine the average diameter of 

each fibre. The mounted fibres were then placed in the grips of an Instron-4204 

tensile testing machine, and a hot-wire cutter was used to cut the supporting sides 

of the mounting cards. Tensile testing of the fibres was carried out to failure at a 

rate of 0.5 mm/min using a 10 N-load cell. For the partial factorial design of the 

alkali treatments, five repeates of each treatment were carried out. 25 replicates 

were used and thus average TSs and Young’s moduli were obtained using the 

results from 125 specimens. 

3.3  Results and Discussion 

3.3.1  Alkali Treatment and Characterisation of the 
Fibres 

3.3.1.1 Empirical Model for the Tensile Strength (TS) of Alkali 

Treated Fibre by Partial Factorial Design  

Selection of the Levels of Treatment Factors 

In order to select the level of NaOH concentration, digestion time, and 

temperature experiments had been conducted under the following conditions as 

described in Table 3.1, and the effects of the concentration of NaOH, digestion 

time, and temperature on the TS of the fibres are presented in Figures 3.2, 3.3, and 

3.4, respectively. 
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Table 3.1 Experimental parameters for the selection of level of treatment factors. 

Level 
Selection 

NaOH 
Conc. 
(wt%) 

Digestion 
Time (min)

Treatment 
Temp. (0C) 

Na2SO3 
Conc. 
(wt%) 

Corresponding 
Figure 

Concentratio
n of NaOH 

5, 6, 10, 
20 

60 180 2 Figure 3.2 

Digestion 
time 

5 30, 35, 
120, 360 

180 2 Figure 3.3 

Treatment 
Temperature 

15 60 30, 35, 120, 
180 

2 Figure 3.4 
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Figure 3.2 TS versus NaOH concentration (at 180oC for 60 minutes with 2 wt% Na2SO3) 

plot for the level selection range of alkali fibre treatment. The curved line in the figure 

indicates principal trend of data points and do not represent any data fitting. 
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Figure 3.3 TS versus digestion time (at 180oC with 5 wt% NaOH and 2 wt% Na2SO3) plot 

for the level selection range of alkali fibre treatment. The curved line in the figure 

indicates principal trend of data points and do not represent any data fitting.  
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Figure 3.4 TS versus temperature (for 60 minutes with 5 wt% NaOH and 2 wt% Na2SO3) 

plot for the level selection range of alkali fibre treatment. The curved line in the figure 

indicates principal trend of data points and do not represent any data fitting. 

As can be seen from Figures 3.2 to 3.4 if the levels are too close (say 5 and 6 wt% 

NaOH in Figure 3.2, 30 and 35 minutes in Figure 3.3, and 30 and 35oC in Figure 

3.4), the change in fibre strengths are so small that they might remain masked 

within experimental errors. It is obvious from the results, however, the linear 

approximation of the TS over the whole range of NaOH concentration, digestion 

time and digestion temperature under study would result in large inaccuracy. 

Therefore, in order to make linear approximations, it is reasonable to select 

neither a very small range nor a very big one. This leads to splitting the 

experimental design into two parts as follows: The first part consists of the NaOH 

concentration level at 15 and 20 wt%, and the second part at 5 and 10 wt%. The 

factors and settings for alkali treatment of untreated hemp fibres for the 

experimental design (split into two parts) are shown in Table 3.2. 

Table 3.2 Actual factors and settings for alkali treatment of untreated fibres for the 

experimental design. 

Part 1 Part 2 Actual Factors↓ 
                                    Level→ Low High Low High 

f1 - Concentration of NaOH (wt%) 15 20 5 10 
f2 - Concentration of Na2SO3 (wt%) 0 2 0 2 

f3 - Time (min) 120 360 30 60 
f4 - Temperature (oC) 30 60 120 180 

In experimental design in order to ease the data treatment procedure, the actual 

values of the factors are replaced by the coded value. The coding (and decoding in 

reverse) is done according to the following relations: 



Chapter Three: Fibre Treatment and Characterisation  

 67

j
jj

j f
dx

f +=
2

 or  
j

jj
j d

ff
x

)(2 −
=  

 

(3.2) 

where, jf  = actual value for factor j, jx  = coded value for factor j, jd  = range for 

the actual value of j, and jf  = actual average for factor j. The indices j = 1, 2, 3, 

and 4 stand respectively for concentration of NaOH, concentration of Na2SO3, 

digestion time, and temperature. 

The design matrix of testing 4 factors in a half fraction of 8 run combinations is 

given in Table 3.3. The design procedure is described in detail in reference [199].  

 

Table 3.3 A half fraction coded matrix for four factors at two levels. 

Run 
No. 1x  2x  3x  )xx(xx 3214  )x(x

xx

43

21

 )x(x
xx

42

31

 )x(x
xx

41

32

 
1 -1 -1 -1 +1 +1 +1 -1 
2 -1 -1 +1 +1 -1 -1 +1 
3 -1 +1 -1 -1 +1 -1 +1 
4 -1 +1 +1 -1 -1 +1 -1 
5 +1 -1 -1 -1 -1 +1 +1 
6 +1 -1 +1 -1 +1 -1 -1 
7 +1 +1 -1 +1 -1 -1 -1 
8 +1 +1 +1 +1 +1 +1 +1 

From Table 3.3 it can be seen that factor 4x  is aliasing with the 1x 2x 3x , while 

1x 2x  is aliasing with 3x 4x , 1x 3x  is aliasing with 2x 4x  and 2x 3x  is aliasing 

with 1x 4x . Thus, if any 2-factor interaction column has a significant effect, it 

might be due to one or both of the aliased effects for that column. Since 21xx was 

aliased with 43xx , analysis for these columns would give the same interaction 

values. The practical implication of 21xx  is aliased with 43xx  is that it is unable to 

determine if the interaction calculated for column 21xx  is due to 21xx , 43xx , or due 

to some combination of the two. Fortunately for industrial experiments, the effects 

of interactions are usually small relative to the effect of factors, thus providing 

justification of using the fractional factorial design [199]. In addition to that, not 

all fractional factorial designs result in the loss of all interaction parameters. It is, 
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however, unusual for an interaction to be important without one or both of the 

constituent factors being important.  

Part 1 

An 8-run fractional factorial design was conducted with 5 replicates of each run. 

The results are summarised in Table 3.4. 

Table 3.4 Experimental data for alkali treatment of untreated hemp fibres. 

Run 
No. 

NaOH 
Conc. 
(wt%) 

Na2SO3 
Conc. 
(wt%) 

Time 
(min) 

Temp. 
(oC ) 

Exp. Value of the 
Replicate Fibre TS (MPa) 

Avg. 
Exp. TS 
(MPa) 

STD 
(MPa) 

1 15 0 120 30 440, 331, 470, 384, 375 400 61.49 
2 15 0 360 60 258, 308, 427, 341, 422 351 73.17 
3 15 2 120 60 312, 477, 411, 370, 402 394 60.29 
4 15 2 360 30 239, 248, 201, 376, 252 263 66.21 
5 20 0 120 60 309, 216, 231, 272, 179 241 50.38 
6 20 0 360 30 208, 93, 114, 165, 139 144 44.89 
7 20 2 120 30 279, 208, 298, 332, 222 268 52.04 
8 20 2 360 60 211, 96, 127, 141, 104 136 45.70 

In order to determine the important and trivial factors as well as interactions, two 

approaches could be applied as described in the literatures, namely (1) a graphical 

approach [199] and (2) analysis of variances (ANOVA)/sample variances [200]. 

In this study the graphical approach was used as described below. 

The Graphical Approach 

The purpose of the graphical approach was to derive a prediction equation, which 

could be used to (a) estimate the untested combinations (b) predict a target value, 

and (c) complete sensitivity analysis and tolerance design. The detailed procedure 

involved with the following analyses steps. 

Step (1): As can be seen from Table 3.4 run numbers 1 and 3 are the highest 

desirable fibre TSs. For the design in Table 3.4, NaOH concentration was at the 

low setting of 15 wt% for run number 1 to 4. At that concentration there were 

twenty TS readings. The average of these twenty readings was found to be 352 

MPa. Similarly, when the NaOH concentration was at the higher setting of 20 

wt%, the average readings was found to be 197 MPa. The difference (average at 

the high minus average at the low) between these two averages was found at -155 

MPa. This difference was defined as the effect of NaOH concentration factor. On 

average, it was estimated that changing the NaOH concentration from 15 to 20 
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wt% during alkali fibre treatment, decreased the single fibre TS by 155 MPa. 

Analysis of the time column, Table 3.4, gave an average of 326 MPa when the 

time was set at 120 minutes (low) and 223 MPa when the time was set at 360 

minutes (high). The estimated effect for time was found at -102 MPa. Comparing 

the effect of NaOH concentration with the effect of time indicated that the NaOH 

concentration factor appeared to be about 1.5 times more important than time in 

effecting single fibre TS over the tested levels. The detail procedure of 

calculations of responses effects and half effects can be found in the literature 

[199]. The average fibre TSs (response), effects, and half effects for the applicable 

factors ( 1x  to 4x )  and interactions ( 21xx , 31xx , and 32 xx ) were calculated at each 

level for each column and are given in Table 3.5. 

Table 3.5 Effects of the factors and interactions on fibre TS. 

Coded 
Factors/Interactions 

Avg TS at Low 
(Mpa) 

Avg TS at High 
(MPa) 

Effect , ∆ 
(MPa) 

Half Effect, ∆/2 
   (MPa) 

1x  (NaOH Conc.) 352 197 -155 -77.5 

2x  (Na2SO3 Conc.) 284 265 -19 -9.5 

3x  (Time) 326 223 -102 -51.0 

4x  (Temperature) 269 280 12 6.0 

21xx  260 289 28 14.0 

31xx  281 268 -12 -6.0 

32 xx  289 260 -29 -14.5 

Step (2): Figure 3.5 is the graphical presentation of the average TS for each factor 

and interaction. It reveals the relative importance of all of the effects (factors and 

interactions). 
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Figure 3.5 Plot of the average TS (responses) for each effect (factor and interaction). 

Figures 3.6, 3.7, and 3.8 show the graphical representation of the interactions of 

concentration of NaOH with concentration of Na2SO3 ( 21xx ), concentration of 

NaOH with time ( 31xx ), and concentration of Na2SO3 with time ( 32 xx ), 

respectively. Figure 3.6 shows that the effect of NaOH concentration at both 

Na2SO3 concentrations is negative. The Na2SO3 concentration lines intersect each 

other within the range of two NaOH concentration levels under investigation. The 

point of intersection is almost at the end of the two NaOH concentration levels 

and therefore, the interaction parameter between NaOH concentrations and 

Na2SO3 concentrations at the levels under investigation could be insignificant. 

Similarly, from Figure 3.7, (it can be seen that) the time lines do not intersect each 

other within the range of two NaOH concentration levels under investigation and 

from Figure 3.8, (it can be seen that) the time lines do not intersect each other 

within the range of two Na2SO3 concentration levels under investigation. 

Therefore, the interaction parameter between NaOH concentrations and times, 

Figure 3.7, and Na2SO3 concentrations and times, Figure 3.8, at the levels under 

investigation could be insignificant. 
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Figure 3.6 Average TS for the interaction of concentrations of NaOH and Na2SO3. 
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Figure 3.7 Average TS for the interaction of concentration of NaOH and Time. 
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Figure 3.8 Average TS for the interaction of concentration of Na2SO3 and Time. 
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Step (3): From the half effect the following prediction equation can be derived as 

described in literature [199]: 

323121

4321

)2/()2/()2/(

)2/()2/()2/()2/(

323121

4321

xxxxxx

xxxxyy

xxxxxx

xxxx

Δ+Δ+Δ+

Δ+Δ+Δ+Δ+=
∧

 

 

(3.3) 

here y  is the average TS of all the eight runs, 2/
1xΔ  is the half effect for the 

NaOH concentration, 2/
2xΔ  is the half effect for Na2SO3 concentration, 2/

3xΔ  is 

the half effect for digestion time, 2/
4xΔ  is the half effect for treatment 

temperature, 2/
21xxΔ  is the half effect for the interaction between NaOH and 

Na2SO3 concentration, )2/(
31xxΔ  is the half effect for the interaction between 

NaOH concentration and digestion time, and )2/(
32xxΔ  is the half effect for the 

interaction between Na2SO3 concentration and digestion time. 

By putting the values of half effects Equation (3.3) gets the form: 

3231214321 5.146146515.95.77275 xxxxxxxxxxy −−++−−−=
∧

       (3.4) 

Step (4): The Pareto chart generated from the absolute value (average TS) of half 

effects for each factor and interaction is shown in Figure 3.9. 
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Figure 3.9 Pareto chart for the half effects of each factor and interaction. 
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Step (5): On the basis of the above Pareto chart, it was decided that the factors 1x  

and 3x  were important. 

Step (6): Therefore, from the above analysis the following prediction equation 

can be derived: 

31 515.77275 xxy −−=
∧

                                                                           (3.5) 

Although the coded factors x2 and x4  are missing in the equation, and also all the 

interaction terms are ignored, this equation is valid for coded-factor ranges xi ε (-1, 

1) for i = 1, 2, 3, 4 i.e. for real factor ranges f1 () ε (15, 20),  f2 () ε (0, 2),  f3 (min) ε 

(120, 360), and  f4 (oC) ε (30, 60). 

This prediction equation could be used to (a) estimate the untested combinations 

in this fractional factorial design, (b) predict a target value, and (c) complete 

sensitivity analysis and tolerance design. 

(a) The Estimation of Tensile Strength (TS) for Untested Combination of Treatment 

Factors 

The prediction Equation (3.5) could be used to estimate the TS of fibre for an 

untested combination of factors. For example, the TS of fibres can be predicted 

which are treated under the following conditions: f1 = 16, f2 = 1.5, f3 = 200 min 

and f4 = 40oC. The value of the actual factors is converted into coded values as 

defined by the Equation (3.2). Thus for the present case: x1 = -0.6, x2 = 0.5, x3 =     

-0.33, and x4 = -0.33. Using the coded values, the TS of the fibre estimated by the 

Equation (3.5) is 338 MPa. 

(b) The Prediction of the Combination of Factors for a Target Value of Fibre Tensile 

Strength (TS) 

The prediction Equation (3.5) could be used to select a number of combination of 

the factors for a given target value of the TS of the fibre. For example, say the 

target value is 370 MPa. The following experimental combination was taken to 

get the target value by using Equation (3.5). The coded values are: x1 = -1 (taken), 

x2 = -1 (any value taken), x3 = -0.35 (calculated by using Equation (3.5)), and x4 = 
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-1 (any value taken) and the corresponding real values are: f1 = 15, f2 = 0, f3 = 198 

min, and f4 = 30oC. 

(c) Sensitivity Analysis and Tolerance Design [201, 202] 

Experimental Verification 

Experiments were conducted under the conditions as described in (a) and (b). The 

experimentally obtained fibre TS is shown in Table 3.6. The deviation of the 

experimental value from the predicted is calculated by the following equation: 

Percent (%) deviation = ((Experimental averaged value – predicted 

value)/predicted value)×100. 

Table 3.6 Experimental verification of predicted/estimated fibre TS and treatment 

parameters. 

NaOH 
Conc.  
(wt%) 

Na2SO3 
Conc.  
(wt%) 

Time 
(min) 

Temp. 
(oC) 

Exp. 
Fibre TS 

(MPa) 

Avg 
Exp. 
Fibre 

TS 
(MPa) 

Predicted 
Fibre TS 

(MPa) 

Devi
ation 
(%) 

Tolera
nce 

Limit 
(MPa) 

Is the 
Limit 

Accept
able? 

16 1.5 200 40 351, 297, 
217, 402, 

342 

322 337.9 4.8 ±32 Yes 

15 0 198 30 501, 422, 
436, 296, 

378 

407 370 10 ±17 No 

 

Here, the tolerance limit of experimental parameters in (a): 5.01 ±=Δf , and 

403 ±=Δf min corresponding to coded value of 2.01 ±=Δx , and 33.03 ±=Δx , 

respectively. 

Such deviation in experimental condition would lead to a change in predictedy  of 

Equation (3.5) as: )(51)(5.77275 3311 xxxxyy Δ+−Δ+−=Δ+  

3233.0512.05.77515.77 31max
=×+×=Δ×+Δ×=Δ xxy  

So, the predicted value varies from the experimental value (averaged) by ±32 MPa 

roughly. As the experimental value deviated from the predicted value, Table 3.6, 

within the permissible limit of ±32 MPa, the model was accepted. 
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The tolerance limit of experimental parameter in (b): 00.01 ±=Δf , and 

393 ±=Δf min corresponding to the coded values of 00.01 ±=Δx , and 

325.03 ±=Δx , respectively. 

Such deviation in experimental condition would lead to a change in predictedy  of 

Equation (3.5) as: )(51)(5.77275 3311 xxxxyy Δ+−Δ+−=Δ+  

17325.05100.05.77515.77 31max
=×+×=Δ×+Δ×=Δ xxy  

So, the predicted value varies from the experimental value (averaged) by ±17 MPa 

roughly. Although the experimental value deviated from the predicted value, 

Table 3.6, above the permissible limit of ±17 MPa, the deviation of experimental 

value was only 10% above of the predicted value which could be within the 

margin of experimental error. Therefore, the model was accepted. 

Step (8): As the objective was to maximize the TS, the best settings of the factors 

appeared to be 1x  and 3x  at low that means concentration of NaOH was at 15 

wt% and digestion time was at 120 min. The predicted maximum TS would be 

403 MPa. On the other hand, the predicted minimum TS at 20 wt% NaOH 

concentration and 360 minutes digestion time would be 146 MPa. 

Part 2 

An 8-run fractional factorial design was conducted with 5 replicates of each run. 

The results are summarised in Table 3.7. 

Table 3.7 Experimental data for alkali treatment of untreated hemp fibres. 

Run 
No. 

 

NaOH 
Conc. 
(wt%)  

Na2SO3 
Conc. 
(wt%) 

Time 
(min.) 

Temp. 
(oC)  

Exp. Value of the 
Replicate Fibre TS 

(MPa) 

Avg 
Fibre TS 

(MPa)  

STD 
(MPa) 

1 5 0 30 120 572, 510, 400, 542, 385 482 84.58 
2 5 0 60 180 375, 181, 245, 148, 206 231 87.96 
3 5 2 30 180 285, 205, 363, 390, 167 282 96.68 
4 5 2 60 120 366, 401, 578, 509,460 463 84.56 
5 10 0 30 180 278, 168, 139, 231, 110 185 68.55 
6 10 0 60 120 359, 397, 183, 393, 206 308 104.61 
7 10 2 30 120 450, 634, 624, 398, 499 521 104.92 
8 10 2 60 180 95, 177, 103, 90, 234 140 63.44 
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In order to determine important and trivial factors as well as interactions, a 

graphical approach was used and is described below.  

The Graphical Approach [199] 

Step (1): As can be seen from Table 3.7 run numbers 1 and 7 are the highest 

desirable fibre TSs. The average TS (response), effects, and half effects for the 

applicable factors ( 1x  to 4x )  and interactions ( 21xx , 31xx , and 32 xx ) are given in 

Table 3.8. 

Table 3.8 Effects of the factors and interactions on fibre TS. 

Factors/Interactions Avg Fibre TS 
at Low (MPa) 

Avg Fibre TS 
at High (MPa) 

Effect, ∆ 
(MPa)  

Half Effect, ∆/2 
(MPa) 

1x  
364.50 288.5 -76.0 -38.0 

2x  
301.50 351.5 50.0 25.0 

3x  
367.50 285.5 -82.0 -41.0 

4x  
443.50 209.5 -234.0 -117.0 

21xx  
309.50 343.5 34.0 17.0 

31xx  
350.0 303.0 -47.0 -23.5 

32 xx  
335.50 317.5 -18.0 -9.0 

Step (2): Figure 3.10 is the graphical presentation of the average TSs. It reveals 

the relative importance of all of the effects (factors and interactions). 
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Figure 3.10 Plot of the average TS (responses) for each effect (factor and interaction). 
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Figures 3.11, 3.12, and 3.13 show the graphical representation of the interactions 

of concentration of NaOH with concentration of Na2SO3 [ 21xx ], concentration of 

NaOH with time [ 31xx ], and concentration of Na2SO3 with time [ 32 xx ], 

respectively. Figure 3.11 shows that the effect of NaOH concentration at all the 

two Na2SO3 concentrations is negative. The Na2SO3 concentration lines do not 

intersect with each other within the range of two NaOH concentration levels under 

investigation. Therefore, the interaction parameter between NaOH concentrations 

and Na2SO3 concentrations at the levels under investigation could be insignificant. 

Similarly, from Figure 3.12, (it can be seen that) the time lines do not intersect 

each other within the range of two NaOH concentration levels under investigation 

and from Figure 3.13, (it can be seen that) the time lines do not intersect each 

other within the range of two Na2SO3 concentration levels under investigation. 

Therefore, the interaction parameter between NaOH concentrations and times, 

Figure 3.12, and Na2SO3 concentrations and times, Figure 3.13, at the levels under 

investigation could be insignificant. 
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Figure 3.11 Average TS for the interaction of concentration of NaOH and Na2SO3. 
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Figure 3.12 Average TS for the interaction of concentration of NaOH and Time. 
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Figure 3.13 Average TS for the interaction of concentration of Na2SO3 and Time. 

Step (3): From the half effect, the following prediction equation can be derived by 

using Equation (3.3). 

3231214321 95.23171174125385.326 xxxxxxxxxxy −−+−−+−=
∧

  (3.6) 

Step (4): The Pareto chart generated from the absolute value (average TS) of half 

effects for each factor and interaction is shown in Figure 3.14. 
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Figure 3.14 Pareto chart for the half effects (∆/2) of each factor and interaction. 

Step (5): On the basis of the above Pareto chart, it was decided that the factors 1x , 

2x , 3x , and 4x  were important.  

Step (6): Therefore, from the above analysis the following prediction equation 

can be derived: 

4321 1174125385.326 xxxxy −−+−=
∧

                                                              (3.7) 

Although the interaction terms are ignored, this equation is valid for coded-factor 

ranges xi ε (-1, 1) for i = 1, 2, 3, 4 i.e. for real factor ranges f1 (wt%) ε (5, 10), f2 

(wt%) ε (0, 2), f3 (min) ε (30, 60), and f4 (oC) ε (120, 180). 

This prediction equation was used to (a) estimate the untested combinations in this 

fractional factorial design (b) predict a target value and (c) complete sensitivity 

analysis and tolerance design. 

(a) The Estimation of Untested Combination 

The TS of the fibre under the following conditions: f1 = 6 wt%, f2 = 1.0 wt%, f3 = 

50 min, and f4 = 140oC was estimated. The value of the real factors was converted 

into coded values as defined by the Equation (3.2). Thus for the present case: x1 = 

-0.6, x2 = 0.0, x3 = 0.33, and x4 = -0.33. Using the coded values, the TS of the fibre 
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was estimated using the Equation (3.7). For this case the estimated fibre strength 

was 374 MPa. 

(b) The Prediction of the Combination of Factors for a Target Value of Fibre TS 

A target value of fibre strength was taken as 450 MPa. The following 

experimental combination was taken to get the target value by using Equation 

(3.7). The coded values are: x1 = -1 (taken), x2 = +1 (taken), x3 = -0.48 (calculated 

by using Equation (3.7)), and x4 = -1 (taken) and the corresponding real values 

are: f1 = 5 wt%,  f2 = 2 wt%,  f3  = 37.8 min, and  f4 = 120oC. 

(c) Sensitivity Analysis and Tolerance Design [201, 202] 

Experimental Verification  

Experiments were conducted under the conditions as described in (a) and (b). The 

experimentally obtained fibre TS is shown in Table 3.9.  

Table 3.9 Experimental verification of predicted/estimated fibre strength and treatment 

parameters. 

NaOH 
Conc. 
(wt%) 

Na2SO3 
Conc. 
(wt%) 

Time 
(min) 

Temp. 
(oC) 

Exp. 
Fibre 

TS 
(MPa) 

Avg 
Exp. 
Fibre 

TS 
(MPa) 

Predic
-ted 

Fibre 
TS 

(MPa) 

Deviati
-on (%) 

Tolera-
nce 

Limit 
(MPa) 

Is the 
Limit 

Accep-
table? 

6 1.5 50 140 409, 
311, 
277, 
361, 
467 

365 374 5.7 ±86 Yes 

5 2 1.35 120 306, 
488, 
349, 
539, 
431 

423 450 6.1 ±36 Yes 

 

Here, the tolerance limit of experimental parameters in (a): 5.01 ±=Δf  wt%, 

5.02 ±=Δf  wt%, 103 ±=Δf min and 104 ±=Δf oC corresponding to coded value 

of 2.01 ±=Δx , 5.02 ±=Δx , 67.03 ±=Δx , and 33.04 ±=Δx  respectively. 

Such deviation in experimental condition would lead to a change in predictedy  of 

Equation (3.7) as: 
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)(117)(41)(25)(385.326 44332211 xxxxxxxxyy Δ+−Δ+−Δ++Δ+−=Δ+  

8633.011767.0415.0252.038

117412538 4321max

=×+×+×+×=

Δ×+Δ×+Δ×+Δ×=Δ xxxxy

 

So, the predicted value varies from the experimental value (averaged) by ±86 MPa 

roughly. As the experimental value deviated from the predicted value, Table 3.9, 

within the permissible limit of ±86 MPa, the model was accepted. 

The tolerance limit of experimental parameter in (b): 00.01 ±=Δf  wt%, 

0.12 ±=Δf  wt%, 9.33 ±=Δf min and 00.04 ±=Δf oC corresponding to coded 

value of 00.01 ±=Δx , 0.12 ±=Δx , 26.03 ±=Δx , and 00.04 ±=Δx  respectively. 

Such deviation in experimental condition would lead to a change in predictedy  of 

Equation (3.7) as: 

)(117)(41)(25)(385.326 44332211 xxxxxxxxyy Δ+−Δ+−Δ++Δ+−=Δ+  

3600.011726.0410.12500.038

117412538 4321max

=×+×+×+×=

Δ×+Δ×+Δ×+Δ×=Δ xxxxy

 

So, the predicted value varies from the experimental value (averaged) by ±36 MPa 

roughly. As the experimental value deviated from the predicted value, Table 3.9, 

within the permissible limit of ±36 MPa, the model was accepted. 

Step (7) As the objective was to maximize the TS, the best settings of the factors 

appeared to be 1x , 3x , and 4x  at low and 2x  at high that means concentration of 

NaOH was at 5 wt%, digestion time at 30 min, temperature at 120oC and 

concentration of Na2SO3 at 2 wt%. The predicted maximum TS would be: 547.5 

MPa. On the other hand, the predicted minimum TS (at 10 wt% NaOH 

concentration, 60 min digestion time, 180oC treatment temperature, and 0 wt% 

Na2SO3 concentration) would be 155.5 MPa. 

The accuracy (at a confidence level of 95%, α = 0.05) of the prediction of TS 

using the empirical model was quite satisfactory as the experimental TS of alkali 

treated fibre obtained was almost within the range of tolerance limit of the model. 
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For better prediction, one could carry out total factorial design or choose higher 

order regression analysis. Such approach, however, would require more number of 

experiments (more than twice of the number of the experiments require for the full 

factorial design compared to fractional factorial design), but the accuracy of the 

prediction would improve very little [199]. 

3.3.1.2 The Effects of Alkali Treatment on Tensile Strength (TS) 

The results of alkali treated single fibre TS from Tables 3.4 and 3.7 are combined 

and shown in Table 3.10. It also includes the average Young’s moduli and fibre 

diameters after different alkali treatments. Figures 3.15, 3.16, and 3.17 further 

illustrate the effects of NaOH concentration, treatment temperature and digestion 

time on the average fibre TS. 

Table 3.10 Summary of the single fibre tensile test results for alkali treated hemp fibres. 

Treatment 
Sample 

No. 

Treatment Variables TS 
(MPa) 

YM (GPa) Avg 
Fibre 

Diameter 
(µm) 

-- Untreated 526±155 34.2±11.3 32.6±4.9 
P1E1 15% NaOH, 120 min, 30oC 400±61 31.8±7.1 26.1±5.5 
P1E2 15% NaOH, 360 min, 60oC 351±73 26.3±5.2 25.7±7.6 
P1E3 15% NaOH, 2% Na2SO3, 120 min, 

60oC 
394±60 30.6±8.2 25.3±6.9 

P1E4 15% NaOH, 2% Na2SO3, 360 min, 
30oC 

263±66 25.6±5.7 24.6±3.5 

P1E5 20% NaOH, 120 min, 60oC 241±50 25.3±6.9 24.5±6.0 
P1E6 20% NaOH, 360 min, 30oC 144±45 21.3±7.2 22.1±5.6 
P1E7 20% NaOH, 2% Na2SO3, 120 min, 

30oC 
268±52 25.1±4.5 24.7±5.2 

P1E8 20% NaOH, 2% Na2SO3, 360 min, 
60oC 

136±46 22.9±7.4 22.6±4.2 

P2E1 5% NaOH, 30 min, 120oC 482±85 33.9±8.9 26.8±5.7 
P2E2 5% NaOH, 60 min, 180oC 231±88 25.7±6.3 24.5±4.5 
P2E3 5% NaOH, 2% Na2SO3, 30 min, 

180oC 
282±96 27.2±5.5 25.3±3.7 

P2E4 5% NaOH, 2% Na2SO3, 60 min, 
120oC 

463±84 32.8±9.1 25.9±7.3 

P2E5 10% NaOH, 30 min, 180oC 185±68 22.0±3.2 23.1±7.1 
P2E6 10% NaOH, 60 min, 120oC 308±105 29.8±3.8 25.6±4.0 
P2E7 10% NaOH, 2% Na2SO3, 30 min, 

120oC 
521±105 33.2±7.8 26.5±4.8 

P2E8 10% NaOH, 2% Na2SO3, 60 min, 
180oC 

140±63 21.7±6.9 22.4±6.8 
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Figure 3.15 Effect of treatment temperature and digestion time on the TS of 5 wt% NaOH 

treated hemp fibres. 
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Figure 3.16 Effect of treatment temperature and digestion time on the TS of 10 wt% 

NaOH treated hemp fibres. 
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Figure 3.17 Effect of NaOH concentration and digestion time on the TS of hemp fibres. 

From these results, it can be seen that the alkali treatment which resulted in the 

strongest fibre was treatment P2E7, closely followed by treatment P2E1 and P2E4. 



Chapter Three: Fibre Treatment and Characterisation  

 84

These three alkali treatments were probably the mildest of the sixteen treatments 

used. When compared to the TS of the control (untreated fibre), it can be seen that 

alkali treatment resulted in almost similar fibre TS from treatment P2E7, and 

decreased fibre TSs from treatments P2E1 and P2E4. The process variable that most 

notably affected the fibre strength for 5 and 10 wt% NaOH treatments was the 

treatment temperature, Equation (3.7). For 5 wt% NaOH treatments, a 45% 

reduction in TS was observed when the temperature was increased from 120 to 

180oC. The reduction in strength was even more pronounced at a NaOH 

concentration of 10 wt%, and the fibre TS reduction for the temperature increase 

from 120 to 180oC was about 60%. The large reductions in fibre TS experienced 

at 180oC were expected, as cellulose starts to degrade at that temperature [32]. 

The process variable that most notably affected the fibre TS for 15 and 20 wt% 

NaOH treatments was the NaOH concentration, Equation (3.5). A reduction in 

fibre TS for the NaOH concentration increase from 15 to 20% was about 59% for 

the digestion time of 360 minutes and it was about 40% for the digestion time of 

120 minutes, Figure 3.17. From the results in Table 3.10, it can also be seen that 

the alkali treatments reduced the fibre diameter of the treated fibres, and that fibre 

diameter reductions appeared to be related to the severity of the alkali treatment. 

This might be caused by the removal of the non-crystalline fibre constituents such 

as hemicelluloses, lignin, pectin, and cellulose microfibrils to some extent. 

Alkali treatment P2E7 gave almost similar TS of untreated control fibre. This is 

likely to have been caused by the removal of non-strength contributing fibre 

surface components, which consequently would have led to a reduction in the 

average fibre cross-sectional area. The alkali treatment may also have led to a 

better packing of the cellulose microfibrils, a decrease in the microfibril spiral 

angle, and an increase in the molecular orientation of the cellulose chains [24]; all 

of which would have acted not to decrease the TS of the fibre for that particular 

treatment. For alkali treatment P2E1 and P2E4, the TS appeared to have decreased 

to a small extent due to removal of non-strength contributing component during 

alkali treatment, and due to weakening of the cellulose fibres. For other alkali 

treatments, the TS was found to be reduced and the reduction was proportional to 

the degree of harshness of the alkali treatment. The TS reductions indicate that the 

cellulose had been degraded or the fibre structure disrupted and the fibres had 

been significantly weakened. 
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3.3.1.3 The Effects of Alkali Treatment on Young’s Modulus (YM) 

The Young’s moduli of the alkali treated hemp fibres are shown in Table 3.10. 

The effects of fibre treatment temperature and digestion time on the average fibre 

YM are further illustrated in Figures 3.18, 3.19, and 3.20. From the results, it can 

be seen that the average fibre YM of treatment P2E1, P2E4, and P2E7 are slightly 

lower than that of the control (untreated fibre). For other alkali treatments the 

reduction of fibre YM compared to the untreated control was notable and it 

seemed to decrease with the increase of the severity of the alkali treatment 

processes. Generally, it can be said that the fibre YM decreased with the increase 

of the removal of surface components such as hemicelluloses, lignin, and pectin. 

For alkali treatment P2E7, it can be seen that the removal of surface components 

slightly reduced the fibre YM. Lignin, hemicelluloses, and pectin are generally 

highly cross-linked and branched and keep the fibres in proper orientation and 

locations, and thus give structural integrity and rigidity in the cellulose fibres. 

Therefore, the removal of these components from fibre surface could lead to 

decrease in fibre YM. 
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Figure 3.18 Effect of treatment temperature and digestion time on the YM of 10 wt% 

NaOH treated hemp fibres. 
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Figure 3.19 Effect of treatment temperature and digestion time on the YM of 5 wt% NaOH 

treated hemp fibres. 
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Figure 3.20 Effect of NaOH concentration and digestion time on the YM of hemp fibres. 

 

3.3.1.4 The Effects of Fibre Diameter on Tensile Strength (TS) of 

the Alkali Treated Fibres 

The purpose of this investigation was to determine if hemp fibre diameter had any 

influence on the fibre TSs. For P2E1, P2E4 and P2E7, Table 3.10, alkali treated 

hemp fibres, all fibres tested are plotted, Figures 3.21, 3.22, and 3.23, on a TS 

versus diameter scatter graph. 
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Figure 3.21 Influence of fibre diameter on the TS of P2E1 alkali treated hemp fibres. 
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Figure 3.22 Influence of fibre diameter on the TS of P2E4 alkali treated hemp fibres. 
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Figure 3.23 Influence of fibre diameter on the TS of P2E7 alkali treated hemp fibres. 

From the trendlines of the plots in Figures 3.21 to 3.23, it can be seen that there is 

a general trend for the smaller diameter fibres to have higher TSs when compared 

to the larger diameter fibres. An explanation for the trend is that comparatively 
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larger fibres were slightly distorted and had elliptical, rather than circular cross-

sectional shapes. It was found that distortion of the fibre cross-sections from 

circular to elliptical resulted in an increase of about 8% in cross-sectional area for 

the larger fibre diameters (in the range of about 25-33 µm). Since the TS was 

calculated with the assumption that the fibre cross sections were circular, the 

elliptical fibres would have been calculated as having a larger cross-sectional area 

than in reality. TS was calculated by dividing the tensile load by the fibre cross-

sectional area, therefore, fibres with larger than actual cross-sectional areas would 

then result in lower calculated TSs. 

However, it is possible that the reduction in TS with increased diameter could be 

due to the presence of larger amount of flaws for the higher diameter fibres. 

Natural fibres are grown with a large amount of flaws and imperfections in their 

structure. The presence of flaws and imperfections adversely affects the 

mechanical properties of the fibres [203]. It is reasonable that the number of flaws 

will increase in proportion with the fibre diameter and contribute to the decrease 

in fibre TSs [32, 204].  

3.3.1.5 Scanning Electron Microscopic Evaluation of Alkali 

Treated Fibres 

The SEM micrographs of untreated and alkali treated (treatment P2E1, P2E4, and 

P2E7) fibres are shown in Figures 3.24 to 3.27. From the micrographs, the fibre 

surfaces appeared to be covered with noncellulosic components in the case of 

untreated fibre, which was removed on alkali treatment to expose clean and rough 

surfaces which would be expected to be mainly cellulose. The rough surface 

morphology of the alkali treated fibre is expected to help attaining mechanical 

interlocking when used in composites and the clean surfaces are expected to 

provide direct bonding between the fibre cellulose and a matrix such as epoxy 

resin. Of the three alkali treated fibres, treatment P2E4 produced cleaner, and more 

separated fibres. 
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Figure 3.24 SEM of untreated hemp fibre. 

 

 

Figure 3.25 SEM of P2E1 alkali treated hemp fibre. 

 

 

Figure 3.26 SEM of P2E4 alkali treated hemp fibre. 

 

Figure 3.27 SEM of P2E7 alkali treated hemp fibre. 
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3.3.1.6 Zeta Potential 

Figure 3.28 shows the pH dependence of zeta potential values of untreated and 

alkali treated (treatment P2E1, P2E4, and P2E7) fibres. It is evident from this figure 

that alkali treatment generally reduces the zeta potential. This might be caused by  
 

2 4 6 8 1 0 1 2
-2 5

-2 0

-1 5

-1 0

-5

0

5
 U n tre a te d

ζ 
 (m

V)

p H

 P 2 E 1
 P 2 E 4
 P 2 E 7

 

Figure 3.28 pH dependence of zeta potential of untreated and alkali treated fibres. 

the increase in the accessibility of the dissociable functional groups in the fibre 

surface due to the removal of the waxy substances which obscure the fibre surface 

[182]. Table 3.11 shows the ζplateau value and IEP of the untreated and alkali 

treated (treatment P2E1, P2E4, and P2E7) fibres. 

Table 3.11 ζplateau and IEP of untreated and alkali treated fibres. 

Sample IEP (pH) (ζ=0) ζplateau (mV) 
Untreated 3.5 -7.7 

P2E1 3.7 -10.5 
P2E4 3.8 -11.5 
P2E7 3.6 -10.0 

Considerably lower ζplateau values were observed for all three alkali fibre 

treatments compared to that for untreated fibre. The slight increase in the IEP by 

alkali treated fibres highlights the reduction of the acidity of the fibre surface and 

an enlargement of the double layer giving further evidence for increased -OH 

group exposure [188]. The enlargement of the double layer would also decrease 

the zeta potential of the solution as seen.  

Among the three alkali fibre treatments the lowest ζplateau value of -11.5 mV and 

the highest IEP of 3.8 were observed for the fibres of alkali fibre treatment P2E4. 
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The trend of reduced ζplateau value and increased IEP were observed with the alkali 

treated fibres might be due to the exposure of more -OH and -COOH groups upon 

removal of the non-cellulosic fibre materials such as wax or lignin [205]. So, 

generally a reduction in ζplateau value and an increase in IEP can be seen with the 

intensity of the alkali treatment as follows: intensity: P2E4 > P2E1 > P2E7; ζplateau: 

P2E4 < P2E1 < P2E7 and IEP: P2E4 > P2E1 > P2E7. 

3.3.1.7 Wide Angle X-ray Diffraction (WAXRD) 

As can be seen in Figure 3.29, the untreated and alkali treated (treatment P2E1, 

P2E4, and P2E7) fibres exhibit five main peaks at 2θ-angles of 15, 16.5, 22.5, 34.5 

and 46.5o corresponding to (1 0 1), (1 1 1), (0 0 2), ( 2  3 1) and ( 4  1 2) 

crystallographic planes of cellulose [206]. For the untreated fibre, the peaks at 15 

and 16.5o are merged, appearing more like one broad peak, which suggests  
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Figure 3.29 WAXRD pattern of untreated and alkali treated fibres. 

the presence of a large amount of amorphous materials such as lignin, 

hemicelluloses and amorphous cellulose [177]. The two peaks are more separate 

in the case of all the three alkali treated fibres suggesting a higher cellulose 

content. Assessment of the relative amount of amorphous materials of the 

cellulosic fibres can be carried out by using a reference point away from the 

crystalline peaks. Commonly this is taken at a 2θ-angle of 18.5o [198] As shown 

in Table 3.12, alkali treatment brings about an increase in the intensity values 

relating to amorphous materials (at a 2θ-angle of 18.5o), as well as for all the 
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intensity values of the crystalline cellulose peaks, suggesting an increase in 

crystalline and amorphous cellulose. This would be expected simply due to 

removal of non-cellulosic materials such as waxes, lignin and hemicelluloses, as 

supported by the separation of the (1 0 1) and (1 1 1) peaks [207]. The increase of 

crystalline cellulose content during alkali treatment observed elsewhere, has been 

explained by removal of non-cellulosic materials enabling better packing of 

cellulose chains [171]. Harsher treatments have also been seen to reduce 
 

Table 3.12 The crystallographic planes at various intensity (WAXRD counts) and 2θ-

angles, and the crystallinity indices, CrI of untreated and alkali treated hemp fibres. 

Sample 2θ (o) WAXRD Counts h k l CrI (%) 
15 571 -- 

16.5 566 1 1 1 
18.5 370 Amorphous 
22.5 2298 002 
34.5 296 2  3 1 

Untreated 

46.5 356 4  1 2 

83.89 

15 1090 -- 
16.5 957 1 1 1 
18.5 406 Amorphous 
22.5 4557 002 
34.5 478 2  3 1 

P2E1 
 

46.5 475 4  1 2 

91.09 

15 1146 -- 
16.5 1061 1 1 1 
18.5 390 Amorphous 
22.5 4842 002 
34.5 450 2  3 1 

P2E4 
 

46.5 506 4  1 2 

91.94 

15 1026 -- 
16.5 922 1 1 1 
18.5 393 Amorphous 
22.5 4358 002 
34.5 461 2  3 1 

P2E7 

46.5 516 4  1 2 

90.98 

cellulose crystallinity, due to the increased exposure of -OH groups which could 

increase the degree of swelling leading to the breakage of hydrogen bonds [177]. 

Here, the CrI was seen to increase, indicating an increase in the ratio of crystalline 

to amorphous cellulose, suggesting that the removal of non-cellulosic material and 

increased packing of cellulose chains outweighs any crystalline cellulose 

degradation that may be occurring for the treated fibres. 
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3.3.1.8 Differential Thermal Analysis/Thermogravimetric 

Analysis (DTA/TGA) 

The DTA and TGA curves of untreated and alkali treated (treatment P2E1, P2E4, 

and P2E7) fibres are shown in Figures 3.30 and 3.31 respectively. The DTA 

curves, Figure 3.30 for untreated and all three alkali treated fibres show an  
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Figure 3.30 DTA curves for untreated and alkali treated fibres. 
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Figure 3.31 TGA curves for untreated and alkali treated fibres. 

endotherm around 60oC due to the evolution of adsorbed moisture. At higher 

temperatures there are two exotherms. The first exotherm has a peak temperature 
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of about 318oC for untreated fibre and about 363oC for alkali treated fibres and is 

likely to be caused by the decomposition of cellulose leading to the formation of 

volatile products [208]. The second exotherm has a peak temperature of 436oC for 

untreated fibre and around 450 to 460oC for alkali treated fibres and is expected to 

be due to the oxidation of volatile and charred products. The increase in the first 

and second exothermic peak temperatures for alkali treated fibres indicates their 

greater thermal stability. The peak onset, peak, peak finishing temperatures and 

the nature of peaks for the untreated and alkali treated fibres obtained from DTA 

thermograms are shown in Table 3.13. The temperature at which percentage 

weight losses have occurred, Figure 3.31, can be seen to be consistently higher for 

alkali treated fibres compare to untreated fibres up to about 360oC and after that 

the converse is true, which may be due to stable lignocellulosic complex formed 

at higher temperature in the more lignin rich untreated fibres and shielding the 

fibre from weight loss above 360oC [209].  

Table 3.13 The peak onset, peak and peak finishing temperatures of the endotherm and 

both exotherms for the untreated and alkali treated fibres obtained from DTA 

thermograms. 

Sample Peak Onset 
Temperature (oC) 

Peak Temperature 
(oC) 

Peak Finishing 
Temperature (oC) 

Nature 
of Peak 

23.4 58.1 90.9 Endo 
225.8 318.3 374.8 Exo 

Untreated 

383.2 436.8 445.7 Exo 
28.9 62.3 96.7 Endo 
273.8 363.3 406.7 Exo 

P2E1 
 

420.3 458.4 472.5 Exo 
37.8 63.9 98.6 Endo 
283.1 363.5 396.8 Exo 

 
P2E4 

418.8 450.7 462.2 Exo 
30.9 60.2 94.8 Endo 
280.5 363.1 415.1 Exo 

P2E7 

423.5 460.6 469.8 Exo 

For various stages of thermal degradation of fibres, the following equation of 

Broido [210] was used to determine the kinetic parameters: 

)ln()1ln(ln 2
m

a

a T
E
RZ

RT
E

y β
+−=

 

(3.8)

where y is the fraction of non-volatilised material yet to decompose, Tm is the peak 

temperature, β is the heating rate, Z is the frequency factor, Ea is the activation 

energy, and R is the universal gas constant. To evaluate Ea and Z (a constant 
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indicating the number of collisions required for reactions to occur) of untreated 

and alkali treated fibres the above equation of Broido [210] was used. Using the 

equation, plots of ln[ln(1/y)] versus 1/T (Broido plots) for second (first 

exothermic peak) and third (second exothermic peak) stages of thermal 

degradation were obtained for which examples are shown in Figures 3.32 and 

3.33. Linear relations were found in each instance and the activation energy and 

frequency factors were calculated from the slopes and intercepts of these plots, 

respectively, and are given in Table 3.14. Activation energies (Ea) for the first and 

second exothermic peak for the untreated and alkali treated fibres show that the 

alkali treated fibres have greater values of activation energies and frequency  
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Figure 3.32 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the second stage of thermal 

degradation for untreated and alkali treated fibres. 
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Figure 3.33 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the third stage of thermal degradation 

for untreated and alkali treated fibres. 

factors within the range of their respective first and second exothermic peaks. 

These greater values may be caused by an increase in crystalline cellulose by 

better packing of cellulose chains upon alkali treatment of fibres as discussed in 

section 3.3.1.7. Therefore, it can be inferred that alkali treated fibres appeared 

with slower reaction rate at their decomposition temperatures as well as shifted 

their peak temperature to a higher level than the untreated fibres. Removal of non-

cellulosic impurities at a greater extent in case of alkali treated fibres compared to 

untreated fibres initiates less active sites and reduces the rate of thermal  
 

Table 3.14 Activation energies and frequency factors obtained by Broido method for 

untreated and alkali treated fibres. 

2nd Peak 3rd Peak Sample 
Ea (kJmol-1) Z(s-1) Ea (kJmol-1) Z(s-1) 

Untreated 54.53 8.34×101 50.53 2.14×101 
P2E1 103.14 1.33×106 62.05 1.67×102 
P2E4 122.36 6.66×107 79.31 4.96×103 
P2E7 109.19 4.57×106 62.05 1.66×102 

degradation according to Wielage et al. [211], and might be a cause of the 

increased activation energy and frequency factor. Alkali fibre treatment increased 

cellulose CrI compared to untreated fibres (as can be seen from WAXRD results 

in section 3.3.1.7) and therefore, might increase the activation energies and 

frequency factors. Shah et al. [212] reported that sodium hydroxide treatment of 

lignocellulosic fibres leads to the formation of a lignin–cellulose complex which 
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gives more stability to the fibre. Further, from the results it can be seen that 

among the three alkali fibre treatments, fibre treatment P2E4 appeared with the 

highest activation energy and frequency factor which could be due to 

comparatively better crystalline packing order for this alkali treatment (P2E4) than 

the other two alkali treatments (P2E1, P2E7) as is shown in WAXRD results in 

section 3.3.1.7. 

3.3.1.9 Lignin Analysis  

Lignin removal from natural fibres is important for long term usage of natural 

fibre reinforced polymer composites, as it degrades over time [65]. Lignin is 

amorphous in nature and forms a three dimensional network structure in natural 

fibre cell walls. Therefore, complete removal of lignin from fibre is not possible 

as it causes chain degradation due to rupture of covalent bonds [213]. It can be 

seen from Table 3.15 that alkali treatment removes lignin from hemp fibres and  
 

Table 3.15 Cellulose, lignin, and ash contents of the untreated and alkali treated hemp 

fibres. 

Sample Cellulose (%) Lignin (%) Ash (%) 
Untreated 63.3 4.5 2.6 

P2E1 95.0 1.1 0.2 
P2E4 96.7 0.3 0.2 
P2E7 96.9 0.6 0.2 

the alkali treatment that was performed with use of 2 wt% sodium sulfite 

(Na2SO3) along with alkali, removed more lignin than when no Na2SO3 was used. 

Na2SO3 is generally used with alkali during the production of pulp to soften the 

lignin in pulp and paper industry [78]. These results show that the degree of lignin 

removal depends on each of the process variables; namely NaOH concentration, 

Na2SO3 concentration, treatment temperature, and digestion time. Furthermore, 

from Table 3.15 it can be seen that alkali fibre treatment P2E4 has low lignin 

content, and alkali fibre treatment P2E7 has high cellulose content. Low lignin 

content with high cellulose content is attributed to low cellulose chain degradation 

during treatment. However, as shown previously (section 3.3.1.2) alkali fibre 

treatment P2E7 gave higher single fibre TS than that of alkali fibre treatment P2E4. 

The relatively higher single fibre TS of alkali fibre treatment P2E7 compared to 

alkali fibre treatment P2E4 may be due to slightly lower cellulose degradation of 

fibres of alkali fibre treatment P2E7. As cellulose is responsible for mechanical 
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strength of fibres, degradation of it to any extent would decrease the TS of P2E4 

alkali treated fibres [36]. Again, as shown in section 3.3.1.3 the fibres of alkali 

fibre treatment P2E4 have a slightly lower YM compared to fibres of alkali fibre 

treatment P2E7 which supporting higher removal of lignin and other non-cellulosic 

surface components (e.g. hemicelluloses, pectin) by alkali fibre treatment P2E4 

compared to alkali fibre treatment P2E7. 

3.3.1.10 Fourier Transform Infrared (FTIR) Spectra  

Figure 3.34 shows the FTIR spectra of untreated and alkali treated fibres (P2E1, 

P2E4, and P2E7) for which there is a summary of the most significant peaks in 

Table 3.16. For the untreated hemp fibres, peaks in the region of 3629-3796 cm-1 

commonly related to stretching vibrations of -OH groups. These were found to 

shift slightly to 3619-3795 cm-1 for treated fibres, supporting the possibility of 

increased availability of -OH groups. Removal of hemicelluloses of alkali treated 
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Figure 3.34 FTIR-spectra of untreated and alkali treated fibres. 
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Table 3.16 FTIR wavenumbers (cm-1) of untreated and alkali treated fibres. 

Wavenumber (cm-1) 

Untreated Alkali Treated  

Bond Description 

3629-3796 3619-3795 O-H stretching relating to hydrogen bonding 
2921 2929 C-H stretching vibration in cellulose and hemicelluloses 

1735, 1718 1719, 1735 C=O stretching of carboxylic acid or ester 
1654 1654 C=C stretching 

1448-1534 1460, 1518, 1522 C-H bond in aromatic ring present in lignin component 
1437 1438 CH2 bending in lignin 
1384 ---- C-H bending 

1070, 1152 1080 C-C stretching 
890 895 C-H stretching for β glycosidic linkage 

fibres is suggested by two sharp peaks at 1718 and 1735 cm-1 for untreated fibres 

which are likely to be due to the carbonyl (C=O) stretching vibration of carboxylic 

acid and ester groups present in hemicelluloses. These are found to be reduced in 

intensity for alkali treated fibres. Further evidence is provided by the reduction of 

the peak intensity and peak shift from 2921 cm-1 for untreated fibres to 2929 cm-1 

for alkali treated fibres. Reduction in the peak intensities between 1448-1534 cm-1 

especially for an intense peak at 1507 cm-1 associated with the bending of C-H 

bond in the aromatic ring present mostly in lignin compounds, suggests the 

removal of significant amount of lignin by alkali treatment. The peak at 890 cm-1 

for untreated fibre is characteristic of the β-glycoside linkage between cellulose 

monosaccharides and undergoes a shift to 895 cm-1 with higher intensities for 

alkali treated fibres. This may be due to the rotation of the glucose residues 

around the β-glycosidic bonds which indicates the chemical modification of the 

alkali treated fibres as reported by other authors [207]. 

3.3.2  Characterisation of Acetylated Fibres 

3.3.2.1 Scanning Electron Microscopy (SEM) 

Figure 3.35 shows the scanning electron micrograph of acetylated hemp fibres. It 

can be seen that acetic anhydride treatment reduced the surface roughness of the 

alkali treated (treatment P2E4) fibre, Figure 3.26, to a small extent and made the 

surface cleaner. For the purpose of comparison, SEM macrograph for untreated 

fibre can also be seen in Figure 3.24 which was covered with non-cellulosic fibre 

components. 
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Figure 3.35 SEM of acetylated hemp fibre. 

3.3.2.2 Zeta Potential  

Figure 3.36 shows the pH dependence of zeta potential values of acetylated fibres 

compared to alkali treated (treatment P2E4) fibres. It is evident from this figure 

that acetic anhydride of fibres generally increases the zeta potential. This could be 

caused by the decrease in the accessibility of the dissociable functional groups in 

the fibre surface due to the substitution of -OH and -COOH groups by non-polar 
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Figure 3.36 pH dependence of zeta potential of acetylated fibres compared to alkali 

treated fibres. 

-COCH3 groups which obscures the fibre surface [182]. The substitution of -OH 

and -COOH groups by non-polar -COCH3 groups can be further evident from 

FTIR spectra discussed in section 3.3.2.5. Table 3.17 shows the ζplateau value and 

IEP of the acetylated and alkali treated (treatment P2E4) fibres. 
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A considerably higher ζplateau value was observed for acetylated fibre compared to 

alkali treated fibre. The slight decrease in the IEP by acetic anhydride treatment 

highlights the increase of the acidity of the fibre surface and a compaction of the 

double layer giving further evidence for decreased -OH group exposure [188]. 

The compaction of the double layer would also increase the zeta potential of the 

solution as seen. 

Table 3.17 ζplateau and IEP of acetylated fibres compared to alkali treated fibres. 

Sample IEP (pH) (ζ=0) ζplateau (mV) 
Acetylated 3.5 -8.6 

Alkali treated (P2E4) 3.8 -11.5 

3.3.2.3 Thermal Analysis by Differential Thermal Analysis/ 

Thermogravimetric Analysis (DTA /TGA) 

The DTA and TGA curves of acetylated fibres compared to alkali treated 

(treatment P2E4) fibres are shown in Figures 3.37 and 3.38 respectively. The DTA 

curves, Figure 3.37, for acetic anhydride treated and the alkali treated fibres show 

an endotherm around 60oC due to the evolution of adsorbed moisture. At higher 

temperatures there are two exotherms. The first exotherm has a peak temperature 

of about 363oC for both acetylated and alkali treated fibres and is likely to be 

caused by the decomposition of cellulose leading to the formation of volatile 

products [208]. The second exotherm has a peak temperature of about 450oC for 

both acetylated and alkali treated fibres and is expected to be due to the 
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Figure 3.37 DTA curves for acetylated fibres compared to alkali treated fibres. 
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Figure 3.38 TGA curves for acetylated fibres compared to alkali treated fibres. 

oxidation of volatile and charred products. The peak onset, peak, peak finishing 

temperatures and nature of peaks for the acetylated fibres compared to alkali 

treated fibres obtained from the DTA thermograms are shown in Table 3.18. From 

the results it can be seen that upon acetylation of alkali treated fibre the onset  
 

Table 3.18 The peak onset, peak, peak finishing temperatures and nature of peaks for the 

acetylated fibres compared to alkali treated fibres obtained from the DTA thermograms. 

Sample Peak Onset 
Temperature (0C) 

Peak Temperature 
(0C) 

Peak Finishing 
Temperature (0C) 

Nature 
of Peak 

29.2 61.8 89.7 Endo 
271.8 364.0 418.9 Exo 

Acetylated 

420.7 453.2 467.2 Exo 
37.8 63.9 98.6 Endo 
283.1 363.5 396.8 Exo 

 
Alkali treated 

(P2E4) 418.8 450.7 462.2 Exo 

temperature for the first exothermic peak reduces from 283 to 271oC and the onset 

temperature of second exothermic peak increases from 418 to 420oC. The 

temperature at which percentage residual weights have occurred can be seen in 

Figure 3.38 and is shown to be slightly lower for acetylated fibres at the initial 

stages of thermal degradation and slightly higher at the later stages of thermal 

degradation when compared to alkali treated fibres. Therefore, it is clear from the 

results that acetylated fibres have slightly lower thermal stability at the initial 

stages and slightly higher thermal stability at the later stages of thermal 

degradation compared to alkali treated fibres. 
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The Broido method [210] was used to evaluate the activation energy (Ea) and 

frequency factor of acetylated fibres compared to alkali treated fibres. Using the 

Broido equation, plots of ln[ln(1/y)] versus 1/T (Broido plots) for second (first 

exothermic peak) and third (second exothermic peak) stages of thermal 

degradation were plotted for which examples are shown in Figures 3.39 and 3.40.  
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Figure 3.39 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the second stage of thermal 

degradation (first exothermic peak) for acetylated fibres compared to alkali treated fibres. 
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Figure 3.40 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the third stage of thermal degradation 

(second exothermic peak) for acetylated fibres compared to alkali treated fibres. 

The activation energies and frequency factors were calculated from the slopes and 

intercepts of these plots, respectively, and are given in Table 3.19. From the 

values of activation energies (Ea) and frequency factors for the first and second 
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exothermic peak of the fibres show that acetylated fibres appeared with lower 

values of activation energy (96.83 kJ/mol) and frequency factor (3.54×105 s-1) for 

the first exothermic peak and almost similar activation energy and frequency 

factor for the second exothermic peak compared to alkali treated fibres. The 

decrease in activation energy and frequency factor for the first exothermic peaks 

of acetylated fibres does not conform with the increased cellulose crystallinity of 

this fibre. However, decrease in activation energy and frequency factor for the 

first exothermic peaks may be explained by the reduction in molecular regularity 

of the fibres by the introduction of acetyl groups in the fibre according to Rong et 

al. [86]. 

Table 3.19 Activation energies and frequency factors obtained by Broido method for 

acetylated fibres compared to alkali treated fibres. 

2nd Peak 3rd Peak Sample 
Ea (kJmol-1) Z(s-1) Ea (kJmol-1) Z(s-1) 

Acetylated 96.83 3.54×105 80.19 5.59×103 
Alkali 

Treated 
(P2E4) 

122.36 6.66×107 79.31 4.96×103 

3.3.2.4 Wide Angle X-ray Diffraction (WAXRD) 

Figure 3.41 shows the WAXRD pattern of acetylated fibres compared to alkali 

treated (P2E4) fibres. From the figure it can be seen that acetic anhydride treatment 

of alkali treated fibre reduces the intensity of both amorphous materials and 

crystalline cellulose. However, it can be conferred that acetylation reduces the  
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Figure 3.41 WAXRD pattern of acetylated fibres compared to alkali treated fibres. 
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intensity of amorphous materials comparatively more than crystalline cellulose 

and resulted in a slight increase in crystallinity index, Table 3.20. Zafeiropoulos et 

al. [4] reported that acetylation increased the crystallinity of fibres due to an 

increased removal of the fibre amorphous constituents during the treatment. Rong 

et al. [86] also found an increase in the crystallinity upon acetylation of fibres 

although addition of -COCH3 group in cellulose might reduce molecular 

regularity. They explained that a small amount of -COCH3 group usually softens 

the cellulose chains and thus facilitates the ordered rearrangement of the 

molecules through a chainfold conformation mechanism. 

Table 3.20 The crystallographic planes at various intensity (WAXRD counts) and 2θ-

angles, and the crystallinity indices of acetylated fibres compared to alkali treated fibres. 

Sample 2θ (o) WAXRD 
Counts 

h k l CrI (%) 

15 198 -- 
16.5 191 1 1 1 
18.5 143 Amorphous 
22.5 2024 002 
34.5 248 2  3 1 

Acetylated 
 

46.5 317 4  1 2 

92.93 

15 1146 -- 
16.5 1061 1 1 1 
18.5 390 Amorphous 
22.5 4842 002 
34.5 450 2  3 1 

Alkali Treated 
(P2E4) 

 

46.5 506 4  1 2 

91.94 

3.3.2.5 Fourier Transform Infrared (FTIR) Spectra 

It can be seen from Figure 3.42 that acetic anhydride treatment of hemp fibre led 

to the appearance or increment of transmittance in the regions 1735 – 1737 and 

1162-1229 cm-1 [214-216]. The peak at around 1735 – 1737 cm-1 is due to the 
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esterification of the -OH groups that results in an increased stretching vibration of  

  

Figure 3.42 FTIR spectra of acetylated fibres compared to alkali treated fibres. 

the C=O group present in the ester bonds. The band in the spectrum of untreated 

fibres, Figure 3.34, at 1735 cm-1 is assigned to the C=O stretching vibration of the 

-COOH and -COCH3 groups of hemicelluloses and are found to be reduced in 

intensity for alkali treated fibres. The appearance of the peak in acetic anhydride 

treated fibres with high intensity indicates that the -COCH3 groups are involved in 

an ester bond with the -OH groups of the fibres. If the -COCH3 groups were in the 

form of acetic acid, then the stretching of C=O should have appeared below 1720 

cm-1 in the case of diacids and at about 1760 cm-1 in the case of monoacids [216]. 

The esterification reaction is also confirmed by the appearance of new peaks at 

1162-1229 cm-1, attributed to C-O stretching of the ester -COOH group. The 

strong absorption between 3400 and 3600 cm-1 in all of the FTIR spectra is caused 

by the remaining OH groups of the alkali treated fibre constituents, Figure 3.42. 

As a result of esterification there is a reduction of this band shown in this Figure. 

3.3.3  Characterisation of Silane Treated Fibres 

3.3.3.1 Scanning Electron Microscopy (SEM) 

Figure 3.43 shows the SEM micrographs of silane treated hemp fibre. It can be 

seen that silane treatment removed more non-cellulosic components from the 

Silane Treated
Tr

an
sm

itt
an

ce
  (

a.
u.

)

Wavenumber (cm-1)

Acetylated

Alkali Treated

1735-1737 

3400-3600 

1162-1229 



Chapter Three: Fibre Treatment and Characterisation  

 107

alkali treated (treatment P2E4) fibres, Figure 3.26. For the purpose of comparison 

SEM micrograph for untreated fibre can also be found in Figure 3.24. 

 

Figure 3.43 SEM of silane treated hemp fibre surface. 

3.3.3.2 Zeta Potential  

Figure 3.44 shows the pH dependence of zeta potential values of silane treated 

fibres compared to alkali treated (treatment P2E4) fibres. It is evident from this  
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Figure 3.44 pH dependence of zeta potential of silane treated fibres compared to alkali 

treated fibres. 

figure that silane treatment of fibres generally increases the zeta potential. This 

might be caused by the decrease in the accessibility of the dissociable functional 

groups in the fibre surface due to the substitution of -OH and -COOH groups by 

silane group with aromatic ring which obscures the fibre surface [182]. Table 3.21 

shows the ζplateau value and IEP of the silane treated fibres compared to alkali 

treated (treatment P2E4) fibres. 
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Table 3.21 ζplateau and IEP of silane treated fibres compared to alkali treated fibres. 

Sample IEP (pH) (ζ=0) ζplateau (mV) 
Silane Treated 3.5 -9.7 

Alkali Treated (P2E4) 3.8 -11.5 

A considerably higher ζplateau value was observed for silane treated fibre compared 

to alkali treated fibre. The slight decrease in the IEP by silane treatment highlights 

the increase of the acidity of the fibre surface leading to an compaction of the 

double layer giving further evidence for decreased -OH group exposure [188]. 

The compaction of the double layer would also increase the zeta potential of the 

solution as seen.  

3.3.3.3 Thermal Analysis by Differential Thermal Analysis/ 

Thermogravimetric Analysis (DTA /TGA) 

The DTA and TGA curves of silane treated fibres compared to alkali treated 

(treatment P2E4) fibres are shown in Figures 3.45 and 3.46 respectively. The DTA 

curves, Figure 3.45 for silane and the alkali treated fibres show an endotherm  
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Figure 3.45 DTA curves for sialne treated fibres compared to alkali treated fibres. 
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Figure 3.46 TGA curves for silane treated fibres compared to alkali treated fibres. 

around 60oC due to the evolution of adsorbed moisture. At higher temperatures 

there are two exotherms. The first exotherm has a peak temperature of about 

352oC for silane treated and about 363oC for alkali treated fibres and is likely to 

be caused by the decomposition of cellulose leading to the formation of volatile 

products [208]. The second exotherm has a peak temperature of about 480oC for 

silane treated and about 450oC for alkali treated fibres and is expected to be due to 

the oxidation of volatile and charred products. The peak onset, peak, peak 

finishing temperatures and nature of peaks for the silane treated fibres compared 

to the alkali treated fibres obtained from the DTA thermograms are shown in 

Table 3.22. From the results it can be seen that upon silane treatment of alkali 

treated fibre the onset temperature for the first exothermic peak reduces from 
 

Table 3.22 The peak onset, peak, peak finishing temperatures and nature of peaks for the 

silane treated fibres compared to the alkali treated fibres obtained from the DTA 

thermograms. 

Sample Peak Onset 
Temperature (oC) 

Peak Temperature 
(oC) 

Peak Finishing 
Temperature (oC) 

Nature 
of Peak 

45.6 56.2 85.1 Endo 
250.4 352.7 412.9 Exo 

Silane Treated 

426.1 479.3 520.6 Exo 
37.8 63.9 98.6 Endo 
283.1 363.5 396.8 Exo 

 
Alkali Treated 

(P2E4) 418.8 450.7 462.2 Exo 

283 to 250oC and the onset temperature of second exothermic peak increases from 

418 to 426oC. The temperature at which percentage weight losses have occurred 

can be seen in Figure 3.46 and is shown to be lower for silane treated fibres at the 
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initial stages of thermal degradation (first exothermic peak or second stages of 

thermal degradation) and higher at the later stages of thermal degradation (second 

exothermic peak or third stages of thermal degradation) when compared to alkali 

treated fibres. Silane treatment appeared to shift the second exothermic peaks 

towards a higher temperature compared to alkali treated fibres, this may be due to 

the presence of high molecular weight polysiloxanes in the fibre structure which 

might be thermally more stable than cellulose. However, for the first exothermic 

peak the reduction in peak temperature for the silane treated fibres may be due to 

the degradation of cellulose chains caused by formation of polysiloxane. 

The Broido method [210] was used to evaluate the activation energy (Ea) and 

frequency factor of silane treated fibres compared to alkali treated fibres. Using 

the Broido equation, plots of ln[ln(1/y)] versus 1/T (Broido plots) for second (first 

exothermic peak) and third (second exothermic peak) stages of thermal 

degradation were plotted for which examples are shown in Figures 3.47 and 3.48. 

The activation energies and frequency factors were calculated from the slopes and 

intercepts of these plots, respectively, and are given in Table 3.23. From the 

values of activation energies (Ea) and frequency factors for the first and second 

exothermic peak of silane treated fibres compared to alkali treated fibres  
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Figure 3.47 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the second stage of thermal 

degradation (first exothermic peak) for silane treated fibres compared to alkali treated 

fibres. 
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Figure 3.48 Plots of ln[ln(1/y)] versus T-1×103 K-1 for the third stage of thermal degradation 

(second exothermic peak) for silane treated fibres compared to alkali treated fibres. 

Table 3.23 Activation energies and frequency factors obtained by Broido method for 

silane treated fibres compared to alkali treated fibres. 

2nd Peak 3rd Peak Sample 
Ea (kJmol-1) Z(s-1) Ea (kJmol-1) Z(s-1) 

Silane 
Treated 

88.1 1.14×107 42.1 2.63×103 

Alkali 
Treated 
(P2E4) 

122.36 6.66×107 79.31 4.96×103 

show that silane treated fibres appeared with lower values of activation energy 

and frequency factor for both first and second exothermic peaks. The decrease in 

activation energy and frequency factor for the silane treated fibre for the second 

stage of thermal degradation compared to the alkali treated fibre is in conformity 

of the decreased cellulose crystallinity of the silane treated fibres. However, 

decrease in activation energy and frequency factor for the third stages of thermal 

degradation may be caused by some catalytic action of some free radicals formed 

by peak broadening. Peak broadening for the third stages of thermal degradation 

was also reported by Sreekala et al. [217]. 

3.3.3.4 Wide Angle X-ray Diffraction (WAXRD) 

Figure 3.49 shows the wide angle x-ray diffraction pattern of silane treated fibres 

compared to alkali treated (P2E4) fibres. It can be seen that silane treatment of  
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Figure 3.49 WAXRD pattern of silane treated fibres compared to alkali treated (P2E4) 

fibres. 

Table 3.24 The crystallographic planes at various intensity (WAXRD counts) and 2θ-

angles, and the crystallinity indices of silane treated fibres compared to alkali treated 

fibres. 

Sample 2θ (o) WAXRD Counts h k l CrI (%) 
15 81 -- 

16.5 101 1 1 1 
18.5 45 Amorphous 
22.5 334 002 
34.5 104 2  3 1 

Silane Treated 
 

46.5 132 4  1 2 

86.53 

15 1146 -- 
16.5 1061 1  1 1 
18.5 390 Amorphous 
22.5 4842 002 
34.5 450 2  3 1 

Alkali Treated 
(P2E4) 

 

46.5 506 4  1 2 

91.94 

alkali treated fibre reduces the intensity of both amorphous materials and 

crystalline cellulose to a great extent. Silane treatment reduced the intensity of 

crystalline cellulose more than the amorphous materials and resulted in a decrease 

in crystallinity index, Table 3.24. Rong et al. [86] also reported a decrease in 

crystallinity of silane treated fibres. Generally, silane coupling agent reacts with    

-OH groups forming alkoxysilanes which undergo stages of hydrolysis, 

condensation, and bond formation. Therefore, in addition to the reaction of 

silanols with cellulose -OH groups of the fibre surface, formation of large 

polysiloxane molecules also took place that would destroy the cellulose chains to 

some extent and resulted in corresponding reduction in crystallinity. 
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3.3.3.5 Fourier Transform Infrared (FTIR) Spectra 

Absorption of the peaks in that region (3400 and 3600 cm-1)  for the silane treated 

fibre was found to reduce as can be seen a narrower peak in Figure 3.50 [218].  
 

 

Figure 3.50 FTIR spectra of silane treated fibres compared to alkali treated fibres. 

However, the strong and broad absorption between 3400 and 3600 cm-1 in the 

FTIR spectrum of alkali treated fibre is caused by the presence of -OH groups and 

hydrogen bonding between those groups, Figure 3.50. Moreover, an increase in 

absorbance can be observed at around 1000 cm-1 for the silane treated fibres. This 

could be attributed to the presence of –Si-O-Si- and –Si-O-C- bonds [219]. 

3.4  Chapter Conclusion 

Treatment of fibres with different NaOH concentrations, Na2SO3 concentration, 

digestion times and temperatures was found to remove fibre surface constituents 

and as a consequence decreased fibre diameter, fibre TS and YM. Alkali treatment 

was found to roughen fibre surfaces and increase exposure of –OH groups in the 

fibre surface to facilitate bonding with epoxy resin and PLA matrices. Alkali 

treatment of the fibres was also found to lead to higher crystallinity and thermal 

stability. A graphical method was used to develop an empirical model for the TS 

of alkali treated fibre by partial factorial design. The empirical prediction 

equations developed were found to predict TS value of treated fibres within the 

range of the experimental conditions with almost no error. 
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An alkali fibre treatment method with 5 wt% NaOH, 2 wt% Na2SO3, 120oC 

treatment temperature, and 60 minutes digestion time was considered optimum as 

it was found to give the best combination of fibre tensile strength retention, 

increased fibre surface roughness and increased exposure of cellulose –OH groups 

These were necessary to facilitate bonding with the matrices (epoxy resin and 

PLA). The fibres obtained from the optimised alkali treatment were further treated 

with acetic anhydride and silane. Acetylation of the alkali treated fibres was found 

to reduce fibre surface roughness and cellulose –OH groups (as –OH groups were 

replaced by –COCH3 ) exposure along with a slight increase in crystallinity. 

Silane treatment of the alkali treated fibres was found to reduce cellulose –OH 

groups (-OH groups are replaced with silane groups) exposure, thermal stability 

and crystallinity. 
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Chapter Four 

4 Hemp/Epoxy Composites 

(HECs) 

4.1  Summary 

This chapter describes the materials, methods and results for the: 

• assessment of the cure kinetics for untreated hemp fibre/epoxy (UTFE) 

composites 

• determination of IFSS of untreated and alkali treated hemp fibre in epoxy 

resin 

• production of long and short hemp fibre preform mats 

• production of optimised long aligned hemp fibre/epoxy composites in 

terms of different (a) fibre treatments (b) epoxy to curing agent ratios (c) 

resin soaking times, and (d) curing temperatures. 40 wt% hemp 

fibre/epoxy composites were produced for (a) to (d) with an extra set of 30 

wt% hemp fibre/epoxy composites produced for (b). Assessment of 

performance for the produced composites was carried out by tensile 

testing, SEM and optical microscopy 

• comparison of optimised untreated and alkali treated long and short 

aligned hemp fibre/epoxy composites at three different fibre contents (40, 

50, and 65 wt%) in terms of tensile testing and SEM analysis. 40 wt% 

untreated and alkali treated short random oriented fibre/epoxy composites 

were also produced using the optimised composite production method and 

assessed by tensile testing 
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• comparison of tensile properties obtained experimentally with theoretically 

calculated values for untreated and alkali treated long and short hemp 

fibre/epoxy composites 

• further characterisation of optimised 65 wt% untreated and alkali treated 

long and short aligned hemp fibre/epoxy composites in terms of flexural, 

impact, and fracture toughness as well as TGA and WAXRD analysis 

• hygrothermal ageing of optimised 65 wt% untreated and alkali treated long 

and short aligned hemp fibre/epoxy composites. The aged composites 

were assessed in terms of tensile, flexural, impact, and fracture toughness 

as well as SEM, TGA and WAXRD analysis 

• accelerated ageing of optimised 65 wt% untreated and alkali treated long 

aligned hemp fibre/epoxy composites. The aged composites were assessed 

in terms of tensile, flexural, impact, and fracture toughness well as SEM, 

FTIR, TGA and WAXRD analysis.  

4.2  Experimental Details 

4.2.1  Materials 

Retted hemp bast fibre (untreated) was supplied by Hemcore, UK. Commercially 

available DGEBA epoxy resin with an epoxide equivalent weight of 190 (R180) 

and an aliphatic diamine curing agent with an equivalent weight of 38 (H180) 

were obtained from Fibreglass International, Australia. The materials were used in 

the condition in which they were received without any further purification. 

Analytical grade Na2SO3, 98% NaOH pellets, 99% acetic anhydride, and 94% 

phenyltrimethoxy silane were used for the treatment of the fibres. 
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4.2.2  Methods 

4.2.2.1 Cure Kinetic Study of Neat Epoxy (NE) and Untreated 

Hemp Fibre/Epoxy (UTFE) Composites Using Differential 

Scanning Calorimetry (DSC) 

Thermal analysis (dynamic and isothermal) of the curing reaction of neat epoxy 

(NE) and 40 wt% UTFE composite samples was carried out using a DSC 2920 

differential scanning calorimeter. An epoxy resin to curing agent ratio of 1:1 was 

used for both NE and 40 wt% UTFE composite samples. The weight of each 

specimen was set at approximately 10 mg. For 40 wt% UTFE composite samples, 

untreated fibres of 1 mm in length were placed in an aluminum pan. The uncured 

epoxy resin pre-mixed with curing agent was then poured on the fibres, ensuring 

wetting of the fibres with the mixture. The samples were then enclosed within the 

aluminum pans and scanned immediately, maintaining a static air flow of 50 

mL/min. Dynamic scans of NE and 40 wt% UTFE composite samples were 

carried out at five different heating rates (2.5, 5, 10, 15, and 20oK/min) with a 

scanned temperature range from room temperature to 250oC. For isothermal 

analysis, initially a steady isothermal baseline was established for each of the four 

selected cure temperatures (25, 50, 70, and 120oC) using two empty aluminum 

sample pans. Isothermal scans of NE and 40 wt% UTFE composite samples were 

then carried out such that the curing reactions were considered complete when the 

isothermal DSC thermograms levelled off to the baseline. Similarly, isothermal 

scans of NE and 40 wt% UTFE composite samples at three further epoxy to 

curing agent ratios of 1:0.6, 1:0.8, and 1:1.2 were carried out at 25oC.   

4.2.2.2 Interfacial Shear Strength (IFSS) Measurement of Hemp 

Fibre/Epoxy Samples Using Single Fibre Pull-out Testing 

For the measurement of IFSS, single-fibre pull-out test specimens were prepared 

according to the literature [220] using a silicone rubber block 12 mm long, 10 mm 

wide, and 3 mm deep. A 6 mm diameter circular hole was punched from the 

centre of the top face of the block through the depth of the material. Along the 12 

mm length side of the block wall a slot was cut from the centre of the length to the 

edge of the circular hole to a depth of 2 mm according to Figure 4.1. Eight 
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different embedded lengths from 0.25 mm to 2 mm at 0.25 mm intervals 

 

 

Figure 4.1 Test specimen for single fibre pull-out tests. 

were produced by placing dried single fibres into the 2 mm slot with the required 

length extending into the block for four different ratios of epoxy resin to curing 

agent (1:0.6, 1:0.8, 1:1 and 1:1.2). The embedded lengths were measured by 

placing the silicone rubber block under an electron microscope with a calibrated 

eyepiece at 50× magnification, while a calibrated eyepiece at 200× magnification 

was used to determine the average diameter of each embedded fibre. The hole at 

the centre of the block was filled with epoxy resin and cured at room temperature 

(20±2oC) for 24 hours using a vacuum bag and post cured at 50oC in an oven for 4 

hours. Figure 4.2 shows a single fibre embedded in epoxy resin. The free end of 

the fibre that had been contained within the mould slot was glued to a cardboard 

using polyvinyl acetate (PVA) glue to give a gauge length of 10 mm. Five 

specimens were prepared at each embedded length for both untreated fibre/epoxy 

(UTFE) and alkali treated fibre/epoxy (ATFE) samples and the average debonding 

force of the five specimens was measured using an Instron tensile tester at a 

crosshead speed of 0.5 mm/min. 
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Fibre

Epoxy Resin

 

Figure 4.2 Single fibre embedded in epoxy resin. 

4.2.2.3 Production of Preform Fibre Mats 

Long Fibre Mats 

For the production of long fibre/epoxy composites, long fibres were dried at 80oC 

for 24 hours to produce fibre mats using the following two methods: 

(1) 60g of dried fibres were aligned by hackling (by hand) to maintain a thickness 

of 3.5 mm, and 

(2) 60g of dried fibres were aligned using a hand carding machine, Figure 4.3, 

from Ashford Handicrafts Limited, Ashburton, New Zealand to maintain a 

thickness of 3.5 mm.  

 

Figure 4.3 Hand carding machine used to produce aligned long fibre mats. 

For method 1, long untreated, alkali treated, acetylated and silane treated fibres 

were used and for method 2, long untreated and alkali treated fibres were used. 

Fibre treatment methods are described in section 3.2.2. 
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Short Fibre Mats 

For the production of short fibre/epoxy composites, untreated and alkali treated 

short fibres were dried at 80oC for 24 hours to produce fibre mats using the 

following two methods: 

Aligned Mats by Dynamic Sheet Forming (DSF) 
200g of dried fibres were pelletised to lengths of less than 8 mm and then 

separated with water at 72,000 rpm using a disintegrator. The disintegrated fibres 

were then used to produce aligned short fibre mats of 3 mm thickness using a 

Centre Technique De L’Industrie Des Papiers Cartons Et Cellulose Dynamic 

Vertical Former, Figure 4.4 from Ateliers De Construction Allimand, France 

which is commonly used for laboratory production of paper. The fibre mats 

obtained, Figure 4.5, were placed in a dryer at 100oC for 24 hours and then cut to 

a size (22 cm long and 15 cm wide) to fit in a compression mould.  

 

Figure 4.4 Dynamic sheet former used to produce aligned short fibre mats. 

 

Figure 4.5 Aligned alkali treated fibre mat produced by dynamic sheet forming (DSF). 
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Random Mats by Hand Lay-up 
Random orientation short fibre mats were also produced by placing 60g dried 

short fibres in a compression mould, pouring water over the fibres and then 

pressing at room temperature. Planar random orientation mats of uniform 

thickness of 3.5 mm were produced by this technique. 

4.2.2.4 Production of Composites 

(a) Untreated, Alkali Treated, Acetylated, and Silane Treated Fibre 

Composites Produced at Different Curing Temperatures 

Untreated, alkali treated, acetylated, and silane treated (treatment methods 

described in section 3.2.2) long fibre mats produced by hackling were dried in an 

oven at 80oC for 24 hours and placed in an epoxy resin (epoxy to curing agent 

ratio of 1:1) bath for about 10 minutes. The resin soaked mats were fabricated into 

composites with a fibre content of 40 wt% at two different curing temperatures as 

described below: 

Cured at 25oC: 

The soaked mat was placed in a mould and pressed for 24 hours at a pressure of 2 

MPa and then post cured in an oven at 50oC for four hours.  

Cured at 120oC  

The soaked mat was placed in a mould pre-heated to 120oC and then pressed at a 

pressure of 2 MPa and temperature of 120oC for about 5 minutes. 

Acetylation and silane treatment of the fibres were carried out after the fibres were 

alkali treated. Untreated and alkali treated long fibre mats produced using a hand 

carding machine were dried at 80oC for 24 hours and used for the production of 

composites using methods b, c, and d as described below.  

(b) Composites Produced at Different Epoxy to Curing Agent Ratios 

Fibre mats were placed in a mould and epoxy resin was then poured onto the mats 

and allowed to soak into the fibres for 10 minutes. Four different epoxy resin to 

curing agent ratios (1:0.6, 1:0.8, 1:1, and 1:1.2) were used. A hand roller was used 

to remove the excess resin from the fibre mats to maintain 30 and 40 wt% of 
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fibres in the composites. The epoxy resin soaked fibre mats were placed into a 

vacuum bag and cured under vacuum for 24 hours at room temperature (25oC) 

followed by post curing of the composite mats in an oven at 50oC for four hours.  

(c) Composites Produced Using Different Fibre Soaking Times in Resin 

Bath 

Fibre mats were placed in an epoxy resin (epoxy to curing agent ratio of 1:1) bath. 

The mats were soaked in resin for 10 or 60 minutes. The fibre content of the 

composites was maintained at 40 wt%. The resin soaked mats were then placed 

into a vacuum bag and cured under vacuum for 24 hours at room temperature 

(25oC) followed by post curing of the composite mats in an oven at 50oC for four 

hours.  

(d) Composites Produced Using Different Curing Temperatures 

Fibre mats were placed in an epoxy resin (epoxy to curing agent ratio of 1:1) bath 

for about 1 hour. The resin soaked mats were then fabricated into composites by 

placing in a pre-heated mould at three different curing temperatures and 

compressed at a constant pressure of 9.4 MPa. The duration of the pressure 

maintained at each curing temperature was based on completion of curing reaction 

as observed from thermal analysis results as per section 4.3.1, Table 4.1. 

Table 4.1 Duration of the pressure maintained at each curing temperature. 

Curing Temperature (oC) Duration of the Pressure Maintained  
25 12 hours 
70 20 minutes 
120 5 minutes 

40 wt% fibre epoxy composites were produced at each of the three curing 

temperatures. 

(e) Short Fibre Composites Produced with Random and Aligned 

Orientations 

Untreated and alkali treated random and aligned short fibre mats were dried in an 

oven at 80oC for 24 hours and placed in a resin bath for about 1 hour. The resin 

soaked mats were then placed in a mould pre-heated at 70oC and then pressed at a 

pressure of 9.4 MPa and temperature of 70oC for about 20 minutes to give a fibre 

content of 40 wt%.  
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(f) Composites Produced at Different Fibre Contents 

Untreated and alkali treated long and short fibre mats (long and short aligned fibre 

mats produced using hand carding machine and dynamic sheet former 

respectively) were dried in an oven at 80oC for 24 hours and placed in a resin bath 

for about 1 hour. The resin soaked mats were placed in a compression mould pre-

heated at 70oC and then pressed at 70oC for about 20 minutes. Three different 

pressures of 9.4, 10.2, and 12.6 MPa were used to give three different fibre 

loadings of 40, 50, and 65 wt% respectively.  

4.2.2.5 Tensile Testing 

Samples were cut into tensile test specimens using a computer numerical 

controlled (CNC) mill (for production methods (a) to (c) of section 4.2.2.4) which 

was later changed to a scroll saw which gave a better finish (for production 

methods (d) to (f) of section 4.2.2.4) in accordance with ASTM D 638-03 

Standard Test Method for Tensile Properties of Plastics and placed in a 

conditioning chamber at 23oC ± 3oC and 50% ± 5% relative humidity for 24 

hours. The specimens were then tested using an Instron-4204 tensile testing 

machine fitted with a 5 kN load cell at a rate of 1 mm/min. An Instron 2630-112 

extensometer was used to measure strain. Five to six replicates were used. 

4.2.2.6 Flexural Testing 

Samples were cut into flexural test specimens using a scroll saw. The flexural 

(three point bend) test was carried out in accordance with the ASTM D 790-03 

Standard Test Methods for Flexural Properties of Unreinforced and Reinforced 

Plastics and Electrical Insulating Materials by using a Lloyd LR 100 K tensile 

testing machine fitted with a 5 kN load cell.  

4.2.2.7 Impact Testing 

Samples were cut into impact test specimens using a scroll saw. Charpy impact 

testing was carried out in accordance with the International Standard Organization 

(ISO) 179 Standard Test Method. Dimensions of the samples were 80 mm × 8 

mm × 4 mm with a single notch of 0.25 mm (type A). An advanced universal 
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pendulum impact tester POLYTEST with an impact velocity of 2.9 m/s and a 

hammer weight of 0.475 kg at 21oC was used. 

4.2.2.8 Fracture Toughness (KIc) Testing 

Samples were cut into fracture toughness test specimens using a scroll saw. 

Single-edge-notch bending (SENB) specimens were obtained in accordance with 

ASTM D 5045-99 Standard Test Methods for Plane-Strain Fracture Toughness 

and Strain Energy Release Rate of Plastic Materials. 

Figure 4.6 shows the specimen configuration for SENB. The crack length, a, is 

nominally equal to the thickness, B, and is between 0.45 and 0.55 times the width, 

W. The ratio W/B is nominally equal to 2. The specimens were then tested using a 

Lloyd LR 100 K tensile testing machine fitted with a 5 kN load cell operating at a 

rate of 10 mm/min. 

 

Figure 4.6 Specimen configuration for SENB. 

4.2.2.9 Optical Microscopy 

To assess the fibre orientation in the mats, fibre distribution and porosity of 

composites, samples were sectioned through their thickness to examine their 

cross-section and placed under an optical microscope (Olympus BX 60). 

4.2.2.10 Scanning Electron Microscopy (SEM) 

The fracture surfaces of the composites were examined using SEM following the 

method described in section 3.2.2. 

4.2.2.11 Thermogravimetric Analysis (TGA) 

The TGA of the composites was carried out using the method described in section 

3.2.2. 
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4.2.2.12 Wide Angle X-ray Diffraction (WAXRD) 

The WAXRD analysis of the composites was carried out using the method 

described in section 3.2.2. 

4.2.2.13 Fourier Transform Infrared (FTIR) Spectra  

The FTIR spectra analysis of the composites was carried out using the method 

described in section 3.2.2. 

4.2.2.14 Hygrothermal Ageing of the Composites 

Hygrothermal ageing of the samples was carried out in accordance with ASTM D 

570-98: Standard Test Method for Water Absorption of Plastics. The samples 

were submerged in distilled water at 25, 50, and 70oC and removed from the water 

at certain periods of time, wiped with a clean dry cloth to remove the surface 

water, weighed in a high precision balance to assess the weight change and then 

resubmerged for continued ageing. Weighing of the samples was stopped when 

further weight gain was found to be insignificant. Tensile, flexural, impact, and 

fracture toughness testing of the aged samples were carried out in accordance with 

ASTM standards as described in section 4.2.2.5 to 4.2.2.8 respectively. Five 

specimens of each batch were tested.  

4.2.2.15 Accelerated Ageing of the Composites 

Accelerated ageing of the samples was carried out using an accelerated 

weathering tester (Model QUV/spray with solar eye irradiance control) in 

accordance with ASTM G 154-00a: Standard Practice for Operating Fluorescence 

Light Apparatus for UV Exposure of Non-metallic Materials. A fluorescent bulb 

(UVA) with 0.68 W/m2 irradiance (at 340 nm) was used with cycles of 1 hour UV 

irradiation, followed by 1 minute of spray with de-ionized water and a subsequent 

2 hours condensation while maintaining a temperature of 50oC. Five specimens 

from each batch of tensile, flexural, impact, and fracture toughness testing 

samples were subjected to the ageing process for durations of 250, 500, 750, and 

1000 hours. 
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4.3  Results and Discussion 

4.3.1  Cure Kinetics of NE and Untreated Hemp 
Fibre/Epoxy (UTFE) Composites  

To calculate activation energies of neat epoxy (NE) and 40 wt% UTFE 

composites, two dynamic kinetic models (the Kissinger and the Flynn-Wall-

Ozawa Models), and one isothermal kinetic model (the Autocatalytic Model) 

described in section 2.10 were used.  

4.3.1.1 Activation Energies Obtained Using the Kissinger and 

Flynn-Wall-Ozawa Models 

To calculate activation energies using the Kissinger and Flynn-Wall-Ozawa 

Models, the peak temperature (Tm) for each heating rate and the total heat of 

reaction (∆Htot) obtained from DSC for both NE and composites were used. 

Figures 4.7 and 4.8 show the DSC exotherms obtained at different heating rates 

for NE and composites respectively. From these figures it can be seen that the 

exotherm peak was found at increasingly higher temperatures as the heating rate 

increased. The total heat of reaction (∆Htot) values for the NE and composites 

were taken as the average of the heat of reaction (∆H0) values obtained at different 

heating rates as per other researchers [221, 222]. To calculate the heat of reaction 

(∆H0) at each heating rate, the total area under each exotherm was determined. 

These results along with the peak temperatures of the exotherms are summarised 

in Table 4.2. It was observed that the ∆H0 values did not vary greatly with the 

increase of heating rate for either NE or the composites. A similar lack of 

variation with NE was observed by Lopez et al. [223]. From the results, Table 4.2, 

it was also observed that the heat of reaction at the same heating rate and the total 

heat of reaction are lower for the composite samples than for NE which might be 

due to the enhanced nucleophilic activity of the amine groups of the curing agent 

in presence of the fibre [224]. 
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Figure 4.7 Heat flow measured by DSC during cure of NE at five different heating rates 

(*Heat flow normalised to show relative peak sizes). 
 

0 50 100 150 200 250

H
ea

t F
lo

w
 (a

.u
.8 ) 

(1 )

(2 )

(3 )

(4 )

(5 )

(1 ) 2 .5 oK /m in
(2 ) 5 oK /m in
(3 ) 1 0 oK /m in
(4 ) 1 5 oK /m in
(5 ) 2 0 oK /m in

Tem perature (oC )

 

Figure 4.8 Heat flow measured by DSC during cure of composites at five different heating 

rates (*Heat flow normalised to show relative peak sizes). 
 

Table 4.2 Heat of reaction for NE and composites at five different heating rates. 

∆H0 (J/g) Peak Temperature, Tm (K) Heating Rate, 
q (K min-1) NE Composites NE Composites 

2.5 292.5 120.8 352.6 341.2 
5 298.0 124.8 365.5 346.2 

10 301.8 126.8 373.4 354.7 
15 304.7 128.3 379.1 363.4 
20 305.0 133.6 387.6 374.3 

Average, 
totHΔ  

300.4 126.86   

The exotherms, Figures 4.7 and 4.8, were analysed to obtain activation energies. 

Based on the Kissinger Model, Equation (2.8), the activation energies Ea were 
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obtained from the plot of )/ln( 2
mTq  versus mT/1  for NE and composites, Figure 

4.9. 

A linear relationship was observed here, confirming the validity of the proposed 

model given in Equation (2.8). The activation energies Ea were calculated from 

the slopes, yielding values of 56.7 and 50.9 kJ/mol, Table 4.3, for NE and 

composites respectively. The lower activation energy of the composites compared 

to that of NE indicates that fibre addition enhances the reaction rate supporting the 

enhanced nucleophilic activity of amine groups in curing agent. The value for the 

activation energy of NE agreed reasonably well with the activation energies of 

similar epoxy/amine systems obtained by other researchers [225]. 
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Figure 4.9 Activation energies obtained by the Kissinger model for NE and composites. 
 

Table 4.3 Comparison of activation energies obtained by different models. 

Kissinger 
Model 

Flynn-Wall-
Ozawa Model 

Autocatalytic Model Sample 

Ea (kJ/mol) Ea (kJ/mol) Ea1 (kJ/mol) Ea2 (kJ/mol) 
NE 56.7 58.5 37.2 45.3 

Composites  50.9 54.6 36.8 38.3 

Based on the Flynn-Wall-Ozawa Model, Equation (2.9), activation energies were 

calculated from the slopes of the plots of qlog  versus 1/ mT  of NE and composites 

[226], Figure 4.10. A linear relationship was observed here, confirming the 

validity of the proposed model given in Equation (2.9). The activation energies 

thus obtained were 58.5 and 54.6 kJ/mol, Table 4.3, for NE and composites 

respectively. The lower activation energy for NE compared to that for composites 
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is in agreement with the trend found for the Kissinger Model although the values 

are slightly higher than the activation energies obtained by the Kissinger Model. 

Other researchers have also reported that the activation energies of NE obtained 

from the Flynn-Wall-Ozawa Model were higher than those for the Kissinger 

Model [223, 225]. However, the values here support that the activation energy is 

lower for composites than NE. 
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Figure 4.10 Activation energies obtained by Flynn-Wall-Ozawa method for NE and 

composites. 
 

4.3.1.2 Activation Energies Obtained Using the the Autocatalytic 

Model 

To calculate activation energies of NE and composites using the Autocatalytic 

Model, Equation (2.11), the kinetic parameters k1 and k2 of the model were used 

as per other researchers [120]. To calculate these kinetic parameters, the time 

required for cure to occur, the heat of reaction obtained from an isothermal scan at 

time t (∆Ht), and the final degree of cure (αf) collected from isothermal DSC scans 

which were carried out at four different curing temperatures, Table 4.4, were used.  

To calculate the kinetic parameter, k1 of the Autocatalytic Model for both NE and 

composite samples, at the start of the cure reaction 0( =t  and )0=α , Equation 

(2.11) can be simplified to:  
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(4.1) 

Table 4.4 Curing time, ∆Ht, and α of NE and composites at four different curing 

temperatures.  

Curing 
Temperature (oC) 

Samples Curing Time 
(min) 

∆Ht (J/g) αf 

NE 827 140.9 0.47 25 
 Composites 719 65.3 0.51 

NE 300 172.0 0.57 50 
 Composites 191 77.9 0.61 

NE 38 229.9 0.77 70 
 Composites 19.5 104.3 0.82 

NE 6.5 258.7 0.86 120 
Composites 4.5 114.4 0.90 

Thus, the kinetic parameter, k1 for both NE and composites was determined 

directly from isothermal reaction rate curves by extrapolating to zero time and is 

given in Table 4.5. For determination of the kinetic parameter, k2 and other kinetic 

parameters m and n of the model (m and n are calculated along with k1 and k2 to 

see if the experimental data obtained in this study are a good fit to the trend that 

would be expected from the Autocatalytic Model), there are different calculative 

approaches, which have been applied by other researchers [120, 227]. However, 

the graphical–analytical method applied by Kenny [228] was applied in the 

present study to calculate the kinetic parameters k2, m and n, Table 4.5, due to its 

ease of use. The detailed calculative approach can be found in the literature [228]. 

Table 4.5 Autocatalytic model parameters for NE and composites. 

Sample Temperature 
(oC) 

m n k1 × 103 (min-1) k2 × 103 (min-1) 

25 0.83 4.64 3.79 9.1 
50 0.68 3.72 17.91 100.2 
70 0.39 2.52 38.12 291.4 

NE 

120 0.35 1.75 126.97 715.7 
25 1.18 3.98 6.30 19.2 

50 0.81 3.27 24.93 159.6 

70 0.67 1.67 43.33 436.2 

Composite
s 

120 0.29 0.51 202.35 775.2 

For both NE and composites, the values of m and n appear to decrease and the 

values of k1 and k2 appear to increase to some extent with increasing isothermal 
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temperatures. Other researchers have also reported that the value of m and n 

decreased and value of k1 and k2 increased with increasing temperatures [120, 

229].  

A good fit to the experimental data of the studied reaction systems (NE and 

composite samples) was obtained by using the Autocatalytic Model, Equation 

(2.11), with four kinetic parameters (k1, k2, m, and n). Figure 4.11 shows plots 

(experimental values) of reaction rate, 
dt
dα  versus degree of cure (α ) for NE at 

four different isothermal temperatures. The solid lines are for the trends that 

would be expected from the model. The maximum rate for both NE and 

composites is observed at conversions around 10-35% for the four different 

isothermal temperatures, Figure 4.11, as expected for an autocatalytic reaction.  
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Figure 4.11 Conversion rate versus conversion graphs for NE at four different isothermal 

temperatures. The solid lines are a trend expected from the Autocatalytic Model 

(Equation (2.11)). 

In the Autocatalytic Model there are two kinetic rate constants as described in 

section 2.10.2 and therefore, two activation energies, Ea1 and Ea2, can be obtained 

by using the Arrhenious relation of kinetic parameters k1 and k2, Equation (2.5), 

described in section 2.10. By taking logarithm of Equation (2.5) it yields 

RT
E

Ak a−= lnln
 

(4.2) 
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Using Equation (4.2) the linear plots of lnk1 versus 1/T, Figure 4.12, and lnk2 

versus 1/T, Figure 4.13 were obtained to calculate activation energies Ea1 and Ea2 

from the slopes of the graphs. The activation energies obtained are given in Table 

4.3. 
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Figure 4.12 Arrhenius plot for the reaction constant k1. 
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Figure 4.13 Arrhenius plot for the reaction constant k2. 

It can be seen that for this model as for the Kissinger and Flynn-Wall-Ozawa 

models, the activation energies for the curing of composites exhibited lower 

values compared to curing of NE, Table 4.3, supporting that the addition of fibre 

in epoxy enhanced the curing reaction between epoxy resin and amine curing 

agent. The average activation energies obtained from Kissinger and Flynn-Wall-

Ozawa Models were higher than those obtained from the Autocatalytic Model. 

This might be due to a wide temperature range of 25-120oC used in the study of 

the Autocatalytic Model. The wide temperature range could lead to a large 
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variation in reaction constants which would result in a reduction in the slope of 

the Arrhenius plot and as a consequence a reduction in activation energy. 

Isothermal Cure Reactions at Different Epoxy Resin to Curing Agent 

Ratios 

In the previous section, activation energies of NE and composites at an epoxy to 

curing agent ratio of 1:1 at four different cure temperatures (25, 50, 70 and 120oC) 

were discussed. In the current study, isothermal scans of NE and composites at 

four different epoxy to curing agent ratios of 1:0.6, 1:0.8, 1:1, and 1:1.2 at 25oC 

cure temperature were carried out. Table 4.6 summarises the time required to cure 

NE and composites at four different epoxy to curing agent ratios cured at 25oC. 

Both NE and composites had incomplete cure reactions at epoxy to curing agent 

ratios of 1:0.6 and 1:0.8 which is likely to be due to the deficiency of the 

availability of the curing agent necessary for the completion of the curing 

reaction. The cure reactions were complete for both NE and composites at epoxy 

to curing agent ratios of 1:1 and 1:1.2 and the time required for the curing was 

found to decrease with the increase of the curing agent as expected. It can also be 

seen that at the same epoxy to curing agent ratio, the time required to cure NE is 

greater than that for the composites which might again be caused by the enhanced 

nucleophilic activity of amine groups in the presence of the cellulosic fibres [224]. 

In this study, calculation of activation energies at different epoxy to curing agent 

ratios was not possible due to incomplete curing reactions at epoxy to curing agent 

ratios of 1:0.6 and 1:0.8 (below their stoicheometric ratio). 

Table 4.6 Curing time of NE and composites at four different epoxy to curing agent ratios 

cured at 25oC. 

Epoxy to Curing 
Agent Ratios 

Samples Curing Time (min) 

NE Incomplete Curing After  1440 min 1:0.6 
 Composites  Incomplete Curing After  1440 min 

NE Incomplete Curing After  1440 min 1:0.8 
 Composites  Incomplete Curing After  1440 min 

NE 827 1:1 
 Composite  719 

NE 641 1:1.2 
Composite  528 
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4.3.2  Interfacial Shear Strength (IFSS) Measurement of 
Hemp Fibre/Epoxy Samples  

An example of the load versus displacement curves obtained in the pull-out tests 

of hemp fibre/epoxy samples is shown in Figure 4.14. From the figure, five stages 

can be seen [230]. During the first stage, (A to B) system slack is taken up, whilst 

elastic deformation of the fibre is seen to start at point B of the second stage and 

continues until point C where the stress field around the embedded fibre is 

sufficient to initiate crack propagation. Thus, debonding (the third stage) initiates 

at point C and continues until point D where a sudden drop of load is observed 

due to the complete debonding (the fourth stage). During the fifth stage, (E to F), 

pull-out of the fibre occurs. All the hemp fibre-epoxy resin samples showed 

similar graphs with a sudden drop in the load at point D [231].   
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Figure 4.14 Typical load versus displacement curve for pull-out tests of hemp/epoxy 

sample. 

Figures 4.15 and 4.16 show the debonding force for the UTFE and ATFE samples 

respectively at four different ratios of epoxy resin to curing agent cured at room 

temperature. Linear relationships between the debonding force and embedded 

length were obtained for all fibre-epoxy resin samples, though with different 

slopes. The higher slopes obtained for debonding force versus embedded length 

(at all ratios of epoxy resin to curing agent) for the ATFE samples compared to 

the UTFE samples suggested a stronger interface between alkali treated fibre and 
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epoxy resin. Figures 4.17 and 4.18 show the IFSS calculated by dividing the 

debonding force by the interfacial area of the UTFE and ATFE samples, Equation 

(2.2), respectively [232]. The highest IFSS value for ATFE samples was 5.2 MPa 

which was larger than the highest value of 2.7 MPa for UTFE samples supporting 

that there was a stronger interface between alkali treated fibre and epoxy resin. 

Higher interfacial bonding for ATFE samples can be explained by the  
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Figure 4.15 Debonding force versus embedded length plots for UTFE samples at various 

epoxy resin to curing agent ratios. 
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Figure 4.16 Debonding force versus embedded length plots for ATFE samples at various 

epoxy resin to curing agent ratios. 
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increase of available –OH groups as observed by FTIR analysis described in 

section 3.3.1.10 due to alkali treatment. These would be expected to occur due to 

removal of the non-cellulosic materials covering the cellulose –OH groups and 
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Figure 4.17 IFSS of UTFE samples found at eight different embedded length and four 

different epoxy resin to curing agent ratios. The solid lines indicate principal trends of data 

points and do not represent any data fitting. 
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Figure 4.18 IFSS of ATFE samples found at eight different embedded length and four 

different epoxy resin to curing agent ratios. The solid lines indicate principal trends of data 

points and do not represent any data fitting. 

also due to increased roughness, which would generally increase the surface area 

of the fibre. Increased exposure of cellulose –OH groups would provide increased 
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potential for hydrogen and covalent bonding with amine (NH2) group of the 

curing agent and epoxide or -OH group of epoxy resin. In addition to increasing   

–OH groups for bonding, increased surface roughness would also provide for 

better mechanical interlocking with epoxy resin [4, 8]. 

From the slopes of the graphs of debonding force versus embedded length, 

Figures 4.15 and 4.16, it can be determined that for both UTFE and ATFE 

samples, the best fibre/epoxy bonding is for E1C1 followed by E1C1.2 and E1C0.8, 

and finally for E1C0.6. It had been thought that increasing the curing agent to 

epoxy resin ratio above its stoicheometry may have allowed for extra active 

hydrogen groups to form hydrogen bonding with the –OH groups of fibre to 

provide increased interfacial bonding. However, the fact the E1C1 samples were 

found to have better IFSS than E1C1.2 samples suggests that either matrix integrity 

has been compromised or reduced wettability has been a factor. The best 

wettability would be expected to occur for resins with the lowest viscosity for 

which curing time (as discussed in section 4.3.1) could be used to indicate the 

relative order; resins with the longest curing time would be expected to have the 

lowest viscosity. Therefore, the best wettability would be expected to be for E1C0.6 

followed by E1C0.8 and E1C1, and finally for E1C1.2. Better wetting not increasing 

the fibre/epoxy bonding in E1C0.6 and E1C0.8 samples, may be due to reduced 

matrix integrity or reduced interfacial bonding. 

IFSS was found to reduce with embedded length for both UTFE and ATFE 

samples, such that ATFE samples were found to be more variable than UTFE 

samples, Figures 4.17 and 4.18. This variation of IFSS versus embedded length 

indicates a brittle interface fracture behaviour as reported by other researchers 

[97]. A non-constant function arises with pull-out by brittle fracture due to the 

requirement of a critical crack length, which, once achieved, requires no further 

increase of stress for a longer embedded fibre length. As previously discussed, the 

increased access of –OH groups is likely to be contributing to the increase in 

interfacial strength and therefore increased brittle behaviour of the ATFE samples. 

The degree of inconsistancy for both UTFE and ATFE samples increased with the 

increase in the epoxy to curing agent ratios which was expected due to the 

increase in the degree of cross linking with the increased amount of curing agent 

in the samples. 
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4.3.3  Effects of Acetylation, Silane Treatment, Alkali 
Fibre Treatment and Curing Temperature on 
Composite Tensile Properties 

Figure 4.19 shows the TS of 40 wt% UTFE, acetylated fibre/epoxy (AcFE), silane 

treated fibre/epoxy (STFE) and ATFE composites compared to neat epoxy (NE). 

It can be seen that ATFE composites were the only ones with a modest 

improvement in TS compared to NE. The limited benefit obtained by fibre  
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Figure 4.19 Tensile properties of UTFE, AcFE, STFE, and ATFE composites compared to 

NE cured at 25oC. Error bars each corresponds to one standard deviation. 

addition might be due to poor fibre wetting leading to a weak interface. Figures 

4.20 to 4.23 show the optical micrographs of UTFE, AcFE, STFE, and ATFE 

composites respectively. The poor fibre wetting of the UTFE composites is 

evident by dry fibre (whitish area in the fibres), fibre swelling, and porosity, 

Figure 4.20. In addition to poor processing conditions (subsequent optimisation 

was carried out for later experiments), poor fibre wetting of the untreated fibres by 

epoxy resin may also be caused by the presence of non-cellulosic surface 

components which cover the –OH groups of the cellulose responsible for the 

potential bonding with epoxy resin.   
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Figure 4.20 Optical micrograph of UTFE composites cured at 25oC. 

The poor fibre wetting of the AcFE composites is evident by dry fibre (whitish 

area in the fibres), fibre swelling, and porosity, Figure 4.21. However, a reduction 
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Figure 4.21 Optical micrograph of AcFE composites cured at 25oC. 

 

in fibre swelling can be seen when compared to UTFE composite. To obtain 

acetylated fibres, the untreated fibres were treated with alkali to remove non-

cellulose surface components and make the cellulose -OH groups available for 

bonding with epoxy. However, acetylation of the fibre would be expected to 

replace highly polar fibre -OH groups with less polar -COCH3 groups as 

supported by FTIR analysis in section 3.3.2.5, and reduce the compatibility of the 

fibre with the resin. This is because the less polar -COCH3 groups may not form 

covalent bonds with the epoxide or -OH groups of the epoxy resin, or the active 

hydrogen groups of the curing agent. Thus, acetylation of fibre would also be 



Chapter Four: Hemp/Epoxy Composites  

 140

expected to result in poor bonding of the fibres with epoxy resin although not as 

bad as for untreated fibre.  

The poor fibre wetting of the STFE composites is also evident by dry fibre 

(whitish area in the fibres), fibre swelling, and porosity, Figure 4.22. However, 

STFE composites were found to contain less dry fibre compared to UTFE and 

AcFE composites. The reduction in dry fibre might be due to the increased 

wettability of the silane treated fibre with epoxy resin.  
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Figure 4.22 Optical micrograph of STFE composites cured at 25oC. 

The poor fibre wetting of the ATFE composites is evident by dry fibre (whitish 

area in the fibres), fibre swelling, and porosity, Figure 4.23. However, ATFE 
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Figure 4.23 Optical micrograph of ATFE composites cured at 25oC. 
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composites were found to contain less dry fibre, less fibre swelling, and less 

porosity compared to UTFE, AcFE, and STFE composites. Alkali treatment 

resulted in an increase in -OH groups on the fibre surface and possibly an increase 

in exposed surface area due to the removal of non-cellulose fibre components like 

hemicelluloses, lignin, and pectin as supported by FTIR analysis described in 

section 3.3.1.10. Therefore, more -OH groups were revealed which would be 

more compatible with epoxy resin. It is well known that epoxy resin has active 

groups known as epoxide or -OH groups to produce a network structure with the 

active hydrogen atoms of an amine curing agent [4]. It is very likely that these 

epoxide groups and the active hydrogen groups of the hardener can react well with 

the free -OH groups of the cellulose present in hemp fibres to form very strong 

covalent bonds in addition to the hydrogen bonds. Alkali treatment of fibres also 

made the fibre surface rougher, which allows more mechanical interlocking with 

epoxy resin. Thus, the formation of more hydrogen and covalent bonding, and 

increased mechanical interlocking of the alkali treated fibres with the epoxy resin, 

compared to untreated fibres, resulted in an increase in composite tensile strength 

and stiffness. The reduction in FS of the ATFE composites, compared to UTFE 

composites, could be due to increased cross linking between fibre and epoxy by 

the increased exposure of –OH groups in the alkali treated fibres.  

From Figures 4.20 to 4.23, it can be seen that the presence of porosity, dry fibre, 

and swollen fibre in the composites are in the order: UTFE> AcFE > STFE > 

ATFE which was found to be consistent with increasing TS of the composites. 

High pressure during the curing process is needed because the low density of the 

hemp fibre like other natural fibres caused the fibre to float up in the resin and 

fibre mats to swell before curing [203]. The presence of pores in the composites 

which is likely to be due to low processing pressure corresponded to inefficient 

load transfer between the fibre and matrix which resulted in poor TS of the 

composites [84].  

Furthermore, STFE composites showed an increase in YM of about 143% over 

untreated fibre, 164% over acetylated fibre, and about 4% over ATFE composites. 

The higher YM and lower FS of the STFE composites compared to the other 

composites could be attributed to excessive cross-linking of the fibre -OH groups 

with the highly active silane groups and active hydrogen groups of the amine 
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curing agent. This theory is supported by the brittle fracture surface of a STFE 

composite given in Figure 4.24.  

Fibre Fracture

 

Figure 4.24 SEM micrograph of the fracture surface of STFE composites. 

Figure 4.25 shows the effect of curing temperature on the tensile properties of NE 

and composites. In each case, an increase in TS and YM was observed for NE and 
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Figure 4.25 Tensile properties of UTFE and ATFE composites compared to NE 

cured at 25oC and 120oC. Error bars each corresponds to one standard deviation. 

 

composites cured at 120oC compared to the NE and composites cured at 25oC. 

The increase in TS and YM for the NE could be due to the increased interaction of 

epoxy resin with the amine curing agent due to the reduction of viscosity of epoxy 

resin at 120oC compared to 25oC. The increase in TS and YM for the composites 

at 120oC compared to 25oC may be due to a reduction in viscosity of the epoxy 

resin that could lead to better wetting of the fibre with epoxy resin at 120oC as 
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well as better matrix integrity. Better wetting of the fibres with epoxy resin cured 

at 120oC was supported by the presence of less porosity, less fibre swelling, and 

absence of dry fibres in the composites cured at 120oC, Figure 4.26, than the 

composites cured at 25oC, Figure 4.23. A slight decrease in FS could be due to a 

stronger interface formed by better wetting of the fibres with epoxy resin at 

120oC. The ATFE composites showed the greatest improvement in TS and YM 

when the increased curing temperature was used compared to UTFE composites. 

The increased TS could be attributed to the reduced porosity due to the increased 

wetting and the increased YM could be attributed to the better potential for 

bonding of the alkali treated fibres compared to untreated fibres, Figures 4.23 and 

4.26.  
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Figure 4.26 Optical micrograph of ATFE composites cured at 120oC. 

4.3.4  Effects of Epoxy to Curing Agent Ratios on 
Composite Tensile Properties  

Figure 4.27 shows the tensile properties of 30 and 40 wt% UTFE and ATFE 

composites produced using four different epoxy to curing agent ratios. From the  
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Figure 4.27 Tensile properties of 30 and 40 wt% UTFE and ATFE composites produced 

at four different epoxy to curing agent ratios. Error bars each corresponds to one 

standard deviation. 

results, it can be seen that the TS and YM increased for both the UTFE and ATFE 

composites as the ratio of epoxy resin to curing agent was raised from 1:0.6 to 1:1. 

On the other hand, TS was found to decrease and YM was found to increase when 

composites were produced with an epoxy to curing agent ratio of 1:1.2. The 

results are consistent with the IFSS values described in section 4.3.2. The decrease 

in the FS of the composites with the increase of the epoxy resin to curing agent 

ratios could be explained by the reduced matrix integrity and its wettability with 

fibre as discussed in section 4.3.2. 

The increase in TS and YM of the composites with the increase in fibre loading 

appears simply to be due to an increase in reinforcement. The decrease in FS with 

increased fibre loading may be caused by the increased constraint at higher fibre 

loading of 40 wt% compared to the fibre loading of 30 wt%.  

Composites produced with alkali treated fibres were found to exhibit better tensile 

properties than those with untreated fibres at both fibre loadings (30 and 40 wt%) 

and with all tested epoxy to curing agent ratios. This could be due to the increased 
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bonding of epoxy resin with fibres due to the increased availability of fibre –OH 

groups and surface roughening upon alkali treatment as discussed in section 4.3.2. 

The increase in tensile properties for UTFE and ATFE composites seen when 

fibre was aligned by hand carding, Figure 4.27, compared to fibre aligned by 

hackling, Figure 4.19, (section 4.3.3), may be attributed to the better separation 

and fibre alignment obtained by the carding process [233]. The improved fibre 

separation led to better wetting of the fibres with resin and resulted in fewer pores 

in the composites, as can be supported by comparison of Figure 4.28 with Figure 

4.23 (section 4.3.3); Figure 4.23 shows much more pororsity due to dry and 

swelled fibres. However, to reduce the number of pores in the composites to an 

acceptable level, further improvements in composite processing were necessary. 

 

Dry Fibre Porosity
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Figure 4.28 Optical micrograph of ATFE composites produced by aligned mat obtained by 

hand carding machine. 
 

 

4.3.5 Effects of Fibre Soaking Time in Resin Bath on 
Composite Tensile Properties 

Figure 4.29 shows the tensile properties of UTFE and ATFE composites produced 

by soaking the fibre mats for 10 and 60 minutes. From the results it can be seen 

that the tensile properties of both the UTFE and ATFE composites increased with 

the increase in soaking time to some extent. The increased tensile properties with 

the soaking time of 60 minutes, compared to that of 10 minutes, are likely to be 

due to increased fibre wetting during soaking by the epoxy resin leading to better 

interfacial strength. The increased soaking time also appears to have decreased 
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porosity in the composites as supported by the optical micrographs of the 10 and 

60 minutes soaked composites given in Figures 4.30 and 4.31 respectively; 

composites produced with 10 minutes soaking time were found to appear with a 

lot of dry fibres while almost no dry fibres were visible for the composites 

produced with 60 minutes soaking time.  
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Figure 4.29 Tensile properties of untreated and alkali treated composites produced by 

soaking the fibre mats for 10 and 60 minutes. Error bars each corresponds to one 

standard deviation. 
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Figure 4.30 Poor wetting of fibre in ATFE composites produced by soaking for 10 minutes 

in the resin bath. 
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1000μm

Good Wetting

 

Figure 4.31 Good wetting of fibre in ATFE composites produced by soaking for 60 

minutes in the resin bath. 

4.3.6  Effects of Curing Temperatures on Composite 
Tensile Properties 

Figure 4.32 shows the tensile properties of UTFE and ATFE composites produced 

at three different curing temperatures of 25, 70 and 120oC. From the results it can 

be seen that TS and YM are higher at 70oC than at 25oC for both UTFE and ATFE 

composites, but decrease as the curing temperature was increased further to 

120oC, whereas the converse is true for FS. TS, YM and FS are consistently 

higher for ATFE than for UTFE composites.  

The increase in curing temperature would be expected to decrease the viscosity of 

the epoxy resin [234], which could lead to better penetration of the resin between 
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Figure 4.32 Tensile properties of UTFE and ATFE composites produced at three different 

curing temperatures. Error bars each corresponds to one standard deviation. 

the fibres and result in an increase in fibre/resin wetting. Increased fibre/resin 

wetting could result in a stronger interface which could lead to an increase in TS 

and YM and a decrease in FS of the composites. However, a decrease in tensile 

properties for composites produced at 120oC, compared to those composites 

produced at 70oC was observed. Figures 4.33(a) and 4.33(b) show SEM 
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Poor
Fibre
Wetting

Good Fibre
Wetting

 
(a)     (b) 

Figure 4.33 SEM micrographs of fracture surfaces of tensile tested specimens 

with 40 wt% alkali treated fibres produced at (a) 120oC and (b) 70oC curing 

temperatures. 

 

micrographs of fracture surfaces of tensile tested specimens with 40 wt% alkali 

treated fibres produced at 120oC and 70oC curing temperatures respectively. It can 

be seen from the figures that good wetting of fibre was obtained for the 

composites cured at 70oC and poor wetting of fibre was obtained for the 

composites cured at 120oC. It appears that composite production with rapid curing 

at 120oC might not have allowed epoxy resin to penetrate between the fibres as 

effectively as it did during composite production by curing at 70oC. In addition, 

curing at a higher temperature can also generate higher internal stresses which 

may have resulted in decreased tensile properties as observed by Hepworth et al. 

[203]. 

The increase in tensile properties for ATFE composites, compared to UTFE 

composites, is likely due to the increased bonding for ATFE composites as 

described in section 4.3.3. 

Production of UTFE and ATFE composites by compression moulding, Figure 

4.32, demonstrated much better reinforcement by the fibres compared to the 

composites produced by vacuum bagging, Figure 4.27, (section 4.3.4) using the 

same processing parameters (25oC curing temperature, 40 wt% fibre content, 

aligned by hand carding machine). Compression at high pressure appears to have 

resulted in good consolidation of the fibres in epoxy resin and reduced the level of 
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porosity in the composites significantly, leading to an increase in TS and YM 

[203]. 

4.3.7  Effects of Fibre Orientation (Short Fibres) on 
Composite Tensile Properties 

Figure 4.34 shows the tensile properties of planar random (produced by hand lay-

up, section 4.2.2.3) and aligned short fibre (produced by DSF, section 4.2.2.3) 

composites produced with untreated and alkali treated fibres. From the results it 

can be seen that fibre alignment along the tensile testing axis increased the tensile 

properties of both UTFE and ATFE composites compared to randomly oriented 

fibre composites. Generally, composite strength would be expected to increase 

with the degree of alignment along the tensile testing axis particularly with 

anisotropic fibres such as natural cellulosic fibres. However, perfect alignment is 

not possible to achieve experimentally, particularly in the case of short fibres due 

to processing difficulties. In this study, the increase in tensile properties of the 

aligned short fibre composites compared to the randomly oriented short fibre 

composites indicated that a reasonable extent of alignment of the short fibres were 

achieved by DSF. ATFE composites showed higher TS and YM compared to 

those for UTFE composites, which is likely to be due to better bonding of the 

alkali treated fibres with epoxy resin as discussed in section 4.3.3.  
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Figure 4.34 Tensile properties of random and aligned short fibre composites produced 

with untreated and alkali treated fibres. Error bars each corresponds to one standard 

deviation. 
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4.3.8  Effects of Fibre Loading on Composite Tensile 
Properties, Thermogravimetric Analysis (TGA) of 
the Composites, and Modelling of Tensile 
Strength (TS) of the Composites  

4.3.8.1 Effects of Fibre Loading on Composite Tensile Properties 

Long Fibre Composites 

Figure 4.35 shows the tensile properties of UTLFE and ATLFE composites cured 

at 70oC with three different fibre contents of 40, 50, and 65 wt%. An increase in 

TS and YM, and a decrease in FS for both UTLFE and ATLFE composites can be 

seen with the increased fibre content. Similar relationships for fibre reinforced 

composites have been observed by other researchers [84, 235]. Increased TS and 
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Figure 4.35 The variation in tensile properties with fibre loading for UTLFE and ATLFE 

composites. Error bars each corresponds to one standard deviation. 
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YM demonstrates effective reinforcement by the fibres of the composites which is 

commonly associated with a decrease in FS of the composites, probably due to 

increased constraint with the increased fibre content in the composites. 

At 40 wt% fibre, ATLFE composites showed the most effective reinforcement, 

with approximate increases of TS of 4% and YM of 11% compared to UTLFE 

composites. However, at fibre contents of 50 and 65 wt% TS was found to 

decrease for ATLFE composites compared to UTLFE composites although YM 

was still found to increase. Alkali treatment was found to reduce fibre diameter as 

is supported by the results described in section 3.3.1.4. This is likely to be due to 

the removal of non-cellulosic materials which would also reduce the weight of 

individual fibres [68]. Therefore, for the same fibre content (wt%) in composites, 

the number of fibres would be higher for the alkali treated fibres than for 

untreated fibres. The increase in number of fibres at higher fibre loadings would 

increase fibre-fibre contact in the ATLFE composites such that inefficient stress 

transfer between fibres could occur and reduction in TS [217, 236]. Figures 

4.36(a) and 4.36(b) show the SEM micrographs of fracture surfaces of 65 wt% 

UTLFE and ATLFE composites respectively. Composite fracture with longer 

separated fibres and holes indicative of more pull-out, Figure 4.36(b), for ATLFE 

composites compared to UTLFE composites, Figure 4.36(a), supports increased 

fibre contact occurring for ATLFE composites initiating fibre debonding. The 

reduction in TS of the alkali treated fibres as discussed in section 3.3.1.2 would 

also contribute to the reduction in TS of the composites. However, YM is  

Fibre Fracture Holes

Fractured 
     Fibre

Separated
Fibres

Holes

 (a)     (b) 

Figure 4.36 SEM pictures of fracture surfaces of 65 wt% (a) UTLFE and (b) ATLFE 

composites. 
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calculated from the slope of the stress strain graphs during the initial stage of load 

application before the effect of stress concentration due to fibre-fibre contact 

becomes effective. ATLFE composites maintain higher YM than the UTLFE 

composites at higher fibre loadings due to higher average interfacial bonding. The 

reduction in FS for the ATLFE composites compared to UTLFE composites is 

also likely to be due to failure initiated from stress concentration caused by fibre-

fibre contact in ATLFE composites.  

Short Fibre Composites 

Figure 4.37 shows the tensile properties of UTSFE and ATSFE composites cured 

at 70oC and three different fibre contents of 40, 50, and 65 wt%. Similar to long 

fibre composites, an increase in TS and YM and a decrease in FS for both UTSFE 

and ATSFE composites were observed with increased fibre content.  

ATSFE composites consistently had higher TS and YM with lower FS compared 

to UTSFE composites. The increase in TS and YM for ATSFE composites 

compared to UTSFE composites is likely to be due to better bonding of the alkali 

treated fibres with epoxy resin as described in section 4.3.3. Reduction in FS for 

the ATSFE composites compared to UTSFE composites is likely to be due to 

increased constraint of the alkali treated fibres compared to untreated fibres as 

previously discussed. 
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Figure 4.37 The variation in tensile properties with fibre loading for UTSFE and ATSFE 

composites. Error bars each corresponds to one standard deviation. 



Chapter Four: Hemp/Epoxy Composites  

 154

However, for 65 wt% the TSs were found to be almost similar for both UTSFE 

and ATSFE composites which could be due to increased fibre-fibre contact as 

discussed earlier for long fibre/epoxy composites. The reason for the increased FS 

(about 19%) for the ATSFE composites compared to UTSFE composites at 65 

wt% fibre content could be due to the higher average failure strain of the alkali 

treated fibres from the increased number of fibres in the ATSFE composites. 

Figures 4.38(a) and 4.38(b) show the SEM pictures of fracture surfaces of 65 wt% 

UTSFE and ATSFE composites respectively. It can be seen that fibre fracture is 

dominant for composites produced with 65 wt% fibre contents. Although some 

pull-out was seen in the form of holes for UTSFE, Figure 4.38(a), pull-out in the 

form of holes and long separated fibres for ATSFE composites, Figure 4.38(b), 

supports increased fibre-fibre contact occurring for ATSFE composites compared 

to UTSFE composites initiating fibre debonding as discussed earlier for long 

fibre/epoxy composites. 

Fibre 
Fracture 

Fibre Fracture 
with Fibre 
Separation

 

(a)      (b) 
 

Figure 4.38 SEM pictures of fracture surfaces of 65 wt% (a) UTSFE and (b) ATSFE 

composites. 

The TS and YM of short fibre/epoxy composites compared to those of long 

fibre/epoxy composites were not found to be surprisingly higher at all fibre 

contents which would be expected due to higher reinforcement efficiency for the 

long fibres. However, the increase in FS for the short fibre/epoxy composites 

compared to the long fibre/epoxy composites may be due to less constraint from 

the short fibres, so the matrix can undergo greater strain before breaking.  
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4.3.8.2 Thermogravimetric Analysis (TGA) of the Long Fibre 

Composites 

TGA traces for 65 wt% UTLFE and ATLFE composites are shown in Figure 4.39. 

It can be seen that there are three stages of weight loss of the composites. With 

increase of temperature, dehydration and decomposition of volatile products were 

observed up to about 280oC, followed by rapid weight loss due to the 

decomposition of cellulose up to about 365oC, and finally, oxidative 

decomposition of volatile and charred products [208, 237]. It can be seen that the 

weight loss was higher at the initial and final stages of thermal degradation for 

ATLFE composites, while it was higher at the second stage of thermal 

degradation for UTLFE composites. Exposure of -OH groups increase the 

hydrophilicity of alkali treated fibres (section 3.3.1.6) resulting in an increase in 

adsorbed moisture content compared to untreated fibres and therefore higher 

weight loss due to dehydration and decomposition of volatile products was 

observed for ATLFE composites. Removal of non-cellulosic components from the 

fibre by alkali treatment resulted in an increased cellulose content that led to lower 

weight loss at the second stages of thermal degradation for ATLFE composites 
 

0 1 2 0 2 4 0 3 6 0 4 8 0 6 0 0
0

2 0

4 0

6 0

8 0

1 0 0   A lk a li T re a te d  L o n g  F ib re /E p o x y

R
es

id
ua

l W
ei

gh
t (

%
)

 U n tre a te d  L o n g  F ib re /E p o x y

T e m p e ra tu re  (o C )

 

Figure 4.39 TGA traces for UTLFE and ATLFE composites. 

 

(supported by increased cellulose crystallinity of alkali treated fibre (section 

3.3.1.7)). At the third stage of thermal degradation, the presence of lignin 
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contribute to the formation of charred products (the weight residue was about 16% 

and 12% for UTLFE and ATLFE composites, respectively) that might result in a 

greater reduction in weight loss for UTLFE composites compared to the ATLFE 

composites [238]. 

4.3.8.3 Modelling of Tensile Strength (TS) of Composites 

Figures 4.40 and 4.41 show the experimentally obtained values of TS of the 

untreated and alkali treated fibre/epoxy composites (long and short fibres) as a 

function of fibre volume fraction along with the theoretically expected TS values 

(the density of the hemp fibre was considered as 1.48 g/cm3 [32]) using different 

models, namely: the Series, Parallel, and MROM Models, Equations (2.12) to 

(2.14). It can be seen that, for all the cases TS increases gradually with increasing 

fibre volume fraction. As discussed earlier in section 2.12, the Parallel Model (for 

axial TS of composite materials) can be considered to represent the upper bound 

and the Series Model (for transverse TS of composite materials) the lower bound 

of TS for continuous unidirectional composites; the experimental TS values of the 

composites were found to lie between the values calculated using those two 

models with the exception of UTSFE composites. The low TS values for UTSFE 

composites indicate poor reinforcement by untreated short fibres in the 

composites.  
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Figure 4.40 Tensile strength versus fibre volume fraction of composites (solid lines for 

theoretical model values and symbols for experimentally obtained values for UTLFE and 

UTSFE composites). 
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Figure 4.41 Tensile strength versus fibre volume fraction of composites (solid lines for 

theoretical model values and symbols for experimentally obtained values for ATLFE and 

ATSFE composites). 

For long fibre, the factor K2 = 0.68 and 0.78 for UTLFE and ATLFE composites 

respectively, in Equation (2.14) of MROM (assuming orientation factor K1 = 1) 

gave the best correlation between experimental TS and the TS expected from the 

model at a fibre volume fraction (Vf) of 0.30. However, negative deviation from 

this correlation increased with the increase of the fibre content in the composites, 

which could be due to fibre agglomeration. According to other researchers [239] 

when the fibre content in the composite is low, stress is distributed more 

uniformly in the composite, however, at higher fibre contents fibre agglomeration 

predominates, causing an uneven distribution of the applied load in the 

composites which reduces reinforcement efficiency. Departure of experimental TS 

from the linearity that would be expected from the MROM model was greater at 

higher Vf for ATLFE than UTLFE composites, suggesting greater fibre 

agglomeration. As discussed in section 2.12, a three dimensional random fibre 

alignment yields a value of K1 = 0.2, planar random configuration yields a value 

of 0.375 and an axially aligned fibre yields a value of K1 = 1. However, as the 

same fibre alignment method (hand carding) was used for both UTLFE and 

ATLFE composites and the reinforcing efficiency of the composites can be 

defined as a product of K1 and K2, therefore, a higher value of the factor K2 for 

ATLFE composites, when assuming K1 = 1 could really indicate better 

fibre/matrix adhesion for ATLFE composites. Better fibre matrix adhesion of 
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ATLFE composites when compared to UTLFE composites can be evident from 

Figure 4.36(a) and (b) as shown earlier in section 4.3.8.1. 

For short fibre/epoxy composites, the factor K2 = 0.22 for UTSFE composites in 

Equation (2.14) of MROM (assuming orientation factor K1 = 1) gave the best 

correlation between experimental TS and the TS expected from the model at Vf of 

0.30 and 0.40; and positive deviation from this correlation was observed at a Vf of 

0.55. However, the factor K2 = 0.37 for ATSFE composites in Equation (2.14) of 

MROM (assuming orientation factor K1 = 1) gave consistent correlation between 

experimental TS and the TS trend that would be expected from the model. 

However, as the same fibre alignment method (dynamic sheet forming) was used 

for both UTSFE and ATSFE composites and the reinforcing efficiency of the 

composites can be defined as a product of K1 and K2, therefore, a higher value of 

the factor K2 for ATSFE composites, when assuming K1 = 1 could again indicate 

better fibre/matrix adhesion for ATSFE composites. Better fibre matrix adhesion 

of ATSFE composites when compared to UTSFE composites can be evident from 

Figure 4.38(a) and (b) as shown earlier in section 4.3.8.1. 

It must be remembered that the Parallel, Series, and MROM models are simplistic 

and do not take account of many features including agglomeration, nonuniformity, 

and unpredictability of fracture mechanics of the composites.  

4.3.9  Flexural, Impact, and Fracture Toughness of the 
Composites 

 Long Fibre Composites 

Composite Flexural Properties 

Figures 4.42 and 4.43 show the flexural strength and flexural modulus 

respectively, of UTLFE and ATLFE composites produced with 65 wt% fibre 

compared to those of NE. It can be seen here that UTLFE and ATLFE composites 

have about 85% and 76% higher flexural strength, and about 229% and 235% 

higher flexural modulus respectively, compared to NE. Similar to TS, flexural 

strength was higher for UTLFE composites and similar to YM, flexural modulus 



Chapter Four: Hemp/Epoxy Composites  

 159

was higher for ATLFE composites which is likely to be due to the same reasons as 

described in section 4.3.8.1. 
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Figure 4.42 Flexural strength of UTLFE and ATLFE composites compared to NE. Error 

bars each corresponds to one standard deviation. 
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Figure 4.43 Flexural modulus of UTLFE and ATLFE composites compared to NE. Error 

bars each corresponds to one standard deviation. 

Composite Impact Energy (IE) 

Figure 4.44 shows the IE of UTLFE and ATLFE composites produced with 65 

wt% fibre compared to that for NE. From the results it can be seen that the IE for 

composites was over six times higher than that of NE. Improvement in IE has also 

been observed by Acha et al. [240] who obtained an increase of more than three 

times of the IE of untreated jute fibre composites compared to the brittle 

unsaturated polyester matrix. Slightly higher IE was seen in the current work for 

ATLFE composites compared to UTLFE composites, Figure 4.44, which might be 

due to slightly more fibre pull-out and delamination for ATLFE composites which 

could bring about a difference in the fracture mode. As discussed in section 
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4.3.8.1, a reduction in fibre diameter due to treatment of the fibres with alkali 

increased the number of fibres for the same fibre content (in this case 65 wt%) for 

the ATLFE composites and would result in an increased fibre-fibre contact due to 

increased resin starved areas. An increased fibre-fibre contact in the composites 

would be expected to increase fibre pull-out in these composites and hence lead to 

the slight increase in IE.  
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Figure 4.44 IE of UTLFE and ATLFE composites compared to NE. Error bars each 

corresponds to one standard deviation. 

Composite Fracture Toughness (KIc) 

Figure 4.45 shows the KIc of UTLFE and ATLFE composites produced with 65 

wt% fibre compared to that of NE. KIc was higher here for the composites than for 
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Figure 4.45 KIc of 65 wt% UTLFE and ATLFE composites compared to NE. Error bars 

each corresponds to one standard deviation. 
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NE. Other researchers have also reported higher KIc for the composites than for 

NE [241]. A slight decrease in KIc was seen here for ATLFE composites 

compared to that of UTLFE composites 

This may be due to increased fibre-fibre contacts in ATLFE composites as 

discussed in section 4.3.8.1, which would make it comparatively easier for the 

alkali treated fibre to debond from the epoxy resin than for untreated fibre, Figure 

4.46(a). On the other hand, less fibre-fibre contact in the UTLFE composites 

could lead to a stronger fibre/matrix interface, Figure 4.46(b), which would be 

expected to make the fibre pull-out comparatively difficult. Therefore, larger force 

could be required for the fibre to be debonded from the epoxy resin matrix and 

hence UTLFE composites have slightly higher KIc. 

Matrix Pulling Out of Fibre Matrix Pulling Out of Fibre Fibre Fracture

 

(a)     (b) 

 

Figure 4.46 Optical micrographs showing major crack of fracture toughness specimens of 

(a) ATLFE and (b) UTLFE composites. 

 Short Fibre Composites 

Composite Flexural Properties 

Figure 4.47 shows the flexural strength and flexural modulus of UTSFE and 

ATSFE composites produced with 65 wt% fibre compared to those of NE. It can 

be seen here that UTSFE and ATSFE composites have about 60% and 50% higher 

flexural strength, and about 161% and 225% higher flexural modulus respectively, 

compared to NE. The flexural strength and flexural modulus of short fibre/epoxy 
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composites were found to decrease when compared to those of long fibre/epoxy 

composites (section 4.3.9.1) which may be due to the lower reinforcement 

efficiency of the short fibre compared to that for long fibre as discussed earlier in 

section 4.3.8.1. As for long fibre/epoxy composites, the flexural strength was 

found to be higher for UTSFE composites and flexural modulus was found to be 

higher for ATSFE composites, which is likely to be due to similar reasons as 

described previously (section 4.3.9.1).  
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Figure 4.47 Flexural strength and flexural modulus of 65 wt% UTSFE and ATSFE 

composites compared to NE. Error bars each corresponds to one standard deviation. 
 

Composite Impact energy (IE) 

Figure 4.48 shows the IE of UTSFE and ATSFE composites produced with 65 

wt% fibre compared to that of NE. From the results it can be seen that the IE for 

UTSFE and ATSFE composites was higher (about 3 and 5 times higher 

respectively) than the energy absorbed by NE. The IE of the short fibre/epoxy 

composites was found to be lower than that of long fibre/epoxy composites which 

may be due to less fibre pull-out in the short fibre/epoxy composites. Similar to 

long fibre/epoxy composites, the IE of ATSFE composites was found to be higher 

than that of UTSFE composites which is likely to be due to the same reasons as 

discussed earlier in section 4.3.9.1. 
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Figure 4.48 IE of UTSFE and ATSFE composites compared to NE. Error bars each 

corresponds to one standard deviation. 

 

Composite Fracture Toughness (KIc) 

Figure 4.49 shows the KIc of UTSFE and ATSFE composites produced with 65 

wt% fibre compared to that for NE. KIc was higher for the composites than for NE 

[241]. KIc of short fibre/epoxy composites was found to be lower than that for 

long fibre/epoxy composites (section 4.3.9.1) which may be due to lower fibre 

pull-out in short fibre/epoxy composites. Similar to long fibre/epoxy composites, 

a slight decrease in KIc for ATSFE composites compared to UTSFE composites 

(section 4.3.9.1) suggesting easier debonding of fibre from the epoxy resin matrix 

in ATSFE composites due to increased fibre/fibre contact. 
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Figure 4.49 KIc of 65 wt% UTSFE and ATSFE composites compared to NE. Error bars 

each corresponds to one standard deviation. 
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4.3.10  Hygrothermal Ageing of the Composites 

The immersion of samples in water for hygrothermal ageing resulted in 

deterioration of surface texture, in the form of matrix cracking with an associated 

ease of fibre visualization, which was more pronounced for UTFE composites 

than ATFE composites for both long and short fibre/epoxy composites. Figures 

4.50(a) and 4.50(b) show the optical micrographs of the surfaces of UTLFE and 

ATLFE composites after hygrothermal ageing at 70oC. Hygrothermal ageing 

resulted in an increased sample thickness which increased with temperature, 

Figure 4.51. ATFE composites showed less thickness swelling than that for UTFE 

composites supporting that they are more hygrothermally resistant. About 7% less 

thickness swelling was observed for the short fibre/epoxy composites compared to 

the long fibre/epoxy composites.  

 

1000μ m

 

1000μm

 

(a) (b) 

Figure 4.50 Optical micrographs of (a) UTLFE and (b) ATLFE composite surfaces after 

hygrothermal ageing at 70oC. 
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Figure 4.51 Thickness swelling of the NE and long and short fibre/epoxy composites after 

hygrothermal ageing. 
 

Figures 4.52 to 4.56 show the percentage moisture content as a function of 

soaking time for NE, and untreated and alkali treated long and short fibre/epoxy 

composites. Moisture content increased with increasing time for all the samples 

until saturation. As it can be seen here, NE absorbed only a very small amount of 

moisture, Figure 4.52, compared to the composites during the immersion period, 

Figures 4.53 to 4.56; it seems likely that moisture penetrated composites mainly 

through the fibre and fibre/epoxy resin interface. It has been reported elsewhere 

that when exposed to moisture, the fibre/matrix interface absorbs moisture which 

may result in the development of shear stress at the interface leading to debonding 

of the fibres [7]. It has also been reported in the literature that hygrothermal 

ageing accelerates the debonding process that results in delamination and loss of 

structural integrity [242] 
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Figure 4.52 Moisture absorption behaviour of NE at 25, 50, and 70oC. 
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Figure 4.53 Moisture absorption behaviour of 65 wt% UTLFE composites at 25, 50, and 

70oC. 
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Figure 4.54 Moisture absorption behaviour of 65 wt% ATLFE composites at 25, 50, and 

70oC. 
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Figure 4.55 Moisture absorption behaviour of 65 wt% UTSFE composites at 25, 50, and 

70oC. 
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Figure 4.56 Moisture absorption behaviour of 65 wt% ATSFE composites at 25, 50, and 

70oC. 

The lower amount of moisture absorbed by NE is likely to be due to the 

hydrophobic nature of the epoxy resin and higher amount of moisture absorbed by 

the composites is likely to be due to the hydrophilic nature of the fibres due to the 

presence of polar groups such as –OH and –COOH in the fibres. Moisture 

absorption not being as great for ATFE composites as the UTFE composites may 

be due to less influence of increased fibre-fibre contacts than increased interfacial 

bonding in the ATFE composites, which could reduce wicking of the water 

molecules at the interface and increase resistance to hygrothermal ageing. 

Increased resistance of the ATFE composites towards hygrothermal ageing is 

further evident (lower loss of interfacial adhesion and matrix cracking of the 

ATFE composites when compared to the UTFE composites) from the SEM 

micrographs of Figures 4.57(a) and 4.57(b) as the optical micrographs of Figures 
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4.50(a) and 4.50(b) of the composite surfaces of UTFE and ATFE composites 

respectively, after hygrothermal ageing at 70oC. It has been seen elsewhere that 

the lack of interfacial interactions leads to internal strains, and porosity and 

increases the amount of moisture absorption [243, 244].  

   

  (a)     (b) 

Figure 4.57 SEM micrographs of (a) UTLFE and (b) ATLFE composites surfaces after 

hygrothermal ageing at 70oC. 

The lower absorption of water seen for the short fibre/epoxy composites compared 

to long fibre/epoxy composites might be due to the interrupted water channels 

resulting in a reduction in wicking of the water molecules at the interfaces.  

Figures 4.58 and 4.59 show examples of the fitting of experimental data to 

Equation (2.16) for ATLFE and UTSFE composites respectively. The values of 

the kinetic parameter n resulting from the fitting for all samples are summarised in 

Table 4.7. Here, the data supports the absorption of water in HECs approaching 

Fickian diffusion (case I) as the values of n are less than 0.5 [7].  
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Figure 4.58 Diffusion case fitting plots for ATLFE composites at 25 and 50 and 70oC. 
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Figure 4.59 Diffusion case fitting plots for UTSFE composites at 25 and 50 and 70oC. 

Table 4.7 Diffusion case selection parameter n at three different temperatures. 

Temperature (oC) Sample 
25 50 70 

NE 0.3807 0.3598 0.3583 
UTLFE Composite 0.4064 0.3553 0.2996 
ATLFE Composite 0.4997 0.4952 0.4024 
UTSFE Composite 0.4048 0.3911 0.3594 
ATSFE Composite 0.3949 0.3677 0.2771 

The diffusion coefficient (D) can be obtained from Equation (2.17) using the slope 

of the linear part of the plot of (Mt/M∞)2 versus tL-2, Table 4.8. The diffusion 

coefficient (D) obtained in the current work for NE is in agreement with the 

results reported by other researchers [245]. The D values obtained here for 

composites are also in agreement with the values for sisal/PP composites obtained 

by other researchers [7]. The diffusion coefficient (D) increased with increasing 

temperature and it was found to increase for the composites. As reported  
  

Table 4.8 Diffusion coefficients (D) for NE, UTFE and ATFE composites at three different 

temperatures. 

D (m2/s)×1013 Sample 

25oC 50oC 70oC 
NE 1.37 4.91 5.11 

UTLFE Composite 13.35 14.53 22.78 
ATLFE Composite 6.53 9.09 12.03 
UTSFE Composite 5.07 7.42 8.60 
ATSFE Composite 3.14 5.30 8.44 

elsewhere, the increase in D with the increase in temperature might be due to the 

increased ability of the water molecules to move among the polymer segments at 

higher temperatures [7]. This may be caused by the development of micro-cracks 

on the surface and in the bulk of the material, due to high temperature and moist 
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environment. The development of micro-cracks makes peeling and surface 

dissolution of composites possible [242]. Higher D values for composites are 

likely to be due to the hydrophilic fibres as discussed earlier as well as wicking of 

water molecules at the interfaces. The lower D values for ATFE composites 

compared to that for UTFE composites could be due to the reduction in wicking 

of water molecules at the interfaces which would be expected to be due to the 

influence of increased interfacial bonding in ATFE composites as discussed 

previously. Also, the lower D values for short fibre/epoxy composites compared 

to the long fibre/epoxy composites could be due to less of a continuous path for 

wicking of water molecules at the interfaces of short fibre/epoxy composites as 

discussed previously. 

4.3.10.1 Effects of Hygrothermal Ageing on Mechanical Properties 

Long Fibre Composites 

Tensile Properties 

From Figures 4.60 and 4.61, it can be seen that the TS and YM decreased with 

hygrothermal ageing. The reduction in YM was higher for higher immersion 

temperatures but remained constant for TS. Generally, there was a greater 

reduction in YM as the immersion temperature increased, however, reduction in 
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Figure 4.60 Effect of hygrothermal ageing on the TS of NE, UTLFE and ATLFE 

composites at three different temperatures. Error bars each corresponds to one standard 

deviation. 
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Figure 4.61 Effect of hygrothermal ageing on the YM of NE, UTLFE and ATLFE 

composites at three different temperatures. Error bars each corresponds to one standard 

deviation. 

TS was similar for all immersion temperatures. The reduction in YM with 

hygrothermal ageing supports the fact that hygrothermal ageing accelerates the 

debonding process due to wicking of water molecules into the composites that 

resulted in delamination and loss of structural integrity as discussed previously. 

Loss of fibre/matrix adhesion in hygrothermally aged samples can be visualised 

by the apparition of voids and loss of structural integrity as seen in Figures 4.62(a) 

and 4.62(b), which are not very noticeable in unaged samples (Figure 4.36(a) and 

4.36(b)). With increasing temperature, more water may penetrate into the 

composites which would be expected to swell up the fibres causing cracks in the 

matrix. More water penetration into the matrix, could also lead to a reduction in 

fibre matrix adhesion and a reduction in TS and YM [7]. 

It can also be seen from the result that the reduction in TS and YM is higher for 

UTLFE composites than ATLFE composites. In the case of ATLFE composites, 

stronger interfacial bonding due to increased hydrogen and covalent bonding, and 
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 Voids      Fibre bundles      Void 

(a)     (b) 

 

Figure 4.62 (a) UTLFE and (b) ATLFE composite fracture surfaces after hygrothermal 

ageing at 70oC. 

mechanical interlocking causing lower water absorption. As discussed above, 

stronger interfacial bonding formed by alkali treated fibre might outweigh the 

effect of point contact of the fibres in the ATLFE composites and thus give 

increased resistance to hygrothermal ageing compared to UTLFE composites. 

Lower loss in fibre/matrix adhesion is evident for ATLFE composites as higher 

number of fibre bundles with higher amount of fibre fracture are visisble in the 

ATLFE composites compared to UTLFE composites, Figures 4.62(a) and 4.62(b). 

Considering the reduction in FS for NE, an increase in FS, Figure 4.63, for the 

composites after hygrothermal ageing might be due to increased fibre debonding 

from the epoxy resin due to weakening of the interface. Weakening of the 

interface could be caused by fibre swelling and resulting matrix cracking due to 

wicking of the water molecules at the interface. 
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Figure 4.63 Effect of hygrothermal ageing on the FS of UTLFE and ATLFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 

Flexural Properties 

Flexural strength and flexural modulus were found to decrease with hygrothermal 

ageing for NE and composites; the extent of reduction increased with increased 

temperature, Figures 4.64 and 4.65. Although the flexural strain of NE was found 

to decrease, it was found to increase for the composites after hygrothermal ageing, 

Figure 4.66. It is considered that these trends are for similar reasons as for 

reduction in tensile properties as discussed previously.  
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Figure 4.64 Effect of hygrothermal ageing on the flexural strength of UTLFE and ATLFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 
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Figure 4.65 Effect of hygrothermal ageing on the flexural modulus of UTLFE and ATLFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 
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Figure 4.66 Effect of hygrothermal ageing on the flexural strain of UTLFE and ATLFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 

Impact Energy (IE) 

Figure 4.67 shows the effect of hygrothermal ageing on the IE of UTLFE and 

ATLFE composites compared to that for NE at three different temperatures. 

Although the IE of NE was found to be almost constant for the hygrothermally 

aged samples, it was found to increase for the composites; the extent of increase 

was found to be higher at higher temperatures. Swelling of fibre due to moisture 

absorption would be expected to increase with the increase of temperature, which 

could result in the formation of cracks in the matrix. This could weaken the 

fibre/matrix interface [134] which would be expected to enhance debonding of 

fibre from epoxy resin, leading to an increase IE. Rong et al. [246] reported that 
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IE improved with water absorption for sisal/epoxy composites as a result of 

interfacial debonding.  
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Figure 4.67 Effect of hygrothermal ageing on the IE of UTLFE and ATLFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 

Fracture Toughness (KIc) 

Although KIc for NE increased during hygrothermal ageing at 25oC and then 

decreased with increasing temperature; it was found to decrease with increased 

hygrothermal ageing temperature for all composites, Figure 4.68. As discussed 

earlier in this section, with the increase of the hygrothermal ageing temperature,  
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Figure 4.68 Effect of hygrothermal ageing on the KIc of UTLFE and ATLFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 
 

the swelling of the fibre would be expected to increase, which could lead to the 

formation of cracks in the matrix, Figures 4.57(a) and 4.57(b). Formation of 
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cracks in the matrix could weaken the fibre/matrix interface and therefore requires 

less energy to debond the fibre from the matrix and thus, could reduce the KIc of 

the composites. 

Thermogravimetric Analysis (TGA) 

TGA traces for UTLFE and ATLFE composites after hygrothermal ageing at 70oC 

are shown in Figure 4.69. It can be seen that the weight loss was higher at the 

initial and second stage of thermal degradation for UTLFE composites, while it 

was higher at the third or final stage of thermal degradation for ATLFE 

composites. Hygrothermally aged ATLFE composites absorbed less moisture than 

UTLFE composites due to the influence of increased interfacial bonding of 

ATLFE composites as discussed previously. As the initial stage of thermal 

degradation is involved with dehydration, the reduced weight loss for ATLFE 

composites compared to UTLFE composites would be expected. As the second 

stage of thermal degradation is involved with decomposition of cellulose, more 

cellulose in the alkali treated fibres than untreated fibre might also lead to less 

weight loss at the second stage of thermal degradation for ATLFE composites. At 

the third stage of thermal degradation, the presence of lignin could contribute to 

the formation of charred products that might result in a reduction in weight loss 

for UTLFE composites compared to the ATLFE composites [238].  
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Figure 4.69 TGA traces for UTLFE and ATLFE composites after hygrothermal ageing at 

70oC. 
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Wide Angle X-ray Diffraction (WAXRD) 

Figure 4.70 shows the WAXRD pattern of UTLFE and ATLFE composites 

before and after hygrothermal ageing at 70oC. A reduction in intensity mainly in 

the peak at a 2θ angle of 22.5 (major characteristic peak for cellulose) can be 

observed for both the hygrothermally aged composites and the reduction is found  
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Figure 4.70 WAXRD pattern for UTLFE and ATLFE composites before and after 

hygrothermal ageing at 70oC. 

to be greater for UTLFE composites than that of ATLFE composites. As the peak 

is a characteristic peak for cellulose, the reduction in intensity of this peak would 

be attributed to the degradation of cellulose which means greater degradation of 

cellulose was observed for hygrothermally aged UTLFE composites than ATLFE 

composites. This would be expected to be due to increased deterioration of 

cellulose by the increased moisture absorption by the UTLFE composites during 

hygrothermal ageing which is in agreement with the mechanical and thermal 

properties of the hygrothermally aged composites as discussed previously. 

Short Fibre Composites 

Tensile Properties 

Similar to long fibre/epoxy composites, the TS and YM of the short fibre/epoxy 

composites were found to decrease with hygrothermal ageing with the extent of 

the decrease higher at a higher immersion temperature, Figures 4.71 and 4.72. 

More reduction in TS and YM (about 7% and 6% respectively, for UTSFE and 
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13% and 24% respectively, for ATSFE composites) was found for short 

fibre/epoxy composites compared to long fibre/epoxy composites with 

hygrothermal ageing. Also, similar to long fibre/epoxy composites, FS was found 

to increase for short fibre/epoxy composites with hygrothermal ageing with the 

extent of increase higher at a higher immersion temperature, Figure 4.73. For ease 

of comparison of the results of the tensile properties of hygrothermally aged short 

and long fibre/epoxy composites at three different temperatures are compiled in 

Table 4.9. 

Table 4.9 Tensile properties of hygrothermally aged short and long fibre/epoxy 

composites at three different temperatures. 

 
Long Fibre Short Fibre 

UTLFE ATLFE UTSFE ATSFE 

Temperature (oC) Temperature (oC) Temperature (oC) Temperature (oC) 

Tensile 
Properti

es 

25 50 70 25 50 70 25 50 70 25 50 70 

TS 

(MPa) 

70.4 70.1 67.3 109.9 106.9 104.5 39.8 38.4 35.2 82.4 75.3 59.2 

YM 

(GPa) 

8 6.2 5.7 11.8 10.9 7.9 3.5 2.9 2.6 6.8 5.8 5.5 

FS (%) 2.639 2.942 3.35 4.165 4.606 4.72 4.799 5.658 6.25 5.525 7.317 7.987
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Figure 4.71 Effect of hygrothermal ageing on the TS of UTSFE and ATSFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 
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Figure 4.72 Effect of hygrothermal ageing on the YM of UTSFE and ATSFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 
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Figure 4.73 Effect of hygrothermal ageing on the FS of UTSFE and ATSFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 

Flexural Properties 

Similar to long fibre composites, the flexural strength and flexural modulus of the 

short fibre composites were found to decrease with hygrothermal ageing with the 

extent of decrease higher at a higher immersion temperature, Figures 4.74 and 

4.75. The reduction in flexural strength and flexural modulus was found almost 

similar for short and long fibre/epoxy composites with hygrothermal ageing. Also, 

similar to long fibre composites, the flexural strain of the short fibre composites 

was found to increase with hygrothermal ageing with the extent of increase higher 

at a higher temperature, Figure 4.76. 
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Figure 4.74 Effect of hygrothermal ageing on the flexural strength of UTSFE and ATSFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 
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Figure 4.75 Effect of hygrothermal ageing on the flexural modulus of UTSFE and ATSFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 
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Figure 4.76 Effect of hygrothermal ageing on the flexural strain of UTSFE and ATSFE 

composites compared to NE at three different temperatures. Error bars each corresponds 

to one standard deviation. 
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Impact Energy (IE) 

Similar to long fibre composites, the IE of the short fibre composites was found to 

increase after hygrothermal ageing with the extent of increase higher at a higher 

immersion temperature as can be seen from Figure 4.77. The increase in IE was 

found almost similar for UTSFE and UTLFE composites and it was found to 

increase about 190% more for ATLFE composites compared to that for ATSFE 

composites with hygrothermal ageing. 
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Figure 4.77 Effect of hygrothermal ageing on the IE of UTSFE and ATSFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 

Fracture Toughness (KIc) 

Similar to long fibre composites, the KIc for the short fibre composites was found 

to decrease with hygrothermal ageing with the extent of decrease higher at a 

higher immersion temperature as can be seen from Figure 4.78. The reduction in 

KIc was found almost similar for UTSFE and UTLFE composites and it was found 

to reduce about 14% more for ATLFE composites compared to that for ATSFE 

composites with hygrothermal ageing. 
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Figure 4.78 Effect of hygrothermal ageing on the KIc of UTSFE and ATSFE composites 

compared to NE at three different temperatures. Error bars each corresponds to one 

standard deviation. 

4.3.11  Accelerated Ageing of the Composites 

As can be seen from Figure 4.79, the exposure of samples in accelerated ageing 

environments slightly deteriorated the surface in the form of decolouration and  
 

       
     Control    Control                        1000 Hours      1000 Hours 

   Untreated   Alkali Treated    Untreated     Alkali Treated 
 

Figure 4.79 Visual change during weathering of UTLFE and ATLFE composites. 
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surface texture. Increasing exposure to the ageing conditions resulted in the 

initiation of tearing in the fibres, Figure 4.80, which could be due to degradation 

by UV attack as has been reported elsewhere [247]. The accelerated aged surface 

showed an accentuation of fibres with the erosion of epoxy resin as reported in the 

literature for glass/polyester composites [248]. This is attributed mainly to stress 

produced by differential swelling and shrinkage of the fibre/resin caused by 

changes in moisture content. Stresses might also build up at the interface due to a 

large variation in the coefficient of thermal expansion of epoxy resin and fibre 

leading to the failure of the fibre resin interface as reported elsewhere [249]. 

However, the accelerated aged samples were found to be deteriorated less when 

compared to the hygrothermally aged samples although higher deterioration 

would have been expected due to possible increase of weathering by the presence 

of UV-radiation. The lower deterioration of accelerated aged samples is likely due 

to less swelling of fibres by less moisture absorption for not immersing the 

samples in water during the ageing period unlike hygrothermally aged samples.  

Tearing of Fibre

 

Figure 4.80 SEM of UTLFE composites showing tearing of the fibres after accelerated 

ageing of 1000 hours. 

Progressive percentage weight gain during accelerated ageing is given in Figure 

4.81. The weight gain of the samples might be caused by the absorption of water 

during water spray and condensation cycles. The yellowish colour of the samples, 

Figure 4.79, after accelerated ageing is likely due to the breakdown of the lignin 

to the water soluble products [151, 250]. 
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Figure 4.81 Percentage weight gain of NE, UTLFE and ATLFE composites. 

The change in mechanical properties due to accelerated ageing over different time 

periods is presented in Figures 4.82 to 4.89. Reduction in TS, flexural strength, 

YM and flexural modulus for NE and composites with increased duration of 

ageing was observed, Figures 4.82, 4.83, 4.85, and 4.86. The highest reduction in 

mechanical properties was found for UTLFE composites. TS and flexural strength 

were found to decrease from 165.4 and 180.1 MPa to 97.9 and 56.7 MPa 

respectively, while YM and FM were found to decrease from 17.3 and 10.1 GPa 

to 3.9 and 1.3 GPa respectively, for UTLFE composites, Figures 4.82, 4.83, 4.85, 

and 4.86. However, the TS for both UTLFE and ATLFE composites were found 

to be almost constant for further ageing after 250 hours. Although FS and flexural 

strain were found to decrease with the increase in ageing time for NE, they were 

found to increase with the increase of ageing period for both UTLFE and ATLFE 

composites, Figures 4.84 and 4.87. Although IE was found to be similar for NE 

with accelerated ageing, it was found to increase dramatically for the composites, 

Figure 4.88. The highest increase of IE from 14.6 to 63.9 kJ/m2 was found for 

UTLFE composites. KIc was found to decrease for all the samples with the 

increase of ageing time and the highest decrease of 4.6 to 3.3 MPa.m1/2 was found 

for UTLFE composites, Figure 4.89. 
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Figure 4.82 Effect of accelerated ageing on the TS of UTLFE and ATLFE composites 

compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.83 Effect of accelerated ageing on the YM of UTLFE and ATLFE composites 

compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.84 Effect of accelerated ageing on the FS of UTLFE and ATLFE composites 

compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.85 Effect of accelerated ageing on the flexural strength of UTLFE and ATLFE 

composites compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.86 Effect of accelerated ageing on the flexural modulus of UTLFE and ATLFE 

composites compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.87 Effect of accelerated ageing on the flexural strain of UTLFE and ATLFE 

composites compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.88 Effect of accelerated ageing on the IE of UTLFE and ATLFE composites 

compared to NE. Error bars each corresponds to one standard deviation. 
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Figure 4.89 Effect of accelerated ageing on the KIc of UTLFE and ATLFE composites 

compared to NE. Error bars each corresponds to one standard deviation. 

The reduction in TS, flexural strength, YM and flexural modulus for NE in the 

current work with increased duration of ageing is considered to be due to 

plasticisation, swelling effect [251] and photochemical degradation [7]. The 

reduction in TS, flexural strength, YM and flexural modulus of the aged 

composites in the current work is likely due to the weakening of the fibre/matrix 

interface by the formation of cracks in the matrix due to swelling of fibre by 

moisture absorption [249]. 

Fibrillation of the fibres in the composite fracture surface was also noticed, 

Figures 4.90(a) and 4.90(b), upon accelerated ageing which is likely due to 

degradation of lignin which acts as an adhesive holding the cellulose fibrils 

together. As reported elsewhere [247], after lignin degradation, the poorly bonded 
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cellulose fibrils could erode easily from the surface which would be expected to 

expose new lignin embedded cellulose fibrils for subsequent degradation reaction 

and thus could enhance fibre pull-out from the resin. The ageing process could 

cause the surface of the composites to become rough and account for significant 

fibre loss from the surface [247]. The constant TS of the composites on further 

accelerated ageing after 250 hours could be caused by lignin acting as a natural 

antioxidant, which is known to stabilize the fibres [252] from further degradation 

and an equilibrium has been reached. 

  
(a)      (b) 

Figure 4.90 (a) UTLFE and (b) ATLFE composites fracture surfaces after 1000 hours 

accelerated ageing. 
 

The reduction in FS, flexural strain, IE, and KIc of NE could be due to the chain 

degradation and formation of surface cracks as can be seen from Figure 4.91. The 

increase in FS, flexural strain, and IE, and decrease in KIc for the composites in 

the current work is likely due to the formation of a porous structure as a result of 

leaching of debonded fibres by the fibrillation process upon removal of lignin [7]. 

As a result of the increased porosity, more water molecules were believed to be 

able to be trapped inside the composite structure, which might act as a plasticiser 

and result in an increase in FS, flexural strain, and IE, and decrease in KIc [7]. 

Possible matrix cracking by swelling of fibre as a result of water absorption could 

also weaken fibre/matrix interface and cause the fibres to be pulled-out of the 

resin and increase energy dissipation which in turn increased the FS, flexural 

strain, and IE, and decrease the KIc of the composites. ATLFE composites were 

found to show better resistance to accelerated weathering over UTLFE composites 

which could be due to the formation of stronger fibre/epoxy bonds which 

outweighed the effect of point contact in the fibres as discussed in section 4.3.10. 
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Figure 4.91 Micrograph of NE surface after weathering for 1000 hours. 

4.3.11.1 Fourier Transform Infrared (FTIR) Spectra 

Analysis of the FTIR spectra, Figure 4.92, showed an increase in the intensity of 

the C=O absorption in the 1000 hours weathered sample over control in 1734 cm-1 

region and around 1650 cm-1 [253]. An increase in the carbonyl absorption 

indicated modification in the lignin structure. An increase in the intensity of the  

 

 

Figure 4.92 FTIR spectra of UTLFE composites of before (control) and after 1000 hours 

accelerated ageing. 
 

1650 cm-1 band indicated quinine formation by irradiation during weathering 

[253]. The bands at 1734 and 1650 cm-1 were characteristic absorptions of 

carbonyl stretching vibrations of nonconjugated (in xylan) and conjugated (in 

lignin) esters and carboxylic acids; their concentrations were found to increase as 
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carbonyl groups were believed to be liberated from lignin and/or carbohydrates 

due to chemical degradation [253-255]. The band at 1036 cm-1 involves the 

reactivity of aromatic ether function and the band at 1183 cm-1 involves the 

cleavage of the isopropylidene group of epoxy resin according to Rivaton et al. 

[256]. 

4.3.11.2 Thermogravimetric Analysis (TGA) 

TGA traces for UTLFE and ATLFE composites after accelerated ageing of 1000 

hours are shown in Figure 4.93. Similar to hygrothermally aged composites, it can 

be seen that the weight loss for initial and second stage of thermal degradation 

was higher for UTLFE composites, while it was higher at the third or final stage 

of thermal degradation for ATLFE composites. It is considered that these trends 

are for similar reasons as for hygrothermally aged composites as discussed 

previously in section 4.3.10.1. 
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Figure 4.93 TGA of UTLFE and ATLFE composites after accelerated ageing of 1000 

hours. 

4.3.11.3 Wide Angle X-ray Diffraction (WAXRD) 

Figure 4.94 shows the WAXRD pattern of UTLFE and ATLFE composites before 

and after accelerated ageing of 1000 hours. Similar to hygrothermally aged 

composites, a reduction in intensity mainly in the peak at a 2θ angle of 22.5 

(major characteristic peak for cellulose) can be observed for both the accelerated 

aged composites and the reduction is found to be greater for UTLFE composites 

than that of ATLFE composites. It is considered that these trends are for similar 
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reasons as for hygrothermally aged composites as discussed previously in section 

4.3.10.1. 
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Figure 4.94 WAXRD pattern for UTLFE and ATLFE composites before and after 

accelerated ageing of 1000 hours. 

4.4  Chapter Conclusion  

A study of the curing kinetics of NE and 40 wt% UTFE composites showed that 

addition of fibre in NE reduced the curing time and increased the curing reaction 

rate which could be due to enhanced nucleophilic activity of the amine groups of 

the curing agent in presence of fibres. IFSS measurements of UTFE and ATFE 

samples revealed that samples with an epoxy to curing agent ratio of 1:1 gave the 

highest IFSS values than samples with other epoxy to curing agent ratios. ATFE 

samples had consistently higher IFSS than UTFE samples at all epoxy to curing 

agent ratios. 

An optimised composite production method was developed with a 1:1 epoxy to 

curing agent ratio, 60 minutes resin soaking time and a curing temperature of 

70oC with aligned fibres. Composites produced with alkali treated fibres were 

stronger than those produced with acetylated and silane treated fibres. 

Composites produced with the optimised production method at different fibre 

contents showed that long fibre/epoxy composites were stronger in terms of 

tensile properties than short fibre/epoxy composites. Flexural properties, IE and 

KIc were found to be higher for long fibre/epoxy composites when compared to 
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short fibre/epoxy composites with 65 wt% fibre content. ATFE composites were 

found to have greater TS at lower fibre contents while UTFE composites were 

found to have greater TS at higher fibre contents. Flexural strength and KIc were 

found to increase and IE was found to decrease for UTFE composites when 

compared to ATFE composites with 65 wt% fibre content. 

Hygrothermal ageing of the samples indicated that the absorption of water in 

HECs followed Fickian diffusion (case I). The lower absorption of water seen for 

the short fibre/epoxy composites compared to long fibre/epoxy composites 

indicates interrupted water channels resulting in a reduction in wicking of the 

water molecules at the interfaces. Hygrothermal ageing of hemp/epoxy 

composites at different temperatures showed that fibre length and alkali fibre 

treatment had a significant effect on the mechanical properties of the composites.  

Accelerated ageing of hemp/epoxy composites for different durations showed that 

alkali fibre treatment had a significant influence on the mechanical properties of 

the composites. 
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Chapter Five 

5 Hemp/PLA Composites 

(HPCs) 

5.1  Summary 

This chapter describes the materials, methods, and results for the: 

• determination of IFSS of untreated and alkali treated hemp fibre in 

polylactic acid (PLA) 

• production of long and short hemp fibre preform mats 

• production of untreated and alkali treated long (aligned) and short (planar 

random and aligned) hemp fibre/PLA composites using compression 

moulding  

• comparison of untreated and alkali treated long aligned hemp fibre/PLA 

composites in terms of tensile testing and SEM analysis  

• comparison of untreated and alkali treated short planar random and aligned 

hemp fibre/PLA composites in terms of tensile testing and SEM analysis  

• comparison of film stacked 32 wt% untreated and alkali treated long 

aligned hemp fibre/PLA composites in terms of flexural, impact, and 

fracture toughness as well as SEM, WAXRD, and FTIR analysis 

• hygrothermal ageing of film stacked 32 wt% untreated and alkali treated 

long aligned hemp fibre/PLA composites. The aged composites were 

assessed in terms of tensile, flexural, impact, and fracture toughness as 

well as SEM, TGA, WAXRD analysis 
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• accelerated ageing of film stacked 32 wt% untreated and alkali treated 

long aligned hemp fibre/PLA composites. The aged composites were 

assessed in terms of tensile, flexural, impact, and fracture toughness as 

well as SEM, TGA, WAXRD, and FTIR analysis. 

5.2  Experimental Details 

5.2.1  Materials 

Retted hemp bast fibre was supplied by Hemcore, UK. PLA in the form of pellets, 

was obtained from Nature Works International, Australia. Analytical grade 

Na2SO3 and 98% NaOH pellets were used for the alkali treatment of the fibres. 

5.2.2  Methods 

5.2.2.1 Interfacial Shear Strength (IFSS) Measurement of Hemp 

Fibre/PLA Samples Using Single Fibre Pull-out Testing 

For the measurement of IFSS, single-fibre pull-out test specimens were prepared 

according to the literature [220] by the method described in section 4.2.2. The 

hole at the centre of the mould was filled with PLA dissolved in dichloromethane 

(DCM), from which the solvent was allowed to evaporate using a vacuum oven at 

room temperature (20±2oC) for 24 hours. The free end of the fibre that had been 

contained within the mould slot was glued to cardboard using PVA glue to give a 

gauge length of 10 mm. Five specimens were prepared at each embedded length 

and the average debonding force of the five specimens was measured using an 

Instron tensile tester at a crosshead speed of 0.5 mm/min. 

5.2.2.2 Fibre Mat Production 

Untreated and alkali treated fibres were dried at 80oC for 24 hours.  

Long Fibre Mats 

Dried fibres were made into aligned long fibre mats using a hand carding machine 

by the method described in section 4.2.2.3. 
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Short Fibre Mats 

Dried fibres were made into both aligned and random short fibre mats by DSF and 

hand lay-up respectively, as described in section 4.2.2.3. 

Alkali fibre treatment method is described in section 3.2.2 

5.2.2.3 PLA Sheet Production (Neat PLA): 

PLA pellets were micronised into PLA powder using a microniser. PLA powder 

was then used to produce PLA Sheets using a hot press at 170oC and 1 MPa 

pressure maintained for 5 minutes. 

5.2.2.4 Fabrication of Composites 

Impregnation of the PLA matrix into the fibre mats and the fabrication of 

composite samples were carried out using four different methods:  

(a) Untreated Short Random Fibre Composites 

A short random fibre mat weighing 30g was sandwiched between 70g of PLA 

powder (manually spread) in a preheated compression mould to produce a 

composite of 30 wt% fibre. This was pressed at a temperature of 170oC and a 

pressure of 1.2 MPa for 15 minutes. Untreated random short fibre/PLA 

composites produced by this technique will be defined as ‘untreated short random’ 

in this study. 

(b) Untreated and Alkali Treated Short Aligned Fibre Composites 

Water was poured on a mixture of PLA powder and short fibre (308g PLA 

powder and 132g fibre) in a disintegrator for mixing using speeds of up to 72000 

rpm. After disintegration, PLA powder was well distributed throughout the fibre, 

and the dynamic sheet former was then used to produce short fibre/PLA mats 

from the mixture. The fibre/PLA mats thus produced were dried at 100oC for 24 

hours, placed in a preheated compression mould and pressed at a temperature of 

170oC and a pressure of 1.2 MPa for 15 minutes. 30 wt% untreated and alkali 

treated short aligned fibre/PLA composites produced by this technique will be 

defined as ‘untreated short aligned’ and ‘alkali treated short aligned’ respectively, 
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in this study. Long fibre could not be processed by the dynamic sheet former 

using this methodology. 

(c) Untreated Short Random and Alkali Treated Long Aligned 
Composites Using DCM 

PLA was dissolved in DCM and the solution was poured over the fibre mat (both 

short and long fibre mats) and allowed to soak into the fibre mat for five minutes. 

The DCM was then evaporated in a vacuum oven at 120oC over 24 hours, 

following which the mat was placed in a preheated mould and pressed at 170oC 

and 1.5 MPa pressure for 15 minutes. 40 wt% untreated short random fibre 

composites produced by this technique will be defined as ‘untreated short random 

(DCM)’ and 40 wt% alkali treated long aligned fibre composites produced by this 

technique will be defined as ‘alkali treated long aligned (DCM)’ in this study.  

(d) Untreated and Alkali Treated Long Aligned Fibre Film Stacked (FSt) 
Composites 

PLA film was produced from PLA powder using the hot press at 170oC and 1 

MPa pressure maintained for 5 minutes. A fibre mat was sandwiched between two 

PLA films (commonly known as film stacking) in a preheated compression 

mould. This was then pressed at a temperature of 170oC and a pressure of 1 MPa 

for 10 minutes. Untreated and alkali treated long aligned fibre composites of 32 

wt% fibre were produced by this method and will be defined as ‘untreated long 

aligned (FSt)’ and ‘alkali treated long aligned (FSt)’ respectively, in this study. 

5.2.2.5 Composite Mechanical Testing 

Composites (obtained using the methods described in section 5.2.2.4) and neat 

PLA sheets were cut into tensile, flexural, impact, and fracture toughness test 

specimens using a scroll saw, to the dimensions specified by the standard test 

methods for each of the tests. The samples were then placed in a conditioning 

chamber at 23oC ± 3oC and 50% ± 5% relative humidity for 40 hours. The tensile, 

flexural, impact, and fracture toughness tests were carried out following the 

methods described in section 4.2.2. 
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5.2.2.6 Hygrothermal Ageing   

Due to their better performance in tensile testing, hygrothermal ageing was only 

carried out for 32 wt% untreated, and alkali treated long aligned (FSt) composites 

(obtained by method (d) of section 5.2.2.4) and neat PLA following the method 

described in section 4.2.2.14. 

5.2.2.7 Accelerated Ageing 

As for hygrothermal ageing, accelerated ageing was only carried out for 32 wt% 

untreated, and alkali treated long aligned (FSt) composites (obtained by method 

(d) of section 5.2.2.4) and neat PLA following the method described in section 

4.2.2.15. 

5.2.2.8 Scanning Electron Microscopy (SEM) 

The fracture surfaces of the composites were examined using SEM following the 

method described in section 4.2.2.10. 

5.2.2.9 Differential Scanning Calorimetry (DSC) Analysis 

DSC analysis of composites (obtained using the method (d) described in section 

5.2.2.4) and neat PLA were carried out using a DSC 2920 differential scanning 

calorimeter, in an argon atmosphere with a heating rate of 5oC/min. A static argon 

flow of 50 mL/min and an aluminum sample pan were used. Specimens of 

approximately 10 mg were scanned over a temperature range of 25 to 200oC. The 

glass transition temperature (Tg), melt temperature (Tm), cold crystallisation 

temperature (Tc), and heat of melting (∆Hm) were determined for both neat PLA 

and composites. The percentage crystallinity of each sample was calculated using 

the relationship  

wH
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ityCrystallinX
m

m
c

100)(% 0 ×
Δ
Δ

=
 

 
(5.1) 

where ∆Hm is the heat of melting, ∆Hm
o is the heat of melting for 100% crystalline 

PLA sample (taken as ∆Hm
o = 93 J/g) and w is the weight fraction of PLA in the 

sample [257, 258]. To determine the crystallinity of the sample, the heats of cold 
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crystallisation and pre-melt crystallisation were subtracted from heat of melting 

[259]. 

5.2.2.10 WAXRD 

WAXRD analysis was carried out following the method described in section 

4.2.2.12.  

5.2.2.11 Fourier Transform Infrared (FTIR) Spectra  

The FTIR spectra analysis of the composites was carried out following the method 

described in section 4.2.2.13. 

5.3  Results and Discussion 

5.3.1  Interfacial Shear Strength (IFSS) Measurement of 
Hemp Fibre/PLA Samples 

Figure 5.1 shows a graph of debonding force versus embedded length for UFPLA 

and ATPLA samples. Linear relationships between the debonding force and 

embedded length were obtained for both UFPLA and ATPLA samples. A higher 

slope was observed for ATPLA sample compared to the UFPLA sample, 

suggesting increased bonding of the alkali treated fibres with the matrix PLA.  
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Figure 5.1 Debonding force versus embedded length for UFPLA and ATPLA samples. 

The solid lines indicate principal trends of data points and do not represent any data 

fitting. 
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This can be explained by the increase of available –OH groups as observed by 

FTIR analysis described in section 3.3.1.10 due to alkali treatment. These would 

be expected to occur due to removal of the non-cellulosic materials covering the 

cellulose –OH groups and also due to increased roughness, which would generally 

increase the surface area of the fibre. Increased exposure of cellulose –OH groups 

would provide increased potential for hydrogen bonding. In addition to increasing 

–OH groups for bonding, increased surface roughness would also provide for 

better mechanical interlocking with PLA. Strong adhesion at the fibre/PLA 

interface is necessary for effective stress transfer and load distribution throughout 

the interface. 

Figure 5.2 shows the IFSS, calculated by dividing the debonding force by the 

interfacial area of the UFPLA and ATPLA samples, Equation (2.2), obtained from 

the pull-out tests [95]. The higher IFSS for the ATPLA samples when compared 

to that for the UFPLA samples could again be due to the increased adhesion of the 

alkali treated fibres to PLA. The relationship between IFSS and embedded length 

was found to be constant for UFPLA samples while it was found to be non-

constant for ATPLA samples. A constant function of IFSS versus embedded 

length indicates ductile interface fracture behaviour while a non-constant function 

indicates a brittle interface fracture behaviour as reported by other researchers 

[97]. A non-constant function arises with pull-out by brittle fracture due to the 

requirement of a critical crack length, which, once achieved, requires no further 
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Figure 5.2 IFSS of UFPLA and ATPLA samples, obtained for eight different embedded 

fibre lengths. The solid lines indicate principal trends of data points and do not represent 

any data fitting. 
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increase of stress for a longer embedded fibre length. According to Meretz et al. 

[260] crystalline polymer structures cause increased bonding to the fibre, resulting 

in brittle fracture during the single-fibre pull-out test.  

In this case, the PLA has been observed as being more crystalline in the case of 

ATPLA samples (section 5.3.3.1), which would therefore be anticipated to 

increase interfacial strength. As previously discussed, the increased access of –OH 

groups is also likely to be contributing to the increase in interfacial strength and 

therefore increased brittle behaviour of the ATPLA samples. In addition, 

increased crystallinity at the interface of PLA and fibre in the ATPLA samples 

would be expected to lead to a more brittle matrix in this region, which could also 

contribute to the observed brittle behaviour. 

 

5.3.2 Mechanical Properties 

5.3.2.1 Tensile Properties 

Figures 5.3 and 5.4 show the TS and YM respectively, of untreated short aligned, 

alkali treated short aligned, and untreated short random fibre/PLA composites 

compared to those for neat PLA. The neat PLA has a TS of 48 MPa and a YM of 

4.8 GPa. It can be seen that among the composites, only alkali treated 
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Figure 5.3 TS of untreated short aligned, alkali treated short aligned, and untreated short 

random composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 
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Figure 5.4 YM of untreated short aligned, alkali treated short aligned, and untreated short 

random composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

short aligned composites have similar TS (49 MPa) to neat PLA with the others 

having lower TS. However, the Young’s moduli of the composites are all higher 

than that of neat PLA. Mathew et al. [11] reported that cellulose reinforcement 

increased the crystallinity of PLA. These crystalline regions would contain 

increased physical cross-links and therefore could be contributing to the increase 

in YM observed [11]. Higher YM for the untreated short aligned composites 

compared to that for alkali treated short aligned composites could be due to higher 

YM of the untreated fibres compared to alkali treated fibres as discussed in 

section 3.3.1.3. However, lower YM for the untreated short random composites 

compared to untreated and alkali treated aligned composites is likely to be due to 

lack of alignment for the untreated short random fibres in the composites. The 

addition of hemp fibres not increasing the TS, is a possible indication of poor 

impregnation and adhesion of PLA to the fibres. Alternatively, the increased 

crystallinity of PLA due to cellulose reinforcement could result in more brittle 

PLA and limit the TS of the composites. Higher TS for the alkali treated short 

aligned composites compared to those for untreated short random and aligned 

composites could be due to the improved adhesion of the alkali treated fibre to the 

PLA with increased crystallinity, potential hydrogen bonding and mechanical 

interlocking, achieved upon removal of non-cellulosic components from the fibres 

as discussed in section 5.3.1 which overrides any increased brittleness of the 

matrix at the interface. Also expected from pull-out tests, better impregnation of 

PLA into the fibres for the alkali treated short aligned composites compared to 

that for untreated short random and aligned composites is supported by far less 
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pull-out, holes and fibre free region in matrix observed in the fracture surfaces of 

alkali treated short aligned composites compared to untreated short fibre (random 

and aligned) composites, Figures 5.5(a) and 5.5(b) respectively. Almost similar 

TS was observed for untreated short random and aligned composites though 
 

       

 (a)       (b) 

 

Figure 5.5 SEM pictures of the fracture surface of (a) alkali treated short aligned and (b) 

untreated short random composites. 

it was expected to have been higher for the untreated short aligned composites due 

to alignment of fibre and better impregnation of PLA considered to be achieved 

by DSF. However, PLA absorbs moisture upon exposure to humid environments 

[261, 262], it might absorb water as it was processed with water in the dynamic 

sheet former during fibre/PLA mat formation. Absorbed moisture could cause 

degradation of PLA by hydrolysis during processing at higher temperature as 

reported by other researchers [263], resulting in a possible reduction in interfacial 

strength and as a consequence, composite TS [44]. This could also have limited 

the strength of the alkali treated short aligned fibre composites. FS was seen to 

increase in composites, Figure 5.6, compared to neat PLA, which could be due to 

some plasticising effect occurring upon addition of fibres into the PLA during 

composite production and is supported by the depression in glass transition, cold 

crystallisation, and melt temperatures for the composites compared to those for 

neat PLA as described in DSC analysis in section 5.3.3.1. 

Fractured Fibre Hole in Matrix Hole in Matrix
Fibre Free Matrix
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Figure 5.6 FS of untreated short aligned, alkali treated short aligned, and untreated short 

random composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

As the composites described so far did not have good mechanical properties, 

further effort was expended to produce composites by dissolving PLA powder in 

DCM (method c, section 5.2.2.4). Figure 5.7 shows the TS of composites 

(untreated short random (DCM) and alkali treated long aligned (DCM)) which 

were found to be lower than that for neat PLA. The lower TS of the composites 

could be explained by the presence of a large amount of pores and possible 

entrapped air bubbles in both alkali treated long aligned (DCM) and untreated 

short random (DCM) composites, Figures 5.8(a) and 5.8(b) respectively. YM was 

found to increase significantly in the composites, Figure 5.9 which can again be 

explained by the increased crystallinity of the PLA in the composites as discussed 

already in this section [11] and constraint of the fibres. An increase in TS and YM 

observed for untreated short random (DCM) composites compared to alkali 

treated long aligned (DCM) composites could be due to the presence of 

comparatively lower number of pores in the untreated short random (DCM) 

composites, Figures 5.8(a) and 5.8(b) respectively. The presence of pores and air 

bubbles in the composites was also considered to be responsible for lower 

composites FS, Figure 5.10 compared to those for neat PLA. 
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Figure 5.7 TS of alkali treated long aligned (DCM), and untreated short random (DCM) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

      

(a)      (b) 

Figure 5.8 Optical micrograph of the surface of (a) alkali treated long aligned (DCM) and 

(b) untreated short random (DCM) composites. 
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Figure 5.9 YM of alkali treated long aligned (DCM) and untreated short random (DCM) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 
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Figure 5.10 FS of alkali treated long aligned (DCM) and untreated short random (DCM) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

The TS, YM and FSs of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites (produced by method d, section 5.2.2.4) compared to 

neat PLA are shown in Figures 5.11, 5.12 and 5.13 respectively. The addition of 

hemp fibres increasing the TS and YM, is a possible indication of good 

impregnation and adhesion of PLA to the fibres. As discussed earlier, cellulose 

reinforcement increased the crystallinity of PLA [11]. These crystalline regions 

would contain increased physical cross-links and therefore could further be 

contributing to the increase in YM observed [11]. The increase in FS of 

composites compared to neat PLA is not surprising due to the higher FS of the 

fibres. 
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Figure 5.11 TS of untreated long aligned (FSt) and alkali treated long aligned (FSt) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 
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Figure 5.12 YM of untreated long aligned (FSt) and alkali treated long aligned (FSt) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 
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Figure 5.13 FS of untreated long aligned (FSt) and alkali treated long aligned (FSt) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

However, this could also be due to a plasticising effect occurring upon the 

addition of fibres into the PLA during composite production, and is supported by 

the depression in glass transition, cold crystallisation, and melt temperatures for 

the composites compared to those for neat PLA as described in DSC analysis in 

section 5.3.3.1. 

It can be seen that untreated long aligned (FSt) and alkali treated long aligned 

(FSt) composites have TSs of 61 and 83 MPa respectively. The higher TS of 

alkali treated long aligned (FSt) composites compared to that of untreated long 

aligned (FSt) composites can be explained due to improved adhesion of the alkali 

treated fibre to the PLA through potential hydrogen bonding and mechanical 
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interlocking, achieved upon removal of non-cellulosic components from the fibres 

as discussed in section 5.3.1. Increased crystallinity of PLA could also be 

contributing to the increased TS of the alkali treated long aligned (FSt) 

composites compared to that of untreated long aligned (FSt) composites. Figures 

5.14(a) and 5.14(b) show SEM micrographs of the fracture surfaces of untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites respectively. It 

can be seen from the fracture surfaces that untreated long aligned (FSt)  
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 (a)       (b) 
 

Figure 5.14 SEM micrographs of fracture surfaces of (a) untreated long aligned (FSt) and 

(b) alkali treated long aligned (FSt) composites. 

composites exhibit long unfractured fibres and holes (from which fibre/fibre 

bundles have been extracted), indicative of a lot of fibre pull-out. On the other 

hand, alkali treated long aligned (FSt) composites, show predominate fibre 

fracture which indicates better fibre matrix adhesion and interfacial bonding for 

alkali treated long aligned (FSt) composites compared to untreated long aligned 

(FSt) composites.  

Higher YM of the alkali treated long aligned (FSt) composites than that of 

untreated long aligned (FSt) composites could again be due to better fibre matrix 

adhesion obtained in the alkali treated long aligned (FSt) composites. Moreover, 

increased crystallinity of the PLA in the alkali treated long aligned (FSt) 

composites compared to that for untreated long aligned (FSt) composites could 

further be contributing to the increase in YM observed for alkali treated long 

aligned (FSt) composites [11]. Higher FS of the alkali treated long aligned (FSt) 

composites compared to that for untreated long aligned (FSt) composites might 
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again be due to occurring of increased plasticising effect in the alkali treated long 

aligned (FSt) composites.  

5.3.2.2 Flexural Properties 

Figures 5.15 and 5.16 show the flexural strength and flexural modulus of 

untreated long aligned (FSt) and alkali treated long aligned (FSt) composites 

compared to those of neat PLA. The higher flexural properties for the composites 

could again indicate good impregnation and adhesion of PLA with the fibres. It 

can be seen that alkali treated long aligned (FSt) composites have higher flexural 

strength and flexural modulus of 143 MPa and 6.5 GPa respectively, when 

compared to those for untreated long aligned (FSt) composites (flexural strength 

and flexural modulus of 118 MPa and 5.5 GPa respectively). The higher flexural 

strength and flexural modulus for alkali treated long aligned (FSt) composites 

compared to untreated long aligned (FSt) composites is again an indication of the 

improved bondability of alkali treated fibres with PLA. 
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Figure 5.15 Flexural strength of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites compared to neat PLA. Error bars each corresponds to one 

standard deviation. 
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Figure 5.16 Flexural modulus of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites compared to neat PLA. Error bars each corresponds to one 

standard deviation. 

5.3.2.3 Impact Energy (IE) 

Figure 5.17 shows the IE of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites compared to that of neat PLA. The energy absorbed by 

the composites was over four times higher than the energy absorbed by neat PLA. 

Plasticising in the composites could contribute for their increased Impact energy. 

A lower IE was seen for alkali treated long aligned (FSt) composites compared  
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Figure 5.17 IE of untreated long aligned (FSt) and alkali treated long aligned (FSt) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

to that of untreated long aligned (FSt) composites. The prime differences in the 

fracture modes between untreated long aligned (FSt) and alkali treated long 
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aligned (FSt) composites were that more fibre pull-out and delamination observed 

for untreated long aligned (FSt) composites. This is supported by the SEM 

pictures of Figures 5.14(a) and 5.14(b). As discussed so far, alkali treatment 

improved the interfacial bond strength (significantly reducing the occurrence of 

fibre pull-out and delamination in notch initiation and propagation process) and 

made the composite more brittle. The improved interfacial bond strength and 

brittle behaviour of the alkali treated long aligned (FSt) composite resulted in 

lower dissipation of energy and hence lower IE. 

5.3.2.4 Fracture Toughness (KIc) 

Figure 5.18 shows the KIc of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites compared to that for neat PLA. KIc was higher here for 

the composites than that of neat PLA [241]. An increase in KIc was seen here for 

alkali treated long aligned (FSt) composites compared to that for untreated long 

aligned (FSt) composites. 
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Figure 5.18 KIc of untreated long aligned (FSt) and alkali treated long aligned (FSt) 

composites compared to neat PLA. Error bars each corresponds to one standard 

deviation. 

The poor interfacial bonding between the untreated fibre and PLA could make it 

easier for the fibre to debond from the PLA, Figure 5.19(a). For alkali treated long 

aligned (FSt) composites, owing to the improved interfacial bonding properties, 

the load used to pull-out the fibre from the matrix was high and higher fracture 

resistance was expected. The stronger interfacial bonding also enabled the 

composites to become brittle so that fewer fibres were involved in pull-out in the 
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alkali treated long aligned (FSt) composites, Figure 5.19(b), when compared to 

untreated long aligned (FSt) composites, Figure 5.19(a). Therefore, alkali treated 

long aligned (FSt) composites had higher KIc [241].  
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Pulling out of FibreMatrix

 
(a)      (b) 

 

Figure 5.19 Optical micrographs showing major crack of fracture toughness specimens of 

(a) untreated long aligned (FSt) and (b) alkali treated long aligned (FSt) composites. 

5.3.3  Crystallinity 

5.3.3.1 Differential Scanning Calorimetry (DSC) Analysis 

Figure 5.20 shows the DSC trace displaying the heating ramp and glass transition, 

cold crystallisation, pre-melt crystallisation, and melting temperature for neat 

PLA. The details of cold crystallisation and pre-melt crystallisation can be found  
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Figure 5.20 DSC trace for PLA only sample displaying the glass transition temperature, 

cold crystallisation, and melting. 
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in the literature [264, 265]. The thermal characteristics such as Tg, Tc, Tm, ∆Hm, 

and Xc obtained from DSC studies are summarised in Table 5.1. It can be seen that 

Tg, Tc, and Tm decrease with the addition of fibre to the PLA. The depression of 

the glass transition, cold crystallisation, and melt temperature is typical for 

plasticised PLA, where the plasticising effect promotes crystallinity due to 

enhanced chain mobility [266]. The melting endotherms, Figure 5.21, show two 

distinct peaks (also called a shoulder) for untreated long aligned (FSt) and alkali 

treated long aligned (FSt) fibre/PLA composites. It has been reported in the 

literature that a shoulder or a low temperature peak is formed on the melting 

endotherm of the original crystallites as a result of lamellar rearrangement during 

crystallisation of PLA [266]. 
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Figure 5.21 DSC thermograms of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites compared to neat PLA. 

It can be seen from Table 5.1 that the addition of hemp fibre to PLA results in an  
 

Table 5.1 Thermal characteristics of PLA and its composites obtained from DSC. 

Samples Tg (oC) Tc (oC) Tm (oC) ∆Hm (J/g) Degree of 
Crystallinity 

(%) 
PLA 62.20 115.92 152.85 19.99 21.4 

Untreated Long 
Aligned (FSt) 
Composite 

61.20 111.31 148.61 16.68 26.3 

Alkali Treated Long 
Aligned (FSt) 
Composite 

61.00 109.89 148.10 19.29 30.5 
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increase in the degree of crystallinity of the PLA matrix. This can be explained by 

the nucleating ability of hemp fibre allowing the crystallisation of PLA. As a 

result of the modification of fibre surfaces by alkali treatment, bondability 

between the fibre and PLA matrix improves due to increased interaction by 

increased potential hydrogen bonding and mechanical interlocking between them. 

The increased interaction of the fibre with the matrix PLA could further help the 

fibre surface to act as nucleation sites for the crystallisation of PLA. This 

promotes the growth and formation of transcrystalline regions around the fibre 

normal to the fibre surface [191]. Thus composites produced with alkali treated 

fibre (where non-cellulosic surface components such as lignin were removed from 

the fibres by alkali treatment) showed an increased degree of crystallinity in the 

matrix PLA when compared to composites produced with untreated fibre. This 

agrees with the belief that lignin can negatively affect the ability of the fibre to act 

as a nucleating agent [14]. 

5.3.3.2 Wide Angle X-ray Diffraction (WAXRD) Analysis 

Figure 5.22 shows the WAXRD patterns for untreated, alkali treated fibres and 

neat PLA. It can be seen that both untreated and alkali treated fibres show a sharp 

peak at a 2θ angle of 22.5o (the peak is sharper for alkali treated fibre than 

untreated fibre) which is more likely due to crystalline cellulose as discussed  
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Figure 5.22 WAXRD pattern for the raw materials used. 
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in section 3.3.1.7. On the other hand, PLA shows a narrow and sharp peak at 2θ = 

16.4, which could be due to the partially crystalline nature of the PLA. Except for 

the sharp peak at 16.4, PLA is amorphous and semicrystalline in nature. Figure 

5.23 shows the WAXRD patterns for untreated long aligned (FSt) and alkali 

treated long aligned (FSt) composites. Both of the composites show peaks at 2θ = 

15.4, 16.2, 22.5 and 34.5. The peak at 2θ = 16.4 is characteristic of crystalline 

PLA and the peak at 2θ = 22.5 is characteristics of crystalline cellulose. Both of 

these peaks are prominent and sharp for alkali treated long aligned (FSt) 

composites, further indicating their higher crystallinity compared to the untreated 

long aligned (FSt) composites [10]. 
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Figure 5.23 WAXRD curves for untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites. 

5.3.4  Hygrothermal Ageing  

Immersion of the samples in water for hygrothermal ageing resulted in increased 

visibility of the fibre and damage in the form of matrix pitting and cracking. 

Composites were found to be more affected than the neat PLA. Untreated long 

aligned (FSt) composites were found to be more affected than the alkali treated 

long aligned (FSt) composites, Figures 5.24(a) and 5.24(b). 
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(a)      (b) 

 

Figure 5.24 (a) Untreated long aligned (FSt) and (b) alkali treated long aligned (FSt) 

composite surfaces after hygrothermal ageing at 50oC. 

Hygrothermal ageing resulted in increased thickness of the samples with increase 

in temperature as can be seen from Figure 5.25. This swelling was higher for the 

composites compared to that for neat PLA; the untreated long aligned (FSt) 

composites had a higher swelling than the alkali treated long aligned (FSt) 

composites. 
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Figure 5.25 Thickness swelling of the composites compared to neat PLA after 

hygrothermal ageing. 

The moisture contents of neat PLA and the composite samples were calculated by 

the weight difference between the samples exposed to water and the dried 

samples. Figures 5.26 to 5.28 show the percentage moisture content as a function 

of immersion time for neat PLA, untreated long aligned (FSt) and alkali treated  
 



Chapter Five: Hemp/PLA Composites  

 216

0 1 0 2 0 3 0 4 0 5 0
0 .0

0 .4

0 .8

1 .2

1 .6

2 .0

M
oi

st
ur

e 
C

on
te

nt
, M

t (%
)

( Im m e rs io n  t im e )1 /2  (h r1 /2 )

  2 5 o C
  5 0 o C

 

Figure 5.26 Moisture absorption behaviour of neat PLA at 25 and 50oC. 
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Figure 5.27 Moisture absorption behaviour of 32 wt% untreated long aligned (FSt) 

composites at 25 and 50oC. 
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Figure 5.28 Moisture absorption behaviour of 32 wt% alkali treated long aligned (FSt) 

composites at 25 and 50oC. 
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long aligned (FSt) composites respectively. After hygrothermal ageing a plateau 

was observed for all the immersed samples. For neat PLA the plateau was 

observed after about 2.25 months, and for untreated long aligned (FSt) and alkali 

treated long aligned (FSt) composites it was observed after about 1.7 months. It 

can be seen that the temperature of the absorption process has an influence on the 

water absorption curves. Higher temperature generally increased the water 

absorption of neat PLA and composites, as well as shortening the saturation time. 

The low amount of moisture absorbed by neat PLA is expected due to its 

hydrophobic nature and the high amount of moisture absorbed by the composites 

is more likely to be due to the hydrophilic nature of the fibres by the presence of 

polar groups such as –OH and –COOH in the fibres. The reduced water 

absorption by alkali treated long aligned (FSt) composites compared to the 

untreated long aligned (FSt) composites can be explained by the stronger interface 

formed by improved fibre/PLA adhesion as described in section 5.3.1. Strong 

adhesion in the fibre/PLA interface is necessary for the reduction of interface 

wicking of the water molecules and increase of resistance to hygrothermal ageing. 

According to other researchers [243, 244], a lack of interfacial interactions leads 

to internal strains, porosity, and increases the amount of moisture absorption.  

Figure 5.29 shows an example of the fitting of experimental data to Equation 

(2.16) for alkali treated long aligned (FSt) composites. The values of the kinetic 

parameter n resulting from the fitting of neat PLA, untreated long aligned (FSt) 

and alkali treated long aligned (FSt) composites are summarised in Table 5.2. 
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Figure 5.29 Diffusion case fitting plots for 32 wt% alkali treated long aligned (FSt) 

composites at 25 and 50oC. 
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Table 5.2 Diffusion case selection parameter n. 

Temperature (oC) Sample 

25 50 
Neat PLA 0.3922 0.3707 

Untreated Long Aligned 
(FSt) Composite 

0.4876 0.4538 

Alkali Treated Long 
Aligned (FSt) composite 

0.3762 0.3659 

The data supports the absorption of water in HPCs approaching Fickian diffusion 

(case I) as the values are less than n = 0.5 [7]. Using Equation (2.17) the diffusion 

coefficient (D) can be obtained from the slope of the linear part of the (Mt/M∞)2 

versus tL-2 plot. Table 5.3 shows the values of the diffusion coefficients obtained 

by fitting the linear part of Equation (2.17). The results for the composite samples 

are similar with those obtained for sisal/PP composites by other researchers [7]. 

The increase in diffusion coefficient with temperature is likely due to the 

increased ability of the water molecules to move among the polymer segments at 

higher temperatures [7].  

Table 5.3 Diffusion coefficients for NE, untreated long aligned (FSt) and alkali treated 

long aligned (FSt) composites at two different temperatures. 

D (m2/s) ×1013 Sample 

25oC 50oC 
Neat PLA 2.55 6.28 

Untreated Long Aligned (FSt)  
Composite 

4.12 10.99 

Alkali Treated Long Aligned (FSt) 
composite 

3.73 10.21 

5.3.4.1 Effects of Hygrothermal Ageing on Mechanical Properties 

Tensile Properties 

From Figures 5.30 and 5.31, it can be seen that the TS and YM decreased with 

hygrothermal ageing for the composites such that the extent of decrease was 

higher for higher immersion temperatures. However, no significant reduction in 

TS and YM were observed for neat PLA which is not surprising considering its  
 



Chapter Five: Hemp/PLA Composites  

 219

0

2 0

4 0

6 0

8 0

1 0 0

2 5 o C

TS
 (M

Pa
)

 N e a t P L A
  U n tre a te d  L o n g  A lig n e d  (F S t)
 A lk a li T re a te d  L o n g  A lig n e d  (F S t)

C o n tro l 5 0 o C

 

Figure 5.30 Effect of hygrothermal ageing on the TS of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites at different temperatures. Error 

bars each corresponds to one standard deviation. 
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Figure 5.31 Effect of hygrothermal ageing on the YM of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites at different temperatures. Error 

bars each corresponds to one standard deviation. 

low moisture absorption. Generally, when natural fibre composites are immersed 

in water, the fibre/matrix interface absorbs moisture which results in the 

development of shear stress at the interface. This accelerates the debonding 

process, resulting in delamination, loss of structural integrity [242] and in turn 

reduction in TS and YM. Other researchers have also reported that the 

hygrothermal ageing causes water penetration into the matrix leading to a 

reduction in fibre matrix adhesion and a reduction in TS and YM [7]. 
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The loss of fibre/matrix adhesion, characterised by apparition of holes with some 

long unfractured fibres/fibre bundles, can be seen in the SEM micrographs of the 

fracture surfaces, Figures 5.32(a) and 5.32(b). With the increase of temperature, 

more water penetrates into the composites and swells up the fibres causing cracks 

in the matrix.  

  
 (a)     (b) 
 

Figure 5.32 (a) untreated long aligned (FSt) and (b) alkali treated long aligned (FSt) 

composite fracture surfaces after hygrothermal ageing at 50oC. 

It can also be seen from the result that the reduction in TS and YM at higher 

temperature is greater for untreated long aligned (FSt) composites than for alkali 

treated long aligned (FSt) composites, Table 5.4. In the case of alkali treated long 

aligned (FSt) composites, the stronger interface formed due to increased 

crsytallinity of the PLA, potential hydrogen bonding and mechanical interlocking  
 

Table 5.4 Tensile properties of untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites after hygrothermal ageing at two different temperatures. 

Untreated Long Aligned (FSt) Alkali Treated Long Aligned (FSt) Tensile 
Properties 25oC 50oC 25oC 50oC 

TS (MPa) 58.2 40.3 71.5 58.3 

YM (GPa) 5.9 3 8.5 5.7 

FS (%) 2.511 2.668 3.838 5.373 

could have caused lower water absorption. Therefore, a lower loss in fibre/matrix 

adhesion and a higher amount of fibre fracture was noticed for the alkali treated 

long aligned (FSt) composites compared to untreated long aligned (FSt) 

composites, as can be noted from the SEM pictures, Figures 5.32(a) and 5.32(b). 

Low diffusion coefficient resulted from the alkali treated long aligned (FSt) 

composites compared to untreated long aligned (FSt) composites as summarised 
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in Table 5.3 further supports the stronger interfacial bonding for alkali treated 

long aligned (FSt) composites.  

The observed increase in FS, Figure 5.33, for all the composites after 

hygrothermal ageing might be due to water molecules acting as a plasticising 

agent in the composites [7]. However, a reduction in FS for the neat PLA after 

hygrothermal ageing was observed, which may be due to the presence of surface 

cracks upon absorption of water to some extent. 
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Figure 5.33 Effect of hygrothermal ageing on the FS of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites at different temperatures. Error 

bars each corresponds to one standard deviation. 

Flexural Properties 

Flexural strength and flexural modulus were found to decrease with hygrothermal 

ageing, and that the extent of reduction was greater for the higher immersion 

temperature, Figures 5.34 and 5.35. FS was found to increase for the composites 

and decrease for neat PLA after hygrothermal ageing, Figure 5.36. These results 

are consistent with the tensile properties described previously. 
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Figure 5.34 Effect of hygrothermal ageing on the flexural strength of neat PLA, untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites at different 

temperatures. Error bars each corresponds to one standard deviation. 
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Figure 5.35 Effect of hygrothermal ageing on the flexural modulus of neat PLA, untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites at different 

temperatures. Error bars each corresponds to one standard deviation. 
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Figure 5.36 Effect of hygrothermal ageing on the flexural strain of neat PLA, untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites at different 

temperatures. Error bars each corresponds to one standard deviation. 

Impact Energy (IE) 

Figure 5.37 shows the effect of hygrothermal ageing on the IE of untreated long 

aligned (FSt), and alkali treated long aligned (FSt) composites compared to neat 

PLA at two different temperatures. It can be seen that the IE of the 
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Figure 5.37 Effect of hygrothermal ageing on the IE of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites at different temperatures. Error 

bars each corresponds to one standard deviation. 

composites increased with hygrothermal ageing, and that the extent of increase 

was greater at higher temperatures. The IE is related to the plasticisation effect of 

the fibre/PLA interface [134], as a plasticised interface encourages the fibre pull-

out mechanism. Absorption of moisture caused swelling in the fibre surface, 
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enhancing the frictional work of fibre pull-out from PLA matrix which increased 

the IE [134]. As extent of swelling was greater at higher temperatures, it leads to 

more frictional work of pull-out and hence the IE. 

 

Fracture Toughness (KIc) 

As can be seen from Figure 5.38, KIc decreased with the increase in hygrothermal 

ageing temperature for all of the samples particularly for untreated long aligned 

(FSt) composites. With the increase in temperature, swelling of the fibre might 

increase which could lead to the formation of cracks in the matrix and weaken the 

fibre/matrix interface. Weak fibre/matrix interface could make fibre pull-out 

easier, resulting in a reduction in KIc of the composites. 

0

1

2

3

4

5

 N eat PLA
  U ntreated  Long  Aligned  (FSt)
 Alkali Treated  Long  Aligned  (FSt)

C ontro l 25oC 50oC

 K
Ic

 (M
Pa

.m
1/

2 )

 

Figure 5.38 Effect of hygrothermal ageing on the KIc of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites at different temperatures. Error 

bars each corresponds to one standard deviation. 

5.3.4.2 Effects of Hygrothermal Ageing on Crystallinity 

Differential Scanning Calorimetry (DSC) Analysis 

Figure 5.39 shows the DSC traces for untreated long aligned (FSt) and alkali 

treated long aligned (FSt) composites after hygrothermal ageing at 50oC. The 

glass transition temperature was found to decrease from about 61oC, Figure 5.20, 

to about 50oC as well as melt temperature was found to decrease from about 

148oC, Figure 5.20, to about 145oC for both untreated long aligned (FSt) 
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Figure 5.39 DSC traces for untreated long aligned (FSt) and alkali treated long aligned 

(FSt) composites after hygrothermal ageing at 50oC. 

and alkali treated long aligned (FSt) composites. However, the endothermic 

melting peak was found to be more distinct for alkali treated long aligned (FSt) 

composites than for untreated long aligned (FSt) composite after hygrothermal 

ageing. Table 5.5 shows the thermal characteristics of hygrothermally aged PLA 

and its composites obtained from DSC. The degree of crystallinity was found to 

increase for untreated and alkali treated composites, from about 21 (Table 5.1) to 

32% for untreated long aligned (FSt) composite while for alkali treated long 

aligned (FSt) composite it was found to increase from about 26 (Table 5.1) to 

37%.  

 

Table 5.5 Thermal characteristics of hygrothermally aged PLA and its composites 

obtained from DSC. 

Samples Tg (oC) Tc (oC) Tm (oC) ∆Hm (J/g) Degree of 
Crystallinity 

(%) 
Untreated Long 
Aligned (FSt) 
Composite 

48.0 85.0 145.0 20.30 32.09 

Alkali Treated Long 
Aligned (FSt) 
Composite 

48.0 81.0 145.0 23.64 37.38 

 

Water is generally accepted as a plasticising agent for PLA which is supported by 

PLA swelling observed by Proikakis et al. [267]. Plasticisation could explain the 

lamellar rearrangement resulting in increased crystallinity. According to Zhang et 

al. [268], PLA crystallinity increases during hydrolytic degradation at a 
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temperature near the glass transition temperature. In addition, wicking of water at 

the interface would swell the fibre and result in cracks in the matrix and as a 

consequence loss of interfacial adhesion. Loss of interfacial adhesion and matrix 

crack would increase water penetration into the composites as well as PLA which 

could further increase plasticisation of PLA and as a consequence PLA 

crystallinity. 

Wide Angle X-ray Diffraction (WAXRD) Analysis 

Figure 5.40 shows the WAXRD patterns for untreated long aligned (FSt) and 

alkali treated long aligned (FSt) composites after hygrothermal ageing at 50oC. 

PLA shows a peak at 2θ = 16.4, which is attributed to the crystalline nature of the 

PLA (section 5.3.3.2). The peak intensity at 2θ = 16.4 was found to increase for 

the aged samples compared to the control samples, Figure 5.23, (section 5.3.3.2) 

showing the increase in PLA crystallinity after accelerated ageing. The sharp peak 

at 2θ = 22.5 is characteristic of crystalline cellulose, as shown in section 5.3.3.2, 

was found to decrease upon hygrothermal ageing, this could be due to degradation 

of cellulose and a resulted drop in crystallinity. The intensity drop for the peak at 

2θ = 22.5 was found to be higher for the untreated long aligned (FSt) composites  
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Figure 5.40 WAXRD pattern for untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites after hygrothermal ageing at 50oC. 

than the alkali treated long aligned (FSt) composites, indicating greater 

degradation of cellulose for the untreated long aligned (FSt) composites upon 

hygrothermal ageing. 
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5.3.5  Accelerated Ageing 

As can be seen from Figure 5.41, the exposure of the samples to accelerated 

ageing environments slightly deteriorated the surface texture in the form of  
 

        
Control  Control  1000 Hours  1000 Hours 
Untreated  Alkali Treated  Untreated  Alkali Treated         
             

Figure 5.41 Visual change during ageing of untreated long aligned (FSt) and alkali treated 

long aligned (FSt) composites. 

decoloration, appearance of a milky colour on the surface, and surface softness. 

The aged surface showed an accentuation of fibres with the erosion of PLA, 

Figures 5.42(a) and 5.42(b). The appearance of milky patches, matrix cracks, and 

swollen fibres are more severe for untreated long aligned (FSt) composites than 

that for alkali treated long aligned (FSt) composites. The deterioration of the 

composites is likely to be initiated by the fibre ridging followed by PLA film 

rupture through cracking and then fibre pop-out. This is attributed mainly to the 

stresses produced by differential swelling and shrinkage of the fibre/PLA caused 

by changes in moisture content. Stresses also built up at the fibre/matrix interface 

due to a large difference between the coefficients of thermal expansion for PLA 

matrix and hemp fibre, leading to the failure of the fibre/PLA interface [249]. 

Increasing exposure to the weathering conditions led to the initiation of tearing in 

the fibres due to degradation by UV attack. 
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(a) 

 

 
     (b) 
 

Figure 5.42 (a) Untreated long aligned (FSt)  and (b) alkali treated long aligned (FSt) 

composite surfaces after 1000 hours accelerated ageing. 

 

Progressive percentage weight gain in the samples during accelerated ageing is 

shown in Figure 5.43. The weight gain might be caused by the absorption of water 

during water spray and condensation cycles. The weight loss of PLA and decrease 

in weight gain for the composites after accelerated ageing of 1000 hours might be 

caused by leaching out of the PLA upon exposure to the ageing environment. The 

yellowish colour of the samples, Figure 5.41, after accelerated ageing might be 

due to the breakdown of the lignin into water soluble products [151, 250]. 

1000μ m

Matrix Crack Fibre Accentuation 

1000μ m

Swollen Fibre 
Matrix Crack Fibre Accentuation 
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Figure 5.43 Percentage weight gain of neat PLA, untreated long aligned (FSt) and alkali 

treated long aligned (FSt) composites. 

The change in mechanical properties due to accelerated ageing for different time 

periods is presented in Figures 5.44 to 5.51. A reduction in TS, flexural strength, 

YM, and flexural modulus for neat PLA with increased ageing duration was 

observed, Figures 5.44, 5.45, 5.47, and 5.48. The greatest reduction in TS, flexural 

strength, YM and flexural modulus was found for untreated long aligned (FSt) 

composites than for alkali treated long aligned (FSt) composites. Tensile and 

flexural strengths were found to decrease from 61 and 115 MPa to 8 and 13 MPa 

respectively while, YM and flexural modulus were found to decrease from 8 and 6 

GPa to 1 and 2 GPa respectively for untreated long aligned (FSt) composites, 

Figures 5.44, 5.45, 5.47, and 5.48. FS and flexural strain were found to increase 

with increased weathering time up to 750 hours for both untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites and then decrease with 

further weathering, while a continuous decrease of FS and a continuous increase 

of flexural strain with increased weathering time were noted for neat PLA, Figures 

5.46 and 5.49. IE was found to increase dramatically for all of the composites 

after 250 hours of weathering with a continued increase up to 750 hours and a 

decrease after this time. IE of neat PLA was found to decrease with increased 

weathering time, Figure 5.50. KIc was found to decrease for all samples with 

increased weathering time, with greatest decrease from 3.2 to 0.6 MPa.m1/2 found 

for untreated long aligned (FSt) composites, Figure 5.51. 
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Figure 5.44 Effect of accelerated ageing on the TS of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites. Error bars each corresponds to 

one standard deviation. 
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Figure 5.45 Effect of accelerated ageing on the YM of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites. Error bars each corresponds to 

one standard deviation. 
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Figure 5.46 Effect of accelerated ageing on the FS of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites. Error bars each corresponds to 

one standard deviation. 
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Figure 5.47 Effect of accelerated ageing on the flexural strength of neat PLA, untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites. Error bars each 

corresponds to one standard deviation. 
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Figure 5.48 Effect of accelerated ageing on the flexural modulus of neat PLA, untreated 

long aligned (FSt) and alkali treated long aligned (FSt) composites. Error bars each 

corresponds to one standard deviation. 
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Figure 5.49 Effect of accelerated ageing on the flexural strain of neat PLA, untreated long 

aligned (FSt) and alkali treated long aligned (FSt) composites. Error bars each 

corresponds to one standard deviation. 
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Figure 5.50 Effect of accelerated ageing on the IE of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites. Error bars each corresponds to 

one standard deviation. 
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Figure 5.51 Effect of accelerated ageing on the KIc of neat PLA, untreated long aligned 

(FSt) and alkali treated long aligned (FSt) composites. Error bars each corresponds to 

one standard deviation. 

The reduction in TS, flexural strength, YM, and flexural modulus for neat PLA 

with increased weathering duration is considered to be due to plasticisation, 

swelling effect [251] and photochemical degradation [7]. The reduction in TS, 

flexural strength, YM, and flexural modulus of the composites might be due to the 

development of swelling stresses, caused by the difference of expansion and 

contraction of fibre/PLA as a result of moisture absorption [249]. 
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Fibrillation of the fibres in the composite fracture surfaces was also noticed, 

Figures 5.52(a) and 5.52(b), showing degradation of lignin which acts as an 

adhesive holding cellulose fibrils together. After lignin degradation, the poorly 

bonded cellulose fibrils could erode easily from the surface, which could expose 

new lignin embedded cellulose fibrils for subsequent degradation reaction and 

thus would be expected to enhance fibre pull-out from PLA. Thus more loss of  
 

  
 

 Higher loss of structural integrity  Lower loss of structural integrity 
 

(a)     (b) 
 

Figure 5.52 (a) Untreated long aligned (FSt) and (b) alkali treated long aligned (FSt) 

composite fracture surfaces after 1000 hours accelerated ageing. 

structural integrity can be seen for untreated long aligned (FSt) composite, Figure 

5.52(a), than for alkali treated long aligned (FSt) composite, Figure 5.52(b). The 

ageing process could make the composite surface rougher and also could lead to 

significant fibre loss from the surface according to other researchers [247]. 

PLA is a semicrystalline polymer and the degree of crystallinity of the processed 

PLA (section 5.3.3.1) was found to be about 13%. As crystalline regions are 

impermeable to oxygen, degradation occurs predominantly in the amorphous 

regions by chain scission, while UV-induced cross-linking occurs in the imperfect 

crystalline regions. The reduction in FS, flexural strain, IE, and KIc of neat PLA 

with weathering of up to 750 hours could be due to PLA chain scission and 

formation of surface cracks, which can be seen in Figure 5.53. After weathering of 

1000 hours, softening and leaching of PLA made the samples too soft to be tested. 

The increase in FS, flexural strain and IE, and decrease in KIc, for the composites 
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Figure 5.53 SEM micrograph of neat PLA surface after weathering for 750 hours. 

may be due to the formation of porous structure as a result of leaching of 

debonded fibres by the fibrillation process upon removal of lignin. As a result of 

the increase in porosity, more water molecules would be expected to be trapped 

inside the composite structure, which may have a plasticising effect, resulting in 

the increase in FS, flexural strain and IE, and decrease in KIc [7]. Swelling of 

fibres as a result of water absorption also could cause the fibres to be pulled-out of 

the PLA matrix, increasing energy dissipation which in turn might increase the 

FS, flexural strain and IE, and decrease the KIc of the composites. The decrease in 

FS, flexural strain and IE of the composites after 1000 hours of weathering might 

be caused by failure of PLA by softening and leaching out. Alkali treated long 

aligned (FSt) composites showed better resistance to accelerated weathering due 

to the formation of stronger fibre/PLA bonds as discussed. 

5.3.5.1 Fourier Transform Infrared (FTIR) Spectra Analysis 

Analyses of the FTIR spectra, Figure 5.54, shows an increase in the intensity of 

the C=O absorption for the 1000 hours weathered sample over the control sample 

in the 1734 cm-1 region and also around 1650 cm-1. [253]. The increase in the  
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Figure 5.54 FTIR spectra of untreated long aligned (FSt) composites. 

carbonyl absorption indicates modification in the lignin structure. The increase in 

the intensity of the 1650 cm-1 band indicates quinine formation by irradiation 

during weathering [253]. The bands at 1734 and 1650 cm-1 are characteristic 

absorptions of carbonyl stretching vibrations of non-conjugated (in xylan) and 

conjugated (in lignin) esters and carboxylic acids, and their concentration 

increases as carbonyl groups are liberated from lignin and/or carbohydrates due to 

chemical degradation [253-255]. Pure PLA has a C-H deformation band at 1350 

to 1460 cm-1, which was found to be at 1458 cm-1 for control sample and at  1403 

cm-1 for 1000 hours weathered sample [155]. 

5.3.5.2 Wide Angle X-ray Diffraction (WAXRD) Analysis 

Figure 5.55 shows the WAXRD patterns for untreated long aligned (FSt) and 

alkali treated long aligned (FSt) composites after 1000 hours accelerated ageing. 

PLA shows a narrow and sharp peak at 2θ = 16.4, which is attributed to the  
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Figure 5.55 WAXRD pattern for untreated long aligned (FSt) and alkali treated long 

aligned (FSt) composites after accelerated ageing of 1000 hours. 

crystalline nature of the PLA (as shown in section 5.3.3.2). The peak intensity 

increased tremendously for the accelerated aged samples showing the increase in 

crystallinity of PLA after accelerated ageing. The sharp peak at 2θ = 22.5 for the 

crystalline cellulose as shown in section 5.3.3.2, was found here to decrease 

significantly for the aged composites, showing a decrease in cellulose crystallinity 

due to the degradation of cellulose upon accelerated ageing. The intensity drop for 

the peak at 2θ = 22.5 was found to be greater for the untreated long aligned (FSt) 

composites when compared to alkali treated long aligned (FSt) composites, 

indicating a higher degradation of cellulose for the untreated long aligned (FSt) 

composites upon accelerated ageing. 

5.3.5.3 Differential Scanning Calorimetry (DSC) Analysis 

Figure 5.56 shows the DSC traces for untreated long aligned (FSt) and alkali 

treated long aligned (FSt) composites after accelerated ageing of 1000 hours. The 

glass transition temperature was found to decrease from about 61oC, Figure 5.20, 

to about 42 and 45oC, and melt temperature was found to decrease from about 

148oC, Figure 5.20, to about 140 and 144oC for untreated long aligned (FSt) and 

alkali treated long aligned (FSt) composites respectively. The depression of the 

glass transition and melt temperature by photodegradation of PLA has also been  
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Figure 5.56 DSC traces for untreated long aligned (FSt) and alkali treated long aligned 

(FSt) composites after accelerated ageing of 1000 hours. 

observed by other researchers [155, 269]. The shoulder in the endothermic 

melting peak was found to disappear for alkali treated long aligned (FSt) 

composite while the shoulder was found to merge for untreated long aligned (FSt) 

composite after accelerated aging of 1000 hours. However, the degree of 

crystallinity was found to increase from about 21 to 38% for untreated long 

aligned (FSt) composite while for alkali treated long aligned (FSt) composite it 

was found to increase from about 26 to 45%. The increase in crystallinity could be 

caused by the rearrangement of the amorphous PLA segments into crystalline 

phase during the degradation of PLA by chain scission. This process is known as 

chemicrystallisation [264]. The increase in crystallinity of PP upon UV exposure 

by the chemicrystallisation process and segmental mobility of the amorphous 

region has been reported by other researchers [7].  

5.4  Chapter Conclusion  

IFSS measurements showed that ATPLA samples had greater IFSS values when 

compared to UTPLA samples. 

Composites produced with short fibres using different processing methods had 

poor reinforcing efficiency. Good impregnation of fibres into PLA and good 

reinforcing efficiency were achieved by film stacking using long fibres. 

Composites produced with alkali treated fibres had better properties when 
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compared to untreated fibres in terms of tensile properties, flexural properties, KIc 

and percentage crystallinity. 

Hygrothermal ageing of hemp fibre/PLA composites indicated that the absorption 

of water in the composites followed Fickian diffusion (case I). The hygrothermal 

ageing at two different temperatures showed that fibre treatment with alkali had a 

significant influence on the mechanical properties of the composites.  

Accelerated ageing of hemp/PLA composites for different durations revealed that 

fibre treatment with alkali had a significant influence on the mechanical properties 

of the composites. 
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Chapter Six 

6 Conclusions 

6.1  Fibre Treatment and Characterisation 

Untreated hemp fibres were subjected to 16 different alkali treatments by varying 

four different treatment parameters (concentration of NaOH and Na2SO3, 

treatment temperature, and digestion time). A decrease in average fibre diameter 

was observed for all alkali treatments which appeared to increase with the severity 

of the alkali treatment. The parameters that most significantly influenced fibre TS 

and YM were the process temperature and NaOH concentration. The reduction in 

TS with increased temperature and NaOH concentration appeared to be due to 

increased degradation of structural cellulose in the fibres. The reduction in YM is 

believed to be due to the removal of lignin and other intra-fibrillar binders leading 

to degradation of cellulose and molecular relaxation of the cellulose fibre 

components. Upon analysis of the alkali fibre treatments by single fibre tensile 

testing (SFTT), SEM, zeta potential, DTA/TGA, WAXRD, lignin content and 

FTIR spectroscopy, the alkali treatment with 5 wt% NaOH, 2 wt% Na2SO3, 120oC 

treatment temperature, and 60 minutes digestion time was found to give the best 

combination of: 

(i) fibre TS retention (revealed by SFTT) 

(ii) increased fibre roughness, fibre separation from fibre bundles, and non-

cellulosic fibre component removal (revealed by SEM and lignin analysis) 

(iii)increased thermal stability (revealed by DTA/TGA analysis) 

(iv) increased cellulose hydroxyl group exposure (revealed by zeta potential 

and FTIR analysis), and  
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(v) increased crystalline cellulose by better packing of cellulose chains 

(revealed by WAXRD analysis). 

The fibres obtained from the optimised alkali treatment were further treated with 

acetic anhydride and phenyltrimethoxy silane. Acetylation and silanation treated 

fibres were found to give a slight reduction of single fibre performance although 

an increase in crystalline cellulose was observed for acetylated fibres. 

An empirical model for the TS of alkali treated fibres was obtained by a fractional 

factorial design using four different alkali treatment parameters as mentioned 

above. The TS of the alkali treated fibres could be predicted using the model 

within the range of experimental conditions under investigation which was 

verified experimentally in this study. The accuracy (at a confidence level of 95%, 

α = 0.05) of the prediction of TS using the empirical model was quite satisfactory 

as the experimental TS of alkali treated fibre obtained was almost within the range 

of tolerance limit of the model. However, for better prediction (e.g. at a 

confidence level of 98%, α = 0.02), full factorial design could be carried out. Such 

an approach, however, would require a greater number of experiments (twice the 

experiments required for the full factorial design compared to that for the 

fractional factorial design), but the accuracy of the prediction would improve very 

little. This empirical model for the TS of the alkali treated fibre, however, failed to 

give the best fibre strength which has been reported by other researchers [270], 

which could be due to not optimising parameters like fibre: NaOH and fibre: 

Na2SO3 solution ratios.  

6.2  Hemp/Epoxy Composites (HECs) 

Two dynamic models (the Kissinger and Flynn-Waal-Ozawa Models) and an 

isothermal model (the Autocatalytic Model) provided a good fit for the 

experimental data obtained from isothermal DSC scans of NE and 40 wt% UTFE 

composites. The activation energies for the curing of composites exhibited lower 

values compared to curing of NE. This indicates that the addition of fibre in epoxy 

resin enhanced the curing reaction between epoxy resin and amine curing agent 

which might be due to higher nucleophilic activity of the amine groups of the 

curing agent in the presence of fibres. The average activation energies obtained 
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from dynamic models were higher than those obtained from the isothermal model. 

This might be due to the wide temperature range of 25-120oC used in this study. 

The wide temperature range might cause a decrease in the slope of the Arrhenius 

plot due to the large variation in the reaction constants.  

The highest IFSS value (at an epoxy to curing agent ratio of 1:1 (E1C1)) for alkali 

treated fibre/epoxy (ATFE) samples was 5.2 MPa which was larger than the 

highest value of 2.7 for UTFE samples supporting that there was a stronger 

interface between alkali treated fibre and epoxy resin.  

Long fibre/epoxy composites were optimised in terms of different (a) fibre 

treatments (b) epoxy to curing agent ratios (c) resin soaking times, and (d) curing 

temperatures. Of the composites produced with different treated fibres, ATFE 

composites were found to have a modest improvement in TS while ATFE and 

STFE composites were found to have modest improvements in YM compared to 

NE. The limited benefit of TS obtained by fibre addition might be due to poor 

fibre wetting leading to a weak interface (supported by SEM micrographs). The 

highest YM of the STFE composites compared to other composites could be 

attributed to excessive cross-linking of the fibre -OH groups with the highly active 

silane groups and active hydrogen groups of the amine curing agent (supported by 

brittle fracture surface obtained from an SEM image). Of the composites produced 

with different epoxy to curing agent ratios, the greatest increase in TS was 

obtained with composites produced with epoxy to curing agent ratio of 1:1 and the 

greatest increase in YM was obtained with an epoxy to curing agent ratio of 1:1.2. 

ATFE composites were found to have higher TS and YM compared to that for 

UTFE composites. The results were found to be consistent with the IFSS values. 

Tensile properties of the composites were found to increase with soaking time of 

60 minutes compared to that of 10 minutes. It is likely due to increased fibre 

wetting during soaking by the epoxy resin leading to better interfacial strength. 

The increased soaking time also appears to have decreased porosity in the 

composites (supported by optical micrographs). Of the composites produced with 

different curing temperatures, TS and YM of the composites were found to be 

higher at 70oC than at 25oC for both UTFE and ATFE composites, but they were 

found to decrease as the curing temperature was increased further to 120oC, 

whereas the converse is true for FS. TS, YM and FS were consistently higher for 
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ATFE than for UTFE composites which is likely due to increased interfacial 

bonding for ATFE composites. 

Tensile properties of short fibre/epoxy composites produced by aligning the fibres 

along the tensile testing axis were found to increase compared to those of 

randomly oriented short fibre/epoxy composites. Fibre alignment along the tensile 

testing axis ATSFE composites showed higher TS and YM compared to those for 

UTSFE composites, which is likely due to better bonding of the alkali treated 

fibres with epoxy resin. 

Tensile properties of long fibre/epoxy composites were found to increase when 

fibre was aligned by hand carding, compared to those of fibre aligned by hackling. 

This may be due to better separation and fibre alignment obtained by the carding 

process. 

Long fibre/epoxy composites were found to show consistently higher tensile 

properties than those for short fibre/epoxy composites when produced at three 

different fibre contents with a 70oC curing temperature. Increase in TS and YM, 

and a decrease in FS were observed for both long and short fibre/epoxy 

composites with the increased fibre content. At 40 wt% fibre, ATLFE composites 

showed the most effective reinforcement, compared to UTLFE composites. 

However, at fibre contents of 50 and 65 wt% TS was found to decrease for 

ATLFE composites compared to UTLFE composites although YM was still found 

to increase. The increase in number of fibres at higher fibre loadings would 

increase fibre-fibre contact in the ATLFE composites such that inefficient stress 

transfer between fibres could occur and result in reduction in TS. ATLFE 

composites maintaining higher YM than the UTLFE composites at higher fibre 

loadings could be due to higher average interfacial bonding. The reduction in FS 

for the ATLFE composites compared to UTLFE composites is also likely due to 

failure initiated from stress concentration caused by fibre-fibre contact for ATLFE 

composites. Similarly, tensile properties, flexural properties, IE and KIc, were also 

found to be better for long fibre/epoxy composites when compared to short 

fibre/epoxy composites. Flexural strength and KIc were found to increase and IE 

was found to decrease for UTFE composites in contrast to the trend for IFSS 

which is likely due to the increased stress concentration by increased fibre-fibre 

contact in ATFE composites. 
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Thus, optimum mechanical properties were obtained with a 65 wt% aligned 

UTLFE composite (produced by curing at 70oC with an epoxy to curing agent 

ratio of 1:1 using compression moulding) with a TS of 165 MPa, YM of 17 GPa, 

flexural strength of 180 MPa, flexural modulus of 10.1 GPa, impact energy (IE) of 

14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2. 

TGA analysis of the long fibre/epoxy composites showed that the thermal stability 

of the ATLFE composites was better at the cellulose decomposition stage (which 

is far above of composite processing temperature used in the current study) than 

that for UTLFE composites which could be due to an increase in cellulose 

crystallinity by better packing of cellulose chains upon alkali treatment.  

With hygrothermal ageing, equilibrium moisture content and the diffusion 

coefficient were found to increase with increased immersion temperature. Short 

fibre/epoxy composites showed lower water absorption and diffusion coefficient 

than that for long fibre/epoxy composites and alkali treated fibre/epoxy 

composites showed lower water absorption and diffusion coefficient than 

untreated fibre/epoxy composites. In the case of hygrothermally aged composites, 

TS, flexural strength, YM, flexural modulus and KIc were found to decrease and 

IE was found to increase which is likely due to damage in the fibre and weakening 

in the fibre/matrix interface by fibre swelling and resultant cracks in the matrix. 

Also, FS and flexural strain were found to increase which could be due to the 

plasticisation effect of water. These results were supported by SEM, TGA, and 

WAXRD analyses.  

In the case of accelerated aged composites, in terms of exposure to UV-radiation 

and humid environments, reduction in TS, flexural strength, YM, flexural 

modulus and KIc and increase in FS, flexural strain and IE were observed which 

could be due to epoxy resin chain scission as a result of photo oxidation as well as 

damage in the fibres and fibre/matrix interface. These results were supported by 

SEM, TGA, and WAXRD analysis. FTIR analysis of accelerated aged UTFE 

composites showed a reduction in lignin content which could be due to the 

degradation of the lignin upon exposure to UV radiation.  
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6.3  Hemp/PLA Composites (HPCs) 

The IFSS of untreated and alkali treated hemp fibres embedded in PLA was 

measured using single fibre pull-out testing. An improvement in the IFSS by the 

use of alkali treated fibre has been clearly observed, indicating a stronger 

fibre/matrix interface for  ATPLA composites.  

Short fibre reinforced PLA composites produced with both aligned (obtained by 

DSF) and random fibre mats, did not show any reinforcing effect which could be 

due to unsuccessful impregnation of PLA to fibres by various means namely, 

impregnation during dynamic sheet forming, manual impregnation, and 

impregnation using DCM as a solvent). In addition to that, for short aligned fibre 

composites, moisture absorption by PLA during dynamic sheet forming could 

cause degradation of PLA at higher processing temperatures, resulting in a 

possible reduction in interfacial strength and as a consequence, poor composite 

TS. 

Film stacking was found to be most successful technique in the production of 

aligned long fibre/PLA composites. Alkali treatment of fibre was seen to increase 

the mechanical properties of aligned long fibre/PLA composites as revealed by 

tensile, flexural, impact, and fracture toughness tests. SEM micrographs, thermal 

characteristics, degree of crystallinity, and WAXRD analysis also showed that 

composites produced with alkali treated fibre had better performance than 

composites produced with untreated fibre. From the results of the long and short 

fibre/PLA composites produced using different processing conditions by 

compression moulding, it was found that a 32 wt% alkali treated long fibre/PLA 

composite produced by film stacking was the best, having a TS of 83 MPa, YM of 

11 GPa, flexural strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, 

and KIc of 3 MPa.m1/2. Using film stacking, hemp fibre/PLA composites were 

limited to 32 wt% fibre. The results of the mechanical properties of the 

composites were consistent with the IFSS of both UFPLA and ATPLA 

composites. 

With hygrothermal ageing of 32 wt% untreated and alkali treated long fibre/PLA 

composites, equilibrium moisture content and diffusion coefficient were found to 
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increase with increased immersion temperature. ATPLA composites showed 

lower water absorption and diffusion coefficient than that for UTPLA composites. 

In the case of hygrothermally aged composites, TS, flexural strength, YM, 

flexural modulus and KIc were found to decrease and IE was found to increase. 

Increase in moisture absorption with hygrothermal ageing is believed to weaken 

fibre/PLA bonding due to formation of crack in the matrix by fibre swelling which 

would be expected to result in interfacial failure and hence deterioration in 

mechanical properties of the composites as observed. Also, FS and flexural strain 

were found to increase which could be due to the plasticisation effect of water. 

These results were supported by SEM, DSC, and WAXRD analyses.  

Occurrence of possible PLA chain scission as a result of photo oxidation as well 

as fibre swelling by moisture absorption of the accelerated aged composites are 

believed to result in deterioration in the mechanical properties of the composites 

as observed. ATPLA composites were found to be more resistant than UFPLA 

composites towards accelerated ageing environments as revealed by tensile, 

flexural, impact, and fracture toughness tests as well as SEM, DSC, WAXRD, and 

FTIR analyses. 
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Chapter Seven 

7 Recommendations and Future 

Work 

Brittle property of PLA has an influence on the performance of hemp/PLA 

composites. Therefore, plasticisers could be used in the production of hemp/PLA 

composites to investigate changes in the performance of the composites. The use 

of coupling agents and compatibilisers to improve fibre/epoxy and fibre/PLA 

interfacial bonding could also be investigated.  

Increase of the weight fraction of fibres in the composites (especially in fibre/PLA 

composites) was found to be difficult in the current study. Therefore, in order to 

be able to increase the fibre content (volume fraction) in both hemp/epoxy and 

hemp/PLA composites, further development in the composite production methods 

is necessary.  

Fibre alignment was found to be effective in composite performance 

improvement. Therefore, fibre alignment in the composites could be improved. 

This may involve the use of continuous hemp yarns to produce uniaxially aligned 

epoxy and PLA matrix composites by compression moulding, filament winding, 

and pultrusion. The DSF process could also be modified to obtain an efficient way 

of aligning fibres (both long and short) and in-situ impregnation of the matrices. 

The single fibre pull-out test has been shown to be a potential method for 

obtaining the IFSS. Advanced instrumentation is required to obtain embedded 

fibre length with the matrices in micro scales to calculate IFSS more precisely. 

The influence of hygrothermal ageing on the IFSS of the composites could be 

studied. The possibility of using single fibre fragmentation tests in the 

determination of IFSS could be assessed.  
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Advanced modelling is required for a better understanding of the variation of 

composite properties with different fibre weight fractions by bringing the non-

uniformity of hemp fibres and fracture mechanics of the composites into account. 

Cure kinetics of the fibre/epoxy system for 40 wt% UTFE composites were 

assessed in the current work. Therefore, it would be interesting to assess the cure 

kinetics by using different fibre treatments as well as different fibre contents. 

As hemp fibre absorbs moisture, reduction in mechanical properties of hemp 

fibre/epoxy and hemp fibre/PLA composites due to interfacial failure was 

observed in the current study. Therefore, silane treatment could be assessed for 

influence on hygrothermal ageing. The influence in the variation of fibre contents 

on the hygrothermal and accelerated ageing could also be assessed. Natural ageing 

(outdoor exposure to sun and rain) of the composites could also be carried out to 

correlate with the real-world performance.  
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Glossary of acronyms and Symbols 

Acronyms   

ANOVA Analysis of Variance  

ASTM American Society for Testing 

and Materials 

 

ATFE Alkali Treated Fibre/Epoxy  

ATLFE Alkali Treated Long 

Fibe/Epoxy 

 

ATPLA Alkali Treated Fibre Polylactic 

Acid 

 

ATSFE Alkali Treated Sort 

Fibe/Epoxy 

 

CNC Computer Numerical Control  

DCM Dichloromethane  

DGEBA Diglycidyl Ether of Bisphenol-

A 

 

DSC Differential Scanning 

Calorimetry 

 

DSF Dynamic Sheet Formingl  

DTA Differential Thermal Analysis  

FS Failure Strain (%)  

FTIR Fourier Transform Infrared  

HEC Hemp/Epoxy Composite  

HPC Hemp/PLA Composite  

IEP Iso-electric Point  

IFSS Interfacial Shear Strength 

(MPa) 

 

IE Impact Energy (kJ/mol)  

ISO International Standard 

Organization 

 

MAPP Maleated Polypropylene  

MROM Modified Rule of Mixtures  

PHB Polyhydroxy Butyrate  
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PE Polyethylene  

PLA Polylactic Acid  

PMC Polymer Matrix Composite  

PP Polypropylene  

PVA Polyvinyl Acetate  

ROM Rule of Mixtures  

SEM Scanning Electron Microscopy  

SENB Single-Edge-Notch Bending  

SFTT Single Fibre Tensile Testing  

STD Standard Deviation  

THC Delta-9-tetrahydrocannabinol  

TGA Thermogravimetric Analysis  

TS Tensile Strength (MPa)  

UFPLA Untreated Fibre Polylactic 

Acid 

 

UTFE Untreated Fibre/Epoxy  

UTLFE Untreated Long Fibe/Epoxy  

UTSFE Untreated Short Fibe/Epoxy  

UV Ultra-violet  

WAXRD Wide Angle X-ray Diffraction  

YM Young’s Modulus (GPa)  

   

Symbols  Units 

A Pre-exponential Factor  

CO2 Carbon Dioxide  

CrI Crystallinity Index  (%) 

-COCH3 Acetyl  

C=O Carbony  

-COOH Carboxyl  

D Diffusion Coefficient (m2/s) 

Ea Activation Energy (kJ/mol) 

Fmax Maximum Debonding Force (N) 

HCL Hydrochloric Acid  

KBr Potassium Bromide  
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KCL Potassium Chloride  

KOH Potassium Hydroxide  

1K  Orientation Factor  

2K  Factor Dependent on the 

Stress Transfer Between the 

Matrix and the Fibres 

 

KIc Fracture Toughness (MPa.m1/2) 

L Thickness of the Sample (mm) 

cM  TS or YM of the Composite (MPa) or (GPa) 

fM  TS or YM of the Fibre (MPa) or (GPa) 

∗
mM  Tensile Contribution of the 

Matrix at the FS of the Fibres 

or the YM of the Matrix 

(MPa) 

pM  Mass of the Sample g 

tM  Moisture Content at Time t; (%) 

∞M  Moisture Content at the 

Equilibrium 

(%) 

NaOH Sodium Hydroxide  

Na2SO3 Sodium Sulphite  

NFC Natural Fibre Composite  

-OH Hydroxyl  

R Gas Constant (kJ/mol.K) 

T Absolute Temperature (K) 

mT  Exothermic Peak Temperature (K) 

V Volume Fraction  

mV  Volume Fraction of Matrix  

fV  Volume Fraction of fibre  

)(αf  Kinetic Model Function that 

Depends on the Conversion 

 

)(αg  Integrated Form of the 

Conversion Dependence 

Function 
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k(T) Reaction Rate Constant  

'k  Specific Reaction Rate 

Constant 

 

l Fibre Embedded Length  (m) 

m Reaction Order  

n Reaction Order  

p A Function Defined by Doyle  

q Constant Heating Rate (K/min) 

r Radius (m) 

t Time (min) 

HΔ  Enthalpy of the Curing 

Reaction 

(J/g) 

(∆Ht) Heat Evolved at Time, t (J/g) 

mHΔ  Heat of Melting (J/g) 

(∆Htot) Total Heat of Reaction (J/g) 

α Degree of Conversion  

αt Conversion at Time, t  

ϕ Rate of Heat Flow (oC/min) 

ρ Density (Kg/m3) 
*
mσ  TS of the Polymer Matrix at 

the FS of the Fibre 

(MPa) 

cσ  TS of the Composites (MPa) 

fσ  TS of the Fibre (MPa) 

τ IFSS (MPa) 

ζ Zeta Potential  

 


