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Abstract

High-dimensional integrals arise in a variety of areas, including quantum physics,

the physics and chemistry of molecules, statistical mechanics and more re-

cently, in financial applications.

In order to approximate multidimensional integrals, one may use Monte

Carlo methods in which the quadrature points are generated randomly or

quasi-Monte Carlo methods, in which points are generated deterministically.

One particular class of quasi-Monte Carlo methods for multivariate integra-

tion is represented by lattice rules. Lattice rules constructed throughout this

thesis allow good approximations to integrals of functions belonging to certain

weighted function spaces. These function spaces were proposed as an explana-

tion as to why integrals in many variables appear to be successfully approxi-

mated although the standard theory indicates that the number of quadrature

points required for reasonable accuracy would be astronomical because of the

large number of variables.

The purpose of this thesis is to contribute to theoretical results regarding

the construction of lattice rules for multiple integration. We consider both

lattice rules for integrals over the unit cube and lattice rules suitable for in-

tegrals over Euclidean space. The research reported throughout the thesis is

devoted to finding the generating vector required to produce lattice rules that

have what is termed a “low weighted discrepancy”. In simple terms, the “dis-

crepancy” is a measure of the uniformity of the distribution of the quadrature

points or in other settings, a worst-case error. One of the assumptions used in

these weighted function spaces is that variables are arranged in the decreas-

ing order of their importance and the assignment of weights in this situation

results in so-called “product weights”. In other applications it is rather the

importance of group of variables that matters. This situation is modelled by

using function spaces in which the weights are “general”. In the weighted

settings mentioned above, the quality of the lattice rules is assessed by the

“weighted discrepancy” mentioned earlier. Under appropriate conditions on

the weights, the lattice rules constructed here produce a convergence rate of

the error that ranges from O(n−1/2) to the (believed) optimal O(n−1+δ) for

any δ > 0, with the involved constant independent of the dimension.
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Chapter 1

Introduction

1.1 Lattice rules for numerical multiple inte-

gration

Integrals over the d-dimensional unit cube given by

Id(f) =

∫

[0,1]d
f(x) dx (1.1)

may be approximated by quadrature rules of the form

Qn,d(f) =
1

n

n−1∑

k=0

f(tk). (1.2)

If the quadrature points t0, t1, . . . , tn−1 ∈ [0, 1)d are produced in some de-

terministic manner, then the quadrature rule (1.2) is known as a quasi-Monte

Carlo rule for numerical multiple integration. A particular class of quasi-Monte

Carlo methods is represented by lattice rules. Quasi-Monte Carlo methods in

general and lattice rules in particular, have recently become of more interest

especially due to their efficiency in applications arising from mathematical fi-

nance (see [45]). We start by revising some aspects of the definition and the

theory of lattice rules that will be used throughout the thesis. In-depth details

can be found in [51].

In Mathematics the notion of “lattice” has several meanings. Throughout

this thesis, the concepts of “lattice”, “integration lattice”, and “lattice rule”

are defined as follows:
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Definition 1.1 By a d-dimensional lattice, we mean a discrete set of points

in R
d which is closed under addition and subtraction.

Definition 1.2 An integration lattice is a lattice that contains Z
d as a subset.

Definition 1.3 A lattice rule is a quadrature rule of the form (1.2) whose

quadrature points are all the points of an integration lattice that lie in the

half-open unit cube [0, 1)d.

It has been established in [53] that every lattice rule can be written in the

so-called “canonical form” as a multiple sum of the form

Qn,d(f) =
1

n

n1−1∑

k1=0

n2−1∑

k2=0

· · ·
nr−1∑

kr=0

f

({
k1z1

n1
+
k2z2

n2
+ · · · krzr

nr

})
, (1.3)

where n = n1 · · ·nr with ni+1|ni for every 1 ≤ i ≤ r − 1 and z1, z2, . . . , zr

are linearly independent integer vectors such that each vector zi has no factor

in common with ni for every 1 ≤ i ≤ r. In the canonical form (1.3), r is

known as the “rank” of the lattice rule and represents the minimal number

of sums required to write it down. In (1.3) and throughout the whole thesis,

the braces around a vector indicate that we take the fractional part of each

component of the vector. The canonical form of a lattice rule is not necessarily

the most convenient in practice. For instance, the intermediate-rank lattice

rules defined by (1.7) (see below) and studied in Chapter 3 are not written in

canonical form.

Apart from integrals of the form (1.1), in this thesis we also consider

weighted integrals over Euclidean space defined by

Id(f, ρ) =

∫

Rd

f(x)ρ(x) dx, (1.4)

where the weight function ρ(x) is a probability density. Hence ρ(x) ≥ 0 for

any x ∈ R
d and

∫
Rd ρ(x) dx = 1. Such integrals may also be approximated by

quasi-Monte Carlo rules of the form (1.2). As we shall see later, these integrals

are first transformed to equivalent integrals over the unit cube.
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1.1.1 Rank-1 lattice rules

When a lattice rule may be written by using a single sum (r = 1 in the

representation (1.3)), then we obtain a rank-1 lattice rule, whose form is given

by

Qn,d(f) =
1

n

n−1∑

k=0

f

({
kz

n

})
, (1.5)

where z is usually named the “generating vector” of the lattice rule. Usu-

ally, the generating vector is restricted to the set Zd
n, where Zn := {z : z ∈

{1, 2, . . . , n−1}, gcd(z, n) = 1}. Obviously, the number of elements of the set

Zn is given by |Zn| = ϕ(n), where ϕ is Euler’s totient function.

We will also consider “shifted rank-1 lattice rules”. These are quasi-Monte

Carlo rules of the form

Qn,d(f,∆) =
1

n

n−1∑

k=0

f

({
kz

n
+ ∆

})
, (1.6)

where ∆ ∈ [0, 1)d is the “shift”. Let us remark that the points of a shifted

lattice rule do not belong to an integration lattice in the sense of Definition 1.2.

As we shall see later, these shifted lattice rules are especially suited to integrals

over R
d.

1.1.2 Intermediate-rank lattice rules

In this thesis we will also consider lattice rules obtained by “copying” rank-1

lattice rules. If ℓ ≥ 1 is an integer satisfying gcd(ℓ, n) = 1 and r is a fixed

integer taken from the set {0, 1, . . . , d}, then we can define the following lattice

rule:

Q
(r)
N,d(f) =

1

ℓrn

ℓ−1∑

mr=0

. . .
ℓ−1∑

m1=0

n−1∑

k=0

f

({
kz

n
+

(m1, . . . , mr, 0, . . . , 0)

ℓ

})
. (1.7)

If r = 0 and/or ℓ = 1, then (1.7) becomes the rank-1 lattice rule (1.5). For

r ≥ 1, (1.7) is a rank-r lattice rule or “intermediate-rank lattice rule” having

N = ℓrn distinct points. As mentioned earlier, the lattice rule (1.7) is not

written in canonical form, since it has rank r but is expressed using r + 1
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sums. However, such an expression of an intermediate-rank lattice rule is

useful for our analysis in Chapter 3.

1.1.3 Korobov-type lattice rules

The first proof of the existence of “good” lattice rules was given by Korobov in

[32] in the situation when n is prime (later in our analysis on Korobov lattice

rules we make the same assumption). In [32], the generating vector z of a

lattice rule (1.5) was restricted to the so-called Korobov form, that is

z := (1, a, . . . , ad−1) (mod n), (1.8)

where a is a suitable integer chosen from Zn. The “Korobov-type lattice rules”

considered in this thesis are lattice rules of the form (1.5) or (1.7) with the

generating vector z of the form (1.8). Korobov’s results were later extended

by Niederreiter in [41] for any integer n > 0. Niederreiter’s result implies

essentially the existence of “good” lattice rules in the sense of having a bound

of O(n−1(lnn)d) for the “discrepancy”. The concept of “discrepancy” will be

introduced in the next section and treated in-depth throughout the thesis.

1.2 Weighted star discrepancy

In order to assess the goodness of a quasi-Monte Carlo method, there are

a number of criteria known in the specialised literature. These criteria are

discussed in general works on the theory of lattice rules such as [42] and [51].

One such criterion is based on the idea of “discrepancy”, which in simple terms

assesses the uniformity of the distribution of the quadrature points. In other

settings, the “discrepancy” is considered to be a worst-case error in certain

function spaces (as in Chapter 6). The concept of local discrepancy of a point

set in [0, 1]d can be described as the difference between the proportion of the

points that lie in a subset of [0, 1]d and the measure of that subset. More

formally, the local star discrepancy can be defined as follows:
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Definition 1.4 Let Pn = {t0, t1, . . . , tn−1} be a set of n quadrature points in

[0, 1]d. Then the local star discrepancy of the point set Pn at x ∈ [0, 1]d is

defined by

discr(x, Pn) :=
|[0,x) ∩ Pn|

n
−

d∏

j=1

xj , (1.9)

where x = (x1, x2, . . . , xd).

Definition 1.5 The unweighted star discrepancy of the point set Pn is defined

as

D∗(Pn) := sup
x∈[0,1]d

|discr(x, Pn)| . (1.10)

This is the star discrepancy that arises in connection with the well-known

Koksma-Hlawka inequality:

∣∣∣∣∣
1

n

n−1∑

k=0

f(tk) − Id(f)

∣∣∣∣∣ ≤ D∗(Pn)VHK(f), (1.11)

where VHK(f) is the variation in the sense of Hardy and Krause. More details

on the Koksma-Hlawka inequality can be found in [26] and [64] or in more

general works such as [34] or [42]. Nevertheless, let us remark that the right-

hand-side of (1.11) involves two quantities: one dependent on the point set and

independent of the function (the discrepancy) and the second depending on

the function but independent of the point set (the variation). In general terms,

the research reported in the thesis is focused on the concept of “discrepancy”

and the central idea consists of generating lattice rules having a “low weighted

discrepancy”. The expression of the discrepancy may have different forms

depending on the particular settings used in each chapter and these different

expressions will be analysed in-depth throughout the thesis.

In integrals such as (1.1) or (1.4), it is possible that variables or groups of

variables are of different importance. Such an assumption leads to the idea

of a weight associated with a variable or group of variables, which in turn

leads to the concept of “weighted discrepancy”. Throughout the thesis, we

will establish inequalities of the form (1.11), in which the discrepancy from

the right-hand-side of (1.11) is replaced by a weighted discrepancy. Below,
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we explain briefly the weighted settings considered in the thesis and give an

example of a Koksma-Hlawka type inequality.

Let’s consider an arbitrary subset u of D := {1, 2, . . . , d} and let’s denote

by γ
u

the weight associated with the set u. Throughout the whole thesis, the

weights are assumed to be non-negative numbers. Such “weights” has been

first introduced in [57], where it was assumed that the dependence of functions

on successive variables is increasingly limited. Assuming that the variables are

ordered so that the j-th variable is the j-th most important, we can consider a

sequence of weights {γj}∞j=1 such that γ1 ≥ γ2 ≥ · · · γj ≥ · · · . This then leads

to

γ
u

=
∏

j∈u

γj. (1.12)

These weights are known as “product weights” and, in [57] it was also assumed

that γ1 = 1.

In other applications it is the relative importance of distinct group of vari-

ables that matters and this leads to the concept of “general weights”. Such a

model is the so-called “ANOVA decomposition” of functions. The expansion

f(x) =
∑

u⊆D

fu(x)

is an ANOVA decomposition of f , where each term is given by

fu(x) :=

∫

[0,1)d−|u|

f(x) dxD\u −
∑

g⊂u

fg(x),

with the last sum taken over strict subsets of u. It can then be checked that

f∅ =
∫
[0,1)d f(x) dx and that for each fu, we have

∫ 1

0
fu(x) dxj = 0 if j ∈ u.

The term “ANOVA” stands for “analysis of variance” and the technique is

widely used in statistics and in some financial applications (see [60] for further

details). As a simple example, let’s consider the function

f(x1, x2, x3) = 4x3
1 + x2 cos(πx3).

The ANOVA terms of this function are f∅ = 1, f{1}(x) = 4x3
1 − 1, f{3}(x) =

cos(πx3)/2, f{2,3}(x) = x2 cos(πx3)− cos(πx3)/2, while all the other terms are

zero.
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In [60], the authors remarked that functions deriving from finance are often

of a low effective dimension in the sense that these functions can be well

approximated by their low-order ANOVA terms. In the ANOVA expansion of

f , each term fu describes the interaction between variables that belong to u,

since it only depends on these variables. Also in [60], the authors observed

that the importance of each dimension is naturally weighted. For instance, it

might be the case that only interactions between two variables are important,

but those involving more than two variables can be ignored. In such a case it is

desirable to introduce so-called “general weights” which describe the relative

importance of each distinct group of variables.

Throughout the thesis, we will assume that the weights are either “prod-

uct” or “general”, which is in line with the usual assumptions made in the

specialised literature (details can be found in many research papers including

but not limited to [9], [20], [21], [22], [25], [29], [35], [36], [37], [38], [52], [56],

[61], [62] as well as in [48], [49], [50] and [47]). The concept of “weighted star

discrepancy” is based on the discrepancy defined by (1.10) and will be dis-

cussed in detail during the following chapters. For instance in Chapter 2, our

research will be concentrated on the following weighted star discrepancy:

D∗
n,γ(Pn) := max

u⊆D
γ

u
sup

xu∈[0,1]|u|
|discr((xu, 1), Pn)| ,

where by xu we denote the vector from [0, 1]|u| containing the components of

x whose indices belong to u, while by (xu, 1) we mean the vector from [0, 1]d

whose j-th component is xj if j ∈ u and 1 if j 6∈ u. This weighted star

discrepancy will occur in the following Koksma-Hlawka type inequality (see

for instance [29] and [48]):

|Qn,d(f) − Id(f)| ≤
(

max
u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr((xu, 1), Pn)|

)

×
(
∑

u⊆D

γ−1
u

∫

[0,1]|u|

∣∣∣∣
∂|u|

∂xu

f((xu, 1))

∣∣∣∣ dxu

)
. (1.13)

As mentioned earlier, further details on this inequality and the associated

weighted star discrepancy will be presented in Chapter 2.
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1.3 Tractability and strong tractability of nu-

merical multiple integration

In the previous section, we saw that if f is a function with integrable partial

mixed first derivatives, then the quadrature error |Qn,d(f) − Id(f)| produced

by a quasi-Monte Carlo rule of the form (1.2) can be bounded by (1.13). We

turn our attention now to the concepts of tractability and strong tractability,

which have been studied in many research papers. These concepts are based

on the minimal number of function evaluations, say n(ε), required to reduce

the initial error by a factor ε ∈ (0, 1). By “initial error”, we normally mean

the true value of the integral, i.e. the error obtained when the function is not

sampled. Formally, tractability and strong tractability are defined as follows:

Definition 1.6 The integration problem is said to be tractable if there exists a

quadrature rule of the form (1.2) such that n(ε) can be bounded by a polynomial

in ε−1 and d, that is n(ε) ≤ Cε−pdq for some positive constant C independent

of d and n and some non-negative p and q.

Definition 1.7 Strong tractability means that n(ε) ≤ Cε−p for some positive

constant C independent of d and n and some non-negative p.

p and q are named the ε-exponent and the d-exponent of tractability respec-

tively. If q = 0 then the minimal number p satisfying n(ε) ≤ Cε−p is named

the ε-exponent of strong tractability.

In a non-weighted setting all variables have the same importance and this

leads to an exponential increase of n(ε) with the dimension d. This is the so-

named “curse of dimensionality” and leads to intractability of the integration

problem. By the other hand, we see that if n(ε) ≤ Cε−p and the constant C is

independent of the dimension, then n(ε) is independent of the dimension and

thus the curse of dimensionality is broken.

In this thesis we shall establish sufficient conditions for tractability and

strong tractability under certain assumptions. Such conditions on tractabil-
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ity/strong tractability in a weighted context have been studied in many re-

search papers including [9], [20], [21], [22], [24], [56], or [57]. The general

result we are aiming for, is either to obtain bounds on the discrepancy for

which the dependency on the dimension is at most polynomial (this ensures

tractability), or bounds on the discrepancy that are independent of the dimen-

sion. The latter ensures strong tractability of the integration problem.

1.4 The structure of the thesis

Throughout the thesis, we construct lattice rules for the approximation of

integrals given by (1.1) and (1.4). The generating vector of these lattice

rules may be constructed by using the so-called “component-by-component”

(CBC) technique and this technique will be used except of Chapter 4, where

we consider Korobov-type lattice rules. The CBC technique is essentially a

“greedy”-type algorithm in which each component is obtained after succes-

sive 1-dimensional searches. Basically, the generating vector in dimension, say

d + 1, will be obtained without altering the first existing d-components. At

each step m = 1, 2, . . . , d, the value chosen for the component zm will be the

one that minimises a certain measure of error.

The thesis establishes results of a theoretical nature and as a whole, may

be divided into two major parts. Chapters 2–5 are dedicated to lattice rules

for integrals over the unit cube given by (1.1), while in Chapters 6–7 we study

lattice rules suitable for integrals over Euclidean space given by (1.4).

In general, every chapter is built up on a template that can be described

as follows:

• First, we express the error either via a Koksma-Hlawka type inequality

(Chapters 2–5 and 7) or as a worst-case error in a reproducing kernel

Hilbert space (Chapter 6).

• Then we define a certain weighted discrepancy. Since weighted discrep-

ancies are in general very hard to compute, we instead consider upper
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bounds on the specific discrepancies used in each chapter. These bounds

are in general obtained by refining known results in an unweighted setting

to the specific weights chosen in each chapter.

• Next, we prove the existence of lattice rules having low bounds on the

weighted discrepancy. The existence results are proved by using an av-

eraging argument.

• With the exception of Chapter 4, we then construct lattice rules exten-

sible in dimension by using the component-by-component technique and

prove that lattice rules constructed by using this technique satisfy bounds

for the weighted discrepancy that have the same order of magnitude as

established by the existence results.

• Then we establish tractability and/or strong tractability results by im-

posing further conditions over the weights. When these additional con-

ditions lead to bounds on the weighted discrepancy that are independent

of the dimension, then we ensure strong tractability.

• Attention is also given to the analysis of the computational costs incurred

by the construction of lattice rules.

For integrals over the unit cube, much of the earlier work was done by em-

ploying a L2 weighted discrepancy as a criterion of goodness (see for instance

[9], [35], [36], [37], or [52]). In the mentioned papers, the integrand was as-

sumed to belong to certain reproducing kernel Hilbert spaces such as weighted

Korobov spaces of periodic functions or weighted Sobolev spaces. Often in

these spaces it was required that the integrand has square integrable mixed

first derivatives. From the bound given by (1.13), we see that the integrand has

the weaker requirement of integrable mixed first derivatives. In general terms,

the approach used in Chapters 2–5 has the following significant advantages:

• The weighted star discrepancy from (1.13) can be viewed as a L∞ version

of the L2 discrepancy. For such a version, results are in general much
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harder to obtain than for corresponding L2 versions of the discrepancy.

However, in a product weighted setting, once we obtain results for the

L∞ weighted star discrepancy, subsequent results for the Lp weighted

discrepancy can be deduced for any p ≥ 1 (as it is the case for the

settings used in Chapters 3 and 5).

• There is no need for a periodicity assumption for the integrand.

• The integrand is of lesser smoothness than usual integrands in the re-

producing kernel Hilbert spaces mentioned earlier.

In Chapter 2, we construct rank-1 lattice rules of the form (1.5) with a

prime number of points and under the assumption that the weights are gen-

eral. As a measure of goodness, we use the weighted star discrepancy arising

from (1.13) and mentioned in Section 1.2. We construct the generating vector

of these lattice rules such that the corresponding weighted star discrepancy is

small. We also give special attention to some particular classes of weights and

analyse in detail the computational costs incurred by the construction. The

material in this chapter is based on the coauthored paper [48]. New contribu-

tions in this chapter are given by Lemma 2.4 (due to Stephen Joe), Lemma 2.5,

the existence result of Theorem 2.6 followed by the Corollaries 2.7 and 2.8, as

well as the construction result (and probably the central result of this chap-

ter) of Theorem 2.11 and Corollaries 2.12, 2.13, 2.14 and 2.15. Also new is

the strong tractability result of Theorem 2.16, while Section 2.7 represents an

extension of the computational costs analysed in papers such as [6], [9] and

[44] adapted to the specific set of hypotheses used in this chapter.

In Chapter 3, we consider intermediate-rank lattice rules of the form (1.7),

where we also assume that n is prime, but the weights have a product form

(see (1.12)). As in Chapter 2, the generating vector of these lattice rules will

also be constructed using the CBC technique. The results of this chapter are

based on the coauthored paper [49]. New results are the existence results of

Theorem 3.2 and Corollary 3.3 and the construction results of Theorem 3.5
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and Corollary 3.6. Known results are extended by Lemma 3.1 and Theorem 3.4

as also mentioned within this chapter. The computational costs analysed in

Section 3.5 are based on the results from Appendix A, which at their turn are

an extension of the results from [31].

Chapter 4 deals with the lattice rules considered in the previous two chap-

ters, that is, rank-1 lattice rules with general weights and intermediate-rank

lattice rules with product weights, but under the assumption that the gener-

ating vector is of the Korobov form (1.8). We prove that Korobov-type lattice

rules having a low weighted star discrepancy do exist and thus, the results

in this chapter will refine the results obtained in Chapters 2 and 3. We also

remark that the results from Chapter 4 are new and have not appeared any-

where else in the specialised literature under the assumptions used within this

chapter. Original contributions are given by Theorem 4.2 and Corollaries 4.3,

4.4 and 4.5, as well as the results from Theorems 4.6, 4.7 and 4.8.

In many research papers the number of lattice points n was assumed to

be prime. This assumption presents some advantages in the sense that the

whole analysis is significantly simplified. Since there aren’t too many known

results for the non-prime case in the specialised literature, in Chapter 5 we

contribute to filling such a gap. We consider rank-1 lattice rules having a

non-prime number of points with the weights of a product form. By using

quite laborious number theory techniques and results, we prove that we can

construct generating vectors for these lattice rules having a low weighted star

discrepancy. In some sense, this chapter extends the results from [29] to the

non-prime case. The material in this chapter is based on the coauthored

paper [50]. New results arising from this chapter are stated and proved in

Theorems 5.1 and 5.4, Corollaries 5.2 and 5.5 and Lemma 5.3.

Chapters 6 and 7 deal with weighted integrals of the form (1.4) over Eu-

clidean space. The fact that the domain is unbounded raises additional diffi-

culties. First of all, it is not easy to establish a suitable criterion of goodness to

construct quadrature points suitable for the approximation of such integrals.
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One such criterion based on the “sphere packing density” (some details are

given in Chapter 6) was proposed in [54] or [51, Chapter 9.3]. However this

criterion is difficult to use due to a lack of practical algorithms. Instead, we

propose in Chapter 6 a criterion based on a worst-case error in reproducing ker-

nel Hilbert spaces with the kernel involving the Fourier transform of functions.

It is common to transform integrands over unbounded regions to integrals over

the unit cube and then employ the techniques used over the unit cube. How-

ever it may be possible that the transformed integrand is unbounded near the

boundary and for this reason, we use shifted lattice rules of the form (1.6)

to deal with such integrands. By using a product weighted setting, we prove

that good shifted lattice rules suitable for these integrands can be constructed

using a CBC technique. Under a product weighted assumption, similar results

were previously established in [38] and [62]. We also test the merit of the

lattice rules constructed in this chapter by performing numerical experiments.

These numerical experiments suggest that in practice, we may achieve a better

convergence than the theoretical O(n−1/2). We also remark that a significant

part of this chapter consists of new results, especially in Sections 6.5 and 6.6.

Original contributions are the results from Theorems 6.6, 6.7 and Corollary 6.8

as well as the numerical experiments of Section 6.6. Theorems 6.4, 6.5 and

6.9 are rather extensions of known results. We should also mention that the

results from Appendix B are also new and technically speaking, should have

been inserted in Chapter 6. However, because the arguments of Appendix B

are based on some laborious calculations with univariate functions and we

feel that these results would have disturbed the natural flow of ideas from

Chapter 6, we have preferred to write an Appendix containing these results.

In Chapter 7, we also consider shifted lattice rules of the form (1.6) but

in a general weighted setting and by employing a “generalised weighted star

discrepancy” as a criterion of goodness. In such a setting there aren’t any

explicit constructions to date for integrals over R
d. The measure of discrepancy

considered in this chapter corresponds to the weighted star discrepancy over
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the unit cube used in Chapter 2. We will prove that for such a setting, we can

construct shifted lattice rules that achieve the optimal convergence rate. This

convergence rate has the same order of magnitude as the rate of convergence

obtained for integrals over the unit cube. The results in Chapter 7 are based

on the paper [47] and original contributions consist of the existence result of

Theorem 7.1 followed by Corollaries 7.2 and 7.3, as well as the construction

results stated and proved by Theorem 7.4 and Corollary 7.5.

Some of the achievements provided by the results from Chapters 6 and 7

could be briefly summarised as follows:

• Allow the approximation of integrands over unbounded regions in re-

producing kernel Hilbert spaces, with the kernel based on the Fourier

transforms of functions.

• Allow the construction of shifted lattice rules under both a product

weighted and a general weighted assumption.

• An improved convergence order of O(n−1+δ) for any δ > 0 is obtained for

the weighted discrepancy from Chapter 7. This convergence is probably

optimal for any constructive quasi-Monte Carlo method and is better

than the typical O(n−1/2) expected from Monte-Carlo methods.

The thesis ends with a brief conclusion indicating the main achievements

and pointing out to future research directions.



Chapter 2

Good rank-1 lattice rules based

on the general weighted star

discrepancy

In this chapter, we study the problem of constructing rank-1 lattice rules

having good bounds on the “weighted star discrepancy” with general non-

negative weights. In order to show the existence of such good lattice rules, we

use an averaging argument and a similar argument is used later to prove that

these lattice rules may be obtained using a component-by-component (CBC)

construction of the generating vector. Under appropriate conditions on the

weights, these lattice rules satisfy strong tractability bounds on the weighted

star discrepancy. Particular classes of weights known as “order-dependent”

and “finite-order” weights are then considered and we show that the cost of

the construction can be very much reduced for these two classes of weights.

2.1 Introduction

Integrals over the d-dimensional unit cube given by

Id(f) =

∫

[0,1]d
f(x) dx,
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may be approximated by rank-1 lattice rules. These are quadrature rules of

the form (see also (1.5))

Qn,d(f) =
1

n

n−1∑

k=0

f

({
kz

n

})
,

where z ∈ Z
d is the generating vector whose components are assumed to be

relatively prime with n. As mentioned in the first chapter, the braces around

a vector indicate that we only take the fractional part of each component of

the vector.

Many research papers have been concerned with finding “good” lattice

rules. In order to compare the quality of different lattice rules, some criterion

needs to be chosen. As mentioned in the previous chapter, a number of criteria

are based on the idea of “discrepancy”. Such discrepancy measures have been

considered in [17], [20], [28], [29] and [41], or in a more general work such as

[42]. A classic example is the star discrepancy which appears in the Koksma-

Hlawka inequality (see (1.11)). In an unweighted setting, the existence of

d-dimensional rank-1 lattice rules having a bound on the star discrepancy of

O
(
n−1(lnn)d

)
with the implied constant depending only on d, was proved in

[41]. A component-by-component (CBC) construction of the generating vector

for such rules was given in [28].

In this chapter we are interested in constructing rank-1 lattice rules by

using a weighted star discrepancy as a criterion of goodness. In [29] it was

shown that lattice rules with good bounds on the weighted star discrepancy do

exist and can be obtained by using a CBC construction of z in the situation

when n is prime and the weights are of a “product” form (see (1.12)). In

Sections 2.3 and 2.4 we extend these results to the general situation where the

weights do not necessarily have this product form. Such general weights have

been first considered in [9], where it was shown that good lattice rules can

be obtained for integrands belonging to weighted Korobov spaces. In these

spaces the integrands were assumed to be periodic. For the general weighted

star discrepancy considered here, the functions belonging to the associated



17

function spaces have no such periodicity assumption.

In [21] it is shown that weighted integrals over possibly unbounded domains

may be approximated by suitably transforming points in [0, 1]d. As we shall

explain in Section 2.2, the CBC construction presented here will lead to lattice

rules that are appropriate for such weighted integrals. Further details on the

construction of lattices for integrals over unbounded regions will be given in

Chapters 6 and 7. In Chapter 7, we will construct shifted rank-1 lattice rules

(see (1.6)) for integrals over Euclidean space under the same assumptions on

the weights as in the present chapter.

There are some applications in which it is the low dimensional projections

that are the most important (for instance the ANOVA decomposition men-

tioned in Chapter 1). In such cases, it is useful to introduce general weights

that allow us to model the relative importance of each group of variables. As

indicated in [9], weights which are “order-dependent” and/or “finite-order”

often provide reasonable assumptions which also present the advantage that

the complexity of the CBC construction is drastically reduced. The definitions

of these particular classes of weights and the analysis of their computational

costs for the CBC construction are given in Sections 2.5 and 2.7.

2.2 General weighted star discrepancy

Let us denote by u an arbitrary non-empty subset of D = {1, 2, . . . , d} and let

us mention that for the rest of the thesis, any subset of D will be considered

as being non-empty unless otherwise indicated. Recall that for the vector

x ∈ [0, 1]d, xu denotes the vector from [0, 1]|u| containing the components of

x whose indices belong to u, while by (xu, 1) we mean the vector from [0, 1]d

whose j-th component is xj if j ∈ u and 1 if j 6∈ u. If Pn denotes the set

of quadrature points, then Zaremba’s identity (see for instance [57] or [64])

yields:

Qn,d(f)−Id(f) =
∑

u⊆D

(−1)|u|
∫

[0,1]|u|
discr((xu, 1), Pn)

∂|u|

∂xu

f((xu, 1)) dxu. (2.1)
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We recall that the local star discrepancy discr((xu, 1) is as introduced by Defi-

nition 1.4. As an aside, we mention that Zaremba’s identity actually represents

an extension to the multidimensional case of the formula of integration by parts

of Riemann-Stieltjes integrals.

Now let us introduce a set of non-negative weights {γ
u
}u⊆D and consider

γ
u

as the weight associated with the non-empty set u. We also assume that

the weights are independent of the dimension d. Using (2.1) we see that we

can write

Qn,d(f) − Id(f) =
∑

u⊆D

(−1)|u|γ
u

∫

[0,1]|u|
discr((xu, 1), Pn)γ−1

u

∂|u|

∂xu

f((xu, 1)) dxu.

Applying Hölder’s inequality for integrals and sums, we obtain the inequality

(1.13) mentioned in Chapter 1, that is

|Qn,d(f) − Id(f)| ≤
(

max
u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr((xu, 1), Pn)|

)

×
(
∑

u⊆D

γ−1
u

∫

[0,1]|u|

∣∣∣∣
∂|u|

∂xu

f((xu, 1))

∣∣∣∣ dxu

)
.

Thus the weighted star discrepancy D∗
n,γ of the point set Pn may be defined

by

D∗
n,γ(Pn) := max

u⊆D
γ

u
sup

xu∈[0,1]|u|
|discr((xu, 1), Pn)| . (2.2)

As our interest is in rank-1 lattice rules, from now on we shall assume that Pn

is the point set {{kz/n}, 0 ≤ k ≤ n − 1}. Then we can denote D∗
n,γ(z) :=

D∗
n,γ(Pn).

Let’s remark that some of these formulae make sense only for strictly pos-

itive weights. If there are some sets u ⊆ D for which γ
u

= 0, then we adopt

the convention that 0 · ∞ = 0 (the same convention has been used in [9]).

As mentioned earlier, there are applications for which the lower dimensional

projections are the most important. This suggests that the weight associated

with a set should not be bigger than the weights associated with any of its

subsets. So we shall make the assumption that for any non-empty subset

u ⊆ D, we have

γ
u
≤ γ

g
for any ∅ 6= g ⊆ u. (2.3)
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The next section presents bounds for the general weighted star discrepancy

(2.2). This will allow us to prove the existence of good rank-1 lattice rules in

the sense of having low bounds on the weighted star discrepancy, while in

Section 2.4 we present a CBC construction of the generating vector z of these

lattice rules.

2.3 Bounds on the general weighted star dis-

crepancy

We start this section by recalling further general results from the theory of

lattice rules (see [42] and [51] for more details).

Definition 2.1 If L is a lattice in R
d, then its dual lattice is defined by

L⊥ := {h ∈ R
d : h · x ∈ Z, ∀x ∈ L},

where · denotes the usual inner product of vectors.

If L is an integration lattice (see Definition 1.2), then its dual is as given by

Definition 2.1 but consisting only of those h in the dual that belong to Z
d.

Since the points of a rank-1 lattice rules are given by {{kz/n} : 0 ≤ k ≤ n−1},

then the associated integration lattice has the form (see also [51])

L = {{kz/n} + y : 0 ≤ k ≤ n− 1,y ∈ Z
d}.

Now we see that for the condition h · x ∈ Z to hold for every x ∈ L, we need

h · z to be a multiple of n. Hence for this particular case

L⊥ = {h ∈ Z
d : h · z ≡ 0 (mod n)}. (2.4)

Consider now a function g defined on [0, 1]d having the absolutely convergent

Fourier series representation

g(y) =
∑

h∈Zd

ĝ(h)e2πih·y, y ∈ [0, 1]d,
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where the ĝ(h) are the usual Fourier coefficients given by

ĝ(h) =

∫

[0,1]d
e−2πih·yg(y) dy.

One of the main results for the subsequent error analysis is based on [51,

Theorem 2.8]. For completeness, we present this result next:

Theorem 2.1 Let t0, t1, . . . , tn−1 be the points of a lattice rule and let L be

the associated integration lattice. Consider the d-dimensional lattice rule given

by

Qn,d(g) =
1

n

n−1∑

k=0

g(tk).

If the function g has an absolutely convergent Fourier series representation,

then the quadrature error is given by

Qn,d(g) − Id(g) =
∑′

h∈L⊥

ĝ(h), (2.5)

where the ′ in the sum indicates we omit the h = 0 term. For rank-1 lattice

rules, (2.5) becomes

Qn,d(g) − Id(g) =
∑′

h·z≡0 ( mod n)

ĝ(h). (2.6)

Proof. The proof of this result is based on [42, Lemma 5.21] or [51, Lemma 2.7].

These results state that if t0, t1, . . . , tn−1 are the points of a lattice rule, then

1

n

n−1∑

k=0

e2πih·tk =





1, h ∈ L⊥,

0, h 6∈ L⊥.
(2.7)

It will follow that

Qn,d(g) =
∑

h∈Zd

ĝ(h)Qn,d

(
e2πih·tk

)
.

From Id(g) = ĝ(0) and (2.7), the desired result follows. For rank-1 lattice

rules, (2.6) follows immediately from (2.4). �

Let us define now

E∗
n,s := {h ∈ Z

s, h 6= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ s}, (2.8)
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for any positive integer s. For a fixed integer m independent of n, let’s denote

N = nm and consider

RN (z, u) =
1

n

n−1∑

k=0

∏

j∈u



1 +
∑′

−N/2<h≤N/2

e2πihkzj/n

|h|



− 1. (2.9)

It is easy to see that RN (z, u) represents the quadrature error produced by

applying the rank-1 lattice rule (1.5) to the integrand

gu(x) =
∏

j∈u


1 +

∑′

−N/2<h≤N/2

e2πihxj

|h|


 .

This function has the Fourier coefficients given by ĝu(h) =
∏

j∈u

1
max(1,|hj |)

, if

h ∈ E∗
N,|u| and 0 otherwise. Hence, it follows from (2.6) that we may write

RN (z, u) as

RN (z, u) :=
∑

h∈E∗
N,|u|

h·zu≡0 ( mod n)

∏

j∈u

1

max(1, |hj|)
. (2.10)

Let us remark that throughout this chapter, we take N = n in (2.9) and (2.10).

An analysis requiring N 6= n will be used later in Chapter 7.

At this stage, we mention that it is very hard to compute the weighted

star discrepancy as given by (2.2). Instead, we establish upper bounds on

the discrepancy and, in order to obtain such bounds, we make use of some

results fully stated and proved by Niederreiter in [42] for the unweighted star

discrepancy (see Definition 1.5). Since throughout the thesis we use Nieder-

reiter’s results several times, we present them below. The first result is [42,

Theorem 3.10], which states the following:

Theorem 2.2 Let M ≥ 2 be an integer and y0,y1, . . . ,yN−1 ⊆ Z
s. If PN is

the set consisting of the fractional parts of M−1yk for all 0 ≤ k ≤ N − 1, then

D∗(PN) ≤ 1 −
(

1 − 1

M

)s

+
∑

h∈E∗
M,s

1

r(h,M)

∣∣∣∣∣
1

N

N−1∑

k=0

e2πih·yk/M

∣∣∣∣∣ ,

where D∗(PN) is the unweighted star discrepancy introduced by Definition 1.5,

while r(h,M) =
∏s

j=1 r(hj,M) with

r(h,M) =





M sin π|h|
M
, if h 6= 0

1, otherwise.
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An almost straightforward consequence of this result is [42, Theorem 5.6],

which follows from sin πt ≥ 2t for any 0 ≤ t ≤ 1
2

and by taking M = N = n

in Theorem 2.2. This result is given next.

Theorem 2.3 If Pn is the point set of a rank-1 lattice rule with n ≥ 2 distinct

points and generating vector z, then

D∗(Pn) ≤ 1 −
(

1 − 1

n

)s

+
1

2

∑

h∈E∗
n,s

h·z≡0 ( mod n)

s∏

j=1

1

max(1, |hj|)
.

Using now Theorem 2.3, we obtain

sup
xu∈[0,1]|u|

|discr((xu, 1), Pn)| ≤ 1 − (1 − 1/n)|u| +
Rn(z, u)

2
, (2.11)

where Rn(z, u) is given by (2.10) with N = n. Assuming that gcd(zj , n) = 1

for 1 ≤ j ≤ d, then zu is the generating vector for a |u|-dimensional lattice rule

having n distinct points. Recalling that the general weighted star discrepancy

defined by (2.2) was also denoted by D∗
n,γ(z), we see from (2.11) that we obtain

the following inequality:

D∗
n,γ(z) ≤ max

u⊆D
γ

u

(
1 − (1 − 1/n)|u| +

Rn(z, u)

2

)
. (2.12)

As an aside, let us remark that the bound in (2.11) also holds for the

extreme discrepancy of [42]. This extreme discrepancy is based on the local

discrepancy

discr(w,x, Pn) :=
|[w,x) ∩ Pn|

n
−

d∏

j=1

(xj − wj),

where 0 ≤ wj ≤ xj ≤ 1, 1 ≤ j ≤ d. The local star discrepancy of (1.9) is the

special case when wj = 0. In [21] and [22] it is shown that it is appropriate

to approximate weighted integrals of the form (1.4) over possibly unbounded

domains by suitably transforming points from [0, 1]d to R
d (such a transfor-

mation will be presented in Chapter 6). These points in the unit cube have

what is termed a “low weighted L∞ unanchored discrepancy”, which is nothing

but the weighted version of the extreme discrepancy of [42]. It follows that

the CBC construction presented here will produce lattice rules that also have



23

a low weighted L∞ unanchored discrepancy. So such lattice rules are appro-

priate for weighted integrals over unbounded domains. Further details and a

construction of shifted lattice rules for integrals over Euclidean space will be

given in Chapters 6 and 7.

Bernoulli’s inequality or a simple direct calculation yields

(1 − 1/n)|u| ≥ 1 − |u|
n

and so 1 − (1 − 1/n)|u| ≤ |u|
n
.

This then leads to

max
u⊆D

γ
u

(
1 − (1 − 1/n)|u|

)
≤ 1

n
max
u⊆D

|u|γ
u
. (2.13)

Now by defining

Ck(z) :=
∑′

−N/2<h≤N/2

e2πihkz/n

|h| , 0 ≤ k ≤ n− 1,

and using the expansion

∏

j∈u

(1 + aj) = 1 +
∑

g⊆u

∏

j∈g

aj , (2.14)

we have from (2.9) that

RN(z, u) =
1

n

n−1∑

k=0

∏

j∈u

[1 + Ck(zj)] − 1 =
1

n

n−1∑

k=0

∑

g⊆u

∏

j∈g

Ck(zj)

=
∑

g⊆u

1

n

n−1∑

k=0

∏

j∈g

Ck(zj) =
∑

g⊆u

R̃N (z, g),

where

R̃N(z, g) :=
1

n

n−1∑

k=0

∏

j∈g




∑′

−N/2<h≤N/2

e2πihkzj/n

|h|


 . (2.15)

For later use, we note that Theorem 2.1 and the arguments that lead to (2.10)

show that with

Ẽ∗
n,s := {h ∈ Z

s : −n/2 < hj ≤ n/2, hj 6= 0, 1 ≤ j ≤ s}, (2.16)

we may write R̃N(z, g) as

R̃N (z, g) =
∑

h∈ eE∗
N,|g|

h·zg≡0 ( mod n)

∏

j∈g

1

|hj|
≥ 0. (2.17)
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We see now that for any u ⊆ D, we can write

γ
u
RN(z, u) = γ

u

∑

g⊆u

R̃N(z, g).

Under the assumption given by (2.3), we obtain

γ
u
RN (z, u) ≤

∑

g⊆u

γ
g
R̃N(z, g) ≤

∑

g⊆D

γ
g
R̃N (z, g).

As a consequence, we then conclude that

max
u⊆D

γ
u
RN(z, u) ≤

∑

u⊆D

γ
u
R̃N (z, u). (2.18)

For N = n, the inequality (2.18) combined with (2.12) and (2.13) yields the

following result:

Lemma 2.4 If the weights γ
u

satisfy (2.3) for any u ⊆ D, then

D∗
n,γ(z) ≤ 1

n
max
u⊆D

|u|γ
u
+

1

2
e2n,d(z),

where

e2n,d(z) :=
∑

u⊆D

γ
u
R̃n(z, u). (2.19)

Let us mention that a similar result with N 6= n will be deduced later in

Chapter 7.

Let us also remark that throughout the thesis, the quantity e2n,d(z) will have

several different expressions. Since these quantities have related meanings, we

prefer to use the same notation for consistency purposes.

Lemma 2.4 shows that we can analyse the weighted star discrepancy by

considering the quantity e2n,d(z). Let us also remark that in other settings this

quantity represents a square worst-case error (as in Chapter 6 or [9]). This

justifies the use of the exponent in the notation of e2n,d(z).

For the rest of the chapter, we shall assume that n is prime. Because we

only consider the fractional part of each component of kz/n, we see that we

may take each component of the generating vector z as belonging to the set

Zn = {1, 2, . . . , n− 1}. We can obtain bounds on e2n,d(z) for the case in which
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n is prime by obtaining an expression for a certain mean value of e2n,d(z). The

mean is taken over all integer vectors z ∈ Zd
n and is defined by

Mn,d,γ :=
1

(n− 1)d

∑

z∈Zd
n

e2n,d(z).

Before finding an expression for the mean, we need the following auxiliary

result (this will also be useful in Chapter 3 and Chapter 7):

Lemma 2.5 Let n be prime and m be a fixed integer with N = nm. If we

denote

TN(k) =
1

n− 1

n−1∑

z=1

∑′

−N
2

<h≤N
2

e2πihkz/n

|h| , (2.20)

where 1 ≤ k ≤ n− 1, then

TN(k) =
Sm − SN

n− 1
, (2.21)

where

Sn :=
∑′

−n/2<h≤n/2

1

|h| .

If N = n, then

Tn(k) = − Sn

n− 1
.

Proof. By separating out the terms for which h ≡ 0 (mod n) and replacing h

with nq for such terms, we obtain

TN (k) =
1

n− 1




n−1∑

z=1

∑′

−N
2

<h≤N
2

h≡0 ( mod n)

1

|h| +
n−1∑

z=1

∑′

−N
2

<h≤N
2

h 6≡0 ( mod n)

e2πihkz/n

|h|




=
1

n− 1




n−1∑

z=1

∑′

−N
2

<nq≤N
2

1

n|q| +
∑′

−N
2

<h≤N
2

h 6≡0 ( mod n)

1

|h|

n−1∑

z=1

(
e2πihk/n

)z


 .

Since n is prime and in the second sum hk 6≡ 0 (modn), it is easy to check

that
n−1∑

z=1

(
e2πihk/n

)z
= −1. (2.22)
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Indeed, we can write

n−1∑

z=1

(
e2πihk/n

)z
= −1 +

n−1∑

z=0

(
e2πihk/n

)z
= −1 +

e2πihk − 1

e2πihk/n − 1
= −1.

Replacing in the expression for TN (k) we obtain:

TN(k) =
1

n
SN/n − 1

n− 1

∑′

−N
2

<h≤N
2

h 6≡0 ( mod n)

1

|h| .

The last term of the sum may be written as:

∑′

−N
2

<h≤N
2

h 6≡0 ( mod n)

1

|h| =
∑′

−N
2

<h≤N
2

1

|h| −
∑′

−N
2

<nq≤N
2

1

n|q|

= SN − 1

n

∑′

− N
2n

<q≤ N
2n

1

|q| = SN − 1

n
SN/n.

Thus we obtain:

TN (k) =
SN/n

n
− 1

n− 1

(
SN − 1

n
SN/n

)
=
SN/n − SN

n− 1
=
Sm − SN

n− 1
.

In the particular case when N = n, then Sm = S1 = 0, and the second part

follows immediately. �

An expression for the mean is given in the next theorem:

Theorem 2.6 Let n be prime. Then

Mn,d,γ =
1

n

∑

u⊆D

γ
u
S |u|

n +
n− 1

n

∑

u⊆D

γ
u

(
− Sn

n− 1

)|u|

,

where Sn is as defined in Lemma 2.5.

Proof. From the definition of the mean, (2.15) and (2.19), we have

Mn,d,γ =
1

(n− 1)d

∑

z∈Zd
n

∑

u⊆D

γ
u


1

n

n−1∑

k=0

∏

j∈u




∑′

−n/2<h≤n/2

e2πihkzj/n

|h|




 .

By separating out the k = 0 term, we obtain

Mn,d,γ =
1

n

∑

u⊆D

γ
u
S |u|

n + Tn,d,γ, (2.23)
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where

Tn,d,γ =
1

(n− 1)d

∑

z∈Zd
n

∑

u⊆D

γ
u



 1

n

n−1∑

k=1

∏

j∈u




∑′

−n/2<h≤n/2

e2πihkzj/n

|h|









=
1

n

∑

u⊆D

γ
u




n−1∑

k=1

∏

j∈u



 1

n− 1

n−1∑

zj=1

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|







 .

It follows from Lemma 2.5 that

1

n− 1

n−1∑

zj=1

∑′

−n/2<h≤n/2

e2πihkzj/n

|h| = Tn(k) = − Sn

n− 1
,

for any 1 ≤ k ≤ n− 1, which leads to

Tn,d,γ =
1

n

∑

u⊆D

γ
u

n−1∑

k=1

(
− Sn

n− 1

)|u|

=
n− 1

n

∑

u⊆D

γ
u

(
− Sn

n− 1

)|u|

.

Replacing now the last term in (2.23) with this expression, we obtain the

desired result. �

In the case d = 1, it is easy to verify by replacing in the expression for the

mean that Mn,1,{γ{1}} = 0. This is to be expected since whenever |g| = 1, by

making use of (2.15) and Lemma 2.5, we obtain

R̃n(z, g) =
1

n

n−1∑

k=0

∑′

−n/2<h≤n/2

e2πihkz/n

|h| =
Sn

n
+

1

n
(−Sn) = 0.

Corollary 2.7 Let n be prime. Then there exists a generating vector z such

that

e2n,d(z) ≤Mn,d,γ ≤ 1

n− 1

∑

u⊆D

γ
u
S |u|

n .

Proof. The first inequality is obvious. The proof of the second inequality is

based on the proof of the second assertion in [9, Theorem 1]. We can write

the expression for Mn,d,γ as

Mn,d,γ =
1

n

∑

u⊆D

γ
u
S |u|

n (1 +Wn(u)),

where

Wn(u) = (−1)|u|(n− 1)

(
1

n− 1

)|u|

.
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If |u| is odd, then −1 ≤ Wn(u) ≤ 0. On the other hand, if |u| is even, then

|u| ≥ 2 and

Wn(u) ≤ (n− 1)

(
1

n− 1

)2

=
1

n− 1
.

So for |u| either odd or even, we have Wn(u) ≤ 1/(n− 1) and hence

Mn,d,γ ≤ 1

n

∑

u⊆D

γ
u
S |u|

n

(
1 +

1

n− 1

)
=

1

n− 1

∑

u⊆D

γ
u
S |u|

n ,

which completes the proof. �

This corollary and Lemma 2.4 then lead to the following result:

Corollary 2.8 Suppose the weights satisfy (2.3) and suppose that n is prime.

Then there exists a vector z ∈ Zd
n such that the general weighted star discrep-

ancy satisfies the bound

D∗
n,γ(z) ≤ 1

n
max
u⊆D

|u|γ
u
+

1

2(n− 1)

∑

u⊆D

γ
u
S |u|

n .

Before further analysing the bound for the weighted star discrepancy, we

need a result that was fully stated and proved in [41, Lemmas 1 and 2] and

will be useful several times throughout the thesis. This result is:

Lemma 2.9 If m ≥ 2 is an integer and

Sm =
∑′

−m/2<h≤m/2

1

|h| ,

then

Sm = 2 lnm+ 2ω − ln 4 + ε(m),

where ω is the Euler-Mascheroni constant defined by ω = lim
m→∞

(
m∑

k=1

1
k
− lnm

)
,

while −4/m2 < ε(m) ≤ 0 if m is even and −3/m2 < ε(m) < 1/m2 if m is

odd.

A straightforward consequence of this lemma is:

Corollary 2.10 If m ≥ 1 is an integer, then

Sm ≤ 2 lnm. (2.24)
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Proof. An approximate value for 2ω − ln 4 is −0.2319. So for any m ≥ 3, it

will follow from Lemma 2.9 that Sm ≤ 2 lnm. A direct calculation then shows

that this inequality also holds for m = 1 and m = 2. �

From Corollary 2.8 and Corollary 2.10, we conclude that for any prime n,

there exists a vector z ∈ Zd
n such that the general weighted star discrepancy

satisfies the following bound:

D∗
n,γ(z) ≤ 1

n
max
u⊆D

|u|γ
u
+

1

2(n− 1)

∑

u⊆D

γ
u
(2 lnn)|u|. (2.25)

Let Γ = max
1≤j≤d

γ{j}. Since γ
u
≤ Γ for all u ⊆ D (because of (2.3)) then we

have max
u⊆D

|u|γ
u
≤ Γd. Hence from (2.25) we obtain

D∗
n,γ(z) ≤ Γd

n
+

1

2(n− 1)

∑

u⊆D

γ
u
(2 lnn)|u|.

Moreover, we have

∑

u⊆D

γ
u
(2 lnn)|u| ≤ Γ

∑

u⊆D

(2 lnn)|u| = Γ
d∑

j=1

(
d

j

)
(2 lnn)j ≤ Γ(1 + 2 lnn)d.

This yields

D∗
n,γ(z) = O

(
n−1(lnn)d

)
, (2.26)

with the implied constant depending only on d and Γ.

In the situation when all the weights are equal to 1, then

D∗
n,γ(z) = max

u⊆D
sup

xu∈[0,1]|u|
|discr((xu, 1), Pn)| = sup

x∈[0,1]d
|discr(x, Pn)|

is the unweighted star discrepancy defined in (1.10). For this quantity, the rate

of O
(
n−1(lnn)d

)
is essentially the best possible (see [34], [39] or [42]). In fact

from [39], it follows that the best lower bound for e2n,d(z) as given by (2.19)

is O
(
n−1(lnn)d

)
. Hence the bound for the weighted star discrepancy given in

Corollary 2.8 is essentially the best possible and so, we consider such a bound

to be “good”.
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2.4 Component-by-component construction of

the generating vector

Because the total number of vectors z ∈ Zd
n is (n − 1)d, it is unrealistic to

search over all these vectors to find a good one when d and n are large. In this

section we propose a cheaper construction of the generating vector, namely

the CBC construction. We recall from Section 1.4 that the CBC construction

means the generating vector is found one component at a time. When we

add a new component to the generating vector, the existing components will

stay unchanged. Such a CBC construction was first used in [55] and then

successfully employed in several other research papers including [9], [28], [29],

[35], [36], [37], [38], [52], [62] as well as in [48], [49], [50] and [47]. The algorithm

is given below:

Component-by-component algorithm

1. Set the value for the first component of the vector, say z1 = 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2n,m(z1, . . . , zm) is min-

imised. Here

e2n,m(z1, . . . , zm) =
∑

u⊆{1,2,...,m}

γ
u
R̃n((z1, . . . , zm), u).

Our goal is to prove that this algorithm does indeed yield good lattice rules.

By good, we mean that the generating vector z found this way satisfies the

bound for e2n,d(z) given in Corollary 2.7. The following theorem and corollary

justify the use of the CBC algorithm.

Theorem 2.11 Let n be prime. Suppose there exists a z ∈ Zd
n such that

e2n,d(z) ≤ 1

n− 1

∑

u⊆D

γ
u
S |u|

n . (2.27)

Then there exists zd+1 ∈ Zn such that

e2n,d+1(z, zd+1) ≤
1

n− 1

∑

u⊆D1

γ
u
S |u|

n ,

where D1 := D∪{d+1}. Such a zd+1 can be found by minimising e2n,d+1(z, zd+1)

over the set Zn.
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Proof. Let us remark first that technically speaking we should use e2n,d+1((z, zd+1))

for e2n,d+1(z, zd+1), but we prefer not to overload the notation in the arguments

that follow. We now have

e2n,d+1(z, zd+1) =
∑

u⊆D1

γ
u
R̃n((z, zd+1), u)

=
∑

u⊆D

γ
u
R̃n(z, u) +

∑

u⊆D1
d+1∈u

γ
u
R̃n((z, zd+1), u). (2.28)

We recall that we defined

Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h| , 0 ≤ k ≤ n− 1.

Then clearly C0(z) = Sn. For u ⊆ D1 with d+ 1 ∈ u, we then have

R̃n((z, zd+1), u) =
1

n

n−1∑

k=0

∏

j∈u

Ck(zj)

=
1

n

n−1∑

k=0




∏

j∈u−{d+1}

Ck(zj)



Ck(zd+1)

=
S
|u|
n

n
+

1

n

n−1∑

k=1




∏

j∈u−{d+1}

Ck(zj)



Ck(zd+1),

where the k = 0 term was separated out. Let us recall that if |u| = 1, then

R̃n(z, u) = 0, so the contribution to the quantity e2n,d(z) comes only from sets

having |u| ≥ 2. By substituting in (2.28), we obtain

e2n,d+1(z, zd+1) = e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S |u|

n

+
∑

u⊆D1
d+1∈u

γ
u

n

n−1∑

k=1




∏

j∈u−{d+1}

Ck(zj)


Ck(zd+1).

Next we average e2n,d+1(z, zd+1) over all possible values of zd+1 ∈ Zn and con-

sider

Avg(e2n,d+1(z, zd+1)) =
1

n− 1

n−1∑

zd+1=1

e2n,d+1(z, zd+1).

As the dependency of e2n,d+1(z, zd+1) on zd+1 is only through the Ck(zd+1)

factor, we next focus on the quantity

Tn(k) =
1

n− 1

n−1∑

zd+1=1

Ck(zd+1).
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From Lemma 2.5, we have

Tn(k) = − Sn

n− 1
, 1 ≤ k ≤ n− 1.

It follows that

Avg(e2n,d+1(z, zd+1))

= e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S |u|

n − Sn

n(n− 1)

∑

u⊆D1
d+1∈u

γ
u

n−1∑

k=1

∏

j∈u−{d+1}

Ck(zj).

For any u ⊆ D1 with d+ 1 ∈ u and |u| ≥ 2, we have

−1

n

n−1∑

k=1

∏

j∈u−{d+1}

Ck(zj) = −R̃n(z, u − {d+ 1}) +
S
|u|−1
n

n
≤ S

|u|−1
n

n
,

where we have subtracted and added the k = 0 term and used the fact that

the quantities R̃n(z, g) are positive (see (2.17)) for any subset g ⊆ D. Conse-

quently, we have

Avg(e2n,d+1(z, zd+1))

≤ e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S |u|

n +
1

n(n− 1)

∑

u⊆D1
d+1∈u

γ
u
S |u|

n

= e2n,d(z) +
1

n− 1

∑

u⊆D1
d+1∈u

γ
u
S |u|

n .

Using the hypothesis, we next obtain

Avg(e2n,d+1(z, zd+1)) ≤ 1

n− 1

∑

u⊆D

γ
u
S |u|

n +
1

n− 1

∑

u⊆D1
d+1∈u

γ
u
S |u|

n

=
1

n− 1

∑

u⊆D1

γ
u
S |u|

n . (2.29)

There exists at least one zd+1 ∈ Zn such that e2n,d+1(z, zd+1) ≤ Avg(e2n,d+1(z, zd+1))

and this zd+1 may be chosen by minimising e2n,d+1(z, zd+1) over the set Zn.

From (2.29), it is clear now that for the chosen zd+1, we have

e2n,d+1(z, zd+1) ≤
1

n− 1

∑

u⊆D1

γ
u
S |u|

n ,

which is the desired result. �
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From this result we can deduce the following:

Corollary 2.12 Let n be prime. Then for any 1 ≤ m ≤ d we can construct a

vector z ∈ Zm
n such that

e2n,m(z1, . . . , zm) ≤ 1

n− 1

∑

u⊆{1,2,...,m}

γ
u
S |u|

n .

We can set z1 = 1 and for 2 ≤ m ≤ d, every zm can be found by minimising

e2n,m(z1, . . . , zm) over the set Zn.

Proof. Recall that R̃n(z, u) = 0 for all subsets u ⊆ D with |u| = 1. It follows

that e2n,1(z) = 0 for any z ∈ Zn, so the inequality (2.27) holds for d = 1. The

result then follows immediately from Theorem 2.11. �

We remark that the approach to the general weighted case used here is

slightly different to the approach used in [29] for the product weighted case.

If we apply the results obtained here to that case, then the bounds on the

weighted star discrepancy are better than those in [29]. However, the approach

in [29] has the advantage that it yields bounds on the weighted Lp discrepancy,

whereas here we are essentially restricted to the L∞ case. This limitation

essentially occurs because in the expression for (2.15) all the components of h

are different from 0, while in [29] or in Chapter 3, we allow h to have up to

d−1 components equal to 0. More details on the weighted Lp star discrepancy

will be given in Section 3.6, in the context of a product weighted setting.

2.5 The CBC construction for special classes

of weights

In practical situations the weights may satisfy further assumptions. Spe-

cial classes of weights are the so-called “order-dependent” and “finite-order”

weights, which were mentioned in the first section and first used in [9]. As

we shall see in Section 2.7, the computational cost of the CBC construction is
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significantly reduced for these particular classes of weights. Order-dependent

weights are defined as follows:

Definition 2.2 Weights are named order-dependent if sets having the same

cardinality have equal values of the associated weights.

Obviously, for order-dependent weights, their dependence on u is only through

the cardinality of u. So, it turns that instead of using 2d−1 weights, we can use

just d weights, say Γ1,Γ2, . . . ,Γd, where Γℓ denotes the weight associated with

any set containing ℓ elements for 1 ≤ ℓ ≤ d. For the bound on the weighted

star discrepancy given in Lemma 2.4 to hold, it turns from (2.3) that these

weights are in non-increasing order, that is, Γ1 ≥ Γ2 ≥ · · · ≥ Γd.

The next result follows directly from Theorem 2.11, Corollary 2.12 and

Corollary 2.10 by taking γ
u

= Γℓ whenever |u| = ℓ and noting that the number

of subsets of D with cardinality ℓ is
(

d
ℓ

)
.

Corollary 2.13 Let n be prime and suppose the weights are order-dependent.

Then a generating vector z ∈ Zd
n may be constructed component-by-component

such that

e2n,d(z) ≤ 1

n− 1

d∑

ℓ=1

Γℓ

(
d

ℓ

)
Sℓ

n ≤ 1

n− 1

d∑

ℓ=1

Γℓ

(
d

ℓ

)
(2 lnn)ℓ.

Finite-order weights are defined as follows:

Definition 2.3 Weights are named finite-order if there exists a positive inte-

ger q such that γ
u

= 0 for all u with |u| > q.

We shall take q∗ to be the smallest integer satisfying this condition. Of course,

it makes sense to assume that q∗ < d, otherwise it will be no different from

the situation already discussed. We then obtain the following result:

Corollary 2.14 Let n be prime and suppose the weights are finite-order. Then

a generating vector z ∈ Zd
n may be constructed component-by-component such

that

e2n,d(z) ≤ 1

n− 1

∑

u⊆D
1≤|u|≤q∗

γ
u
S |u|

n ≤ 1

n− 1

∑

u⊆D
1≤|u|≤q∗

γ
u
(2 lnn)|u|.
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We can combine these two classes of weights to consider the situation when

the weights are both order-dependent and finite-order.

Corollary 2.15 Let n be prime and suppose the weights are both order-dependent

and finite-order. Then a generating vector z ∈ Zd
n may be constructed component-

by-component such that

e2n,d(z) ≤ 1

n− 1

q∗∑

ℓ=1

Γℓ

(
d

ℓ

)
Sℓ

n ≤ 1

n− 1

q∗∑

ℓ=1

Γℓ

(
d

ℓ

)
(2 lnn)ℓ.

Lattice rules with order-dependent and/or finite-order weights present the

advantage that the costs of the CBC construction are significantly reduced.

The computational costs of the CBC construction are analysed in Section 2.7.

2.6 Tractability results

Let’s remark first that the bound for the weighted star discrepancy obtained

in (2.26) is dependent on the dimension d. Obviously, the constant involved

will grow with the dimension and this leads to the so-called “curse of dimen-

sionality”. As we mentioned in Chapter 1, the curse of dimensionality leads to

intractability of the integration problem. However appropriate conditions on

the weights do allow us to obtain tractability and strong tractability results

and such results will emphasise the real importance of the weights.

Sufficient conditions for tractability and strong tractability in a general

weighted setting have been previously established in [9], [20], and [24]. Below,

we prove a condition for strong tractability in the context of the assumptions

used in this chapter.

Theorem 2.16 Let us assume that n ≥ 3 and the weights are such that (2.3)

is satisfied and
∑

u⊆D

γ
u
S |u|

n ≤ C(γ, δ)nδ,

for some δ > 0, where C(γ, δ) is independent of d and n. Then the CBC algo-

rithm yields a z for which the weighted star discrepancy of the corresponding
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lattice rule satisfies the strong tractability error bound

D∗
n,γ(z) ≤ 2C(γ, δ)n−1+δ.

Proof. From Lemma 2.4, Theorem 2.11 and the hypothesis, we obtain

D∗
n,γ(z) ≤ 1

n
max
u⊆D

|u|γ
u
+
C(γ, δ)nδ

2(n− 1)
.

Since Sn is an increasing function of n and S3 = 2, observe that if n ≥ 3, then

|u| ≤ S
|u|
n . This leads to

max
u⊆D

|u|γ
u
≤
∑

u⊆D

γ
u
S |u|

n ≤ C(γ, δ)nδ.

Consequently, we have

D∗
n,γ(z) ≤ C(γ, δ)nδ

n
+
C(γ, δ)nδ

2(n− 1)
≤ 2C(γ, δ)n−1+δ.

Now let us recall from the first chapter (see Definition 1.7) that strong tractabil-

ity means that the minimal number of function evaluations required to reduce

the initial error by a factor of ε ∈ (0, 1) is bounded by Cε−p with a con-

stant C > 0 independent of d. Hence, the essential idea consists in finding a

bound for the weighted star discrepancy that is independent of the dimension.

Hence, if we want the condition D∗
n,γ(z) ≤ εId(f) to hold, then we obtain that

n ≥ (2C(γ, δ))
1

1−δ Id(f)−
1

1−δ ε−
1

1−δ and so, the minimum number of function

values required satisfies

n(ε) ≤ ⌊(2C(γ, δ))
1

1−δ Id(f)−
1

1−δ ε−
1

1−δ ⌋ + 1.

Thus we obtain strong tractability with ε-exponent 1/(1 − δ). �

An example of weights γ
u

satisfying this strong tractability result is when

γ
u

are product weights (see (1.12)), and the γj satisfy the summability condi-

tion
∑∞

j=1 γj < ∞. Later in the thesis, namely in Section 3.3, we will prove

such a result when we study the tractability problem under a product weighted

setting (see Theorem 3.4).

Let us also remark that finite-order weights always imply tractability of

the integration problem. In-depth details of such a result are in [56]. Here,
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by recalling that Γ = max
1≤j≤d

γ{j} and using the condition (2.3), we see from

Corollary 2.14 that we can write:

e2n,d(z) ≤ Γ

n− 1

q∗∑

ℓ=1

(
d

ℓ

)
Sℓ

n ≤ Γ

n− 1

q∗∑

ℓ=1

(
d

ℓ

)
Sℓ

n.

Now, we can prove by induction that for d ≥ 2 and q∗ < d, we have

q∗∑

ℓ=1

(
d

ℓ

)
≤ dq∗ . (2.30)

Since Sn = O(lnn) (see Corollary 2.10) and q∗ is independent of d, it follows

that for any δ > 0, there exist a suitable constant C > 0 independent of d but

depending on δ and q∗ such that Sq∗

n ≤ Cnδ. This together with (2.30) leads

to

e2n,d(z) ≤ C1n
−1+δdq∗ ,

for some constant C1 > 0. This ensures tractability with ε-exponent 1/(1− δ)

and d-exponent q∗/(1 − δ) without further conditions on the weights.

2.7 Computational costs of the CBC algorithm

2.7.1 The cost of the CBC algorithm in the general case

In this subsection we analyse the complexity of the CBC algorithm, which was

presented in Section 2.4.

In order to analyse the cost of the construction, first recall from (2.15) that

R̃n(z, u) is given by

R̃n(z, u) =
1

n

n−1∑

k=0

∏

j∈u

Ck(zj), where Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h| .

It is easy to see that the cost of calculating each R̃n(z, u) by using this formula

is O (n2|u|) operations. However, it is shown in Appendix A (see also [29] and

[31]) that this cost can be reduced at the expense of extra storage. The idea

is based on the fact that {kzj/n} = ℓ/n for some ℓ satisfying 0 ≤ ℓ ≤ n − 1.

So to calculate R̃n(z, u), we need the values of

∑′

−n/2<h≤n/2

e2πihℓ/n

|h| ,
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for 0 ≤ ℓ ≤ n − 1. As shown in [31], these n values may be calculated at a

total cost of O(n) operations and then stored. It follows that the number of

operations required to calculate each R̃n(z, u) is of O(n|u|) operations at the

expense of O(n) extra storage.

Recall that

e2n,m(z1, . . . , zm) =
∑

u⊆{1,2,...,m}

γ
u
R̃n((z1, . . . , zm), u)

= e2n,m−1(z1, . . . , zm−1) +
∑

u⊆{1,2,...,m}
m∈u

γ
u
R̃n((z1, . . . , zm), u)

= e2n,m−1(z1, . . . , zm−1)

+
1

n

∑

u⊆{1,2,...,m}
m∈u

γ
u

n−1∑

k=0

Ck(zm)
∏

j∈u−{m}

Ck(zj). (2.31)

Now it may be the case that some of the 2d − 1 weights are zero. To take into

account the computational savings that arise, let τm be the number of non-zero

weights γ
u

for which u ⊆ {1, 2, . . . , m} with m ∈ u. Then 0 ≤ τm ≤ 2m−1.

Also, let τ be the total number of non-zero weights, that is,

τ =

d∑

m=1

τm ≤ 2d − 1.

Then to find zm which minimises e2n,m(z1, . . . , zm), we need to calculate the

last term in (2.31) for each zm ∈ Zn. This requires O(nmτm) operations.

Since there are n− 1 choices for zm, this means that the cost of adding a new

component zm to the already existing components is O(n2mτm) operations for

each m. Taking m from 2 to d, we conclude that the total operation count of

the CBC algorithm to obtain a d-dimensional z is O(n2dτ).

Let’s observe that if all the weights are non-zero, we have a total of τ =

2d − 1 weights and so the total cost of the construction will be O(n2d2d). In

practice such a cost is unacceptable as 2d grows very quickly when d increases,

but it can be considerably reduced for order-dependent and/or finite-order

weights.
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2.7.2 The cost of the construction for finite-order weights

Let q∗ be the smallest integer for which γ
u

= 0 whenever |u| > q∗. In this

case, by using (2.30), we see that the total number of non-zero weights is

τ =
∑q∗

ℓ=1

(
d
ℓ

)
≤ dq∗.

From the previous subsection, it will follow that the total operation count

of the CBC algorithm with finite-order weights is then O(n2dq∗+1). As pointed

out in [9], the cost of the construction is exponential in d, but this is not

dangerous as long as q∗ is small.

2.7.3 The cost of the construction for order-dependent

weights

In this case, because there are at most d distinct weights, the cost of the

construction can be significantly reduced by using a similar technique as in [9].

First, let’s observe that the quantity e2n,m(z1, z2, . . . , zm) can be expanded as

e2n,m(z1, z2, . . . , zm) =

m∑

ℓ=1

Γℓ

∑

u⊆{1,2,...,m}
|u|=ℓ

R̃n(z, u)

=

m∑

ℓ=1

Γℓ

∑

u⊆{1,2,...,m}
|u|=ℓ

(
1

n

n−1∑

k=0

∏

j∈u

Ck(zj)

)

=
1

n

n−1∑

k=0

m∑

ℓ=1

Γℓσk(m, ℓ),

where

σk(m, ℓ) =
∑

u⊆{1,2,...,m}
|u|=ℓ

∏

j∈u

Ck(zj) for 1 ≤ ℓ ≤ m.

Then we can obtain a recursive formula to compute the quantities σk(m, ℓ).

Indeed, we have

σk(m, ℓ) =
∑

u⊆{1,2,...,m−1}
|u|=ℓ

∏

j∈u

Ck(zj) + Ck(zm)
∑

u⊆{1,2,...,m−1}
|u|=ℓ−1

∏

j∈u

Ck(zj)

= σk(m− 1, ℓ) + Ck(zm)σk(m− 1, ℓ− 1),
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for m ≥ 2 and ℓ ≥ 2. It is easy to see that σk(1, 1) = Ck(z1). We also have

σk(m, 1) =

m∑

j=1

Ck(zj) and σk(m,m) =

m∏

j=1

Ck(zj).

For each k, the quantities σk(m, ℓ) may be viewed as being the elements of

a lower triangular matrix. Then to compute the quantities σk(m, ℓ) required

for e2n,m(z1, z2, . . . , zm), we can use the following algorithm (with σk(1, 1) =

Ck(z1)):

Set σk(m, 1) =
m∑

j=1

Ck(zj).

Set σk(m,m) =
m∏

j=1

Ck(zj).

For ℓ = 2, 3, . . . , m− 1 do:

σk(m, ℓ) = σk(m− 1, ℓ) + Ck(zm)σk(m− 1, ℓ− 1).

Now it is clear that if for each m, the quantities σk(m − 1, ℓ) for ℓ =

1, 2, . . . , m− 1 have been computed and stored using O(m) memory, then the

computation of all σk(m, ℓ) as well as of
∑m

ℓ=1 Γℓσk(m, ℓ) will require only

O(m) operations for each k, assuming that the values of Ck(zm) have also

been stored as indicated in Section 2.7.1. Since there are n possible values

for k, the amount of storage required is O(nd) for a complete run of the

algorithm. In conclusion, the computation of e2n,m(z1, z2, . . . , zm) for each zm

requires O(nm) operations, and the total cost of the CBC algorithm will be

O(n2d2). This shows that the complexity of the CBC construction is smaller

for order-dependent weights than for finite-order weights.

2.7.4 The cost of the construction for weights which are

both order-dependent and finite-order

If we assume that the order-dependent weights are also finite-order, then

e2n,d(z) =
1

n

n−1∑

k=0

q∗∑

ℓ=1

Γℓσk(d, ℓ).

With the assumption that q∗ < d, the total cost of the construction will be

reduced to O(n2dq∗), with additional O(nq∗) memory required for storage.
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2.7.5 Speeding up the CBC construction

A fast CBC construction has recently been proposed by Nuyens and Cools in

[44] for shift-invariant reproducing kernel Hilbert spaces. Their technique is

based on writing the CBC algorithm appropriate for these function spaces in

terms of matrix-vector multiplications and then applying a fast algorithm to

do these multiplications. For the multiplication of an n × n matrix with an

n-vector, the operation count is reduced to O(n lnn) from the usual O(n2).

In [44], the authors have shown that this reduction of the operation count is

possible by using the special structure of the matrix occurring in the matrix-

vector multiplication. Further details can be found in [44, Section 4].

Their technique can be modified so that it works for the CBC algorithm

given in Section 2.4. Thus for the case of general weights, the O(n2d2d) op-

eration count may be reduced to O(n ln(n)d2d), while for finite-order weights

the operation count may be reduced to O(n ln(n)dq∗+1).

In the case of order-dependent weights, we recall from Subsection 2.7.3 that

σk(m, ℓ) = σk(m− 1, ℓ) + Ck(zm)σk(m− 1, ℓ− 1),

for m ≥ 2 and ℓ ≥ 2. We also see that we can write σk(m, 1) = σk(m− 1, 1) +

Ck(zm) and σk(m,m) = σk(m− 1, m− 1)Ck(zm). Hence we can write

e2n,m(z1, z2, . . . , zm) =
1

n

n−1∑

k=0

m∑

ℓ=1

Γℓσk(m, ℓ)

=
1

n

n−1∑

k=0

(
Γ1σk(m, 1) +

m−1∑

ℓ=2

Γℓσk(m, ℓ) + Γmσk(m,m)

)

=
1

n

n−1∑

k=0

Γ1(σk(m− 1, 1) + Ck(zm))

+
1

n

n−1∑

k=0

m−1∑

ℓ=2

Γℓ(σk(m− 1, ℓ) + Ck(zm)σk(m− 1, ℓ− 1))

+
1

n

n−1∑

k=0

ΓmCk(zm)σk(m− 1, m− 1)

= e2n,m−1(z1, z2, . . . , zm−1)

+
1

n

n−1∑

k=0

Ck(zm)

(
Γ1 +

m∑

ℓ=2

Γℓσk(m− 1, ℓ− 1)

)
.
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The inner parenthesis can be computed in O(m) operations for every k (with

the σk’s being stored), hence a total of O(nm) operations. Let us denote

σ(m, ℓ) := [σk(m, ℓ)]k∈{0,1,...,n−1} .

We also put σk(0, 0) = 1 for all k ∈ {0, 1, . . . , n− 1}. Now by denoting

e2

n,m = [e2n,m(z1, z2, . . . , zm)]zm∈{1,2,...,n−1}

and

Cn := [Ck(zm)]zm∈{1,2,...,n−1}
k∈{0,1,...,n−1}

,

we then can write

e2

n,m
= e2

n,m−1
+

1

n
Cn

(
m∑

ℓ=1

Γℓσ(m− 1, ℓ− 1)

)
.

By first doing a summation over all weights and then applying the fast matrix-

vector multiplication (requiring O(n logn) operations), we find that the com-

putational cost of the construction is O(nm+ n log n) for every m. Hence the

total complexity will be

d∑

m=2

O(nm+ n log n) = O(nd2 + nd logn)

plus O(nd) storage as mentioned in Section 2.7.3. Further details of such a

fast algorithm can also be found in [6, Section 4]. In that work, a function of

the form

1

n

n−1∑

k=0

d∑

ℓ=1

Γℓ

∑

u⊆D
|u|=ℓ

∏

j∈u

ω

({
kzj

n

})

was minimised. For the weighted star discrepancy considered here, we see from

Section 2.7.3 that we can apply their fast algorithm by taking

ω

({
kzj

n

})
= Ck(zj) =

∑′

−n
2
<h≤n

2

e2πihkzj/n

|h| .

Finally, if the weights are both order-dependent and finite-order, then the

cost of the construction will be O(nd ln(n) + ndq∗) = O(nd lnn) with O(nq∗)

additional storage.



Chapter 3

Good intermediate-rank lattice

rules based on the weighted star

discrepancy

In this chapter we study the problem of constructing good intermediate-rank

lattice rules in the sense of having a low weighted star discrepancy, where the

weights are assumed to have a product form. The intermediate-rank rules

considered here are obtained by “copying” rank-1 lattice rules. We show that

such lattice rules can be constructed using a component-by-component tech-

nique and prove that the bound for the weighted star discrepancy achieves the

optimal convergence rate.

3.1 Introduction

We want to approximate integrals over the d-dimensional unit cube given by

intermediate-rank lattice rules of the form (see also (1.7))

Q
(r)
N,d(f) =

1

ℓrn

ℓ−1∑

mr=0

. . .
ℓ−1∑

m1=0

n−1∑

k=0

f

({
kz

n
+

(m1, . . . , mr, 0, . . . , 0)

ℓ

})
,

where ℓ ≥ 1 is an integer satisfying gcd(ℓ, n) = 1, r is a fixed integer taken

from the set {0, 1, . . . , d} and N = ℓrn.
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As mentioned in the first chapter, the rank of a lattice rule represents

the minimal number of sums required to write it down. For d-dimensional

integrals, lattice rules may have rank up to d. Further details on the definition

and the representation of lattice rules can be found in [51] and [53]. For r ≥ 1,

(1.7) is a rank-r lattice rule or “intermediate-rank lattice rule” with N = ℓrn

distinct points and is obtained by copying the rank-1 lattice rule (1.5) ℓ times

in each of the first r dimensions. Here, z ∈ Z
d is the generating vector having

the same properties as mentioned in Chapter 2, that is, all the components

of z are assumed to be relatively prime with n. In this chapter, we shall

construct lattice rules of the form (1.7) by using a weighted star discrepancy

as a criterion of goodness.

The intermediate-rank lattice rules considered here have been previously

studied in [30], [37], [49], and [51]. In fact, the results from this chapter are

based on the results obtained in [49].

3.2 Bounds for the weighted star discrepancy

We observe first that the quadrature points of the lattice rule (1.7) can be

rewritten as: {
kz

n
+

(m1, . . . , mr, 0, . . . , 0)

ℓ

}
=

yt

N
,

where yt/N , 0 ≤ t ≤ N − 1, are in [0, 1)d. Of course, these points just are

a reordering of the N -points of the rank-r lattice rule defined by (1.7). The

set {yt/N, 0 ≤ t ≤ N − 1} will be denoted by PN . Now let us introduce a

set of non-increasing positive weights {γj}∞j=1 which describe the decreasing

importance of the successive coordinate directions. In such a case the weights

are product, hence recall from (1.12) that the weights have the form

γ
u

=
∏

j∈u

γj, ∀u ⊆ D.

As mentioned in the first chapter, product weights have been first used in

[57]. Later, a similar assumption on the weights has been made in numerous
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research papers including [8], [20], [29], [35], [36], [37], [38], [49], [50], [52], and

[62].

From Zaremba’s identity (see (2.1)) and by applying Hölder’s inequality

for integrals and sums, we obtain

∣∣∣Q(r)
N,d(f) − Id(f)

∣∣∣ ≤
(
∑

u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr((xu, 1), PN)|

)

× sup
u⊆D

γ−1
u

∫

[0,1]|u|

∣∣∣∣
∂|u|

∂xu

f((xu, 1))

∣∣∣∣ dxu. (3.1)

Thus we can define a weighted star discrepancy D∗
N,γ(PN) by

D∗
N,γ(PN) :=

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr((xu, 1), PN)| . (3.2)

Let us remark that (3.2) is different from the corresponding version of the

weighted star discrepancy from Chapter 2. In fact, if we consider the weighted

star discrepancy introduced in the previous chapter by (2.2), we see that (2.2)

will be bounded by the right-hand-side of (3.2). This alternative way to define

the weighted star discrepancy is important because it will allow us to obtain

bounds on the Lp star discrepancy (details can be found in [29] and will also

be given later in Section 3.6), while with the weighted star discrepancy (2.2)

from the previous chapter, we were restricted only to the L∞ case as attempts

to obtain subsequent results for the Lp star discrepancy were not successful.

Define now the quantity

RN(PN , u) =
1

N

N−1∑

t=0

∏

j∈u


1 +

∑′

−N/2<h≤N/2

e2πihyt,j/N

|h|


− 1, (3.3)

where yt,j is the j-th component of the vector yt. If L is the integration lattice

associated with the points PN , we denote by Lu the |u|-dimensional lattice

obtained from L by taking the coordinates that belong to u. Then, using

Theorem 2.1 (see also (2.5)), we obtain:

RN(PN , u) =
∑

h∈L⊥
u ∩E∗

N,|u|

∏

j∈u

1

max(1, |hj|)
, (3.4)

where we recall from the previous chapter (see (2.8)) that

E∗
n,s := {h ∈ Z

s, h 6= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ s}.
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From Theorem 2.2 and by applying (2.7), we obtain:

sup
xu∈[0,1]|u|

|discr((xu, 1), PN)|

≤ 1 − (1 − 1/N)|u| +
∑

h∈E∗
N,|u|

1∏
j∈u

r(hj, N)

∣∣∣∣∣
1

N

N−1∑

t=0

e2πih·yt,u/N

∣∣∣∣∣

= 1 − (1 − 1/N)|u| +
∑

h∈L⊥
u ∩E∗

N,|u|

1∏
j∈u

r(hj, N)
,

where yt,u is the vector obtained from yt by taking only the components that

belong to u, while r(h,N) was defined in Chapter 2 (see Theorem 2.2). By

making use of sin πt ≥ 2t for any 0 ≤ t ≤ 1
2

(see also Theorem 2.3), we obtain:

sup
xu∈[0,1]|u|

|discr((xu, 1), PN)| ≤ 1 − (1 − 1/N)|u| +
RN(PN , u)

2
,

where RN (PN , u) is given by (3.4). Replacing in (3.2), we obtain the following

bound:

D∗
N,γ(PN) ≤

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u| +

RN(PN , u)

2

)
. (3.5)

We remark that since the points PN are fully determined when z is known,

it makes sense to denote the discrepancy D∗
N,γ(PN) by D∗

N,γ(z) as it was also

done in Chapter 2. Further bounds on the weighted star discrepancy may be

obtained by making use of (3.5).

We first consider the quantity
∑

u⊆D γ
u

(
1 − (1 − 1/N)|u|

)
, which can be

analysed in a similar way as in the proof of [29, Lemma 1]. This result is given

next.

Lemma 3.1 If the weights γj are summable (that is,
∑∞

j=1 γj <∞), then

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
≤ max(1,Γ)

ℓrn
e

P∞
j=1 γj = O(n−1),

where Γ :=
∑∞

j=1 γj/(1 + γj) and the implied constant depends on ℓ, r and the

weights but is independent of the dimension.

Proof. Recalling that the weights are product, we have

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
=

d∏

j=1

(1 + γj) −
d∏

j=1

(1 + γj(1 − 1/N))

=

d∏

j=1

(1 + γj)

[
1 −

d∏

j=1

(
1 − γj

N(1 + γj)

)]
.
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Using the fact that the function g(x) = ln(1−x)
x

is decreasing on (0, 1), then

since 0 <
γj

N(1+γj )
≤ 1

N
< 1, it is easy to check that

ln

(
1 − γj

N(1 + γj)

)
≥ γj

1 + γj
ln(1 − 1/N).

This leads to

− ln

(
d∏

j=1

(
1 − γj

N(1 + γj)

))
≤ − ln(1 − 1/N)

d∑

j=1

γj

1 + γj
.

Let us remark that similar arguments have been used in [20]. We now obtain

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
≤

d∏

j=1

(1 + γj)

[
1 −

(
1 − 1

N

)Pd
j=1 γj/(1+γj )

]
. (3.6)

Now note that since the weights γj are summable and γj/(1 + γj) < γj, then

Γ :=
∑∞

j=1 γj/(1 + γj) <∞. Now, if Γ ≤ 1, then

1 −
(

1 − 1

N

)Γ

≤ 1 −
(

1 − 1

N

)
=

1

N
.

If Γ > 1, then it can be easily verified that the function f(x) = (1 + x)Γ −

Γx− 1 ≥ 0, for any x > −1 and hence f(−1/N) ≥ 0. This leads to

(
1 − 1

N

)Γ

+
Γ

N
− 1 ≥ 0,

and so,

1 −
(

1 − 1

N

)Γ

≤ Γ

N
.

Then from (3.6), we obtain:

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
≤ max(1,Γ)

N

∞∏

j=1

(1 + γj) ≤
max(1,Γ)

ℓrn
e

P∞
j=1 γj ,

where we used that

∞∏

j=1

(1 + γj) = e
P∞

j=1 ln(1+γj) ≤ e
P∞

j=1 γj ,

with the last step following from ln(1 + x) ≤ x, for any x > −1. �
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We next consider the quantity
∑

u⊆D γ
u
RN(PN , u) that occurs in the right-

hand-side of (3.5). By making use of (3.3) and (2.14), we obtain:

∑

u⊆D

γ
u
RN (PN , u) =

∑

u⊆D

γ
u


 1

N

N−1∑

t=0

∏

j∈u


1 +

∑′

−N/2<h≤N/2

e2πihyt,j/N

|h|


− 1




=
∑

u⊆D



 1

N

N−1∑

t=0

∏

j∈u

γj



1 +
∑′

−N/2<h≤N/2

e2πihyt,j/N

|h|









−
∑

u⊆D

∏

j∈u

γj

=
1

N

N−1∑

t=0

d∏

j=1



1 + γj + γj

∑′

−N/2<h≤N/2

e2πihyt,j/N

|h|





−
d∏

j=1

(1 + γj).

Let’s remark that a similar analysis has been used in [29] for rank-1 lattice

rules. If we denote βj = 1 + γj and set

e2N,d(z) :=
∑

u⊆D

γ
u
RN (PN , u),

then we obtain

e2N,d(z) =
1

N

N−1∑

t=0

d∏

j=1


βj + γj

∑′

−N
2

<h≤N
2

e2πihyt,j/N

|h|


−

d∏

j=1

βj . (3.7)

Let’s remark that the dependency on z in e2N,d(z) makes sense as the vectors

yt actually depend on z. In research papers such as [27] or [30], it was proved

that when n is prime, the quantity (3.7) is identical to a quadrature error

obtained from applying a rank-1 lattice rule to a certain integrand. Working

with such a quadrature error simplifies in general the analysis of the problem.

Indeed, from (1.7) and (3.7) we have

e2N,d(z) =
1

n

n−1∑

k=0

1

ℓr

ℓ−1∑

mr=0

. . .
ℓ−1∑

m1=0

r∏

j=1


βj + γj

∑′

−N
2

<h≤N
2

e2πih(kzj/n+mj/ℓ)

|h|




×
d∏

j=r+1


βj + γj

∑′

−N
2

<h≤N
2

e2πihkzj/n

|h|


−

d∏

j=1

βj

=
1

n

n−1∑

k=0

A
(ℓ,r)
k

d∏

j=r+1


βj + γj

∑′

−N
2

<h≤N
2

e2πihkzj/n

|h|


−

d∏

j=1

βj ,



49

where

A
(ℓ,r)
k =

1

ℓr

ℓ−1∑

mr=0

. . .

ℓ−1∑

m1=0

r∏

j=1



βj + γj

∑′

−N
2

<h≤N
2

e2πih(kzj/n+mj/ℓ)

|h|



 .

Before expanding A
(ℓ,r)
k , let’s also observe that (2.22) leads to

ℓ−1∑

m=0

(
e2πih/ℓ

)m
=





ℓ, h ≡ 0 (mod ℓ),

0, otherwise.

Then we have

A
(ℓ,r)
k =

r∏

j=1

1

ℓ

ℓ−1∑

m=0


βj + γj

∑′

−N
2

<h≤N
2

e2πih(kzj/n+m/ℓ)

|h|




=
r∏

j=1

1

ℓ

ℓ−1∑

m=0


βj + γj

∑′

−N
2

<h≤N
2

e2πihkzj/n

|h|
(
e2πih/ℓ

)m



=

r∏

j=1

1

ℓ


ℓβj + ℓγj

∑′

−N
2

<h≤N
2

h≡0 ( mod ℓ)

e2πihkzj/n

|h|




=
r∏

j=1


βj + γj

∑′

−N
2

<qℓ≤N
2

e2πiqℓkzj/n

|q|ℓ




=
r∏

j=1


βj +

γj

ℓ

∑′

−N
2ℓ

<h≤N
2ℓ

e2πihℓkzj/n

|h|


 .

Going back to the expression for e2N,d(z), we obtain

e2N,d(z) =
1

n

n−1∑

k=0

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


−

d∏

j=1

βj , (3.8)

where the following notations have been introduced:

γ̃j =





γj/ℓ, 1 ≤ j ≤ r,

γj, r + 1 ≤ j ≤ d.
(3.9)

Next,

Ñj =





N/ℓ = ℓr−1n, 1 ≤ j ≤ r,

N, r + 1 ≤ j ≤ d.
(3.10)
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Finally, ẑ = (ẑ1, ẑ2, . . . , ẑd), with

ẑj =





ℓzj, 1 ≤ j ≤ r,

zj, r + 1 ≤ j ≤ d.
(3.11)

Then by denoting

fN (x) =
d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihxj

|h|


 ,

it is easy to observe that

e2N,d(z) =
1

n

n−1∑

k=0

fN

(
k

n
ẑ

)
−

d∏

j=1

βj .

Now it is clear that e2N,d(z) (which is based on a rank-r lattice rule with

N = ℓrn points) can be obtained from applying a modified n-point rank-1

lattice rule to fN .

Next, we seek to obtain a result for the mean of the quantities e2N,d(z).

Such a result, together with (3.5) and Lemma 3.1, will allow us to deduce

a certain bound for the weighted star discrepancy. This mean will be taken

over all possible values of ẑ. Because ẑ is known when z is known, the mean

will be actually considered for all possible values for z. As mentioned already

in Chapter 2, each component zj of the vector z can be taken from the set

Zn = {1, 2, . . . , n− 1} for any 1 ≤ j ≤ d. Thus, for prime n, the mean MN,d,γ

is defined by

MN,d,γ :=
1

(n− 1)d

∑

z∈Zd
n

e2N,d(z).

An expression for MN,d,γ is given in the next theorem.

Theorem 3.2 If n is prime, ℓ is a positive integer such that gcd(ℓ, n) = 1 and

r is an integer chosen such that 1 ≤ r ≤ d, then

MN,d,γ =
1

n

d∏

j=1

(
βj + γ̃jSÑj

)

+
n− 1

n

d∏

j=1

(
βj −

γ̃j

n− 1

(
SÑj

− SÑj/n

))
−

d∏

j=1

βj , (3.12)
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where we recall from Chapter 2 that

Sm =
∑′

−m
2
≤h< m

2

1

|h| .

Proof. Using the definition of the mean and separating out the k = 0 term

from (3.8), we obtain:

MN,d,γ =
1

n

d∏

j=1

(
βj + γ̃jSÑj

)
+ ΘN,d,γ −

d∏

j=1

βj, (3.13)

where

ΘN,d,γ =
1

(n− 1)d

∑

z∈Zd
n




1

n

n−1∑

k=1

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|







=
1

n

n−1∑

k=1

d∏

j=1




1

n− 1

n−1∑

zj=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|







=
1

n

n−1∑

k=1

d∏

j=1


βj +

γ̃j

n− 1

n−1∑

zj=1

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


 .

For 1 ≤ k ≤ n− 1 and for any j ≥ 1, consider now

Tn(k, j) =
1

n− 1

n−1∑

zj=1

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h| . (3.14)

If 1 ≤ j ≤ r, then ẑj = ℓzj . Since gcd(ℓ, n) = 1, it follows that for any

1 ≤ j ≤ d, we can write e2πihkẑj/n = e2πihqzj/n for some q ∈ {1, 2, . . . , n − 1}

and hence Tn(k, j) = TÑj
(q), where TÑj

(q) is as defined by (2.20). By applying

Lemma 2.5, we obtain

Tn(k, j) =
SÑj/n − SÑj

n− 1
, (3.15)

for any 1 ≤ k ≤ n− 1 and for any 1 ≤ j ≤ d. Using now (3.15), we see that

ΘN,d,γ =
1

n

n−1∑

k=1

d∏

j=1

(
βj +

γ̃j

n− 1

(
SÑj/n − SÑj

))
,

and by replacing in (3.13), we obtain the desired result. �

From this theorem, we can deduce the following:
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Corollary 3.3 If n is prime, ℓ is a positive integer such that gcd(ℓ, n) = 1

and r satisfies 1 ≤ r ≤ d, then there exists a z ∈ Zd
n such that

e2N,d(z) ≤ 1

n

d∏

j=1

(
βj + γ̃jSÑj

)
≤ 1

n

d∏

j=1

(
βj + 2γ̃j ln Ñj

)
.

Proof. In order to obtain the desired bound for e2N,d(z), we see from (3.13)

that it will suffice to prove that

ΘN,d,γ ≤
d∏

j=1

βj ,

together with the argument that there must be a vector z ∈ Zd
n such that

e2N,d(z) ≤MN,d,γ.

From Lemma 2.9 (see also [41, Lemmas 1 and 2]), we deduce that

SÑj
− SÑj/n < 2 lnn +

1

Ñ2
j

+
4

(Ñj/n)2
. (3.16)

If ℓ = 1, then the intermediate-rank considered in this chapter is actually a

rank-1 lattice rule with n points. For rank-1 lattice rules, the corresponding

result has been proved in [29, Corollary 1]. So it makes sense to assume that

ℓ ≥ 2. Next, we verify that for any 1 ≤ j ≤ d, we have

∣∣∣∣βj −
γ̃j

n− 1

(
SÑj

− SÑj/n

)∣∣∣∣ ≤ βj . (3.17)

The inequality βj − γ̃j

n−1

(
SÑj

− SÑj/n

)
≤ βj is trivial. It remains to prove that

βj − γ̃j

n−1

(
SÑj

− SÑj/n

)
≥ −βj , which is equivalent with

2βj = 2 + 2γj ≥
γ̃j

n− 1

(
SÑj

− SÑj/n

)
.

Let us take first r = 1. Then 1 ≤ j ≤ r implies that j = 1 and in this case we

deduce that SÑ1
− SÑ1/n = Sn. Hence the inequality above is equivalent with

2 + 2γ1 ≥
γ̃1Sn

n− 1
.

Since Sn ≤ 2 lnn (see Corollary 2.10), we have

γ̃1Sn

n− 1
≤ 2γ1 lnn

ℓ(n− 1)
≤ 2 + 2γ1,
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where the last step follows from lnn ≤ n − 1 for any n ≥ 1. Consequently,

(3.17) will hold. If r ≥ 2, we can prove that

2γj ≥
γ̃j

n− 1

(
SÑj

− SÑj/n

)
,

for any 1 ≤ j ≤ d. If ℓ = 2 then since gcd(ℓ, n) = 1, it follows that n ≥ 3. It is

easy to see that the right-hand-side of (3.16) can be further bounded so that

we obtain
γ̃j(SÑj

− SÑj/n)

n− 1
≤ γj(2 lnn + 1 + 1/36)

n− 1
≤ 2γj,

for any 1 ≤ j ≤ d. If n = 2, then since gcd(ℓ, n) = 1, it must follow that ℓ ≥ 3

and a simple direct calculation will show that the right-hand-side of (3.16) is

further bounded by 2 ln 2 + 1/36 + 4/9 ≤ 2. This is enough to ensure that

(3.17) holds also in this case. All these arguments lead to

n− 1

n

d∏

j=1

(
βj −

γ̃j

n− 1

(
SÑj

− SÑj/n

))
−

d∏

j=1

βj ≤ 0.

This inequality together with (3.12) and (2.24) then yields

MN,d,γ ≤ 1

n

d∏

j=1

(
βj + γ̃jSÑj

)
≤ 1

n

d∏

j=1

(
βj + 2γ̃j ln Ñj

)
,

which completes the proof. �

3.3 Strong tractability

From (3.5), Lemma 3.1 and Corollary 3.3, it follows that if the weights are

summable, then there exists a generating vector z such that

D∗
N,γ(z) ≤ O(n−1) +

1

2n

d∏

j=1

(
βj + 2γ̃j ln Ñj

)
. (3.18)

As the bound given by (3.18) has a lnn dependency (via the Ñj), it would

appear that the weighted star discrepancy has the order of magnitude of

O(n−1(lnn)d), with the involved constant depending on d, ℓ and r. Without

further assumptions over the weights, this leads to intractability. As we men-

tioned in Chapter 2, the order of magnitude O(n−1(lnn)d) is widely believed



54

to be the best possible in an unweighted setting (see [34], [39] or [42] for fur-

ther details). However, under the assumption that the weights are summable,

we can prove a strong tractability result (recall that tractability and strong

tractability were introduced by Definition 1.6 and Definition 1.7). Such a re-

sult follows from the arguments in [20, Lemma 3] with some modifications and

is presented below:

Theorem 3.4 Let us assume that the weights γj are summable, that is

∞∑

j=1

γj <∞.

Then for any δ > 0, there exists a constant C(γ, δ, ℓ, r) > 0, independent of n

and d, such that

d∏

j=1

(
βj + 2γ̃j ln Ñj

)
≤ C(γ, δ, ℓ, r) nδe

P∞
j=1 γj .

Proof. Recalling that βj = 1 + γj, we see that we have

d∏

j=1

(
βj + 2γ̃j ln Ñj

)
≤
(

∞∏

j=1

(1 + γj)

)
×
(

∞∏

j=1

(
1 + γj ln Ñj

))
,

where γj = 2γ̃j/(1 + γj), for each j. Now let us denote

σm =

∞∑

j=m+1

γj.

Because the γj are summable, we see that the weights γj are also summable

since γ̃j/(1 + γj) ≤ γj for each j. It is clear that σm may be made arbitrarily

small by taking m sufficiently large. The condition of summability of the

weights leads to

∞∏

j=1

(1 + γj) = exp

(
∞∑

j=1

ln(1 + γj)

)
≤ exp

(
∞∑

j=1

γj

)
<∞.
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Since γj are all positive, we have σm > 0. Then

ln

(
∞∏

j=1

(
1 + γj ln Ñj

))
=

∞∑

j=1

ln
(
1 + γj ln Ñj

)

≤
m∑

j=1

ln
(
1 + σ−1

m + γj ln Ñj

)

+

∞∑

j=m+1

ln
(
1 + γj ln Ñj

)

=

m∑

j=1

ln
(
1 + σ−1

m

)
+

m∑

j=1

ln

(
1 +

γj ln Ñj

1 + σ−1
m

)

+
∞∑

j=m+1

ln
(
1 + γj ln Ñj

)

= m ln
(
1 + σ−1

m

)
+

m∑

j=1

ln

(
1 +

γj ln Ñj

1 + σ−1
m

)

+
∞∑

j=m+1

ln
(
1 + γj ln Ñj

)
.

Now since Ñj ≤ N for any j, we obtain

ln

(
∞∏

j=1

(
1 + γj ln Ñj

))
≤ m ln

(
1 + σ−1

m

)
+

m∑

j=1

γjσm ln Ñj

(1 + σ−1
m )σm

+
∞∑

j=m+1

γj ln Ñj

≤ m ln
(
1 + σ−1

m

)
+ ln(N)σm

m∑

j=1

γj + ln(N)σm

≤ m ln
(
1 + σ−1

m

)
+ ln(N)σm (σ0 + 1) .

Hence we have

∞∏

j=1

(
1 + γj ln Ñj

)
≤
(
1 + σ−1

m

)m
Nσm(σ0+1).

By choosing m such that σm(σ0 + 1) ≤ δ, we obtain

∞∏

j=1

(
1 + γj ln Ñj

)
≤
(
1 + σ−1

m

)m
ℓrδnδ.

Now, by taking C(γ, δ, ℓ, r) = (1 + σ−1
m )

m
ℓrδ, we obtain the desired result. �

From (3.18) and Theorem 3.4 we can conclude that there exists a generating

vector z such that the weighted star discrepancy achieves the error bound

D∗
N,γ(z) = O(n−1+δ),
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for any δ > 0, where the implied constant depends on δ, ℓ, r and the weights

but is independent of n and d. As mentioned in Chapter 1, since the bound

on the discrepancy is independent of the dimension, this will ensure strong

tractability.

3.4 Component-by-component construction of

the generating vector

In this section we show that we can use the component-by component (CBC)

construction so that the resulting intermediate-rank lattice rule has a bound

on the weighted star discrepancy of the same order of magnitude as the bound

given by Corollary 3.3. The CBC technique has been explained in Sections 1.4

and 2.4 and is based on the following algorithm:

Component-by-component (CBC) algorithm

The generating vector z = (z1, z2, . . . , zd) of an intermediate-rank lattice rule

(1.7) can be constructed as follows:

1. Set the value for the first component of the vector, say z1 := 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2N,m(z1, z2, . . . , zm) is

minimised, where

e2N,m(z1, z2, . . . , zm) =
1

n

n−1∑

k=0

m∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


−

m∏

j=1

βj.

In order to justify the CBC algorithm, we next prove the following:

Theorem 3.5 Let n be a prime, ℓ a positive integer such that gcd(ℓ, n) = 1

and r be chosen such that 1 ≤ r ≤ d. Assume there exists a vector z in Zd
n

such that

e2N,d(z) ≤ 1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)
.

Then there exists a zd+1 ∈ Zn such that:

e2N,d+1(z, zd+1) ≤
1

n− 1

d+1∏

j=1

(
βj + γ̃jSÑj

)
.
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Such a zd+1 can be found by minimising e2N,d+1(z, zd+1) over Zn.

Proof. When we add a new component, we obtain from (3.8) that

e2N,d+1(z, zd+1) =
1

n

n−1∑

k=0

d+1∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


−

d+1∏

j=1

βj

=
1

n

n−1∑

k=0

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|




×


βd+1 + γ̃d+1

∑′

−
Ñd+1

2
<h≤

Ñd+1
2

e2πihkẑd+1/n

|h|


−

d+1∏

j=1

βj .

By separating out the k = 0 term and by using (3.8), we see that we can write

e2N,d+1(z, zd+1) = βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d∏

j=1

(
βj + γ̃jSÑj

)

+
γ̃d+1

n

n−1∑

k=1

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|




×




∑′

−
Ñd+1

2
<h≤

Ñd+1
2

e2πihkẑd+1/n

|h|


 .

We next average e2N,d+1(z, zd+1) over all possible values of zd+1 ∈ Zn and

consider:

Avg(e2N,d+1(z, zd+1)) =
1

n− 1

n−1∑

zd+1=1

e2N,d+1(z, zd+1).

Since in the expression for the average, the last term is the only one depending

on zd+1, we next focus on the quantity

1

n− 1

n−1∑

zd+1=1

∑′

−
Ñd+1

2
<h≤

Ñd+1
2

e2πihkẑd+1/n

|h| =
1

n− 1

(
SÑd+1/n − SÑd+1

)
,

where the last equality was obtained by making use of (3.14) and (3.15). Sub-

stituting this in the expression for the average, we see that Avg(e2N,d+1(z, zd+1))

is given by:

βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d∏

j=1

(
βj + γ̃jSÑj

)

+
γ̃d+1(SÑd+1

− SÑd+1/n)

n(n− 1)
×


−

n−1∑

k=1

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|





 .
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Next,

−1

n

n−1∑

k=1

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|




= −1

n

n−1∑

k=0

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


+

1

n

d∏

j=1

(
βj + γ̃jSÑj

)

= −e2N,d(z) −
d∏

j=1

βj +
1

n

d∏

j=1

(
βj + γ̃jSÑj

)
≤ 1

n

d∏

j=1

(
βj + γ̃jSÑj

)
.

In the last step we used e2N,d(z) ≥ 0, as RN(PN , u) ≥ 0 for any u ⊆ D (see

(3.4)). The hypothesis together with the obvious SÑd+1
−SÑd+1/n ≤ SÑd+1

lead

us to:

Avg(e2N,d+1(z, zd+1))

≤ βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d∏

j=1

(
βj + γ̃jSÑj

)

+
γ̃d+1SÑd+1

n(n− 1)

d∏

j=1

(
βj + γ̃jSÑj

)

= βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d∏

j=1

(
βj + γ̃jSÑj

)(
1 +

1

n− 1

)

≤ βd+1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)
+
γ̃d+1SÑd+1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)

=
1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)(
βd+1 + γ̃d+1SÑd+1

)
.

Clearly, the zd+1 ∈ Zn chosen to minimise e2N,d+1(z, zd+1) will satisfy

e2N,d+1(z, zd+1) ≤ Avg(e2N,d+1(z, zd+1)).

This, together with the previous inequality completes the proof. �

From this theorem we can deduce the following:

Corollary 3.6 Let n be prime, ℓ a positive integer such that gcd(ℓ, n) = 1 and

r be chosen such that 1 ≤ r ≤ d. Then for any m = 1, 2, . . . , d, there exists a

z ∈ Zm
n such that

e2N,m(z1, z2, . . . , zm) ≤ 1

n− 1

m∏

j=1

(
βj + γ̃jSÑj

)
.
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We can set z1 = 1 and for every 2 ≤ m ≤ d, zm can be chosen by minimising

e2N,m(z1, z2, . . . , zm) over the set Zn.

Proof. If m = 1, then by expanding the expression for e2N,1(z1), we obtain:

e2N,1(z1) =
1

n

n−1∑

k=0


β1 + γ̃1

∑′

−
Ñ1
2

<h≤
Ñ1
2

e2πihkẑ1/n

|h|


− β1

=
γ̃1

n

n−1∑

k=0

∑′

−
Ñ1
2

<h≤
Ñ1
2

e2πihkẑ1/n

|h|

=
γ̃1

n

n−1∑

k=0




∑′

−
Ñ1
2

<h≤
Ñ1
2

h≡0 ( mod n)

e2πihkẑ1/n

|h| +
∑′

−
Ñ1
2

<h≤
Ñ1
2

h 6≡0 ( mod n)

e2πihkẑ1/n

|h|



.

Using now similar arguments as in the proof of Lemma 2.5, it follows that

e2N,1(z) =
γ̃1SÑ1/n

n
≤ 1

n− 1

(
β1 + γ̃1SÑ1

)
,

for any z1 ∈ Zn and the desired inequality is proved for d = 1. The result then

follows straight from Theorem 3.5. �

3.5 Computational costs incurred by the CBC

algorithm

Let us first recall from the previous section that

e2N,m(z1, z2, . . . , zm) =
1

n

n−1∑

k=0

m∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h|


−

m∏

j=1

βj.

Clearly each e2N,m(z1, z2, . . . , zm) can be evaluated in O(Nnm) operations. This

cost can be reduced to O(nm) by using additional storage. Since {kẑj/n} =

q/n for some q satisfying 0 ≤ q ≤ n − 1, then, in a similar way as shown in

Subsection 2.7.1, it will be enough to calculate each quantity

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihq/n

|h|
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once and then store it. From Appendix A, it follows that asymptotic expansion

techniques similar to those in [31] (see also [29]) allow us to calculate the values

of FN(q/n), 0 ≤ q ≤ n− 1, where

FN (x) =
∑′

−N/2<h≤N/2

e2πihx

|h| , 0 ≤ x ≤ 1,

at a total cost of O(N) operations. For the intermediate-rank lattice rules

considered in this chapter, we actually need the values of FÑj
(q/n) when Ñj =

ℓrn and Ñj = ℓr−1n (these are the only possible values for Ñj). Once these

quantities have been computed (in O(N) operations), they can be stored in

O(n) memory locations.

It follows that the total complexity of the algorithm will be O(n2d2 + N)

plus storage as indicated above. However since N = ℓrn and ℓ and r are fixed,

we see that N = O(n) and the complexity of the algorithm becomes O(n2d2)

plus storage. We now observe that during the construction, we can also store

the products involved in the expression for e2N,m(z) for each 2 ≤ m ≤ d.

It turns out that the total cost of storage would be O(n) for the quantities

FÑj
(q/n) and O(n) for the products. Thus, the total computational cost of

the algorithm is O(n2d) plus storage.

Now, the fast CBC algorithm proposed by Nuyens and Cools in [44] can

also be used here so that the computational cost of the CBC algorithm can be

further reduced to O(nd logn). The approach in [44] was based on minimising

a function of the form

1

n

n−1∑

k=0

d∏

j=1

(
1 + γjω

({
kzj

n

}))
− 1,

where ω is some function. Here, we can take

ω

({
kzj

n

})
=

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj/n

|h| .

From (3.8), we know that e2N,d(z) is obtained by applying a rank-1 lattice rule

to a certain function, so the techniques used in [44] will also work here with

some modifications.
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3.6 Bounds for the weighted Lp discrepancy

This section is actually based on the results from [29, Section 4] and we shall

see next that these results can be easily adapted so that they also work for the

intermediate-rank lattice rules considered in this chapter.

Let’s consider first two numbers p, q ≥ 1 such that 1/p + 1/q = 1. Then

the Lp version of the weighted star discrepancy could be defined by

D∗
N,γ,p(z) :=

(
∑

u⊆D

γp
u

∫

[0,1]|u|

|discr((xu, 1), PN)|p dxu

)1/p

.

From Zaremba’s identity (see (2.1)) and applying Hölder’s inequality for inte-

grals and sums, we can deduce that

∣∣∣Q(r)
N,d(f) − Id(f)

∣∣∣ ≤ D∗
N,γ,p(z)

(
∑

u⊆D

γ−q
u

∫

[0,1]|u|

∣∣∣∣
∂|u|

∂xu

f(xu, 1)

∣∣∣∣
q

dxu

)1/q

.

It is now obvious that the weighted discrepancy defined by (2.2) may be viewed

as a L∞ version of the weighted star discrepancy. Next, we see that we have

D∗
N,γ,p(z) ≤

(
∑

u⊆D

(
γ

u
sup

xu∈[0,1]|u|
|discr((xu, 1), PN)|

)p)1/p

.

Jensen’s inequality as quoted in [13, Theorem 19, p. 28], states that if ai are

arbitrary non-negative numbers and 0 < t < s, then

(∑
as

i

)1/s

≤
(∑

at
i

)1/t

.

Therefore, if we take t = 1 and p = s ≥ 1, we have

(∑
ap

i

)1/p

≤
∑

ai.

Since p ≥ 1, by applying Jensen’s inequality, we obtain

D∗
N,γ,p(z) ≤

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr((xu, 1), PN)| .

The right-hand-side of this inequality is the weighted star discrepancy defined

by (3.2) and analysed in this chapter. In conclusion, it will follow that under

the assumption of summability for the weights, the generating vector z for an
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intermediate-rank lattice rule may be constructed component-by-component

so that the corresponding Lp weighted star discrepancy satisfies

D∗
N,γ,p(z) = O(n−1+δ), ∀δ > 0,

with the involved constant independent of the dimension but depending on

δ, ℓ, r and the weights.

Let us remark that in [35], the optimal rate of convergence O(n−1+δ) was

achieved for the weighted L2 discrepancy but for randomly shifted lattice rules

of the form (1.6). The results in this chapter indicate that the CBC construc-

tion produces a pure deterministic point set for which the optimal rate of

convergence can also be achieved for the weighted L2 discrepancy.

We also mention that much of the earlier work on lattice rules (for instance

[35], [36], [37], and [52]) has been developed by using a L2 version of the

discrepancy as a criterion of goodness. In all these papers, it was assumed

that the weights are product. The conclusion that follows from the analysis

developed in this section is that under a product weighted assumption, the

results obtained here allow more generality since the bound on the weighted

star discrepancy (3.2) allows subsequent bounds for Lp versions of the weighted

star discrepancy for any p ≥ 1, hence including bounds for the L2 weighted

star discrepancy.



Chapter 4

Korobov lattice rules based on

the weighted star discrepancy

This chapter refines the results from Chapters 2 and 3 by studying the con-

struction of Korobov lattice rules based on the weighted star discrepancy. If

the weights are general, we establish the existence of good Korobov rank-1

lattice rule with a prime number of points. Then, under a product weighted

assumption, we prove that there exists a Korobov-type generating vector that

produces good intermediate-rank lattice rules. In both situations, we show

that the resulting Korobov lattice rules are good in the sense of having a low

weighted star discrepancy.

4.1 Introduction

In Chapters 2 and 3, we considered rank-1 lattice rules with general weights

and intermediate-rank lattice rules with product weights. In this chapter, we

refine the corresponding results from the previous chapters in the situation

when the generating vector z has the so-called Korobov form, that is,

z(a) := (1, a, . . . , ad−1) (mod n),

where n is prime and a is a suitable integer chosen from Zn = {1, 2, . . . , n−1}.

This form of the generating vector was introduced in Chapter 1 by (1.8).
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The usual weighted star discrepancy given by (2.2) and (3.2) will be used

as a criterion of goodness. In the next section, we establish that under a

general weighted setting, good Korobov rank-1 lattice rules do exist, while in

Section 4.3, we consider intermediate-rank lattice rules with product weights

and refine the results from Chapter 3 in the situation when the generating

vector is of Korobov type.

Korobov lattice rules have been studied in [61], where the function spaces

were either a weighted Korobov space of periodic functions or a weighted

Sobolev space of non-periodic functions. Both function spaces were repro-

ducing kernel Hilbert spaces, while the weights were assumed to be product.

Here, we establish results for Korobov rank-1 lattice rules under a general

weighted assumption and for Korobov intermediate-rank lattice rules with

product weights.

We should also remark that Korobov lattice rules have some limitations.

For instance, unlike lattice rules constructed using the CBC technique in the

previous two chapters, Korobov lattice rules are not extensible in dimension.

As an aside, it is interesting to mention that there are some limited results

regarding extensible Korobov lattice rules in number of points. These results

can be found in [12] and are based on a quality measure that looks at the

two-dimensional projections.

As we shall also point out later, a fast construction analogous to the fast

CBC construction seems unlikely for Korobov-lattice rules. Moreover, the

bounds on the weighted star discrepancy are worse that the bounds for the

corresponding lattice rules constructed using the CBC technique, but we still

obtain tractability bounds on the weighted star discrepancy. Nevertheless, as

we mentioned in the first chapter, Korobov lattice rules are important due to

their historical significance (see [32] and [33] for further details) in the sense

that Korobov lattice rules were the first known low discrepancy lattice rules.

For completeness, we consider such Korobov lattice rules in this chapter.
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4.2 Korobov rank-1 lattice rules with general

weights

In this section, we assume that the weights are general and n is prime (same

assumptions as in Chapter 2). Hence, we assume that for any non-empty

subset u ⊆ D, we have

γ
u
≤ γ

g
for any ∅ 6= g ⊆ u.

We consider now the weighted star discrepancy given by (2.2), that is,

D∗
n,γ = max

u⊆D
γ

u
sup

xu∈[0,1]|u|
|discr((xu, 1), Pn)| ,

where all the notations above are as in Chapter 2. This discrepancy was

obtained in connection with Zaremba’s identity and Hölder’s inequality for

integrals and sums (see (1.13)). If z is the generating vector of a rank-1 lattice

rule, then it follows from Lemma 2.4 (see also [48, Lemma 1]) that

D∗
n,γ(z(a)) ≤ 1

n
max
u⊆D

|u|γ
u
+

1

2
e2n,d(z), (4.1)

where

e2n,d(z) =
∑

u⊆D

γ
u
R̃n(z, u),

with R̃n(z, u) defined by (2.15) in Chapter 2. If z is a Korobov-type generating

vector, then

R̃n(z(a), u) :=
1

n

n−1∑

k=0

∏

j∈u




∑′

−n/2<h≤n/2

e2πihkzj(a)/n

|h|



 ,

where zj(a) = aj−1 (mod n). Also from Chapter 2 (see (2.17)), we know that

R̃n(z(a), u) can be expressed as

R̃n(z(a), u) =
∑

h∈ eE∗
n,|u|

h·zu(a)≡0 ( mod n)

∏

j∈u

1

|hj|
,

where we recall that (see also (2.16))

Ẽ∗
n,s = {h ∈ Z

s : −n/2 < hj ≤ n/2, hj 6= 0, 1 ≤ j ≤ s}.
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Further bounds on the weighted star discrepancy can be obtained by making

use of (4.1). For the analysis carried out in this chapter, the following result

from number theory is very useful (see [14]):

Theorem 4.1 If n is prime and g(x) = h0 +h1x+ · · ·+hmx
m is a polynomial

with integer coefficients, D = gcd(h0, . . . , hm) and h = (h0, h1, . . . , hm), then

the number An(h) of integers x with 0 ≤ x ≤ n−1 satisfying g(x) ≡ 0 ( mod n)

is given by

An(h)





= n, D ≡ 0 (mod n),

≤ m, otherwise.

Next, we focus on the quantity e2n,d(z(a)) with the generating vector z having

the Korobov form (1.8). We can now prove the following result:

Theorem 4.2 If n is prime, then there exists an a ∈ Zn such that

e2n,d(z(a)) ≤ d− 1

n− 1

∑

u⊆D

γ
u
S |u|

n , (4.2)

where Sn is as defined in Chapter 2, namely

Sn =
∑′

−n/2<h≤n/2

1

|h| .

Proof. We first define the mean of the quantities e2n,d(z(a)) over all a ∈ Zn

by

Mn,d,γ :=
1

n− 1

n−1∑

a=1

e2n,d(z(a)).

By making use of the expression for e2n,d(z(a)), we next obtain:

Mn,d,γ =
1

n− 1

n−1∑

a=1

∑

u⊆D

γ
u
R̃n(z(a), u)

=
1

n− 1

n−1∑

a=1

∑

u⊆D

γ
u




∑

h∈ eE∗
n,|u|

h·zu(a)≡0 ( mod n)

∏

j∈u

1

|hj|




=
1

n− 1

n−1∑

a=1

∑

u⊆D

γ
u

∑

h∈ eE∗
n,|u|

∏

j∈u

1

|hj |
δn(h · zu(a)),
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where

δn(m) =






1, m ≡ 0 (mod n),

0, otherwise.
(4.3)

Then the mean can be written as

Mn,d,γ =
1

n− 1

∑

u⊆D

γ
u

∑

h∈ eE∗
n,|u|

∏

j∈u

1

|hj|

(
n−1∑

a=1

δn(h · zu(a))

)
. (4.4)

We see that the last sum in (4.4) represents the number of solutions of the

congruency h · zu(a) ≡ 0 (mod n). Since n is prime and h · zu(a) is a polyno-

mial of degree at most d− 1 in a with coefficients that are not multiples of n,

it follows from Theorem 4.1 that

n−1∑

a=1

δn(h · zu(a)) ≤ d− 1.

Replacing this in (4.4), we obtain

Mn,d,γ ≤ d− 1

n− 1

∑

u⊆D

γ
u

∑

h∈ eE∗
n,|u|

∏

j∈u

1

|hj|
=
d− 1

n− 1

∑

u⊆D

γ
u
S |u|

n . (4.5)

Clearly, there must be an a ∈ Zn such that

e2n,d(z(a)) ≤Mn,d,γ,

which together with (4.5), leads to the desired result. �

Subsequent results can be obtained for order-dependent and finite-order

weights, which were introduced by Definition 2.2 and Definition 2.3 in Chap-

ter 2.

Recall that order-dependent weights are those whose dependence on u is

only through the cardinality of u. Assuming that sets having the same cardi-

nality have equal values of the associated weights, we can use just d weights,

say Γ1,Γ2, . . . ,Γd, where Γℓ denotes the weight associated with any set contain-

ing ℓ elements for 1 ≤ ℓ ≤ d. The next result follows directly from Theorem 4.2

by taking γ
u

= Γℓ whenever |u| = ℓ and noting that the number of subsets of

D with cardinality ℓ is
(

d
ℓ

)
.
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Corollary 4.3 Let n be prime and suppose the weights are order-dependent.

Then there exists an a ∈ Zn such that the Korobov-type generating vector z(a)

satisfies

e2n,d(z(a)) ≤ d− 1

n− 1

d∑

ℓ=1

Γℓ

(
d

ℓ

)
Sℓ

n.

Next, let’s assume that the weights are finite-order. This means that there

exists a positive integer q such that γ
u

= 0 for all u with |u| > q. We shall

take q∗ to be the smallest integer satisfying this condition. We then obtain the

following result:

Corollary 4.4 Let n be prime and suppose the weights are finite-order. Then

there exists an a ∈ Zn such that the Korobov-type generating vector z(a) sat-

isfies

e2n,d(z(a)) ≤ d− 1

n− 1

∑

u⊆D
1≤|u|≤q∗

γ
u
S |u|

n .

We can combine these two classes of weights to consider the situation when

the weights are both order-dependent and finite-order.

Corollary 4.5 Let n be prime and suppose the weights are both order-dependent

and finite-order. Then there exists a Korobov-type generating vector z(a) such

that

e2n,d(z(a)) ≤ d− 1

n− 1

q∗∑

ℓ=1

Γℓ

(
d

ℓ

)
Sℓ

n.

4.2.1 Tractability results

First, let us remark that from (4.1) and (4.2), it will follow that there exists a

Korobov-type generating vector z(a) such that the weighted star discrepancy

satisfies the following bound:

D∗
n,γ(z(a)) ≤ 1

n
max
u⊆D

|u|γ
u
+

d− 1

2(n− 1)

∑

u⊆D

γ
u
S |u|

n . (4.6)

Since Sn = O(lnn) (see (2.24)), it will follow from (4.6) that the weighted

star discrepancy has order of magnitude of O(n−1(lnn)d) with the implied

constant depending only on d. As mentioned also in the previous chapters,
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such a convergence rate attained by the star discrepancy is considered to be

the best possible in an unweighted setting and thus, we should consider such

a bound as being “good”. However, under appropriate conditions over the

weights we can obtain tractability and strong tractability results.

Theorem 4.6 If n ≥ 3 is prime with the weights chosen such that γ
u
≤ γ

g

for any ∅ 6= g ⊆ u and
∑

u⊆D

γ
u
S |u|

n ≤ C(γ, δ)nδ, (4.7)

for some δ > 0, where C(γ, δ) is independent of d and n, then there exists a

Korobov-type generating vector z(a) such that the corresponding weighted star

discrepancy satisfies the error bound

D∗
n,γ(z(a)) = O(dn−1+δ), for any δ > 0,

where the implied constant depends only on the weights.

Proof. Let us remark first that from (4.6) and the condition (4.7), we obtain

D∗
n,γ(z) ≤ 1

n
max
u⊆D

|u|γ
u
+

(d− 1)C(γ, δ)nδ

2(n− 1)
.

From the proof of Theorem 2.16, we have

max
u⊆D

|u|γ
u
≤
∑

u⊆D

γ
u
S |u|

n ≤ C(γ, δ)nδ.

Consequently, this leads to

D∗
n,γ(z) ≤ C(γ, δ)nδ

n
+

(d− 1)C(γ, δ)nδ

2(n− 1)
≤ dC(γ, δ)n−1+δ,

which shows that the dependency of the bound on d is at most linear, and

hence we obtain the desired result. �

Let us remark that the condition (4.7) is a sufficient condition of tractabil-

ity. If the weights satisfy the stronger condition

(d− 1)
∑

u⊆D

γ
u
S |u|

n ≤ C(γ, δ)nδ,

for some δ > 0, where C(γ, δ) is independent of d and n, then such a condi-

tion will ensure strong tractability. As an aside, we remark that this strong

tractability condition involves a dependence of the weights on the dimension.

Such weights depending on the dimension have been also considered in [9].
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4.3 Korobov intermediate-rank lattice rules

In this section, we refine the results from Chapter 3 for intermediate-rank lat-

tice rules when the generating vector z is of the Korobov form (1.8). Thus,

we recall that n is assumed to be prime, ℓ ≥ 1 is an integer satisfying

gcd(ℓ, n) = 1, r is a fixed integer taken from the set {0, 1, . . . , d} and N = ℓrn.

The intermediate-rank lattice rules considered here are of the form (see also

(1.7))

Q
(r)
N,d(f) =

1

ℓrn

ℓ−1∑

mr=0

. . .

ℓ−1∑

m1=0

n−1∑

k=0

f

({
kz

n
+

(m1, . . . , mr, 0, . . . , 0)

ℓ

})
.

If PN denotes the points of this lattice rule, then it will follow that the weighted

star discrepancy of this point set satisfies (see (3.5))

D∗
N,γ(PN) ≤

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
+

1

2
e2N,d(z(a)), (4.8)

where e2N,d(z(a)) is as given by (3.8), while the weights are assumed to be

product. Since z is a Korobov type vector, then zj = aj−1 (mod n) for every

1 ≤ j ≤ d. Let us also introduce

ĥj =





ℓhj , if 1 ≤ j ≤ r and hj 6= 0,

hj , if r + 1 ≤ j ≤ d and hj 6= 0,

1, if hj = 0.

In Chapter 3, we have established that

e2N,d(z(a)) =
∑

u⊆D

γ
u
RN(z(a), u), (4.9)

where it follows from (3.8) that

RN(z(a), u) =
1

n

n−1∑

k=0

∏

j∈u


1 +

∑′

−Ñj/2<hj≤Ñj/2

e2πihjkẑj(a)/n

|ĥj |


− 1.

Recall that Ñj and ẑj are given by (see also (3.10) and (3.11)):

Ñj =






N/ℓ = ℓr−1n, 1 ≤ j ≤ r,

N, r + 1 ≤ j ≤ d,
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and

ẑj =






ℓzj, 1 ≤ j ≤ r,

zj, r + 1 ≤ j ≤ d.

Lemma 3.1 leads to

∑

u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
= O(n−1), (4.10)

where the implied constant depends on ℓ, r and the weights. Next, we focus

on the quantity e2N,d(z) given by (4.9). Let us denote

Eu := {h ∈ Z
|u| : −Ñj/2 < hj ≤ Ñj/2, j ∈ u},

with E∗
u

= Eu − {0}. Consider now

RN(z(a)), u) =
1

n

n−1∑

k=0

∏

j∈u


1 +

∑′

−Ñj/2<hj≤Ñj/2

e2πihjkẑj(a)/n

|ĥj |


− 1

=
1

n

n−1∑

k=0

∏

j∈u




∑

−
Ñj
2

<hj≤
Ñj
2

e2πihjkẑj(a)/n

|ĥj |


− 1

=
1

n

n−1∑

k=0

∑

h∈Eu

(
e2πih·ẑu(a)/n

)k
∏

j∈u
|ĥj|

− 1

=
∑

h∈E∗
u

1

n

n−1∑

k=0

(
e2πih·ẑu(a)/n

)k
∏

j∈u
|ĥj |

=
∑

h∈E∗
u

δn(h · ẑu(a))∏
j∈u

|ĥj |
,

where δn(m) was defined in the previous section by (4.3). Using this in (4.9),

we obtain

e2N,d(z(a)) =
∑

u⊆D

(
∏

j∈u

γj

)
∑

h∈E∗
u

δn(h · ẑu(a))∏
j∈u

|ĥj|
. (4.11)

Next, by defining a mean over all quantities e2N,d(z(a)), we prove the existence

of a good Korobov-type generating vector.

Theorem 4.7 Let n be prime and e2N,d(z(a)) be defined by (4.9). Then, there

exists an a ∈ Zn such that

e2N,d(z(a)) ≤ 1

n

d∏

j=1

(
βj + γ̃jSÑj/n

)
+
d− 1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)
− nd − 1

n(n− 1)

d∏

j=1

βj ,

(4.12)
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where βj = 1 + γj, while γ̃j are defined by (see also (3.9)):

γ̃j =





γj/ℓ, 1 ≤ j ≤ r,

γj, r + 1 ≤ j ≤ d.

Proof. As in the previous section, the mean over all quantities e2N,d(z(a)) is

given by

MN,d,γ =
1

n− 1

n−1∑

a=1

e2N,d(z(a)).

Using now (4.11), we obtain

MN,d,γ =
1

n− 1

n−1∑

a=1

∑

u⊆D

(
∏

j∈u

γj

)
∑

h∈E∗
u

δn(h · ẑu(a))∏
j∈u

|ĥj |

=
∑

u⊆D

(
∏

j∈u

γj

)(
∑

h∈E∗
u

1
∏

j∈u
|ĥj|

· 1

n− 1

n−1∑

a=1

δn(h · ẑu(a))

)

=
∑

u⊆D

(
∏

j∈u

γj

)
(σ1 + σ2) , (4.13)

where σ1 denotes the expression in the inner brackets obtained when h has all

the components a multiple of n, while σ2 denotes the same expression obtained

when at least one component of h is not a multiple of n. Let’s remark that

a similar decomposition has been used in [61]. When all the components of h

are multiples of n, we first observe that

1

n− 1

n−1∑

a=1

δn(h · ẑu(a)) = 1,

and hence we can write σ1 as

σ1 =
∑

h∈E∗
u

∏

j∈u

1

|ĥj|
=
∑

h∈Eu

∏

j∈u

1

|ĥj|
− 1 =

∏

j∈u


1 +

∑′

−
Ñj
2

<hj≤
Ñj
2

1

|ĥj|


− 1.

Since all the components of h are multiples of n, we may write hj = nmj and

we obtain that − Ñj

2
< hj ≤ Ñj

2
is equivalent to − Ñj/n

2
< mj ≤ Ñj/n

2
. This

leads to

σ1 ≤
1

n



∏

1≤j≤r
j∈u

(
1 +

SÑj/n

ℓ

) ∏

r+1≤j≤d
j∈u

(
1 + SÑj/n

)
− 1


 . (4.14)
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Let us remark that Ñj/n takes either the value ℓr−1 or ℓr, which indicates

that σ1 = O(n−1). Next, in order to evaluate σ2, we first observe that the

sum
∑n−1

a=1 δn(h · ẑu(a)) in (4.13) represents the number of solutions of the

congruency h · zu(a) ≡ 0 (modn). Since n is prime and h has at least one

component which is not a multiple of n, then gcd{hj : j ∈ u} cannot be a

multiple of n. Using Theorem 4.1, it follows that

n−1∑

a=1

δn(h · ẑu(a)) ≤ d− 1,

which leads to

σ2 ≤
d− 1

n− 1



∏

1≤j≤r
j∈u

(
1 +

SÑj

ℓ

) ∏

r+1≤j≤d
j∈u

(
1 + SÑj

)
− 1


 . (4.15)

Now, from (4.13), (4.14) and (4.15), we obtain:

MN,d,γ ≤ 1

n

∑

u⊆D

[
∏

j∈u

(
γj + γ̃jSÑj/n

)
−
∏

j∈u

γj

]

+
d− 1

n− 1

∑

u⊆D

[
∏

j∈u

(
γj + γ̃jSÑj

)
−
∏

j∈u

γj

]

=
1

n

d∏

j=1

(
βj + γ̃jSÑj/n

)
− 1

n

d∏

j=1

βj

+
d− 1

n− 1

[
d∏

j=1

(
βj + γ̃jSÑj

)
−

d∏

j=1

βj

]
,

which simplifies to (4.12). Clearly, there must be an a ∈ Zn such that

e2N,d(z(a)) ≤MN,d,γ,

which together with the previous inequality, leads to the desired result. �

4.3.1 Tractability results

The bound given by (4.12), together with (4.8) and (4.10) suggest that the

weighted star discrepancy has order of magnitude of O(n−1(lnn)d)) with the

involved constant depending on d, ℓ and r. Let us recall from Chapter 3 that

under a condition of summability for the weights, strong tractability followed
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for intermediate-rank lattice rules constructed using the CBC technique. For

Korobov intermediate-rank lattice rules, we can prove the following result:

Theorem 4.8 If n ≥ 3 and the weights are summable, that is,
∑∞

j=1 γj <∞,

then there exists a Korobov-type generating vector z(a) such that the weighted

star discrepancy has the order of magnitude of O(dn−1+δ), where the involved

constant depends only on ℓ, r and the weights.

Proof. We see first that the right-hand-side of (4.12) can be further bounded,

so that we can write

e2N,d(z(a)) ≤ 1

n

d∏

j=1

(
βj + γ̃jSÑj/n

)
+
d− 1

n− 1

d∏

j=1

(
βj + γ̃jSÑj

)
. (4.16)

From (2.24), it follows that SÑj
≤ 2 ln Ñj = O(lnn) for every 1 ≤ j ≤ d, with

the involved constant depending on ℓ and r. Let’s observe first that since Ñj/n

is independent of n, we can write βj + γ̃jSÑj/n ≤ 1 + αγj where α > 1 is a

constant. Since the weights γj are summable, we see that the first term from

the right-hand-side of (4.16) can be bounded as follows:

1

n

d∏

j=1

(1 + αγj) ≤
1

n
e

Pd
j=1 ln(1+αγj ) ≤ 1

n
exp

(
α

∞∑

j=1

γj

)
= O(n−1),

where the involved constant depends on ℓ, r and the weights but is independent

of d and n. Using Theorem 3.4, we see that the second term on the right-hand-

side of (4.16) can be further bounded by dC(γ, δ, ℓ, r) nδ
∏∞

j=1 βj . It will follow

that the weighted star discrepancy achieves the error bound of O(dn−1+δ) for

any δ > 0 and with the involved constant depending only on ℓ, r and the

weights. Since the dependency on d is at most linear, the summability of the

weights ensures tractability of the integration problem. �

4.4 The construction algorithm

As mentioned in the first section of this chapter, the Korobov lattice rules

constructed here are not extensible in dimension. The construction algorithm

can be described as follows:
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Construction algorithm for Korobov lattice rules

For a ∈ Zn do:

Select a such that e2N,d(z(a)) is minimised.

For the rank-1 lattice rules considered in Section (4.2), let’s recall first that

N = n and

e2N,d(z(a)) =
∑

u⊆D

γ
u


 1

n

n−1∑

k=0

∏

j∈u




∑′

−n/2<h≤n/2

e2πihkaj−1/n

|h|




 .

It will follow from Chapter 2 that the total complexity of the algorithm will be

O(n2dτ), where τ is the total number of non-zero weights plus O(n) storage for

the values of the inner sum. Full details of the analysis of the computational

cost of the algorithm may be found in [48] and in Chapter 2. For finite-order

weights, the cost of the construction is O(n2dq∗+1), while for order-dependent

weights the cost is O(n2d2).

For the intermediate-rank lattice rules considered in the previous section,

let us recall that

e2N,d(z(a)) =
1

n

n−1∑

k=0

d∏

j=1


βj + γ̃j

∑′

−
Ñj
2

<h≤
Ñj
2

e2πihkẑj(a)/n

|h|


−

d∏

j=1

βj .

It will follow from Chapter 3 that the cost of the algorithm will be O(n2d)

plus O(n) for storage.

Finally, let us remark that in [44] a fast algorithm for constructing lattice

rules was proposed. In general terms, the fast construction replaced the n2

factor occurring in the evaluation of the cost by a much smaller factor of n lnn.

This fast algorithm was applicable for lattice rules for which the generating

vector was constructed using a component-by-component technique. At this

stage however, it does not seem clear that such an algorithm could also be

used for Korobov-type lattice rules.



Chapter 5

Good rank-1 lattice rules with a

composite number of points

based on the product weighted

star discrepancy

Rank-1 lattice rules based on a weighted star discrepancy with weights of a

product form have been constructed in numerous research papers under the

assumption that the number of points is prime. For general weights, a con-

struction of rank-1 lattice rules was presented in Chapter 2 also under the

assumption that n is prime. In the non-prime case however, there aren’t too

many known results to date mainly due to the technical difficulties that arise.

Nevertheless, in this chapter we fill this gap and extend previous results ob-

tained in [29] to the non-prime case. We show that if the weights are summable,

there exist lattice rules whose weighted star discrepancy is O(n−1+δ), for any

δ > 0, with the implied constant independent of the dimension, but depen-

dent on δ and the weights. Then we show that the generating vector of such

a lattice rule can be constructed using the component-by-component (CBC)

technique and, in the final part of the chapter, we analyse the cost of the CBC

construction. The results from this chapter are based on the paper [50].
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5.1 Introduction

In order to approximate integrals over the d-dimensional unit cube, in this

chapter we consider rank-1 lattice rules of the form (see also (1.5))

Qn,d(f) =
1

n

n−1∑

k=0

f

({
kz

n

})
,

where as usual, z ∈ Z
d denotes the generating vector of these lattice rules and

all the components of z are assumed to be relatively prime with n.

In this paper we extend the results in [29] by constructing rank-1 lattice

rules with a composite number of points. Hence, the same assumptions as in

[29] will be used here with the main difference that n is assumed to be just a

positive integer. In the vast majority of earlier research papers as well as in

the previous chapters, it was assumed that n was prime; an assumption which

simplifies the analysis of the problem.

However there are some known results in the non-prime case. For instance,

it has been proved in [10], [41], or [42, Chapter 5] that good lattice rules with

a non-prime number of points do exist. Several measures of goodness were

used in those works, but under the assumptions that variables are equally

important. In this chapter however, we will employ a weighted star discrepancy

as a criterion of goodness.

A constructive approach in the non-prime case has been proposed in [36],

where the integrands were assumed to belong to certain reproducing ker-

nel Hilbert spaces such as weighted Korobov spaces of periodic functions or

weighted Sobolev spaces with square-integrable mixed first derivatives. Here

we require the integrands to have the weaker requirement of integrable mixed

first derivatives. Let us remark that in [35] it was proved that in the reproduc-

ing kernel Hilbert spaces of [36], the component-by-component construction

(used also here) achieves the optimal rate of convergence O(n−1+δ), for any

δ > 0. In [7], the results in [35] were extended to the non-prime case.

Let us also mention that lattice rules with a composite number of points

have become of more interest since the introduction of extensible lattice rules
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in [18]. Later, extensible lattice rules have been studied in [19] and [20]. In

[20], it was shown that extensible lattice rules in number of points with a

low weighted star discrepancy do exist, but the proof was non-constructive.

More recently, in [8], a possible way of constructing extensible lattice rules was

proposed. Therein, it was assumed that n is of the particular form pm with

p ≥ 2 an arbitrary prime and it has been shown that lattice rules extensible in

number of points based on the weighted star discrepancy can be constructed,

but the results were not generalised to arbitrary integers.

As mentioned earlier, throughout this chapter we make similar assumptions

over the weights as in [29]. Let u be an arbitrary non-empty subset of D =

{1, 2, . . . , d− 1, d} and let us introduce a sequence of positive weights {γj}∞j=1,

which describe the decreasing importance of the successive coordinates xj . As

usual, γ
u

will be the weight associated with the set u and, in this chapter,

we assume that the weights {γ
u
} are product. Hence γ

u
=
∏

j∈u
γj for every

subset u ⊆ D.

5.2 Bounds on the weighted star discrepancy

In this chapter, we consider a similar weighted star discrepancy as the one

defined by (3.2), namely

D∗
n,γ(z) :=

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr((xu, 1), Pn)| , (5.1)

where Pn = {{kz/n}, 0 ≤ k ≤ n − 1}. Such a weighted star discrepancy

has arisen in Chapter 3 from the inequality (3.1). From Theorem 2.3 (see also

(3.5)), it follows that the weighted star discrepancy given by (5.1) satisfies the

inequality

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

(
1 − (1 − 1/n)|u| +

Rn(z, u)

2

)
, (5.2)

where Rn(z, u) is as given by (2.9), that is

Rn(z, u) =
1

n

n−1∑

k=0

∏

j∈u


1 +

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|


− 1.
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To obtain bounds on D∗
n,γ(z), we see from (5.2) that we need to bound the

quantity
∑

u⊆D

γ
u

(
1 − (1 − 1/n)|u|

)

and the quantity

e2n,d(z) :=
∑

u⊆D

γ
u
Rn(z, u). (5.3)

Under the assumption that the weights are summable, that is,
∑∞

j=1 γj < ∞,

it follows from Lemma 3.1 that

∑

u⊆D

γ
u

(
1 − (1 − 1/n)|u|

)
= O(n−1), (5.4)

with the implied constant depending on the weights, but independent of d

and n.

We now consider e2n,d(z) in more detail and by expanding (5.3) in the same

way as in Chapter 3 (see also [29]), we obtain

e2n,d(z) =
1

n

n−1∑

k=0

d∏

j=1

(βj + γjCk(zj)) −
d∏

j=1

βj , (5.5)

where we recall that βj = 1 + γj for any 1 ≤ j ≤ d, and

Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h| .

We can obtain a bound on e2n,d(z) by obtaining a bound on a certain mean

value of e2n,d(z). The mean Mn,d,γ is defined by

Mn,d,γ :=
1

(ϕ(n))d

∑

z∈Zd
n

e2n,d(z),

where ϕ is Euler’s totient function and

Zn = {z : z ∈ {1, 2, . . . , n− 1}, (z, n) = 1} .

In order to simplify some notations, throughout this chapter we shall use (z, n)

to denote gcd(z, n) . A bound on the mean Mn,d,γ is given next.

Theorem 5.1 Let n ≥ 2 be an integer and let us recall that

Sn =
∑′

−n/2<h≤n/2

1

|h| .
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If the weights {γj}∞j=1 are summable, then

Mn,d,γ ≤ 1

n

d∏

j=1

(βj + γjSn) +O

(
ln ln(n+ 1)

n

)
,

where the implied constant depends on the weights, but is independent of the

dimension.

Proof. From the definition of the mean and (5.5), we have

Mn,d,γ =
1

(ϕ(n))d

∑

z∈Zd
n

(
1

n

n−1∑

k=0

d∏

j=1

(βj + γjCk(zj)) −
d∏

j=1

βj

)

=
1

n

n−1∑

k=0

d∏

j=1


 1

ϕ(n)

∑

zj∈Zn

(βj + γjCk(zj))


−

d∏

j=1

βj

=
1

n

d∏

j=1

(βj + γjSn) +
1

n

n−1∑

k=1

d∏

j=1



βj +
γj

ϕ(n)

∑

zj∈Zn

Ck(zj)



−
d∏

j=1

βj,

where in the last step the k = 0 term has been separated out and we have

used the fact that C0(z) = Sn. Let us denote

Tn(k) =
∑

z∈Zn

Ck(z) =
∑

z∈Zn

∑′

−n/2<h≤n/2

e2πihkz/n

|h| . (5.6)

In fact this quantity has also been introduced in Chapter 2, but under the

assumption that n was prime. In such a case it followed from Lemma 2.5

that Tn(k) = −Sn for any 1 ≤ k ≤ n − 1. The fact that the value of Tn(k)

is independent of k in the prime case allows a considerable simplification of

the whole analysis. However here, since n is not necessarily prime, we need

to employ asymptotic expansion techniques in order to evaluate (5.6). Going

back to the mean, we see now that it can be written as

Mn,d,γ =
1

n

d∏

j=1

(βj + γjSn) + Ln,d,γ −
d∏

j=1

βj, (5.7)

where

Ln,d,γ =
1

n

n−1∑

k=1

d∏

j=1

(
βj +

γj

ϕ(n)
Tn(k)

)
. (5.8)

The rest of this proof follows many of the arguments used in the proof of [42,

Theorem 5.10] (see also [10]). First, it may be shown that

Tn(k) =
∑

a|n

µ(a)
(n
a
, k
)
Sa(n

a
,k) =

∑

a|n

µ
(n
a

)
(a, k)Sn(a,k)

a

, (5.9)
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where µ denotes the well-known Möbius function from number theory (see for

instance [1]). If n is prime, then, as mentioned earlier, we obtain Tn(k) = −Sn

for any 1 ≤ k ≤ n − 1, which leads to the results obtained in [29]. From

Lemma 2.9, we know that

Sm = 2 ln m+ 2ω − ln 4 + ε (m) ,

where ω is the Euler-Mascheroni constant, while |ε(m)| < 4m−2. Using (5.9),

we now obtain

Tn(k) = (2 lnn+ 2ω − ln 4)Bn(k) − 2Hn(k) + Vn(k), (5.10)

where

Bn(k) =
∑

a|n

µ
(n
a

)
(a, k),

Hn(k) =
∑

a|n

µ
(n
a

)
(a, k) ln

a

(a, k)
,

and

Vn(k) =
∑

a|n

µ
(n
a

)
(a, k)ε

(
n(a, k)

a

)
. (5.11)

From the proof of [42, Theorem 5.10], we have Bn(k) = 0 for any 1 ≤ k ≤ n−1.

Using this result in (5.10), we get

Tn(k) = −2Hn(k) + Vn(k). (5.12)

By combining (5.8) with (5.12), we obtain

Ln,d,γ =
1

n

n−1∑

k=1

d∏

j=1

(
βj + γj

(
−2Jn(k) +

Vn(k)

ϕ(n)

))
, (5.13)

where

Jn(k) =
Hn(k)

ϕ(n)
.

The proof of Theorem 5.10 in [42] yields Vn(k) = O(1) with an absolute implied

constant. Hence we have Vn(k)/ϕ(n) = O(1/ϕ(n)). This result together with

(5.13) and βj = 1 + γj leads us to

Ln,d,γ =
1

n

n−1∑

k=1

d∏

j=1

(
1 + γj(1 − 2Jn(k)) + γjO

(
1

ϕ(n)

))
. (5.14)
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Let us consider a prime p and denote by ep(n) the largest exponent such that

pep(n) divides n. Then, also from the proof of [42, Theorem 5.10], we obtain

Hn(k) =





pep(k)ϕ(n/pep(n)) ln p, if p is the unique prime with ep(n) > ep(k),

0, otherwise.

If such a p exists, then by the definition of ep(n), we have n/pep(n) relatively

prime with pep(n) and hence ϕ(n/pep(n))ϕ(pep(n)) = ϕ(n). We then obtain

Jn(k) =
pep(k)ϕ(n/pep(n)) ln p

ϕ(n)
=
pep(k) ln p

ϕ(pep(n))
=

ln p

pαk (p− 1)
,

where we put αk = ep(n)−ep(k)−1, for 1 ≤ k ≤ n−1. For each 1 ≤ k ≤ n−1,

it is not difficult to check that −1 < 1−2 ln(p)/(pαk(p−1)) < 1 for any prime

p ≥ 2 and for any αk ≥ 0. Hence, 1 + γj(1 − 2Jn(k)) ≤ 1 + γj = βj for any

1 ≤ j ≤ d. Considering now the product from (5.14), we obtain

d∏

j=1

(
1 + γj(1 − 2Jn(k)) + γjO

(
1

ϕ(n)

))

≤
d∏

j=1

(
βj + γjO

(
1

ϕ(n)

))

=

d∏

j=1

βj +
∑

u⊆D

(
O

(
1

ϕ(n)

))|u|∏

j∈u

γj

∏

j 6∈u

βj

=

d∏

j=1

βj +O

(
1

ϕ(n)

)
, (5.15)

where the implied constant depends on the quantity

∑

u⊆D

∏

j∈u

γj

∏

j 6∈u

βj ≤
d∏

j=1

(βj + γj) .

Next, let us consider

d∏

j=1

(βj + γj) = exp

(
d∑

j=1

ln (βj + γj)

)
≤ exp

(
2

d∑

j=1

γj

)
,

where we used that βj = 1 + γj and ln(1 + x) ≤ x for any x > −1. Recalling

that the weights were assumed to be summable, by denoting Γ :=
∑∞

j=1 γj, it

follows that
d∏

j=1

(βj + γj) ≤ e2Γ,
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which shows that the implied constant of (5.15) is independent of the di-

mension, but dependent on the weights. From (5.14), (5.15) and using that

1/ϕ(n) = O(n−1 ln ln(n+ 1)) with an absolute implied constant (see [46]), we

now obtain

Ln,d,γ ≤ n− 1

n

d∏

j=1

βj +O

(
ln ln(n+ 1)

n

)
.

By combining the last inequality with (5.7), we obtain

Mn,d,γ ≤ 1

n

d∏

j=1

(βj + γjSn) +O

(
ln ln(n+ 1)

n

)
,

and hence the result is proved. �

Corollary 5.2 Let n ≥ 2 be an integer. If the weights {γj}∞j=1 are summable,

then there exists a vector z ∈ Zd
n such that

e2n,d(z) ≤ 1

n

d∏

j=1

(βj + γjSn) +O

(
ln ln(n+ 1)

n

)
,

where the implied constant depends on the weights, but is independent of the

dimension.

Proof. Clearly, there must be a vector z ∈ Zd
n such that e2n,d(z) ≤Mn,d,γ and

the result then follows from Theorem 5.1. �

As we have already mentioned in the previous chapters, in an unweighted

setting there exist d-dimensional lattice rules having O(n−1(lnn)d) star dis-

crepancy with the implied constant depending only on d and such a bound is

widely believed to be the best possible. Under the assumptions made within

this chapter, from (5.2), (5.4) and Corollary 5.2, together with Sn ≤ 2 lnn for

any n ≥ 2 (see (2.24)), it will follow that there exists a vector z ∈ Zd
n such

that

D∗
n,γ(z) = O(n−1(ln n)d),

but with the implied constant independent of d. A bound that does not involve

lnn is possible by making use of Theorem 3.4 (see also [20, Lemma 3]). This

theorem leads to the conclusion that if the weights are summable, then there
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exists a generating vector z such that the weighted star discrepancy achieves

the strong tractability error bound

D∗
n,γ(z) = O(n−1+δ),

for any δ > 0, where the implied constant depends on δ and the weights but

is independent of n and d.

Let us also remark that corresponding results for a weighted Lp star discrep-

ancy can be deduced, since such a discrepancy is bounded by the discrepancy

introduced in (5.1). Further details can be found in Section 3.6 and [29].

5.3 A component-by-component construction

Before presenting the main result regarding the CBC construction, we need

the following:

Lemma 5.3 There exists a positive constant c independent of n such that

n−1∑

k=1

|Tn(k)|
ϕ(n)

≤ c lnn,

where Tn(k) is given by (5.6).

Proof. Since Jn(k) = Hn(k)/ϕ(n) ≥ 0, then from (5.12), we obtain:

n−1∑

k=1

|Tn(k)|
ϕ(n)

≤
n−1∑

k=1

(
2Jn(k) +

|Vn(k)|
ϕ(n)

)
. (5.16)

From the proof of [42, Theorem 5.10], we have

n−1∑

k=1

Jn(k) = lnn. (5.17)

In order to analyse the second term of (5.16), we see from (5.11) that

|Vn(k)| ≤
∑

a|n

∣∣∣µ
(n
a

)∣∣∣ (a, k)
∣∣∣∣ε
(
n(a, k)

a

)∣∣∣∣ .

By using that |ε(m)| < 4m−2 (see Lemma 2.9), we next obtain:

|Vn(k)| ≤ 4
∑

a|n

∣∣∣µ
(n
a

)∣∣∣
(a
n

)2

= 4
∑

a|n

1

a2
≤ 2π2

3
.
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Recalling that 1/ϕ(n) = O(ln ln(n+ 1)/n) with an absolute implied constant,

we now deduce that there exists a constant c1 > 0 independent of n such that

n−1∑

k=1

|Vn(k)|
ϕ(n)

≤ (n− 1)
2π2c1

3

ln ln(n+ 1)

n
≤ 2π2c1 lnn

3
.

From this inequality combined with (5.16) and (5.17), we obtain:

n−1∑

k=1

|Tn(k)|
ϕ(n)

≤
(

2 +
2π2c1

3

)
lnn,

which leads to the desired result by taking c = 2 + 2π2c1/3. �

As in Chapters 2 and 3, in order to construct the generating vector z, we use

the component-by-component (CBC) technique. The central idea is to prove

that the CBC algorithm produces a generating vector whose corresponding

weighted star discrepancy has the same order of magnitude as the bound given

in Corollary 5.2. Let us first recall the CBC algorithm:

Component-by-component (CBC) algorithm

The generating vector z = (z1, z2, . . . , zd) can be constructed as follows:

1. Set the value for the first component of the vector, say z1 := 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2n,m(z1, z2, . . . , zm) is

minimised, where

e2n,m(z1, z2, . . . , zm) =
1

n

n−1∑

k=0

m∏

j=1

(βj + γjCk(zj)) −
m∏

j=1

βj.

The following theorem and corollary will justify the use of the CBC algorithm.

Theorem 5.4 Let n ≥ 2 be an integer and suppose that the weights {γj}∞j=1

are summable. If there exists a z ∈ Zd
n such that

e2n,d(z) ≤ 1

n

d∏

j=1

(βj + αγj lnn) ,

where α = 2 + c with c as in Lemma 5.3, then there exists a zd+1 ∈ Zn such

that

e2n,d+1(z, zd+1) ≤
1

n

d+1∏

j=1

(βj + αγj lnn) .

Such a zd+1 can be found by minimising e2n,d+1(z, zd+1) over the set Zn.
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Proof. For any zd+1 ∈ Zn, we see from (5.5) that

e2n,d+1(z, zd+1) =
1

n

n−1∑

k=0

d∏

j=1

(βj + γjCk(zj)) (βd+1 + γd+1Ck(zd+1))

−βd+1

d∏

j=1

βj

= βd+1e
2
n,d(z) +

γd+1

n

n−1∑

k=0

d∏

j=1

(βj + γjCk(zj))Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏

j=1

(βj + γjSn)

+
γd+1

n

n−1∑

k=1

d∏

j=1

(βj + γjCk(zj))Ck(zd+1),

where in the last step the k = 0 term has been separated out. Next we average

e2n,d+1(z, zd+1) over all the possible values of zd+1 to form

Avg(e2n,d+1(z, zd+1)) =
1

ϕ(n)

∑

zd+1∈Zn

e2n,d+1(z, zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏

j=1

(βj + γjSn)

+
γd+1

nϕ(n)

∑

zd+1∈Zn

n−1∑

k=1

d∏

j=1

(βj + γjCk(zj))Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏

j=1

(βj + γjSn)

+
γd+1

n

n−1∑

k=1


 1

ϕ(n)

∑

zd+1∈Zn

Ck(zd+1)




d∏

j=1

(βj + γjCk(zj)).

From (5.6), it is easy to see that

∣∣∣∣∣∣

∑

zd+1∈Zn

Ck(zd+1)

∣∣∣∣∣∣
= |Tn(k)|.

It is also obvious that |Ck(z)| ≤ Sn for any 1 ≤ k ≤ n − 1. Using these

observations in the last term of the previous inequality, we obtain

Avg(e2n,d+1(z, zd+1)) ≤ βd+1e
2
n,d(z) +

γd+1Sn

n

d∏

j=1

(βj + γjSn)

+
γd+1

n

n−1∑

k=1

|Tn(k)|
ϕ(n)

d∏

j=1

(βj + γjSn).



87

From (2.24) we have Sn ≤ 2 lnn and since α ≥ 2, we obtain Sn ≤ α lnn. We

can now write

Avg(e2n,d+1(z, zd+1)) ≤ βd+1e
2
n,d(z) +

γd+1Sn

n

d∏

j=1

(βj + γjSn)

+
cγd+1 lnn

n

d∏

j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

(2 + c)γd+1 lnn

n

d∏

j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

αγd+1 lnn

n

d∏

j=1

(βj + αγj lnn) .

By making use of the hypothesis, we finally obtain

Avg(e2n,d+1(z, zd+1)) ≤ βd+1

n

d∏

j=1

(βj + αγj lnn)

+
αγd+1 lnn

n

d∏

j=1

(βj + αγj lnn)

=
1

n

d+1∏

j=1

(βj + αγj lnn) .

It is obvious that the zd+1 ∈ Zn chosen to minimise e2n,d+1(z, zd+1) will satisfy

e2n,d+1(z, zd+1) ≤ Avg(e2n,d+1(z, zd+1)).

This, together with the previous inequality completes the proof. �

Corollary 5.5 Let n ≥ 2 be an integer. If the weights {γj}∞j=1 are summable,

then for any m = 1, 2, . . . , d, there exists a z ∈ Zm
n such that

e2n,m(z1, z2, . . . , zm) ≤ 1

n

m∏

j=1

(βj + αγjSn) .

We can set z1 = 1 and for every 2 ≤ m ≤ d, zm can be chosen by minimising

e2n,m(z1, z2, . . . , zm) over the set Zn.

Proof. For d = 1, then we see from (2.9) that we have

Rn(z, u) =
1

n

n−1∑

k=0


1 +

∑′

−n/2<h≤n/2

e2πihkz/n

|h|


−1 =

1

n

∑′

−n/2<h≤n/2

n−1∑

k=0

(e2πihz/n)k

|h| .
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Since h ≤ n/2 and (z, n) = 1, it follows that hz cannot be a multiple of n. It

is then easy to check using (2.22) that Rn(z, u) = 0. Hence for m = 1 we have

e2n,1(z1) = 0. The result then follows immediately from Theorem 5.4. �

The analysis of the complexity of the CBC construction is similar to the

analysis done in Chapter 3. However for completeness, we review the main

ideas here. Let’s observe first that each e2n,m(z1, z2, . . . , zm) can be evaluated in

O(n2m) operations. This cost can be reduced to O(nm) by using asymptotic

techniques as presented in Appendix A and [31]. Consequently, the total

complexity of the algorithm will be O(n2d2). This can be reduced to O(n2d)

if we store the products (see Chapter 3) during the construction at an extra

expense of O(n). However, this order of magnitude can be further reduced to

O(nd logn) by using the fast construction proposed in [43]. In the mentioned

paper [43] the authors proved that the fast construction algorithm works also

in the case when n is not prime (as is the case in this chapter). The central

idea of the fast algorithm is based on a fast matrix-vector multiplication and

consists of minimising a function of the form

1

n

n−1∑

k=0

d∏

j=1

(
1 + γjω

({
kzj

n

}))
− 1,

where in our situation we can take

ω(x) =
∑′

−n
2

<h≤n
2

e2πihx

|h| , x ∈ [0, 1].

Thus, with some modifications, the techniques used in [43] will also work here.



Chapter 6

Shifted lattice rules for

approximation of integrals over

Euclidean space in weighted

reproducing kernel Hilbert

spaces

In this chapter we study the problem of approximating weighted integrals over

Euclidean space with the weight function being a probability density. The

function space considered here is a reproducing kernel Hilbert space with the

kernel based on Fourier transforms. After defining the worst-case error, we

prove that by mapping R
d to the unit cube, we can construct shifted lattice

rules over the unit cube such that our defined mean worst-case error is of

order O(n−1/2), where, under appropriate conditions on the weights, the in-

volved constant is independent of the dimension. We also perform numerical

experiments on the error resulting from the use of these shifted lattice rules.

These numerical experiments seem to suggest that in practice, the order of

convergence for the error is better than the theoretical O(n−1/2).
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6.1 Introduction

Integrals over Euclidean space given by

∫

Rd

f(x) dx, (6.1)

have been studied in [51, Chapter 9.3], [54] and [59]. In those works, it was

assumed that f is a smooth function that decays rapidly at infinity. The

quadrature rule proposed to approximate such integrals was of the form

Q(f) = detL
∑

x∈L

f(x),

where L ⊂ R
d was an infinite lattice as defined in Chapter 1 by Definition 1.1,

while detL denoted the “determinant” of the lattice, that is, the volume of

the unit cell or equivalently, the reciprocal of the point density of the lattice.

Let’s assume that the function f has the Fourier transform given by

f̂(w) =

∫

Rd

f(x)e−2πiw·x dx.

When f̂ ∈ L1, we also have

f(x) =

∫

Rd

f̂(w)e2πiw·x dw.

From [51, Theorem 9.9] or [54, Theorem 1], it turned out that if f and the

Fourier coefficients f̂ satisfy the conditions |f(x)| ≤ c(1 + ||x||E)−d−δ and

|f̂(w)| ≤ c1(1 + ||w||E)−d−δ for some constants c, c1 and δ > 0, where || · ||E is

the usual Euclidean norm, then the quadrature error can be expressed as

Q(f) −
∫

Rd

f(x) dx =
∑′

w∈L⊥

f̂(w),

where by L⊥ we denote the dual of the lattice L (see Definition 2.1). Later

in [51, Section 9.3] or [54, Section 3], it was shown that the “best” lattice

among those with a given determinant to be chosen for a good approximation

of integrals given by (6.1), is the one whose dual lattice has the densest sphere

packing. In simple terms, the density of the sphere packing represents the

fraction of the total volume occupied by a packing of spheres of the same radius
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without overlapping. Generator matrices for lattices with densely packed duals

can be found in [5] and [58] and further details on the sphere packing density

can also be found in these two works.

Although the criterion based on the sphere packing density seems to be very

appealing, there are technical difficulties that arise almost immediately. For

instance, there is a lack of practical algorithms that could be used to calculate

the density of a sphere packing. Such algorithms, if any, are at least NP -

difficult or conjectured to be in the class of NP -hard problems as shown in [5].

Secondly, lattices with the densest sphere packing are not known for every

given dimension. In fact, lattices with the densest possible sphere packing

are known for d = 2, 3, 4, 5, 6, 7, 8 (details on such lattices can be found in

[58]). The website http://www.research.att.com/˜njas/lattices/density.html

contains tables of available lattices with the densest sphere packing known up

to dimension 48 and then for d = 54, 56, 64, 80 and 128.

Due to the difficulties described above, instead of considering integrals of

the form (6.1), we shall consider in the rest of this chapter integrals over

Euclidean space given by (see also (1.4))

Id(f, ρ) =

∫

Rd

f(x)ρ(x) dx,

where ρ(x) is a probability density function. Hence ρ(x) ≥ 0 for any x ∈ R
d

and
∫

Rd ρ(x) dx = 1. We also assume that the probability density is of the

product form

ρ(x) =

d∏

j=1

ρj(xj),

where each ρj is a probability density over R. For convenience, we shall also

assume that all the ρj are equal. However the results can be extended in the

case when the densities ρj are different for each coordinate direction.

Integrals over unbounded regions may be studied by first employing a map-

ping to the unit cube (see [21], [22], [23]) and then generating a shifted lattice

rule over the unit cube. Such a technique has been used in [38] and [62]. In
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the 1-dimensional case, we can use the following transform:

u = Φ(x) =

∫ x

−∞

ρ(t) dt, ∀x ∈ R. (6.2)

The inverse mapping will be Φ−1 : (0, 1) → R, Φ−1(u) = x. Let’s observe

that if Φ is differentiable, then Φ′(x) = ρ(x), ∀x ∈ R. In the d-dimensional

case, the mapping (6.2) will be applied for each coordinate direction. Hence,

if x = (x1, x2, . . . , xd) ∈ R
d, then Φ(x) = (Φ(x1),Φ(x2), . . . ,Φ(xd)). In the

same manner, the inverse mapping will also be applied component-wise. The

integral (1.4) will thus become

Id(f, ρ) =

∫

[0,1]d
f(Φ−1(u)) du =

∫

[0,1]d
g(u) du,

where g = f ◦Φ−1 (applied component-wise). These integrals can be approxi-

mated by quadrature rules of the form

Qn,d(g) =
1

n

n−1∑

k=0

g(wk) =
1

n

n−1∑

k=0

f(tk),

where tk = Φ−1(wk) ∈ R
d, for all 0 ≤ k ≤ n− 1.

Next, we give some examples of possible choices for the density ρ(x) and

establish some further properties of the transform (6.2). These densities were

also considered in [38].

Example 1 Consider the Gaussian distribution on R defined by

ρ(x) =
1√
2πλ

e−
x2

2λ , λ > 0.

Such a distribution occurs frequently in applications and was used for instance

in [62].

Example 2 The two-tailed exponential distribution on R defined by

ρ(x) =
1

2λ
e−

|x|
λ , λ > 0.

This distribution will be considered for the numerical experiments given later

in this chapter.

Example 3 For any x ∈ R, consider

ρ(x) =
λ− 1

2(1 + |x|)λ
, λ > 1.
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Let’s remark that the densities considered in the previous three examples

are even functions, that is ρ(x) = ρ(−x), ∀x ∈ R. For such densities, the

transform defined by (6.2) will satisfy

Φ(−x) = 1 − Φ(x), ∀x ∈ R. (6.3)

Consequently, the inverse transform will satisfy

Φ−1(1 − u) = −Φ−1(u), ∀u ∈ (0, 1). (6.4)

Both (6.3) and (6.4) are easy to prove and will be useful later in this chapter.

Let’s also remark that the derivative of Φ−1 is given by

(Φ−1(u))′ =
1

ρ(Φ−1(u))
.

It is easy to see that the function Φ is increasing and hence Φ−1 is increasing

too.

The rest of the chapter is structured as follows: in the next section, we

consider reproducing kernel Hilbert spaces and review briefly some concepts

of the theory of reproducing kernels. Reproducing kernel Hilbert spaces were

considered in numerous other research papers devoted to quasi-Monte Carlo

methods for multiple integration. These papers include but are not limited

to [8], [9], [25], [35], [36], [37], [38], [52], [57], and [62]. Since earlier in this

section we mentioned that the quadrature error can be expressed in terms of

the Fourier coefficients, it seems natural to use a reproducing kernel based

on the Fourier transform of functions. After defining a worst-case error and

introducing the weights, we construct shifted lattice rules in the unit cube

using the usual CBC technique. By using the inverse mapping Φ−1, we obtain

a quadrature rule containing points from the whole Euclidean space that can be

used to approximate weighted integrals over R
d. Then, we establish that if the

weights are summable, the order of magnitude of the error is O(n−1/2) with

the involved constant independent of the dimension, and hence we achieve
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strong tractability. Although the theoretical convergence is the same as for

Monte Carlo methods, our numerical tests seem to suggest that in practice

the convergence is better that the theoretical O(n−1/2). However, we need

to mention that our results are rather speculative and based on some limited

numerical experiments. By using a different measure of goodness, a better

theoretical convergence will be achieved in the next chapter.

6.2 The function space

Throughout this chapter we assume that the function f admits a Fourier trans-

form f̂ and that Fourier inversion also holds as indicated in the previous sec-

tion. We shall also assume that f belongs to a reproducing kernel Hilbert

space and we start this section by recalling some concepts from the theory of

reproducing kernels. Further details can be found on [2].

Definition 6.1 A reproducing kernel Hilbert space H of functions on R
d is a

Hilbert space in which for any y ∈ R
d, the point evaluation functional

Fy(f) = f(y), ∀f ∈ H,

is a bounded linear functional on H.

If 〈·, ·〉 and || · || denote the inner product and respectively, the norm in the

space H , then from Riesz’s representation theorem (see for instance [4] or [40]),

there exists a unique function K defined on R
d × R

d such that

Fy(f) = f(y) = 〈f,K(·,y)〉, ∀f ∈ H, ∀y ∈ R
d.

The function K is known as the “reproducing kernel” of the Hilbert space

H . For any other bounded linear functional F , the representer F̃ satisfying

F = 〈f, F̃〉 is given by

F̃(y) = 〈F̃ , K(·,y)〉 = F(K(·,y)).
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Definition 6.2 A reproducing kernel is said to be “shift-invariant” if it has

the property

K(x,y) = K(x + ∆,y + ∆), ∀x,y,∆ ∈ R
d.

It can be checked that the condition K(x,y) = K(x+∆,y+∆) is equivalent

with K(x,y) = K(x − y, 0) for all x,y ∈ R
d (see for instance [25]). If the

reproducing kernel is real-valued, then since Fy(f) = 〈f,K(·,y)〉 and by using

the symmetry property of the inner product, we obtain:

K(x,y) = 〈K(·,x), K(·,y)〉 = 〈K(·,y), K(·,x)〉 = K(y,x),

for any x,y ∈ R
d. Hence a real-valued reproducing kernel is symmetric. For

complex reproducing kernels, we have

K(x,y) = K(y,x), ∀x,y ∈ R
d.

As mentioned earlier, more details on the theory of reproducing kernels can

be found in [2].

Let us assume that the reproducing kernelK is shift-invariant, soK(x,y) =

K(x − y, 0) = K(t, 0), where we put t = x − y. If K ∈ L1, then the Fourier

transform of such a kernel is given by

K̂(w) =

∫

Rd

K(t, 0)e−2πiw·t dt.

Consequently, if K̂ ∈ L1, then

K(x − y, 0) =

∫

Rd

K̂(w)e2πiw·(x−y) dw =

∫

Rd

K̂(w)e2πiw·t dw.

We can now prove the following result:

Proposition 6.1 Let us assume that K ∈ L1 is a shift-invariant reproducing

kernel with the non-negative Fourier transform K̂ ∈ L1. Let f and g be two

square integrable functions in H and let us define the inner product

〈f, g〉 :=

∫

Rd

f̂(w)ĝ(w)

K̂(w)
dw. (6.5)
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Then the space of functions satisfying ||f || <∞ is a reproducing kernel Hilbert

space, where

||f || =

(∫

Rd

|f̂(w)|2
K̂(w)

dw

)1/2

. (6.6)

Proof. From Bochner’s theorem (see for instance [3] or [40]), it follows that

K(t, 0) is non-negative if and only if K̂(w) is non-negative. Since it was

assumed that K̂ is non-negative, the kernel will be non-negative and it will

follow that it is real. From the symmetry property K(x,y) = K(y,x) for any

x,y ∈ R
d, it also follows that K(t, 0) = K(−t, 0), for any t ∈ R

d. It is then

easy to verify the reproducing property of K. Indeed, since K̂ is real, we have

〈f(·), K(·,y)〉 =

∫

Rd

f̂(w)e−2πiw·yK̂(w)

K̂(w)
dw = f(y),

for any y ∈ R
d. �

Let us remark that similar assumptions on the kernel and the same norm as

(6.6) have been considered in works such as [3] or [63]. These assumptions on

the kernel will be valid for the rest of the chapter.

Example. Next, we give an example of such reproducing kernel. In a

1-dimensional space, let us consider K(x, y) = ce−α|x−y| with c > 0. It can be

checked that

K̂(w) =
2cα

α2 + 4π2w2
.

When c = π and α = 2π, we obtain K(x, y) = πe−2π|x−y| and this will be the

kernel chosen for the numerical experiments considered later in this chapter.

It turns out that K̂(w) = (1 +w2)−1 and the inner product defined by (6.5) is

now given by

〈f, g〉 :=

∫ ∞

−∞

f̂(w)ĝ(w)(1 + w2) dw.

If f is differentiable and f ′ is integrable with its Fourier transform given by

f̂ ′(w) =
∫∞

−∞
e−2πiwxf ′(x) dx, then after an integration by parts and under the

assumption that f(x) → 0 when x→ ±∞, we obtain:

f̂ ′(w) = e−2πiwxf(x)|∞−∞ + (2πiw)

∫ ∞

−∞

e−2πiwxf(x) dx = 2πiwf̂(w).
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Using (6.6), we obtain

||f ||2 =

∫ ∞

−∞

|f̂(w)|2(1 + w2) dw.

If ||f || < ∞, then
∫∞

−∞
w2|f̂(w)|2 dw < ∞ and from Parseval’s theorem (see

for instance [40]) together with the expression of the derivative, we obtain

∫ ∞

−∞

|f ′(x)|2 dx =

∫ ∞

−∞

|f̂ ′(w)|2 dw = 4π2

∫ ∞

−∞

w2|f̂(w)|2 dw <∞.

Consequently, the corresponding space will consist of functions with square

integrable first derivative. In a d-dimensional space, the corresponding space

of functions will consist of functions with square-integrable mixed first deriva-

tives. Spaces with square-integrable mixed first derivatives such as weighted

Korobov spaces of periodic functions or weighted Sobolev spaces have been

previously considered in numerous research papers including [35], [36], [37],

[38] and [52].

6.3 Worst-case error

In order to express the integration error, we need first the following result:

Lemma 6.2 If the linear functionals

Id(f, ρ) =

∫

Rd

f(x)ρ(x) dx,

and

Qn,d(f) =
1

n

n−1∑

k=0

f(tk)

are bounded, then their representers are given by the following functions:

h(x) =

∫

Rd

K(x,y)ρ(y) dy, (6.7)

and

ζ(x) =
1

n

n−1∑

k=0

K(tk,x),

where the kernel K is satisfying the same assumptions as in Proposition 6.1.
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Proof. Using (6.7) and the shift-invariance of K, the Fourier transform of h

can be expressed as follows:

ĥ(w) =

∫

Rd

(∫

Rd

K(x,y)ρ(y) dy

)
e−2πiw·x dx

=

∫

Rd

(∫

Rd

e−2πiw·xK(x − y, 0) dx

)
ρ(y) dy

=

∫

Rd

(∫

Rd

e−2πiw·(y+t)K(t, 0) dt

)
ρ(y) dy

=

∫

Rd

e−2πiw·y

(∫

Rd

e−2πiw·tK(t, 0) dt

)
ρ(y) dy

=

∫

Rd

e−2πiw·yK̂(w)ρ(y) dy = K̂(w)ρ̂(w).

From (6.5), it follows that

〈f, h〉 =

∫

Rd

f̂(w)ĥ(w)

K̂(w)
dw =

∫

Rd

f̂(w)K̂(w)ρ̂(w)

K̂(w)
dw =

∫

Rd

f̂(w)ρ̂(w) dw,

and from Parseval’s theorem, we obtain

〈f, h〉 =

∫

Rd

f(x)ρ(x) dx = Id(f, ρ).

Hence h(x) is the representer of Id(f, ρ). To prove the second part, let’s

consider

〈f, ζ〉 = 〈f, 1

n

n−1∑

k=0

K(tk,x)〉 =
1

n

n−1∑

k=0

〈f,K(tk, ·)〉 = Qn,d(f),

where in the last step we used the reproducing property of K. �

Using Lemma 6.2, we obtain

Id(f, ρ) −Qn,d(f) = 〈f, h− ζ〉

and by applying the Cauchy-Schwarz inequality, it follows that

|Id(f, ρ) −Qn,d(f)| ≤ ||f || · ||h− ζ ||, (6.8)

where the equality is attained when f is a multiple of h − ζ . From (6.8), we

see that we can measure the error by further analysing the quantity ||h− ζ ||.

Let us define now the quantity

e2n,d(Pn, K) := ||h− ζ ||2,



99

where Pn := {t0, t1, . . . , tn−1} is the set of quadrature points from Qn,d(f).

Since the equality in (6.8) is achieved when f is a multiple of h − ζ , it turns

that the quantity e2n,d(Pn, K) defined above can be viewed as a worst-case

error. In papers such as [25], this quantity is also named the “discrepancy”.

We now establish the following:

Theorem 6.3

e2n,d(Pn, K) =

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy − 2

n

n−1∑

k=0

∫

Rd

K(tk,y)ρ(y) dy

+
1

n2

n−1∑

i=0

n−1∑

k=0

K(ti, tk). (6.9)

Proof. We have

e2n,d(Pn, K) = 〈h− ζ, h− ζ〉 = 〈h, h〉 − 2〈h, ζ〉 + 〈ζ, ζ〉.

By using the fact that h and ζ are representers of linear functionals, we obtain:

〈h, h〉 = Id(h, ρ) =

∫

Rd

h(x)ρ(x) dx =

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy,

where in the last step we used (6.7) and Fubini’s theorem (see for instance [4]).

We also have

〈h, ζ〉 = Qn,d(h) =
1

n

n−1∑

k=0

∫

Rd

K(tk,y)ρ(y) dy.

Finally,

〈ζ, ζ〉 = Qn,d(ζ) =
1

n

n−1∑

i=0

ζ(ti) =
1

n2

n−1∑

i=0

n−1∑

k=0

K(ti, tk).

Substituting this in the expression for e2n,d(Pn, K), we obtain (6.9). �

Next, we define a mean over all possible e2n,d(Pn, K) by

Mn,d :=

∫

(Rd)n

e2n,d(Pn, K)ρ(t0)ρ(t1) . . . ρ(tn−1) dt0 dt1 . . . dtn−1. (6.10)

We can now establish the following result:

Theorem 6.4

Mn,d =
1

n

∫

Rd

K(x,x)ρ(x) dx − 1

n

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy. (6.11)
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Proof. From (6.9), we see that e2n,d(Pn, K) can be written as:

e2n,d(Pn, K) =

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy − 2

n

n−1∑

k=0

∫

Rd

K(tk,y)ρ(y) dy

+
1

n2

n−1∑

i=0

n−1∑

k=0
k 6=i

K(ti, tk) +
1

n2

n−1∑

i=0

K(ti, ti).

Using (6.10), it will follow that

Mn,d = −
∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy

+
n2 − n

n2

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy +
1

n

∫

Rd

K(x,x)ρ(x) dx,

which is equivalent with the desired result. �

Let’s observe that Mn,d ≥ 0 since all e2n,d(Pn, K) ≥ 0. However, this could

have also followed from the following argument (see also [25]):

||K(·,x)|| =
√

〈K(·,x), K(·,x)〉 =
√
K(x,x),

which leads to

K(x,y) = 〈K(·,x), K(·,y)〉 ≤ ||K(·,x)|| · ||K(·,y)|| ≤
√
K(x,x) ·

√
K(y,y).

By applying the Cauchy-Schwarz inequality for integrals, it then follows:

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dx dy

≤
∫

Rd

∫

Rd

√
K(x,x)ρ(x)ρ(y) ·

√
K(y,y)ρ(x)ρ(y) dx dy

≤
√∫

Rd

∫

Rd

K(x,x)ρ(x)ρ(y) dx dy ·
√∫

Rd

∫

Rd

K(y,y)ρ(x)ρ(y) dx dy

=

√∫

Rd

K(x,x)ρ(x) dx ·
√∫

Rd

K(y,y)ρ(y) dy,

which shows that

∫

Rd

∫

Rd

K(x,y)ρ(x)ρ(y) dxdy ≤
∫

Rd

K(x,x)ρ(x) dx.

As mentioned earlier, in order to generate the quadrature points we will

map the Euclidean space to the d-dimensional unit cube. Let’s remark that the
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transformation (6.2) applied component-wise leads to a space H of functions

on [0, 1]d, which is isometric with the space H on R
d. Consequently, we have

a kernel over the unit cube defined by

K(x,y) = K(Φ−1(u),Φ−1(v)) := K(u,v),

for any u,v ∈ [0, 1]d, where x = Φ−1(u) and y = Φ−1(v). Now we can define

the shift-invariant kernel associated with K by

K∗(u,v) =

∫

[0,1]d
K({u + ∆}, {v + ∆}) d∆, (6.12)

where the braces indicate that we take only the fractional part of the vector’s

components. Since K is shift-invariant, the condition K∗(u,v) = K∗({u +

∆}, {v + ∆}) for any u,v,∆ ∈ [0, 1]d is equivalent with K∗(u,v) = K∗({u−

v}, 0). Hence K∗(u,v) depends only on {u − v}.

Let’s define

ψ(w) := K∗(w, 0) = K∗({u − v}, 0),

where we put w = {u−v} and analyse next the function ψ in the 1-dimensional

case. Hence, we now consider the univariate function

ψ(w) =

∫ 1

0

K({w + ∆},∆) d∆. (6.13)

Further properties of ψ will be useful at the expression of the worst-case error

and mean worst-case error and will also allow us to establish a convexity prop-

erty of ψ. Such a property will be useful at the construction of the quadrature

points. An expression for ψ is given by the following result:

Lemma 6.5 The function ψ defined above can be written as

ψ(w) = 2ψ1(w) + 2ψ1(1 − w), ∀w ∈ (0, 1),

where

ψ1(w) =

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)), t)ρ(t) dt. (6.14)

The proof of this lemma is given in Appendix B. Let us remark that a similar

result was also established in [62], however it was valid only for the particular
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kernel used therein and under the assumption that the probability distribution

was Gaussian. Our result here will hence allow slightly more generality, since

it will work for more general distributions. This last result also shows that

further properties of K∗ and implicitly of K, can be determined by analysing

properties of ψ1(w). For instance, if ψ1 is twice differentiable, then the first

and the second derivatives of ψ could be expressed as follows:

ψ′(w) = 2ψ′
1(w) − 2ψ′

1(1 − w),

and

ψ′′(w) = 2ψ′′
1(w) + 2ψ′′

1 (1 − w). (6.15)

For the rest of the chapter, we assume that ψ′′
1(w) ≥ 0, ∀w ∈ [0, 1]. A

similar result was established in [38] and [62]. From (6.15), we obtain ψ′′(w) ≥

0 and hence ψ is a convex function. In Appendix B we actually give a proof

that ψ is convex for a specific kernel (see Lemma B.1). From [62, Lemma 2],

it follows that

1

n− 1

n−1∑

i=1

ψ

(
i

n

)
<

∫ 1

0

ψ(w) dw, (6.16)

for any positive integer n ≥ 2 and we shall assume that (6.16) holds for each

individual coordinate j = 1, . . . , d. Let us also mention that the result stated

by (6.16) will be used later at the construction of the quadrature points.

6.4 Worst-case error in weighted reproducing

kernel Hilbert spaces

As usual, we denote D = {1, 2, . . . , d} and assume that γ
u

is the weight as-

sociated with each non-empty subset u ⊆ D. We also denote by Kj(xj , yj)

the 1-dimensional kernel associated with each coordinate j and assume that

each such kernel is shift-invariant and non-negative. We now introduce the

weighted kernel

K(x,y) =
∑

u⊆D

γ
u

∏

j∈u

Kj(xj , yj). (6.17)
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Further assumption on the weights will be made later. Next, we expand the

expression of the quadrature error given by (6.9). For each j = 1, . . . , d, let us

define

Cj :=

∫ 1

0

Kj(uj, uj) duj =

∫ ∞

−∞

Kj(xj , xj)ρ(xj) dxj , (6.18)

where we recall that K(u, v) = K(Φ−1(u),Φ−1(v)), for any u, v ∈ (0, 1). We

also define

Dj :=

∫ 1

0

∫ 1

0

Kj(uj, vj) duj dvj =

∫ ∞

−∞

∫ ∞

−∞

Kj(xj , yj)ρ(xj)ρ(yj) dxj dyj.

(6.19)

From the final part of the previous section, it follows that

∫ ∞

−∞

∫ ∞

−∞

K(x, y)ρ(x)ρ(y) dx dy ≤
∫ ∞

−∞

K(x, x)ρ(x) dx,

which in turn leads to Cj ≥ Dj for each j. At this stage, we shall mention

that we may have different 1-dimensional kernels corresponding to each j, but

for simplicity and for computational purposes, we assume that all individual

1-dimensional kernels are equal. The same assumption has also been made in

[38] and [62] and, as in those papers, the results here could be generalised in

the situation when the kernels Kj are different for each j.

Let’s assume that the quadrature points are of the form wk = { k
n
z + ∆},

for any k = 0, . . . , n − 1, where as usual, z ∈ Zd
n denotes the generating

vector having all the components assumed to be relatively prime with n, while

∆ ∈ [0, 1]d is a randomly chosen shift. Recall from Section 6.3 that Pn =

{t0, t1, . . . , tn−1} is the set of quadrature points in R
d obtained by using the

inverse transformation Φ−1 component-wise, where Φ is as given by (6.2). We

thus obtain tk = Φ−1(wk), for any 0 ≤ k ≤ n − 1. Obviously, the quantity

e2n,d(Pn, K) expressed by (6.9) depends on the generating vector z and the shift

∆, so it makes sense to write e2n,d(z,∆) := e2n,d(Pn, K). With these notations,

we see that under the assumption (6.17), the formulae (6.9) and (6.11) proved
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in Theorems 6.3 and 6.4 can be written as follows:

e2n,d(z,∆) =
∑

u⊆D

γ
u

∏

j∈u

Dj −
2

n

∑

u⊆D

γ
u

n−1∑

k=0

∏

j∈u

∫ 1

0

Kj({kzj/n+ ∆j}, u) du

+
1

n2

∑

u⊆D

γ
u

n−1∑

i=0

n−1∑

k=0

∏

j∈u

Kj({izj/n+ ∆j}, {kzj/n+ ∆j}), (6.20)

while the mean can be written as

Mn,d =
1

n

∑

u⊆D

γ
u

(
∏

j∈u

Cj −
∏

j∈u

Dj

)
. (6.21)

Now we can define a mean worst-case error over all possible ∆ ∈ [0, 1]d by

[e∗n,d(z)]2 :=

∫

[0,1]d
e2n,d(z,∆) d∆.

From (6.12) and (6.20) with the notations (6.18) and (6.19), it is easy to see

that

[e∗n,d(z)]2 = −
∑

u⊆D

γ
u

∏

j∈u

Dj +
1

n

∑

u⊆D

γ
u

n−1∑

k=0

∏

j∈u

K∗
j

({
k

n
zj

}
, 0

)
. (6.22)

Alternatively, by separating out the k = 0 term, equation (6.22) can be written

as:

[e∗n,d(z)]2 = −
∑

u⊆D

γ
u

∏

j∈u

Dj+
1

n

∑

u⊆D

γ
u

∏

j∈u

Cj+
1

n

∑

u⊆D

γ
u

n−1∑

k=1

∏

j∈u

K∗
j

({
k

n
zj

}
, 0

)
.

(6.23)

For the rest of the chapter we assume that the weights are product (recall

that γ
u

=
∏

j∈u
γj) and for convenience, we shall also assume that n is prime.

As mentioned earlier in this section, the kernels associated with each coordinate

are equal. Consequently, all the quantities K∗
j (w, 0) will be equal with ψ(w),

where ψ is as given by (6.13). Moreover, C = Cj and D = Dj for all j =

1, . . . , d, where Cj and Dj were defined by (6.18) and (6.19). It is also easy to

see from (6.13) that ∫ 1

0

ψ(w) dw = D.

Then the mean worst-case error and the mean given respectively by (6.23) and

(6.21) can be rewritten as follows:

[e∗n,d(z)]2 =
1

n

d∏

j=1

(1+Cγj)+
1

n

n−1∑

k=1

d∏

j=1

(1+γjψ({kzj/n}))−
d∏

j=1

(1+Dγj), (6.24)
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while the mean becomes

Mn,d =
1

n

(
d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

)
. (6.25)

6.5 The construction of the quadrature points

In this section we first prove that there exists a generating vector z ∈ Zd
n

such that [e∗n,d(z)]2 ≤ Mn,d and then construct such a vector using the usual

component-by-component (CBC) technique. The existence result is given by

the following:

Theorem 6.6 If n is prime, then there exists a z ∈ Zd
n such that

[e∗n,d(z)]2 ≤ 1

n

(
d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

)
.

Proof. Since n is prime, there are (n−1)d possible choices for z. If we average

[e∗n,d(z)]2 over all possible vectors z ∈ Zd
n, then by using (6.24) we obtain

1

(n− 1)d

∑

z∈Zd
n

[e∗n,d(z)]2 =
1

n

d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

+
1

n(n− 1)d

∑

z∈Zd
n

n−1∑

k=1

d∏

j=1

(1 + γjψ({kzj/n}))

=
1

n

d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

+
1

n

n−1∑

k=1

d∏

j=1


 1

n− 1

n−1∑

zj=1

(1 + γjψ({kzj/n}))


 .

However the quantities {kzj/n} for 1 ≤ zj ≤ n − 1 are the same as i/n for

i = 1, . . . , n − 1, but in a different order. Recalling that
∫ 1

0
ψ(w) dw = D, it

will follow from (6.16) that

1

n− 1

n−1∑

zj=1

ψ({kzj/n}) <
∫ 1

0

ψ(w) dw = D. (6.26)

Using (6.26) in the expression for the average, we obtain

1

(n− 1)d

∑

z∈Zd
n

[e∗n,d(z)]2 ≤ 1

n

d∏

j=1

(1+Cγj)−
d∏

j=1

(1+Dγj)+
1

n

n−1∑

k=1

d∏

j=1

(1+Dγj) = Mn,d,
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where Mn,d is as given by (6.25). This proves the existence of a vector z such

that [e∗n,d(z)]2 ≤Mn,d. �

In order to construct z, we can use the usual CBC algorithm:

Component-by-component algorithm

1. Set the value for the first component of the vector, say z1 = 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that [e∗n,m(z1, . . . , zm)]2 is min-

imised, where

[e∗n,m(z1, . . . , zm)]2 =
1

n

m∏

j=1

(1+Cγj)+
1

n

n−1∑

k=1

m∏

j=1

(1+γjψ({kzj/n}))−
m∏

j=1

(1+Dγj).

The algorithm is based on the following result:

Theorem 6.7 Let n be prime. Suppose there exists a z ∈ Zd
n such that

[e∗n,d(z)]2 ≤ 1

n

(
d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

)
.

Then there exists zd+1 ∈ Zn such that

[e∗n,d+1(z, zd+1)]
2 ≤ 1

n

(
d+1∏

j=1

(1 + Cγj) −
d+1∏

j=1

(1 +Dγj)

)
.

Such a zd+1 can be found by minimising [e∗n,d+1(z, zd+1)]
2 over the set Zn.

Proof. From (6.24), we see that [e∗n,d+1(z, zd+1)]
2 can be written as:

[e∗n,d+1(z, zd+1)]
2 =

1

n

d+1∏

j=1

(1 + Cγj) −
d+1∏

j=1

(1 +Dγj) +
1

n

n−1∑

k=1

d+1∏

j=1

(1 + γjψ({kzj/n}))

= [e∗n,d(z)]2 +
Cγd+1

n

d∏

j=1

(1 + Cγj) −Dγd+1

d∏

j=1

(1 +Dγj)

+
γd+1

n

n−1∑

k=1

ψ({kzd+1/n})
d∏

j=1

(1 + γjψ({kzj/n})).

Next we average [e∗n,d+1(z, zd+1)]
2 over all possible values of zd+1 ∈ Zn and

focus on the last term since it is the only one depending on zd+1. Hence, let’s
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consider

1

n− 1

n−1∑

zd+1=1

(
γd+1

n

n−1∑

k=1

ψ({kzd+1/n})
d∏

j=1

(1 + γjψ({kzj/n}))
)

=
γd+1

n

n−1∑

k=1




 1

n− 1

n−1∑

zd+1=1

ψ({kzd+1/n})




d∏

j=1

(1 + γjψ({kzj/n}))




≤ Dγd+1

n

n−1∑

k=1

d∏

j=1

(1 + γjψ({kzj/n})),

where in the last step we used (6.26). From (6.24) and by using the inductive

hypothesis, we obtain

1

n

n−1∑

k=1

d∏

j=1

(1 + γjψ({kzj/n})) = [e∗n,d(z)]2 − 1

n

d∏

j=1

(1 + Cγj) +

d∏

j=1

(1 +Dγj)

≤
d∏

j=1

(1 +Dγj) −
1

n

d∏

j=1

(1 +Dγj).

Replacing in the above, we next have

Dγd+1

n

n−1∑

k=1

d∏

j=1

(1+γjψ({kzj/n})) ≤ Dγd+1

(
d∏

j=1

(1 +Dγj) −
1

n

d∏

j=1

(1 +Dγj)

)
.

This result, together with the inductive hypothesis leads to

1

n− 1

n−1∑

zd+1=1

[e∗n,d+1(z, zd+1)]
2 ≤ [e∗n,d(z)]2 +

Cγd+1

n

d∏

j=1

(1 + Cγj)

−Dγd+1

d∏

j=1

(1 +Dγj)

+Dγd+1

(
d∏

j=1

(1 +Dγj) −
1

n

d∏

j=1

(1 +Dγj)

)

≤ 1

n

(
d∏

j=1

(1 + Cγj) −
d∏

j=1

(1 +Dγj)

)

+
Cγd+1

n

d∏

j=1

(1 + Cγj) −
Dγd+1

n

d∏

j=1

(1 +Dγj)

=
1

n

(
d+1∏

j=1

(1 + Cγj) −
d+1∏

j=1

(1 +Dγj)

)
.

Clearly, there must be a zd+1 ∈ Zn such that [e∗n,d+1(z, zd+1)]
2 is smaller

than the average and obviously, such a zd+1 can be found by minimising

[e∗n,d+1(z, zd+1)]
2 over Zn. This completes the proof. �
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As in Chapters 2, 3 and 5, the main result on the CBC construction is followed

by:

Corollary 6.8 If n is prime, then for any 1 ≤ m ≤ d we can construct a

vector z ∈ Zm
n component-by-component such that

[e∗n,m(z1, . . . , zm)]2 ≤ 1

n

(
m∏

j=1

(1 + Cγj) −
m∏

j=1

(1 +Dγj)

)
.

We can set z1 = 1 and for 2 ≤ m ≤ d, every zm can be found by minimising

[e∗n,m(z1, . . . , zm)]2 over the set Zn.

Proof. If m = 1, it is easy to see that by setting z1 = 1, we obtain

[e∗n,1(1)]2 =
Cγ1

n
+
γ1

n

n−1∑

k=1

ψ(k/n) −Dγ1.

Using (6.26), it will follow that

[e∗n,1(1)]2 ≤ γ1(C −D)

n
.

For m ≥ 2, the result follows then from Theorem 6.7. �

6.5.1 Strong tractability

Theorem 6.9 If the weights γj satisfy the summability condition

∞∑

j=1

γj <∞,

then we can construct the generating vector by using the CBC technique such

that the error satisfies the strong tractability bound e∗n,d(z) = O(n−1/2), where

the involved constant depends on the weights, but independent of the dimension.

Proof. From Theorem 6.7, we see that the generating vector constructed using

the CBC technique satisfies

[e∗n,d(z)]2 ≤ 1

n

d∏

j=1

(1 + Cγj) ≤
1

n
exp

(
∞∑

j=1

ln(1 + Cγj)

)
≤ 1

n
exp

(
C

∞∑

j=1

γj

)
.

Since the weights are summable, it will follow that e∗n,d(z) = O(n−1/2), with

an absolute implied constant. This ensures strong tractability. �
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Let us remark that the order of the magnitude of the error in this chap-

ter is the same as for typical Monte Carlo methods and was also observed

in [38] and [62]. In the next chapter however, by using a different criterion

of goodness, that is, the weighted discrepancy defined by (2.2), we will con-

struct shifted lattice rules for integrands over Euclidean space that achieve the

optimal convergence order of O(n−1+δ) for any δ > 0 and with the involved

constant independent of the dimension. Under the condition of summability

of the weights (as in Theorem 6.9), this optimal rate of convergence was also

obtained in [23]. Here, the convergence order of O(n−1/2) follows from the

expression of the mean (6.25) and the numerical experiments from the next

section confirm that the mean is of order O(n−1), which leads to the conver-

gence obtained in Theorem 6.9. The gap between the convergence obtained in

this chapter and the convergence attained in [23] and Chapter 7 comes from

the fact that here, the measure of goodness used is different from the mea-

sure of goodness used in the mentioned works and therefore, different results

in terms of convergence might be expected. Nevertheless, particular choices

of weights, kernel and density may lead to a better convergence rate than

O(n−1/2) as some of the numerical experiments from the next section suggest

(see Tables 6.16 and 6.17).

6.6 Numerical experiments

6.6.1 Expressions of the error in a particular case

In this section we first find an expression for the quantity [e∗n,d(z)]2 given by

(6.24) under the assumption that n is prime, the weights are product and, for

each j, ρj is a two-tailed exponential density given by

ρj(x) = πe−2π|x|, ∀x ∈ R.
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We also assume that the kernels associated with each coordinate are equal and

each 1-dimensional kernel is given by

K(x, y) = πe−2π|x−y|, ∀x, y ∈ R.

For this setting, the mapping defined by (6.2) becomes

Φ(x) =





1
2
e2πx, x ≤ 0,

1 − 1
2
e−2πx, x > 0.

with the inverse Φ−1 : (0, 1) → R given by

Φ−1(w) =





1
2π

ln(2w), w ≤ 1/2,

− 1
2π

ln(2(1 − w)), w > 1/2.

Now, we want to determine the expression of the function ψ given by (6.13)

in this particular case. Recall from (6.13) that ψ was defined by

ψ(w) = 2ψ1(w) + 2ψ1(1 − w), ∀w ∈ (0, 1),

where (see also (6.14))

ψ1(w) =

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)), t)ρ(t) dt.

For the kernel and the density considered in this subsection, the expression of

ψ1 becomes

ψ1(w) = π2

∫ Φ−1( 1−w
2

)

−∞

e4πt−2πΦ−1(w+Φ(t)) dt,

where we used that t ≤ Φ−1((1 − w)/2) ≤ Φ−1(1/2) ≤ 0 (recall that Φ−1 is

increasing). In the situation when w ≤ 1/2, by using the expressions of Φ and

Φ−1, we obtain:

ψ1(w) = π2

∫ ln(1−2w)
2π

−∞

e4πt

2w + e2πt
dt+ π2

∫ ln(1−w)
2π

ln(1−2w)
2π

e4πt
(
2(1 − w) − e2πt

)
dt.

In order to calculate the first integral, we may use the change of variable

e2πt = y to obtain after some elementary calculations that

π2

∫ ln(1−2w)
2π

−∞

e4πt

2w + e2πt
dt =

π

2

∫ 1−2w

0

y

2w + y
dy =

π

2
− πw + πw ln(2w).
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We also obtain

π2

∫ ln(1−w)
2π

ln(1−2w)
2π

e4πt
(
2(1 − w) − e2πt

)
dt =

πw3

3
− πw2 +

πw

2
.

When w > 1/2, we have

ψ1(w) = π2

∫ ln(1−w)
2π

−∞

e4πt
(
2(1 − w) − e2πt

)
dt =

π(1 − w)3

3
.

All these calculations will finally yield

ψ(w) =





2πw ln(2w) + 4πw3

3
− 2πw2 − πw + π, w ≤ 1/2,

2π(1 − w) ln(2(1 − w)) + 4π(1−w)3

3
− 2π(1 − w)2 + πw, w > 1/2.

(6.27)

It is easy to see that if we take C = Cj for any j = 1, . . . , d, where Cj is

defined by (6.18), we obtain in this case C = π. Then by taking D = Dj for

any j = 1, . . . , d, where Dj is defined by (6.19), it is relatively easy to check

that

D =

∫ 1

0

ψ(w) dw =
3π

8
.

Using these values in (6.24), we obtain

[e∗n,d(z)]2 =
1

n

d∏

j=1

(1 + πγj) +
1

n

n−1∑

k=1

d∏

j=1

(1 + γjψ({kzj/n})) −
d∏

j=1

(
1 +

3πγj

8

)
,

(6.28)

where the expression of ψ is defined by (6.27), while the corresponding mean

(following from (6.25)) is given by

Mn,d =
1

n

(
d∏

j=1

(1 + πγj) −
d∏

j=1

(1 + 3πγj/8)

)
. (6.29)

The quadrature points in R
d are given in this case by Φ−1({ k

n
z + ∆}), k =

0, . . . , n − 1, where the generating vector z is produced using the CBC tech-

nique, ∆ is a randomly chosen shift, and the function Φ−1 has the particular

expression defined earlier in this subsection.

6.6.2 Tables of numerical results

In this subsection, we calculate the values of (6.28) for several different values

of n and d and different choices of weights. We also give values for the mean
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(6.29). First, we consider the case when γj = 1 for all j = 1, . . . , d. This

corresponds actually to an unweighted case and leads to intractability of the

integration problem. The number of points n is prime, while the dimension

d takes successively the values 5, 10, 20, 40, 80. The generating vector z from

(6.28) is produced by the CBC technique as presented in Section 6.5.

Table 6.1: d = 5 and γj = 1 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 6.99463 11.5793

211 2.94906 5.5427

409 1.31503 2.85944

809 0.571254 1.44562

1009 0.427166 1.15908

2003 0.176599 0.583879

4001 0.0721177 0.292305

8009 0.0298932 0.146025

16001 0.0120045 0.0730898

32003 0.00480581 0.0365438
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Table 6.2: d = 10 and γj = 1 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 14094.4 14677.4

211 6634.53 7025.67

409 3353.5 3624.49

809 1656.51 1832.41

1009 1316.75 1468.19

2003 644.531 740.098

4001 310.024 370.512

8009 148.87 185.094

16001 71.3972 92.6453

32003 33.7589 46.3212

Table 6.3: d = 20 and γj = 1 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 2.18256e+10 2.18286e+10

211 1.04464e+10 1.04487e+10

409 5.38853e+09 5.394043e+09

809 2.72378e+09 2.7252e+09

1009 2.18373e+09 2.18502e+09

2003 1.09975e+09 1.10069e+09

4001 5.50353e+08 5.51033e+08

8009 2.74799e+08 2.75276e+08

16001 1.37459e+08 1.37784e+08

32003 6.86658e+07 6.88899e+07
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Table 6.4: d = 40 and γj = 1 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 4.81253e+22 4.81253e+22

211 2.30363e+22 2.30363e+22

409 1.18843e+22 1.18843e+22

809 6.00823e+21 6.00823e+21

1009 4.8173e+21 4.8173e+21

2003 2.42669e+21 2.42669e+21

4001 1.21486e+21 1.21486e+21

8009 6.069e+20 6.069e+20

16001 3.0377e+20 3.0377e+20

32003 1.51881e+20 1.51881e+20

Table 6.5: d = 80 and γj = 1 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 2.33921e+47 2.33921e+47

211 1.11972e+47 1.11972e+47

409 5.77653e+46 5.77653e+46

809 2.9204e+46 2.9204e+46

1009 2.34153e+46 2.34153e+46

2003 1.17953e+46 1.17953e+46

4001 5.90503e+45 5.90503e+45

8009 2.94993e+45 2.94993e+45

16001 1.47653e+45 1.47653e+45

32003 7.38244e+44 7.38244e+44
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The previous tables clearly illustrate the “curse of dimensionality”. While

for lower dimensions an increase in the number of points will still produce a

reasonable accuracy, it is clear that for higher dimension the number of points

needs to be astronomical in order to get some precision. The situation changes

dramatically when the weights are summable. Next, we consider the situation

when γj = 1/j2 for all j = 1, . . . , d.

Table 6.6: d = 5 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0205263 0.0975159

211 0.00696686 0.0466782

409 0.0026932 0.024081

809 0.00101287 0.0121744

1009 0.00072806 0.00976126

2003 0.000265663 0.00491718

4001 9.70102e-05 0.00246166

8009 3.46441e-05 0.00122976

16001 1.18865e-05 0.000615531

32003 4.30286e-06 0.000307756
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Table 6.7: d = 10 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0368221 0.133733

211 0.0132823 0.0640142

409 0.00543038 0.0330244

809 0.00212163 0.0166959

1009 0.00157304 0.0133865

2003 0.000618628 0.00674338

4001 0.000231153 0.0033759

8009 8.78336e-05 0.00168648

16001 3.26577e-05 0.000844134

32003 1.24642e-05 0.000422054

Table 6.8: d = 20 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0496995 0.158435

211 0.0184875 0.0758386

409 0.00775597 0.0391246

809 0.00309886 0.0197799

1009 0.00231906 0.0158592

2003 0.000942603 0.00798899

4001 0.000360766 0.00399949

8009 0.000141603 0.001998

16001 5.46173e-05 0.00100006

32003 2.1367e-05 0.000500014
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Table 6.9: d = 40 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0578193 0.172915

211 0.0219341 0.08277

409 0.00929782 0.0427004

809 0.00309886 0.0215877

1009 0.00283022 0.0173087

2003 0.00116163 0.00871915

4001 0.000452031 0.00436502

8009 0.000180168 0.0021806

16001 7.0709e-05 0.00109146

32003 2.81424e-05 0.000545713

Table 6.10: d = 80 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0623542 0.18076

211 0.0238834 0.0865427

409 0.010193 0.0446375

809 0.0041657 0.022567

1009 0.00313443 0.0180939

2003 0.00129345 0.00911469

4001 0.00050729 0.00456304

8009 0.000203788 0.00227953

16001 8.06738e-05 0.00114097

32003 3.23533e-05 0.000570469
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Finally we consider the case when the weights are given by γj = (0.5)j

for all j = 1, . . . , d. It is easy to see that in this case the weights are also

summable. The results are presented in the tables below.

Table 6.11: d = 5 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.011251 0.0571408

211 0.00384624 0.0273518

409 0.00146383 0.0141106

809 0.000549198 0.00713378

1009 0.000392754 0.00571975

2003 0.000143392 0.00288129

4001 5.17316e-05 0.00144245

8009 1.81757e-05 0.000720593

16001 6.28089e-06 0.000360679

32003 2.20521e-06 0.000180334
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Table 6.12: d = 10 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0140835 0.0643563

211 0.0049524 0.0308056

409 0.00193468 0.0158924

809 0.000739244 0.0080346

1009 0.000535508 0.00644201

2003 0.000199983 0.00324513

4001 7.33784e-05 0.00162459

8009 2.65775e-05 0.000811586

16001 9.55784e-06 0.000406224

32003 3.45789e-06 0.000203106

Table 6.13: d = 20 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0141905 0.0646055

211 0.00499474 0.0309249

409 0.00195307 0.0159539

809 0.000746633 0.0080657

1009 0.000541042 0.00646695

2003 0.00020225 0.00325769

4001 7.42746e-05 0.00163088

8009 2.69324e-05 0.000814727

16001 9.69766e-06 0.000407797

32003 3.5124e-06 0.000203892
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Table 6.14: d = 40 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0141906 0.0646057

211 0.00499749 0.030925

409 0.00195308 0.015954

809 0.00074664 0.00806573

1009 0.000541047 0.00646697

2003 0.000202253 0.0032577

4001 7.42756e-05 0.00163089

8009 2.69327e-05 0.000814731

16001 9.69781e-06 0.000407798

32003 3.51246e-06 0.000203893

Table 6.15: d = 80 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 Mn,d

101 0.0141906 0.0646057

211 0.00499479 0.030925

409 0.00195308 0.015954

809 0.00074664 0.00806573

1009 0.000541047 0.00646697

2003 0.000202253 0.0032577

4001 7.42756e-05 0.00163089

8009 2.69327e-05 0.000814731

16001 9.69781e-06 0.000407798

32003 3.51246e-06 0.000203893
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If the weights are summable, then Theorem 6.9 yields the theoretical con-

vergence rate of O(n−1/2), with the involved constant independent of the di-

mension. For some of the numerical results performed above, we have calcu-

lated the actual convergence rate one may obtain. In the tables below, the

order of convergence is O(nα), with

α =
ln(e∗n1,d1

(z1)/e
∗
n2,d2

(z2))

ln(n1/n2)
,

where e∗n1,d1
(z1) and e∗n2,d2

(z2) are two consecutive values for e∗n,d(z). We see

from the tables below that the expected convergence rate is better that the

theoretical O(n−1/2) given in Theorem 6.9.

Table 6.16: d = 40 and γj = 1/j2 for all j = 1, . . . , d.

n [e∗n,d(z)]2 α

1009 0.00283022 -0.649

2003 0.00116163 -0.682

4001 0.000452031 -0.662

8009 0.000180168 -0.675

16001 7.0709e-05 -0.665

32003 2.81424e-05

Table 6.17: d = 80 and γj = (0.5)j for all j = 1, . . . , d.

n [e∗n,d(z)]2 α

1009 0.000541047 -0.711

2003 0.000202253 -0.724

4001 7.42756e-05 -0.731

8009 2.69327e-05 -0.738

16001 9.69781e-06 -0.732

32003 3.51246e-06
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Since the inverse transform Φ−1 maps the points generated in the unit

cube to the whole Euclidean space, we also tested to find the region where

the quadrature points obtained by the CBC construction are located. Let us

denote

r := max
k=0,1,...,n−1

||Φ−1({kz/n+ ∆})||E, (6.30)

where || · ||E is the usual Euclidean norm mentioned also in Section 6.1.

As it was pointed out for instance in [11], in order to approximate integrals

over Euclidean space, one may truncate the domain to a bounded region, but

the size of such a region would be depending on the specific integrand. Of

course, in practice a truncation of the domain is performed anyway. Since the

error given by (6.28) depends on the quadrature points and not on the actual

integrand, we calculated the quantity r given by (6.30) for the values of n and

d considered in the experiments performed earlier. The conclusion is that all

the quadrature points will be located within a ball centred in the origin with

radius r, where r is given by (6.30).

We considered the three choices of weights as earlier in this section. Thus,

we first took γj = 1, for any j = 1, . . . , d. Then we considered the two

situations when the weights were summable (so the weights satisfy the strong

tractability condition from Theorem 6.9). Hence we considered γj = 1/j2, for

any j = 1, . . . , d and γj = (0.5)j, for any j = 1, . . . , d. As we see from the

table below, the points aren’t too far away from the origin, not even for bigger

values of n and d.
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Table 6.18: Values of r

n d r (γj = 1) r (γj = 1/j2) r (γj = (0.5)j)

101 5 1.23158 1.09515 1.21988

10 1.25101 1.38088 1.45914

20 1.61088 1.63756 1.52158

40 2.20642 2.23058 2.17847

80 2.67597 2.70681 2.84182

211 5 1.26351 1.23217 1.24361

10 1.69231 1.52691 1.42816

20 2.11302 2.39131 2.10961

40 2.33284 2.09402 2.12308

80 2.57414 2.72863 2.66407

409 5 1.36937 1.41171 1.41171

10 1.51906 1.86453 1.38639

20 2.01763 2.04934 1.98292

40 2.41566 2.49465 2.18525

80 2.77624 2.78015 3.28464

809 5 1.42006 1.46684 1.44564

10 1.93597 1.74022 1.7459

20 1.90593 1.90286 1.8396

40 2.5243 2.56928 2.28119

80 2.85613 2.72446 2.72311

1009 5 1.533374 1.40633 1.4586

10 1.8659 1.91756 1.9741

20 1.98516 2.02909 2.08034

40 2.34565 2.29367 2.48521

80 3.06404 2.87213 3.08415
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n d r (γj = 1) r (γj = 1/j2) r (γj = (0.5)j)

2003 5 1.76989 1.44861 1.55169

10 2.16058 1.98488 2.10321

20 2.00492 2.02555 2.05145

40 2.46197 2.41568 2.42426

80 3.01589 3.12879 2.72311

4001 5 1.73799 1.73593 1.67204

10 2.03304 2.11947 2.13126

20 2.29004 2.21185 2.28748

40 2.85172 2.95931 2.82595

80 3.23235 3.17223 3.26718

8009 5 1.84455 1.77299 1.73538

10 1.933 1.94913 1.89745

20 2.31343 2.38194 2.14583

40 2.61951 2.46625 2.49397

80 3.07129 3.13869 3.28764

16001 5 1.8236 1.75291 1.74923

10 2.15757 2.0878 2.01515

20 2.30053 2.32613 2.43989

40 2.274121 2.71713 2.7027

80 3.22472 3.04241 3.24138

32003 5 2.41275 2.03441 1.94906

10 2.25323 2.15031 2.02382

20 2.41239 2.39788 2.37847

40 2.49959 2.90805 2.96568

80 3.47078 3.22363 3.34058
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6.6.3 Concluding remarks

The numerical experiments from the previous subsection suggest that shifted

lattice rules in the unit cube have merit in approximating integrals over Eu-

clidean space. Although the theoretical convergence error is O(n−1/2), the nu-

merical experiments suggest that in practice a better convergence rate could

be obtained. A similar behaviour of the error has also been observed in [38]

and [62].

Another observation is that if the weights are summable (these are typically

the situations to be considered in practice), then an increase in the dimension

will not dramatically decrease the precision for a fixed n. This situation cor-

responds to the concept of “limiting discrepancy” from [57]. In simple terms,

such limiting discrepancy is defined as the limit when d → ∞ from the dis-

crepancy of the quadrature points. It has also been proved in [57] that the

limiting discrepancy is finite if and only if the weights are summable.

Finally, let us remark that our first attempt was to obtain the results in this

chapter under a more general weight setting (for instance the general weights

used in [48] or Chapter 2) and when n is not necessarily prime. However

under the assumptions within this chapter, it seems difficult to obtain such

extensions. The same observation is also valid for the results obtained in [38]

and [62]. In the next chapter however, we use the usual weighted star discrep-

ancy as defined by (2.2) to obtain results for integrals over Euclidean space

under a general weighted setting. Moreover, we also improve the theoretical

convergence rate from O(n−1/2) obtained here to a better O(n−1+δ) for any

δ > 0.



Chapter 7

Shifted lattice rules based on a

general weighted discrepancy for

integrals over Euclidean space

In this chapter we approximate weighted integrals over Euclidean space by

using shifted rank-1 lattice rules having good bounds for the “generalised

weighted star discrepancy”. This version of the discrepancy corresponds to

the classic L∞ weighted star discrepancy via a mapping to the unit cube. Un-

der a general weighted assumption (the same as in Chapter 2), we first show the

existence of shifted lattice rules that have good bounds for the weighted star

discrepancy by using an averaging argument. The component-by-component

technique is used later to construct the generating vector of these shifted lattice

rules. We prove that the bound on the generalised weighted star discrepancy

considered here is of order O(n−1+δ) for any δ > 0 and with the involved con-

stant independent of the dimension. This convergence rate is better than the

typical O(n−1/2) achieved for Monte-Carlo methods as well as the theoretical

convergence observed in Chapter 6.
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7.1 Introduction

As in Chapter 6, we consider integrals given by (see also (1.4))

Id(f, ρ) =

∫

Rd

f(x)ρ(x) dx,

where ρ(x) is a probability density function assumed to have the same product

form as in Chapter 6, namely ρ(x) =
∏d

j=1 ρj(xj), where each ρj is a prob-

ability density over R. For simplicity we also assume that the 1-dimensional

densities ρj are equal.

As we mentioned in the previous chapter, such integrals can be first trans-

formed to equivalent integrals over the unit cube by using the mapping u =

Φ(x) =
∫ x

−∞
ρ(t) dt, ∀x ∈ R for each coordinate direction (see also (6.2)) and

the transformed integrals can be approximated by constructing shifted lattice

rules over the unit cube. Let us recall from Chapter 6 that these integrals

become

Id(f, ρ) =

∫

[0,1]d
f(Φ−1(u)) du =

∫

[0,1]d
g(u) du := Id(g),

where g = f ◦ Φ−1 is applied component-wise. Integrals over the unit cube

might be approximated by quadrature rules of the form

Qn,d(g) =
1

n

n−1∑

k=0

g(wk) =
1

n

n−1∑

k=0

f(tk),

where wk ∈ [0, 1]d, for all 0 ≤ k ≤ n − 1 and tk = Φ−1(wk) ∈ R
d for all

0 ≤ k ≤ n− 1 with the inverse mapping Φ−1 applied component-wise.

In this chapter we are interested in constructing shifted rank-1 lattice rules

suitable for integrals over Euclidean space by using a weighted star discrepancy

as a criterion of goodness. Such shifted rank-1 lattice rules are of the form

(recall also (1.6))

Qn,d(g) =
1

n

n−1∑

k=0

g

({
kz

n
+ ∆

})
,

where z is the generating vector having all the components assumed to be

relatively prime with n, while ∆ ∈ [0, 1)d is the shift. Shifted lattice rules

suitable for integrals over unbounded regions have been previously constructed
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in weighted reproducing kernel Hilbert spaces (see [38], [62] and Chapter 6),

under the assumption that the weights have a product form (see (1.12)). The

purpose of the present chapter is to construct shifted rank-1 lattice rules for

integrals over Euclidean space in a general weighted setting. In Chapter 2

(see also [48]), we constructed rank-1 lattice rules having a low weighted star

discrepancy with the weights being general and mentioned that the techniques

therein could be used for weighted integrands over unbounded regions, however

without effectively presenting such a construction.

In Chapter 6 as well as in [38] and [62], the resulting error had the the-

oretical order of magnitude of O(n−1/2), which is the same as the typical

convergence expected from a Monte Carlo method. As we shall see later, the

weighted star discrepancy used here in order to assess the goodness of a shifted

lattice rule of the form (1.6) will have a better convergence order than the con-

vergence observed in Chapter 6, [38] and [62], although slightly worse than the

convergence from Chapter 2. The convergence observed in this chapter is the

optimal O(n−1+δ) for any δ > 0 and with the involved constant independent

of the dimension. As we mentioned in the previous chapter, this convergence

rate has been also obtained in [23] where the authors used a similar discrep-

ancy as the discrepancy defined below by (7.1). However in [23], no explicit

construction was given and the weights were assumed to be product. In this

chapter, we provide an explicit construction and moreover, we allow weights

to be more general than the product weights used in the mentioned paper.

We should also mention that the settings throughout this chapter are different

from those in Chapter 6 in the sense that another measure of goodness is used

to evaluate the merit of the shifted lattice rules constructed here.

Let us also remark that under a general weighted assumption, there are

no results to date in the specialised literature regarding construction of lattice

rules suitable for integrals over unbounded regions, so we also fill a gap in this

sense.
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7.2 Generalised weighted star discrepancy

Since the weighted star discrepancy used earlier in Chapters 2–5 (see (2.2),

(3.2) and (5.1)) was used to measure the goodness of lattice rules for integrals

over the unit cube while here we want to approximate integrals over Euclidean

space, it seems natural to introduce a measure of discrepancy of point sets

taken from the whole Euclidean space. Let’s recall first that the usual weighted

star discrepancy of a point set Pn in the unit cube was defined in Chapter 2

by (see also (2.2)):

D∗
n,γ(Pn) := max

u⊆D
γ

u
sup

xu∈[0,1]|u|
|discr((xu, 1), Pn)| .

The “generalised weighted star discrepancy” considered in this chapter and

defined below, will be obtained by using the inverse mapping Φ−1 (see also the

transformation (6.2)) applied component-wise to the usual weighted star dis-

crepancy. However, we remark that the concept of “generalised discrepancy”

may be introduced not necessarily in connection with a mapping of the form

(6.2).

Let’s consider now an arbitrary point y = (y1, y2, . . . , yd) from R
d and

denote Y := (−∞, y1) × (−∞, y2) × · · · × (−∞, yd). The “generalised local

star discrepancy” is then defined as follows:

Definition 7.1 If Wn is a set of n distinct points from R
d, y is an arbitrary

point from R
d and ρ is a probability density function, then the generalised local

star discrepancy at y is defined by:

gdiscr(y,Wn) :=
|Y ∩Wn|

n
−
∫

Y

ρ(t) dt.

This definition corresponds to the definition of the local star discrepancy of

points in the unit cube (see Definition 1.4). Next, corresponding to the con-

cept of unweighted star discrepancy (see Definition 1.5), we can introduce the

“generalised unweighted star discrepancy” as follows:

Definition 7.2 The generalised unweighted star discrepancy is defined by

GD∗
ρ(Wn) := sup

y∈Rd

|gdiscr(y,Wn)| .



130

Let’s remark that this generalised discrepancy is related to the discrepancies

used in [15], [16] and [23].

Let now γ
u

be the weights associated with an arbitrary non-empty subset u

of D = {1, 2, . . . , d−1, d} and let’s denote by y
u

the vector from R
|u| consisting

of the components of y that belong to u. We also denote by Wn,u the set

obtained from the points of Wn by taking only the coordinates that belong

to u and make the convention that Wn,D = Wn. With these notations, the

generalised weighted star discrepancy can be defined by

GD∗
n,γ(Wn) := max

u⊆D
γ

u
sup

yu∈R|u|

|gdiscr(y
u
,Wn,u)| . (7.1)

As mentioned earlier, by using the transformation (6.2) component-wise, the

generalised weighted star discrepancy defined by (7.1) corresponds to the usual

weighted star discrepancy. Since GD∗
n,γ(Wn) = D∗

n,γ(Pn), we can establish

bounds on the generalised weighted star discrepancy by finding bounds on

the usual weighted star discrepancy defined by (2.2). We can now apply the

techniques on the unit cube (details can be found in [48] and in Chapter 2) to

deduce that

|Qn,d(g) − Id(g)| ≤ D∗
n,γ(Pn) ×

(
∑

u⊆D

γ−1
u

∫

[0,1]|u|

∣∣∣∣
∂|u|

∂xu

g((xu, 1))

∣∣∣∣ dxu

)
.

As in Chapter 2 (see also [48]), we shall also assume that the weight asso-

ciated with a set should not be bigger than the weights associated with any of

its subsets. Hence, for any non-empty subset u ⊆ D, recall from (2.3) that

γ
u
≤ γ

g
for any g ⊆ u.

In the next section we obtain bounds on the generalised weighted star dis-

crepancy, while in Section 7.4 we prove that the generating vector for a shifted

rank-1 lattice rules having good bounds for the generalised weighted star dis-

crepancy can be constructed by using the usual component-by-component

technique.
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7.3 Bounds on the generalised weighted star

discrepancy

For the rest of the chapter, we assume that Pn = {{kz/n+∆}, 0 ≤ k ≤ n−1},

where the components of the shift ∆ are of the form ∆j = cj/ℓ with ℓ and cj

being positive integers. If we denote N = lcm(n, ℓ), we see that the quadrature

points in our shifted lattice rule can be rewritten as the fractional parts of

kz

n
+

c

ℓ
=
k(N/n)z + (N/ℓ)c

N
.

At this point, we remark that the results that follow allow the shift to be chosen

randomly, provided the components are rational numbers. This requirement

comes from the fact that some of the Niederreiter’s results from [42] (see also

Theorem 2.2 and Theorem 2.3) that will be used next (for instance to obtain

(7.2)) are applicable only for vectors having rational components. We also

mention that in [52], shifted lattice rules have been previously constructed

with the components of c taken from the set {1, 3, . . . , 2n− 1}, while ℓ = 2n.

We could choose a similar form for the shift here, however we prefer to allow

slightly more generality. Nevertheless, we still require that ℓ be chosen such

that m = N/n is an integer independent of d and n.

It then follows from Theorem 2.2 that

sup
xu∈[0,1]|u|

|discr ((xu, 1), Pn)| (7.2)

≤ 1 − (1 − 1/N)|u| +
∑

h∈E∗
N,|u|

1∏
j∈u

r(hj , N)

∣∣∣∣∣
1

n

n−1∑

k=0

e2πih·(k(N/n)zu+(N/ℓ)cu)/N

∣∣∣∣∣ ,

where E∗
n,m was defined in Chapter 2 (see (2.8)), while we recall that

r(h,M) =






M sin(π|h|/M), if h 6= 0 ,

1, otherwise.

Obviously, zu and cu are the vectors consisting of the components of z and c,
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respectively, whose indices belong to u. Now we have
∣∣∣∣∣
1

n

n−1∑

k=0

e2πih·(k(N/n)zu+(N/ℓ)cu)/N

∣∣∣∣∣ =

∣∣∣∣∣
1

n

n−1∑

k=0

e2πikh·zu/n

∣∣∣∣∣
∣∣e2πih·cu/ℓ

∣∣

=





1, if h · zu ≡ 0 (mod n) ,

0, if h · zu 6≡ 0 (mod n) .

In the last step we used the obvious equality
∣∣e2πih·cu/ℓ

∣∣ = 1. Since sin(πt) ≥ 2t

for 0 ≤ t ≤ 1/2, then from (7.2) and Theorem 2.3, it follows that

sup
xu∈[0,1]|u|

|discr ((xu, 1), Pn)| ≤ 1 − (1 − 1/N)|u| +
1

2
RN (z, u) ,

where (see also the arguments that lead to (2.10) in Chapter 2)

RN(z, u) =
∑

h·zu≡0 ( mod n)
h∈E∗

N,|u|

∏

j∈u

1

max(1, |hj|)

=
1

n

n−1∑

k=0

∏

j∈u


1 +

∑′

−N/2<h≤N/2

e2πihkzj/n

|h|


− 1.

Since the point set Pn depends actually on the vector z, we shall denote the

discrepancy D∗
n,γ(Pn) by D∗

n,γ(z). Of course, the notation GD∗
n,γ(z) could be

used for the generalised weighted star discrepancy given by (7.1), since each

point in Wn is obtained by applying the inverse mapping Φ−1 to a point in Pn.

Clearly, we now have

GD∗
n,γ(z) = D∗

n,γ(z) ≤ max
u⊆D

γ
u

(
1 − (1 − 1/N)|u| +

1

2
RN(z, u)

)
. (7.3)

From (2.13) (see Chapter 2), we obtain

max
u⊆D

γ
u

(
1 − (1 − 1/N)|u|

)
≤ 1

N
max
u⊆D

|u|γ
u
. (7.4)

Also in Chapter 2, it was established that

RN(z, u) =
∑

g⊆u

R̃N(z, g),

where (see also (2.15) and (2.17))

R̃N (z, g) =
1

n

n−1∑

k=0

∏

j∈g




∑′

−N/2<h≤N/2

e2πihkzj/n

|h|


 =

∑

h∈ eE∗
N,|g|

h·zg≡0 ( mod n)

∏

j∈g

1

|hj |
≥ 0,
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with Ẽ∗
n,m as introduced by (2.16). From the inequality (2.18) and by using

(7.3) and (7.4) (see also the arguments leading to Lemma 2.4), we obtain

D∗
n,γ(z) ≤ 1

N
max
u⊆D

|u|γ
u
+

1

2
e2n,d(z),

where here

e2n,d(z) :=
∑

u⊆D

γ
u
R̃N (z, u).

For the rest of the chapter we shall assume that n prime. In this case,

bounds on e2n,d(z) can be obtained by finding an expression for a certain mean

value of e2n,d(z). The mean is taken over all integer vectors z ∈ Zd
n, where

Zn = {1, 2, . . . , n− 1} and is, as usual in the prime case, defined by

MN,d,γ =
1

(n− 1)d

∑

z∈Zd
n

e2n,d(z).

An expression for the mean is given in the next theorem.

Theorem 7.1 Let n be prime. Then

MN,d,γ =
1

n

∑

u⊆D

γ
u
S
|u|
N +

n− 1

n

∑

u⊆D

γ
u

(
SN/n − SN

n− 1

)|u|

,

where we recall that

Sn =
∑′

−n/2<h≤n/2

1

|h| .

Proof. The proof follows the same ideas as in the proof of Theorem 2.6. Thus,

from the definition of the mean, (2.15) and (2.19), we have

MN,d,γ =
1

(n− 1)d

∑

z∈Zd
n

∑

u⊆D

γ
u


 1

n

n−1∑

k=0

∏

j∈u




∑′

−N/2<h≤N/2

e2πihkzj/n

|h|




 .

By separating out the k = 0 term, we obtain

MN,d,γ =
1

n

∑

u⊆D

γ
u
S
|u|
N + ΘN,d,γ, (7.5)

where

ΘN,d,γ =
1

(n− 1)d

∑

z∈Zd
n

∑

u⊆D

γ
u



 1

n

n−1∑

k=1

∏

j∈u




∑′

−N/2<h≤N/2

e2πihkzj/n

|h|









=
1

n

∑

u⊆D

γ
u




n−1∑

k=1

∏

j∈u


 1

n− 1

n−1∑

zj=1

∑′

−N/2<h≤N/2

e2πihkzj/n

|h|




 .
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For every 1 ≤ k ≤ n− 1, consider now

TN (k) =
1

n− 1

n−1∑

zj=1

∑′

−N
2

<h≤N
2

e2πihkzj/n

|h| ,

which is actually the quantity (2.20) defined in Chapter 2. Hence, by using

Lemma 2.5, it follows that (see also (2.21))

TN (k) =
SN/n − SN

n− 1
.

This leads to

ΘN,d,γ =
1

n

∑

u⊆D

γ
u

n−1∑

k=1

(
SN/n − SN

n− 1

)|u|

=
n− 1

n

∑

u⊆D

γ
u

(
SN/n − SN

n− 1

)|u|

.

Replacing now the last term in (7.5) with this expression, we obtain the desired

result. �

Corollary 7.2 Let n be prime. Then there exists a generating vector z ∈ Zd
n

such that

e2n,d(z) ≤MN,d,γ ≤ 1

n− 1

∑

u⊆D

γ
u
S
|u|
N .

Proof. The first inequality is trivial. To obtain the second inequality, we

observe first that the mean can be written as

MN,d,γ =
1

n

∑

u⊆D

γ
u

(
S
|u|
N + (n− 1)

(
SN/n − SN

n− 1

)|u|
)
.

If |u| is odd, then SN/n − SN ≤ 0 and the expression in the outer brackets will

be bounded by S
|u|
N . If |u| is even, then |u| ≥ 2 and it follows that

(n− 1)

(
SN/n − SN

n− 1

)|u|

≤ (n− 1)
S
|u|
N

(n− 1)2
=

S
|u|
N

n− 1
.

So regardless whether |u| is odd or even, it follows that

S
|u|
N + (n− 1)

(
SN/n − SN

n− 1

)|u|

≤ S
|u|
N +

S
|u|
N

n− 1
,

which leads to

MN,d,γ ≤ 1

n

∑

u⊆D

γ
u

(
S
|u|
N +

S
|u|
N

n− 1

)
≤ 1

n− 1

∑

u⊆D

γ
u
S
|u|
N .

This completes the proof. �
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From this corollary, we can now obtain:

Corollary 7.3 Suppose the weights satisfy (2.3) and suppose that n is prime.

Then there exists a vector z ∈ Zd
n such that the generalised weighted star

discrepancy satisfies the bound

GD∗
n,γ(z) = D∗

n,γ(z) ≤ 1

N
max
u⊆D

|u|γ
u
+

1

2(n− 1)

∑

u⊆D

γ
u
S
|u|
N . (7.6)

From Chapter 2 or [48], it will follow that the bound given by (7.6) has the

order of magnitude of O(n−1(lnN)d), with the involved constant depending

on d. Recalling that m = N/n is independent of n, we see that the bound is

actually of order O(n−1(lnn)d), with the constant depending on d andm. Such

a bound is slightly worse than the bound for the discrepancy in Chapter 2,

but we still can obtain strong tractability under further assumptions over the

weights. Indeed, if we assume that the weights are such that (2.3) is satisfied

and
∑

u⊆D

γ
u
S
|u|
N ≤ C(γ, δ,m)nδ,

for some δ > 0, where C(γ, δ,m) is independent of d and n, then for any

prime n, we see from (7.6) there exists a generating vector z (in the next

section we prove that the CBC algorithm yields such a z), for which the

generalised weighted discrepancy and the corresponding weighted discrepancy

satisfy the strong tractability error bound

GD∗
n,γ(z) = D∗

n,γ(z) ≤ 2C(γ, δ,m)n−1+δ,

with the involved constant depending on the weights, δ andm, but independent

of the dimension. An example of weights γ
u

having this property is when the

weights γ
u

are product and the γj are summable. A full proof of such a result

is given in Theorem 3.4 and further details may also be found in [20] and [29].

We conclude this section by mentioning that the bound of magnitude

O(n−1+δ) for any δ > 0 obtained here is better than the typical bound of order

O(n−1/2) yielded by Monte Carlo methods or the same O(n−1/2) attained in
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Chapter 6. However in Chapter 6, as well as in [38] and [62], a different mea-

sure of goodness was used. The convergence obtained in this chapter is likely

to be the best convergence rate one could expect. Thus, we have established

that the generalised weighted star discrepancy can be used as a viable criterion

of goodness for the approximation of weighted integrals over R
d. Moreover,

the results here can be used for general weight settings, not only in the context

of product weights.

7.4 Component-by-component construction of

the generating vector

Component-by-component algorithm

1. Set the value for the first component of the vector, say z1 = 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2n,m(z1, . . . , zm) is min-

imised. Here

e2n,m(z1, . . . , zm) =
∑

u⊆{1,2,...,m}

γ
u
R̃N ((z1, . . . , zm), u).

Now we prove that the algorithm does indeed yield good shifted rank-1 lattice

rules. By good, we mean that the z found this way satisfies the bound for

e2n,d(z) given in Corollary 7.2.

Theorem 7.4 Let n be prime. Suppose there exists a z ∈ Zd
n such that

e2n,d(z) ≤ 1

n− 1

∑

u⊆D

γ
u
S
|u|
N . (7.7)

Then there exists zd+1 ∈ Zn such that

e2n,d+1(z, zd+1) ≤
1

n− 1

∑

u⊆D1

γ
u
S
|u|
N ,

where D1 = D∪{d+1}. Such a zd+1 can be found by minimising e2n,d+1(z, zd+1)

over the set Zn.
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Proof. We have

e2n,d+1(z, zd+1) =
∑

u⊆D1

γ
u
R̃N ((z, zd+1), u)

=
∑

u⊆D

γ
u
R̃N(z, u) +

∑

u⊆D1
d+1∈u

γ
u
R̃N((z, zd+1), u). (7.8)

In a similar way as in Chapter 2, we define

Ck(z) =
∑′

−N/2<h≤N/2

e2πihkz/n

|h| , 0 ≤ k ≤ n− 1.

It is easy to see that C0(z) = SN . Using (2.15), for u ⊆ D1 with d+ 1 ∈ u and

by separating out the k = 0 term, we obtain

R̃N ((z, zd+1), u) =
S
|u|
N

n
+

1

n

n−1∑

k=1




∏

j∈u−{d+1}

Ck(zj)


Ck(zd+1).

Substituting this in (7.8), we obtain

e2n,d+1(z, zd+1) = e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S
|u|
N

+
∑

u⊆D1
d+1∈u

γ
u

n

n−1∑

k=1




∏

j∈u−{d+1}

Ck(zj)



Ck(zd+1).

Next we average e2n,d+1(z, zd+1) over all possible values of zd+1 ∈ Zn and con-

sider

Avg(e2n,d+1(z, zd+1)) =
1

n− 1

n−1∑

zd+1=1

e2n,d+1(z, zd+1).

As the dependency of e2n,d+1(z, zd+1) on zd+1 is only through the Ck(zd+1)

factor, we next focus on the quantity

1

n− 1

n−1∑

zd+1=1

Ck(zd+1),

which actually is the quantity TN (k) introduced by (2.20). Using now (2.21),

we obtain

Avg(e2n,d+1(z, zd+1))

= e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S
|u|
N − SN − SN/n

n(n− 1)

∑

u⊆D1
d+1∈u

γ
u

n−1∑

k=1

∏

j∈u−{d+1}

Ck(zj).
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For any u ⊆ D1 with d+ 1 ∈ u, we have

−1

n

n−1∑

k=1

∏

j∈u−{d+1}

Ck(zj) = −R̃N (z, u − {d+ 1}) +
S
|u|−1
N

n
≤ S

|u|−1
N

n
,

where we have subtracted and added the k = 0 term and used the fact that

the quantities R̃N(z, g) are positive for any subset g ⊆ D. Using also the

inequality SN − SN/n ≤ SN , we obtain

Avg(e2n,d+1(z, zd+1))

≤ e2n,d(z) +
1

n

∑

u⊆D1
d+1∈u

γ
u
S
|u|
N +

SN − SN/n

n(n− 1)

∑

u⊆D1
d+1∈u

γ
u
S
|u|−1
N

≤ e2n,d(z) +
1

n− 1

∑

u⊆D1
d+1∈u

γ
u
S
|u|
N .

From the hypothesis, we next deduce that

Avg(e2n,d+1(z, zd+1)) ≤ 1

n− 1

∑

u⊆D

γ
u
S
|u|
N +

1

n− 1

∑

u⊆D1
d+1∈u

γ
u
S
|u|
N

=
1

n− 1

∑

u⊆D1

γ
u
S
|u|
N . (7.9)

There must be at least one zd+1 ∈ Zn such that e2n,d+1(z, zd+1) ≤ Avg(e2n,d+1(z, zd+1))

and this zd+1 may be chosen by minimising e2n,d+1(z, zd+1) over the set Zn.

From (7.9), it is clear now that for the chosen zd+1, we have

e2n,d+1(z, zd+1) ≤
1

n− 1

∑

u⊆D1

γ
u
S
|u|
N ,

which is the desired result. �

From this theorem we can deduce the following:

Corollary 7.5 Let n be prime. Then for 1 ≤ m ≤ d we can construct a vector

z ∈ Zm
n such that

e2n,m(z1, . . . , zm) ≤ 1

n− 1

∑

u⊆{1,2,...,m}

γ
u
S
|u|
N .

We can set z1 = 1 and for 2 ≤ m ≤ d, every zm can be found by minimising

e2n,m(z1, . . . , zm) over the set Zn.
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Proof. In the case d = 1, it is easy to verify using the expression for the mean

that MN,1,{γ{1}} =
γ{1}SN/n

n
. This is to be expected since it is also relatively

easy to verify by using (2.15) that R̃N (z, u) =
SN/n

n
whenever |u| = 1. Indeed,

in such a case we have

R̃N(z, u) =
1

n

n−1∑

k=0

∑′

−N/2<h≤N/2

e2πihkzj/n

|h|

=
1

n

n−1∑

k=0




∑′

−N/2<h≤N/2
h≡0 ( mod n)

e2πihkzj/n

|h| +
∑′

−N/2<h≤N/2
h 6≡0 ( mod n)

e2πihkzj/n

|h|


 .

Using next similar arguments as in the proof of Lemma 2.5 (see also the proof

of Corollary 3.6), it follows that R̃N (z, u) =
SN/n

n
, which leads to e2n,1(z) =

γ{1}SN/n

n
for any z ∈ Zn. So, the inequality (7.7) holds for d = 1 and the whole

result then follows immediately from Theorem 7.4. �

Special classes of general weights are the so-called “order-dependent” and

“finite-order” weights, which lead to a significant reduction of the computa-

tional costs incurred by the construction. These weights were defined in Chap-

ter 2 by Definition 2.2 and Definition 2.3. Let us also recall that Section 2.5 (see

also [48]) was dedicated to the CBC construction for these particular classes

of weights. Similar results will hold here as a consequence from Theorem 7.4

and Corollary 7.5 and these results are presented below.

Let’s denote by Γi the weight associated with a set containing i elements for

1 ≤ i ≤ d. Now, by taking γ
u

= Γi whenever |u| = i and noting that the num-

ber of subsets of D with i elements is
(

d
i

)
, we obtain that for order-dependent

weights, the generating vector z ∈ Zd
n may be constructed component-by-

component such that

e2n,d(z) ≤ 1

n− 1

d∑

i=1

Γi

(
d

i

)
Si

N .

If the weights are finite-order, the generating vector z ∈ Zd
n may be constructed

component-by-component such that

e2n,d(z) ≤ 1

n− 1

∑

u⊆D
|u|≤q∗

γ
u
S
|u|
N .
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If the weights are both order-dependent and finite-order, the generating vector

z ∈ Zd
n may be constructed component-by-component such that

e2n,d(z) ≤ 1

n− 1

q∗∑

ℓ=1

Γi

(
d

i

)
Si

N .

The costs incurred by the CBC construction were analysed in depth in

Section 2.7 and [48] and a similar analysis can be used here with a few minor

modifications. Let’s observe first that from (2.15), it follows that the cost of

calculating each R̃N(z, u) is O (Nn|u|) operations. However, it is shown in

Appendix A (see also [31], [29, Appendix A] and Chapter 3) that this cost can

be reduced at the expense of extra storage. Recall that such a reduction of

cost is based on the fact that the quantities of the form

∑′

−N/2<h≤N/2

e2πihq/n

|h| , 0 ≤ q ≤ n− 1, (7.10)

used in the expression for R̃N (z, u), can be computed in O(N) operations and

then stored.

Similar costs as in Chapter 2 will then follow, the main difference being

the additional number of operations needed to compute each quantity given

by (7.10). Since N = nm and m is fixed, we have N = O(n). In conclusion,

the total cost of the construction is at most O(n2d2d) and the cost becomes

O(n2dq∗+1) for finite-order weights, O(n2d2) for order-dependent weights, and

O(n2dq∗) for weights that are both finite-order and order-dependent plus ad-

ditional storage. Let us finally remark that the fast CBC construction (see

[6, Section 4] and [44] for details) can also be used here in the same way as

in Chapter 2. Thus, the total maximum of O(n2d2d) operation count may be

reduced to O(n ln(n)d2d), while for finite-order weights the operation count

may be reduced to O(n ln(n)dq∗+1). In each situation we also need to add the

amount required for storage. In the case of order-dependent weights, the total

operation count may actually be reduced to O(nd ln(n) + nd2) with O(nd)

additional storage, while if the weights are both order-dependent and finite-

order, then the cost of the construction will be O(nd ln(n)+ndq∗) with O(nq∗)

additional storage.



Chapter 8

Conclusion

In this thesis, we established theoretical results on the construction of lattice

rules for multiple integration based on a low weighted discrepancy. For the

unweighted discrepancy, theoretical results were previously known from works

such as [42] and [51] where it was established that the best order of magnitude

for the discrepancy is O(n−1(ln n)d), with the involved constant depending on

the dimension d. When d is large, then a huge number of points is required for

reasonable accuracy, and this makes quasi-Monte Carlo methods impractical

(the “curse of dimensionality”). In a weighted setting, the existing theoreti-

cal background was developed mainly by assuming that integrands belong to

certain reproducing kernel Hilbert spaces and by using an L2 version of the

weighted star discrepancy as a criterion of goodness.

We reinforce that the construction of lattice rules depends on the criterion

of goodness chosen as well as on the weight settings and the type of lattice rule

considered; it depends on whether the number of points is prime or not; and

it also depends on whether the domain is bounded or not. Despite the known

theoretical background, we should mention that a whole separate analysis is

required for every particular assumption made together with the development

of the underlying theory. In this sense, the thesis fills several gaps and some

of the advantages of the techniques used here were mentioned in the first

chapter. More important, the theory developed here leads to construction
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algorithms and, it is hoped that future research will prove the usefulness of

such algorithms in practical applications. Overall, we have shown that under

appropriate conditions over the weights, we can construct lattice rules so that

the order of magnitude of the corresponding quadrature error ranges from

O(n−1/2) to O(n−1+δ) for any δ > 0 and, moreover, the involved constant is

independent of the dimension.

From the theoretical point of view, we believe that the results obtained

here could further be refined. For instance, it would be interesting to see

whether lattice rules with a non-prime number of points could be constructed

under a general weighted setting and maybe then extended to lattice rules

suitable for integrals over Euclidean space. It would also be of interest to im-

prove the theoretical convergence of O(n−1/2) obtained in Chapter 6. Finally,

maybe further theoretical results on the generalised weighted discrepancy from

Chapter 7 could be developed in the future. Thus, the whole thesis not only

establishes new results on the construction of lattice rules, but also indicates

a path to future research.



Appendix A

Let n and m be integers so that m is fixed and let’s denote N = nm. In this

appendix, we show that the values of FN(q/n) for 0 ≤ q ≤ n− 1, where

FN (x) =
∑′

−N/2<h≤N/2

e2πihx

|h| , 0 ≤ x ≤ 1,

can be calculated at a total cost of O(N) operations.

It is easy to see that FN(x) = FN(1 − x), so it will suffice to consider

0 ≤ x ≤ 1
2
. Accordingly, we will need to calculate at most ⌊n/2⌋ + 1 values

of the form FN(q/n). Let us remark that the results in [31] were developed in

the situation when N = n, but they can be extended to the situation when

N 6= n by using the same techniques. For completeness, we present the main

ideas below.

First we observe that when N is odd then

FN (x) = 2

(N−1)/2∑

h=1

cos(2πhx)

h
,

while when N is even we have

FN(x) =
2eπiNx

N
+ 2

(N−2)/2∑

h=1

cos(2πhx)

h
.

Let us consider now

S(x, η) =

η−1∑

h=1

cos(2πhx)

h
,

where

η(N) =





N+1
2
, N odd,

N
2
, N even.

From [31], it follows that

S(x, η) =
∞∑

h=1

cos(2πhx)

h
−H(x, η) = − ln(2 sin(πx)) −H(x, η),
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where

H(x, η) =
∞∑

h=η

cos(2πhx)

h
.

According to [31], H(x, η) can be approximated by

HT (x, η) =
T∑

k=0

bk(x, η) cos

[
π

(
(2η + k − 1)x+

k + 1

2

)]
,

where

bk(x, η) =
(−1)kk!

η(η + 1) · · · (η + k)(2 sin(πx))k+1
.

Consider now the approximation

FN,T (x) =





−2 ln(2 sin(πx)) − 2HT (x, η(N)), N odd,

2eπiNx

N
− 2 ln(2 sin(πx)) − 2HT (x, η(N)), N even,

Then we can establish a similar result with a similar proof as [31, Theorem 4]:

Theorem A.1 Let ε > 0 be given and n ≥ 5 be a given integer such that

N = nm, with m a fixed integer independent of n. Consider also the positive

integers α and T satisfying the following conditions: 2 ≤ α ≤ 3
√

6n2/π2, and

4(T + 1)!

(m(α− 1)π)T+2
≤ ε.

If FN(x) is approximated by FN,T (x) for α/n ≤ x ≤ 1/2, then

|FN(x) − FN,T (x)| ≤ ε.

Proof. From the proof of [31, Theorem 4], it will follow first that

2 sin(πx) ≥ 2
(α− 1)π

n
,

and

|FN(x) − FN,T (x)| ≤ 4(T + 1)!

(2 sin(πx))T+2η(η + 1) · · · (η + T + 1)
.

From the hypothesis and using that η(N) ≥ N/2, we next obtain

|FN(x) − FN,T (x)| ≤
(

n

2(α− 1)π

)T+2
4(T + 1)!

η(η + 1) · · · (η + T + 1)

≤
(

n

2(α− 1)π

)T+2
4(T + 1)!
(

N
2

)T+2

=
4(T + 1)!

(m(α− 1)π)T+2
≤ ε.

�
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Thus, the explicit formula for FN is used at most α times when 0 ≤ x <

α/n, while the approximation FN,T is by the other hand used at most ⌊n/2⌋−

α + 1 times. This indicates that the total amount of operations required

to compute all the quantities FN(q/n), 0 ≤ q ≤ n − 1, would be O(Nα) +

O(T (⌊n/2⌋ − α + 1)) = O(N). These quantities can then be stored in O(n)

memory locations.

As an example, if we assume that n ≥ 100 and m = 3 and we want to

calculate FN with an accuracy of ε = 10−20, it turns that α = 18 and T = 12.

As another example, if we want a precision of ε = 10−17, then for n ≥ 180 and

m = 1 (in this case N = n), we can take α = 27 and T = 13.



Appendix B

Let us first recall that Lemma 6.5 was given in Chapter 6 as follows:

Lemma 6.5 The function ψ(w) =
∫ 1

0
K({w + ∆},∆) d∆ can be written as

ψ(w) = 2ψ1(w) + 2ψ1(1 − w), ∀w ∈ (0, 1),

where

ψ1(w) =

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)), t)ρ(t) dt.

Proof. From the expression of ψ, it is easy to see that we can write

ψ(w) =

∫ 1−w

0

K(w + ∆,∆) d∆ +

∫ 1

1−w

K(w + ∆ − 1,∆) d∆.

Following now an idea from [62], we split ψ into four integrals and consider

ψ(w) =

∫ 1−w
2

0

K(w + ∆,∆) d∆ +

∫ 1−w

1−w
2

K(w + ∆,∆) d∆

+

∫ 1−w
2

1−w

K(w + ∆ − 1,∆) d∆ +

∫ 1

1−w
2

K(w + ∆ − 1,∆) d∆

:= ψ1(w) + ψ2(w) + ψ3(w) + ψ4(w),

where ψ1, ψ2, ψ3, ψ4 denote each of the four integrals above. In order to analyse

ψ1, we use the change of variable Φ−1(∆) = t (see also (6.2)) and obtain

ψ1(w) =

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)), t)ρ(t) dt.

For ψ2, we use the change of variable −Φ−1(w+∆) = t, which in combination

with (6.4) and the symmetry of K yields

ψ2(w) =

∫ −∞

Φ−1( 1−w
2

)

K(−t,Φ−1(1 − Φ(t) − w))(−ρ(t)) dt

=

∫ Φ−1( 1−w
2

)

−∞

K(−t,−Φ−1(w + Φ(t)))ρ(t) dt

=

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)), t)ρ(t) dt = ψ1(w).
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Turning now to ψ3, we see that the change of variable Φ−1(w + ∆ − 1) = t

yields

ψ3(w) =

∫ Φ−1(w
2
)

−∞

K(t,Φ−1(Φ(t) − w + 1))ρ(t) dt.

It is easy to see that ψ3(w) = ψ1(1 − w) (using also the symmetry of K).

Finally, for ψ4, we use the change of variable −Φ−1(∆) = t which together

with (6.3) and (6.4) leads to

ψ4(w) =

∫ −∞

Φ−1(w
2
)

K(Φ−1(w + Φ(−t) − 1),−t)ρ(t)(− dt)

=

∫ Φ−1(w
2

)

−∞

K(Φ−1(w + Φ(−t) − 1),−t)ρ(t) dt

=

∫ Φ−1(w
2

)

−∞

K(Φ−1(w − Φ(t)),−t)ρ(t) dt

=

∫ Φ−1(w
2

)

−∞

K(−Φ−1(1 − w + Φ(t)),−t)ρ(t) dt

=

∫ Φ−1(w
2

)

−∞

K(Φ−1(1 − w + Φ(t)), t)ρ(t) dt = ψ3(w),

where in the last step we once more used the symmetry of K. All these

calculations show that we can write

ψ(w) = 2ψ1(w) + 2ψ1(1 − w), ∀w ∈ (0, 1),

which proves the lemma. Let’s also remark that ψ(w) = ψ(1 − w) for any

w ∈ (0, 1), which indicates that ψ is symmetric alongside w = 1/2. �

Next, we give a proof that the function ψ is convex for a specific kernel

and density.

Lemma B.1 If the kernel is given by K(x, y) = πe−2π|x−y| and ρ(x) = 1
2λ
e−|x|/λ

with λ > 0, then the function ψ (see also Lemma 6.5) is convex on (0, 1).

Proof. Using the change of variable Φ−1(∆) = t, the expression of the ψ1

becomes

ψ1(w) =

∫ Φ−1( 1−w
2

)

−∞

K(Φ−1(w + Φ(t)) − t, 0)ρ(t) dt

= π

∫ 1−w
2

0

e−2π(Φ−1(w+∆)−Φ−1(∆)) d∆,
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where we also used that Φ−1 is increasing (see Section 6.1), so Φ−1(w + ∆) −

Φ−1(∆) ≥ 0. Leibniz’s rule in combination with (6.4) leads to:

ψ′
1(w) = −π

2
e−2π((Φ−1( 1+w

2
)−Φ−1( 1−w

2
)) − 2π2

∫ 1−w
2

0

e−2π(Φ−1(w+∆)−Φ−1(∆))

ρ(Φ−1(w + ∆))
d∆

= −π
2
e4πΦ−1( 1−w

2
) − 2π2

∫ 1−w
2

0

e−2π(Φ−1(w+∆)−Φ−1(∆))

ρ(Φ−1(w + ∆))
d∆.

Now by applying again Leibniz’s rule, we obtain the second derivative of ψ1

given by

ψ′′
1 (w) =

2π2e4πΦ−1( 1−w
2

)

ρ(Φ−1(1−w
2

))

+2π2

∫ 1−w
2

0

e−2π(Φ−1(w+∆)−Φ−1(∆))

ρ2(Φ−1(w + ∆))

(
2π +

ρ′(Φ−1(w + ∆))

ρ(Φ−1(w + ∆))

)
d∆.

For the two-tailed exponential distribution ρ(x) = 1
2λ
e−|x|/λ, it is easy to check

that for x 6= 0, we can write

ρ′(x)

ρ(x)
= −|x|

λx
.

From (6.3), it follows that Φ−1(1/2) = 0. Since (1 − w)/2 ≤ 1/2 and Φ−1 is

increasing, it will follow that Φ−1(1−w
2

) ≤ 0. By making use of these results in

the expression of ψ′′
1 (w), we obtain:

ψ′′
1(w) = 4π2λe(4π− 1

λ
)Φ−1( 1−w

2
)

+2π2

∫ 1−w
2

0

e−2π(Φ−1(w+∆)−Φ−1(∆))

ρ2(Φ−1(w + ∆))

(
2π − |Φ−1(w + ∆)|

λΦ−1(w + ∆)

)
d∆.

We can split the integral in the expression of ψ′′
1 into two parts to obtain

ψ′′
1 (w) = 4π2λe(4π− 1

λ
)Φ−1( 1−w

2
) + 2π2

∫ 1
2
−w

0

e−2π(Φ−1(w+∆)−Φ−1(∆))
(
2π + 1

λ

)

ρ2(Φ−1(w + ∆))
d∆

+2π2

∫ 1−w
2

1
2
−w

e−2π(Φ−1(w+∆)−Φ−1(∆))
(
2π − 1

λ

)

ρ2(Φ−1(w + ∆))
d∆.

The first integral in the above is positive since the integrand always takes

positive values. We can now write

ψ′′
1 (w) ≥ 4π2λe(4π− 1

λ
)Φ−1( 1−w

2
) + 2π2

∫ 1−w
2

1
2
−w

e−2π(Φ−1(w+∆)−Φ−1(∆))
(
2π − 1

λ

)

ρ2(Φ−1(w + ∆))
d∆

= 4π2λe(4π− 1
λ
)Φ−1( 1−w

2
) − 2π2

∫ 1−w
2

1
2
−w

e2πΦ−1(∆)g′(∆) d∆,
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where

g(∆) = 2λe(
1
λ
−2π)Φ−1(w+∆).

This leads to

ψ′′
1 (w) ≥ 4π2λe(4π− 1

λ
)Φ−1( 1−w

2
) − 2π2e2πΦ−1( 1−w

2
)

∫ 1−w
2

1
2
−w

g′(∆) d∆

= 4π2λe(4π− 1
λ
)Φ−1( 1−w

2
) − 2π2e2πΦ−1( 1−w

2
)

(
g

(
1 − w

2

)
− g

(
1

2
− w

))

= 4π2λe(4π− 1
λ
)Φ−1( 1−w

2
) − 4π2λe(4π− 1

λ
)Φ−1( 1−w

2
) + 4π2λe2πΦ−1( 1−w

2
)

= 4π2λe2πΦ−1( 1−w
2

) ≥ 0, ∀w ∈ (0, 1).

�

Finally, let us remark that following the same idea, we can prove a similar

result for Gaussian distributions, which occur frequently in practical applica-

tions. So, it makes sense to assume that the result given by Lemma B.1 has

some generality.
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