

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Is Semantic Query Optimization
Worthwhile?

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Bryan H. Genet

The University of Waikato

December 2006

© Copyright 2006: Bryan H. Genet

For Luca

Tu es mon Soleil et ma Lune.

Ce que je n’ai jamais auparavant donné,

À toi je le donne librement.

Abstract

The term “semantic query optimization” (SQO) denotes a methodology whereby

queries against databases are optimized usingsemantic informationabout the

database objects being queried. The result of semanticallyoptimizing a query is

another query which is syntactically different to the original, butsemantically equiv-

alent and which may be answered more efficiently than the original. SQO is dis-

tinctly different from the work performed by the conventional SQL optimizer. The

SQL optimizer generates a set of logically equivalent alternative execution paths

based ultimately on the rules of relational algebra. However, only a small propor-

tion of the readily available semantic information is utilised by current SQL opti-

mizers. Researchers in SQO agree that SQO can be very effective. However, after

some twenty years of research into SQO, there is still no commercial implemen-

tation. In this thesis we argue that we need to quantify the conditions for which

SQO is worthwhile. We investigate what these conditions areand apply this knowl-

edge to relational database management systems (RDBMS) with static schemas

and infrequently updated data. Any semantic query optimizer requires the ability

to reasonusing the semantic information available, in order to draw conclusions

which ultimately facilitate the recasting of the original query into a form which can

be answered more efficiently. This reasoning engine is currently not part of any

commercial RDBMS implementation. We show how a practical semantic query

optimizer may be built utilising readily available semantic information, much of it

already captured by meta-data typically stored in commercial RDBMS. We develop

cost models which predict an upper bound to the amount of optimization one can

expect when queries are pre-processed by a semantic optimizer. We present a series

of empirical results to confirm the effectiveness or otherwise of various types of

SQO and demonstrate the circumstances under which SQO can beeffective.

i

Acknowledgements

It is just as well we cannot see into the future.

When I returned to the University of Waikato at the beginning of 2004, I was

determined to complete my research into semantic query optimization, which I had

only just begun at Victoria University of Wellington beforesuccumbing to the siren

call of IT contract work overseas. I brought with me nearly 15years of experience in

database technology and reassured myself I was well placed to undertake a piece of

research with a high practical content. I was determined to write a thesis that would

be comprehensible to industry practitioners, while breaking sufficient new ground

academically to satisfy the demands of the university post-graduate environment.

The University of Waikato seemed the natural place for me to resume this re-

search. I had been a student here in the 1970s, completing a first degree in Physics

and was privileged to be lectured by the late Dr Roger Osbourne, Dr Crispen Gar-

dener, the late Dr Dan Walls and many others who profoundly influenced the direc-

tion of my life and equipped me for a lifetime of learning. I returned to Waikato in

the 1980s to complete another undergraduate major in Computer Science. The De-

partment of Computer Science at that time was buoyant and thriving and I benefited

from the expertise of Dr Olivier de Val, Mr Bill Rogers, Dr Ian Graham, Professor

E.V. Krishnamurthy and others. It was the gentle eccentricity of Professor Krishna-

murthy that first inclined me toward post-graduate researchand I soon found myself

at the University of Melbourne, immersed in Prolog and AI research.

Times and fashions change and Computer Science is as subject to this as any-

thing else. I resumed my research into semantic query optimization and decided

the focus of my research ought to be the deeply unfashionablearea of relational

database management systems (RDBMS). My decision was based onthe observa-

tion that over 90% of real world industry data was contained,queried and manipu-

lated by RDBMS and the question of utilising the semantics of this data to optimize

queries had most definitely not been settled. I was of course unable to foresee the

joys, and the sorrows, that would ensue from such a decision.

Arriving now at the cusp of another era in my life drawing to a close, I have

many people whom I wish to thank for their help and encouragement over the last

three years. Firstly I thank my Supervisor, Dr Sally Jo Cunningham, who was

iii

iv Acknowledgements

brave enough to take me on when I first arrived with my proposalfor PhD research

and whose on going support, constructive criticism and academic experience has

enabled me to navigate the sometimes perilous course of thisresearch. I am grateful

to Dr Geoff Holmes for his ability to provide grounded, no nonsense advice with an

uncanny timeliness and for his review of some of the materialin this thesis. I thank

Dr Gill Dobbie of Auckland University for her consistently positive, wise advice

and for support that extends back to my time at Melbourne University. I am grateful

to Dr Annika Hinze for her collaboration early in this research and for some later

reviews. The financial support I have received via the Departmental scholarship

and the Graduate Assistant scheme has been pivotal and I am grateful to have been

judged worthy of that support.

Outside of the academic realm, I have been encouraged and sustained by the

friendship of many of the post-graduate students in the Department. Sven Bittner

and Doris Jung have been patient and interested fellow travellers. Phil Treweek

has been far more than a Senior Tutor, skillfully providing pastoral care when it

was required. I thank Dr David Streader for having enough life experience to allow

me to be myself. I am grateful to Rob Akscyn for being able to speak with the

authority of one who has actually been there and done it. My thanks to Dr Bernhard

Pfahringer for appreciating my teaching and saying so.

I thank my parents and my wonderful adult children for their support and ac-

ceptance of the somewhat eccentric orbit of my life. Finally, I am deeply grateful to

my dear friend Sue Jury, whose professionalism, insight andconstant support has

sustained me through this journey.

Table of Contents

1 Introduction 1

1.1 Preamble . 2

1.2 Summary of Chapter Contents . 5

1.3 Motivating Background . 7

1.3.1 Typical SQL Query Processing 8

1.3.2 Limitations of Current SQL Optimizers 9

1.3.3 Motivating Example . 11

2 Background Research 13

2.1 Introduction . 14

2.2 Preliminary Definitions . 15

2.3 Semantic Information and Semantic Rules19

2.3.1 Rule Discovery . 21

2.3.2 Rule Reliability . 26

2.3.3 Data Reorganisation . 28

2.4 Semantic Query Optimization . 29

2.4.1 Complexity of SQO . 30

2.5 Main Types of SQO . 31

2.5.1 Detection of Unsatisfiable Queries 31

2.5.2 Restriction Removal . 31

2.5.3 Restriction Introduction 34

2.5.4 Join Removal . 36

2.6 SQO in Commercial RDBMS . 37

2.6.1 Implemented SQO in Commercial RDBMS 39

2.7 Summary . 41

3 An Algebra of Intervals 43

3.1 Introduction . 44

3.2 Basic Assumptions and Working Definitions45

3.2.1 Overloading of Boolean Comparison Operators 45

3.2.2 A Generic Data Type . 46

3.2.3 Ordering of Instancest ∈ T 46

v

vi TABLE OF CONTENTS

3.2.4 Comparing Instancest ∈ T 46

3.2.5 Representing Minus and Plus Infinity 47

3.3 Limit Operators . 48

3.3.1 Comparing Limits . 48

3.3.2 Negating Limits . 50

3.3.3 Notation for Limits . 50

3.4 Bounds . 51

3.4.1 Notation for Bounds . 51

3.4.2 A Bound is a Logical Assertion 52

3.4.3 Comparing Bounds . 52

3.4.4 Infinite Bounds . 53

3.4.5 Functionslower andhigher: 54

3.4.6 Negating Bounds . 54

3.4.7 Conjunction and Disjunction of Bounds 55

3.5 Intervals . 58

3.5.1 Special Intervals . 60

3.6 Conjunction of Intervals . 63

3.7 Disjunction of Intervals . 65

3.8 Interval Lists . 69

3.8.1 Notation for Interval Lists 70

3.8.2 Definition of Interval List 71

3.8.3 Interval Disjunction Algorithm 71

3.9 Negation of Intervals . 72

3.10 Identity Elements For Intervals 74

3.10.1 Identity Element for Conjunction of Intervals 74

3.10.2 Identity Element for Disjunction of Intervals 75

3.10.3 Informal Examples: Negation When a Bound is Infinite . . .76

3.11 Interval Subsumption and Implication 77

3.11.1 Interval Subsumption . 77

3.11.2 Interval Implication . 78

3.12 Disjunction of Interval Lists .79

3.12.1 Disjunction of Interval List With Interval 80

3.12.2 Disjunction of Interval List With Interval List 81

3.12.3 Complexity of Interval List Disjunction82

3.13 Conjunction of Interval Lists . 82

3.13.1 Conjunction of Interval List With Interval 83

3.13.2 Conjunction of Interval List With Interval List 84

3.13.3 Complexity of Interval List Conjunction 84

3.14 Negation of Interval Lists . 85

3.14.1 Complexity of Interval List Negation 86

TABLE OF CONTENTS vii

3.15 Special Interval Lists . 87

3.15.1 The Infinite Interval List 87

3.15.2 The Null Interval List . 88

3.16 Interval List Subsumption and Implication 89

3.16.1 Interval List Subsumption 89

3.16.2 Interval List Implication 92

3.17 Summary . 93

4 A Practical Semantic Query Optimizer 95

4.1 Introduction . 96

4.2 An Intrinsic Limitation of SQO . 98

4.2.1 Utility of SQO . 98

4.3 Additional Helpful Definitions . 102

4.3.1 Query Profile . 102

4.3.2 Zero Queries, Positive Queries and Data Holes103

4.4 Semantic Query Optimizer As Preprocessor 104

4.4.1 Defining Meta-data . 105

4.4.2 Utilising Data Holes . 109

4.4.3 Harvesting Schema Constraints 113

4.5 Conditional Semantic Rules . 123

4.5.1 Meaning of a Conditional Rule 125

4.5.2 Meeting the Condition: the Subsumption Rule 125

4.5.3 Utility of Conditional Rules 126

4.6 Summary . 128

5 Empirical Methodology 131

5.1 Introduction . 132

5.2 Experimental Methodology . 133

5.2.1 The Oracle RDBMS as a “black box” 133

5.2.2 Obtaining consistent results 133

5.2.3 Experimental Setup . 135

5.2.4 Measuring query cost . 139

5.2.5 Overall Query Cost . 140

5.3 Query Normal Form and Difficulty 141

5.3.1 Query Normal Form . 141

5.3.2 Query Difficulty . 144

5.4 Cost Models . 144

5.4.1 Classifying Queries . 145

5.4.2 Cost Model: Unsatisfiable Queries 145

5.4.3 Cost Model: Zero Queries 149

5.4.4 Cost Model: Unsatisfiable Joins 149

viii TABLE OF CONTENTS

5.4.5 Cost Model: “distinct” and “is not null” removal . . 149

5.5 Summary . 150

6 Empirical Results and Analysis 153

6.1 Introduction . 154

6.2 Format of Experimental Results 156

6.3 Unsatisfiable Queries – No Indexing 159

6.3.1 Hypotheses . 159

6.3.2 Method . 160

6.3.3 Results and Analysis . 160

6.3.4 Conclusion . 161

6.4 Indexed Unsatisfiable Queries . 161

6.4.1 Hypotheses . 162

6.4.2 Method . 162

6.4.3 Results and Analysis . 162

6.4.4 Conclusion . 163

6.5 Indexed Unsatisfiable Queries – Varying Restrictions perQuery . . 164

6.5.1 Hypotheses . 164

6.5.2 Method . 164

6.5.3 Results and Analysis . 165

6.5.4 Conclusion . 165

6.6 Indexed Unsatisfiable Queries – Varying Intervals per Restriction . . 165

6.6.1 Hypotheses . 166

6.6.2 Method . 166

6.6.3 Results and Analysis . 167

6.6.4 Conclusion . 167

6.7 Indexed Unsatisfiable Joins . 168

6.7.1 Hypotheses . 168

6.7.2 Method . 169

6.7.3 Results and Analysis . 169

6.7.4 Conclusion . 170

6.8 Indexed Unsatisfiable Joins – Varying Restrictions per Join 171

6.8.1 Hypotheses . 171

6.8.2 Method . 171

6.8.3 Results and Analysis . 172

6.8.4 Conclusion . 172

6.9 Indexed Unsatisfiable Joins – Varying Intervals per Restriction . . . 172

6.9.1 Hypotheses . 173

6.9.2 Method . 173

6.9.3 Results and Analysis . 174

6.9.4 Conclusion . 174

TABLE OF CONTENTS ix

6.10 Queries “select distinct” elimination 175

6.10.1 Hypotheses . 175

6.10.2 Method . 176

6.10.3 Results and Analysis . 176

6.10.4 Conclusion . 177

6.11 Joins “select distinct” elimination 177

6.11.1 Hypotheses . 177

6.11.2 Method . 178

6.11.3 Results and Analysis . 178

6.11.4 Conclusion . 179

6.12 Queries “is not null” elimination 179

6.12.1 Hypotheses . 179

6.12.2 Method . 179

6.12.3 Results and Analysis . 180

6.12.4 Conclusion . 180

6.13 Joins “is not null” elimination .180

6.13.1 Hypotheses . 181

6.13.2 Method . 181

6.13.3 Results and Analysis . 182

6.13.4 Conclusion . 182

6.14 Query Restriction Introduction and Removal 182

6.14.1 Hypotheses . 183

6.14.2 Method . 183

6.14.3 Results and Analysis . 184

6.14.4 Conclusion . 186

6.15 Joins Restriction Introduction and Removal 187

6.15.1 Hypotheses . 187

6.15.2 Method . 187

6.15.3 Results and Analysis . 188

6.15.4 Conclusion . 188

6.16 Summary . 190

7 Related Work and Extensions 193

7.1 Introduction . 194

7.2 Interval Arithmetic . 194

7.2.1 Differences in our interval implementation 195

7.2.2 Extending Interval Addition 196

7.2.3 Extending Interval Subtraction 198

7.2.4 Algorithm for Extended Interval Arithmetic 198

7.2.5 Extending Interval Multiplication 203

7.3 Interval List Arithmetic . 208

x TABLE OF CONTENTS

7.3.1 Defining Arithmetic with Interval Lists 208

7.3.2 Extending Interval Division 210

7.4 Temporal Intervals . 215

7.4.1 Extending Date Arithmetic to Intervals 215

7.4.2 Allen’s Interval Algebra 217

7.5 Summary . 221

8 Conclusion And Future Work 225

8.1 Review . 226

8.2 Contributions . 231

8.3 Future Work . 232

A Supporting Empirical Results 235

A.1 Introduction . 236

A.2 Unsatisfiable Queries – No Indexing 238

A.2.1 Combined Ratio:Rcom . 239

A.2.2 Individual Cost Metric Ratios 240

A.3 Indexed Unsatisfiable Queries . 246

A.3.1 Combined Ratio:Rcom . 246

A.3.2 Individual Cost Metric Ratios 247

A.4 Indexed Unsatisfiable Queries – Varying Restrictions perQuery . . 253

A.4.1 Combined Ratio:Rcom . 253

A.4.2 Individual Cost Metric Ratios 254

A.5 Indexed Unsatisfiable Queries – Varying Intervals per Restriction . . 260

A.5.1 Combined Ratio:Rcom . 260

A.5.2 Individual Cost Metric Ratios 261

A.6 Indexed Unsatisfiable Joins . 267

A.6.1 Combined Ratio:Rcom . 267

A.6.2 Individual Cost Metric Ratios 268

A.7 Indexed Unsatisfiable Joins – Varying Restrictions per Join 274

A.7.1 Combined Ratio:Rcom . 274

A.7.2 Individual Cost Metric Ratios 275

A.8 Indexed Unsatisfiable Joins – Varying Intervals per Restriction . . . 281

A.8.1 Combined Ratio:Rcom . 281

A.8.2 Individual Cost Metric Ratios 282

B Table Rows To Size Conversion 289

B.1 Mapping From Relative To Absolute Table Size 290

C Software and Hardware Description 291

C.1 Software Description . 292

TABLE OF CONTENTS xi

C.1.1 Experiments with queries 292

C.1.2 Experiments with equi-joins 292

C.2 Hardware Description . 292

C.2.1 Experiments with queries 293

C.2.2 Experiments with equi-joins 293

List of Figures

2.1 Sources of semantic information: Semantic information can be drawn from a

number of different sources includingschema constraintsanddiscovered rules.

Schema constraints originate from human practitioners, while discovered rules

are typically found by the execution of software.. 19

2.2 Semantic rule discovery: Semantic information may be harvested from an anal-

ysis of (1) queries (2) data distribution and correlation (3) schema constraints.. . 26

2.3 Semantic query optimization: SQO comprises four major components. (1) Har-

vesting of schema constraints (2) discovery of semantic rules via query or data

analysis (3) data reorganisation (4) query rewrite. The shaded regions comprise

a more traditional view of SQO.. 30

2.4 Restriction removal: All values of columnCOL1 in tableTAB lie on the interval

[100,500]. A semantic optimizer can apply this knowledge to simplify queryQ

to queryQ′. 33

2.5 Restriction introduction : The restriction onCOL1 of tableTAB activates a rule

which allows an additional restriction on columnCOL2 to be added to the query.

Typically, such a rule is applied because anindexexists onCOL2 but not onCOL1. 35

2.6 Join removal: The intersection of values for the join columns is null; i.e., they

have no values in common. A semantic optimizer may deducea priori the join is

unsatisfiable. This query need not be submitted to the database. 36

2.7 Join removal: Column CUST ID is a non-null foreign key pointing to parent

columnID in tableCUSTOMER. A semantic query optimizer may deduce that the

equi-join between tablesCUSTOMER andSALES is therefore unnecessary. Exactly

the same information is already contained solely within table SALES, so the join

may be eliminated.. 38

3.1 Bounds on the Real number line: r is an arbitrary point on the Real number

line. The solid arrows depict the interpretation of the bounds formed when the

four limit operators are applied in turn to pointr. There are two left bounds:

(r , [r and two right bounds:r) , r] . We use the familiar notation of open and

closed circles to visualize exclusive and inclusive boundsrespectively. 52

xiii

xiv LIST OF FIGURES

3.2 Conjunction and disjunction of left bounds: The Boolean conjunction of two

left bounds BL1 · BL2 is logically equivalent to the higher of the two bounds

higherbound
(

BL1, BL2

)

. The Boolean disjunction of two left bounds is logically

equivalent to the lower of the two bounds.. 56

3.3 Conjunction and disjunction of right bounds: The Boolean conjunction of

two right boundsBR1 · BR2 is logically equivalent to the lower of the two bounds

lower
(

BR1, BR2

)

. The Boolean disjunction of two right bounds is logically equiv-

alent to the higher of the two bounds. 57

3.4 Intervals on the Real number line: Pointsr1 to r8 are arbitrary points on the

Real number line. Using these points we construct some intervals on the Real

number line. In each case we write the interval depicted using the familiar no-

tation of inclusive and exclusive intervals and underneathwrite the equivalent

expression using Boolean comparison operators.. 60

3.5 Intervals on the Real number line: We picture an arbitrary interval on the Real

number line where the right boundr2] is approaching the left bound[r1 . In the

first three number lines,r2 > r1. Eventually the bounds enclose the single value

r1 = r2. In the final number line,r2 < r1 and the interval isnull. 62

3.6 The Boolean conjunction of two intervalsI1 and I2 is represented graphically

by the intersection of the intervals. The conjunctionI1 · I2 returns another inter-

val which can never be more expansive than eitherI1 or I2. If the intervals are

disjoint, their intersection is null. 64

3.7 The Boolean disjunction of two intervals I1 and I2 is represented graphically

by the union of the intervals. If the intervals overlap or touch, the disjunction is

formed by lower of left bounds and the higher of right bounds.If the intervals

are disjoint, the disjunctionI1 + I2 returns aninterval list comprised of the same

two intervals. 66

3.8 Two interval lists: Interval listL1 is composed of the three disjoint intervalsI1,

I2 andI3 while interval listL2 is composed of the two disjoint intervalsJ1 andJ2. 70

3.9 Interval negation: Interval I = [vL, vR). Negating intervalI gives everything

except I. This results in an intervallist consisting of exactly two intervals. The

original valuesvL andvR are unchanged; only their limits are negated.. 72

3.10 Negation when one bound is infinite: Interval I encompasses the entire domain

T from MINF (minus infinity) tot ∈ T. Its negation¬I therefore encompasses

the complement of this interval. Refer toExample 3.10.1. 76

3.11 Negation when both bounds are infinite: Interval I occupies the entire domain

T. Its negation¬I is the null interval list0. Refer toExample 3.10.2. 76

3.12 Subsumption of intervals: Interval I1 by definitionsubsumes I2 whenever its

left boundBL1 is less than or equal toBL2 and its right boundBR1 is greater than

or equal toBR2. 77

LIST OF FIGURES xv

3.13 Interval list conjunction and disjunction : We may represent the conjunction

of two interval listsL1 andL2 as theintersectionof the two lists. Similarly, the

disjunction of the two lists is theunionof the two lists. 80

3.14 Interval list negation: We may represent the negation of an interval listL1 as the

complementof the list. 85

3.15 Subsumption of interval lists: Interval ListL2 is by definitionsubsumedby list

L1 if for every intervalJi making up listL2 is subsumed by some interval inL1. . 90

4.1 Semantic query optimizer as preprocessor: The semantic optimizer sits in

front of the normal SQL parser and optimizer and preprocesses the queries based

on semantic rules stored in the database as meta-data.. 105

4.2 Semantic query optimizer: The semantic optimizer consists of the Reasoning

Engine at its base plus software layers for the definition of meta-data and the

preprocessing of queries.. 106

4.3 Main functions of semantic query optimizer: Through this interface, users

may define meta-data for the target table objects. In addition, various types of

semantic query optimization may be switched in and out.. 107

4.4 A star schema modeling sales information: The primary key of the fact table

SALES is formed by concatenating the foreign keys which point to the dimension

tables. A query profile notesSALES is the target of many queries with restric-

tions that cite the foreign key columns. These columns are therefore indexed and

targeted for further analysis. Refer toExample 4.4.1. 108

4.5 Finding data holes: This figure depicts the legal range of values a column vari-

ableCOL1 may assume. In this example the legal range of values is described

by an interval listL consisting of a single intervalI . Suppose it is subsequently

discovered that a gap in the data exists within this range, described by the interval

G =
[

g1,g2). Then removing this gap from intervalI results in a new interval list

L′ consisting of two intervalsI1 andI2. Refer toExample 4.4.2. 109

4.6 Harvesting check constraints: Check constraints may be converted into an in-

terval list form. This meta-data is stored in tableALL INTERVAL LISTS which is

accessed by the semantic query optimizer. Refer toExample 4.4.4. 113

4.7 Utilising check constraints: The semantic query optimizer can preprocess SQL

queries where a semantic rule exists for the column (C) cited in the query restric-

tion. Such a rule is always true, so we may find the conjunctionof the interval list

representing the check constraint (Lc) and the query restriction (Rc). The result

of the conjunction (R′c) is substituted for the original restriction. This is how, for

example, we detect unsatisfiable queries.. 117

xvi LIST OF FIGURES

4.8 Utilising conditional rules: The semantic query optimizer can preprocess SQL

queries where a conditional semantic rule exists for the column cited in the query

restriction. If the rule pre-condition (left hand side) subsumes the query restric-

tion, the right hand side of the rule may be added to the query as an additional

restriction. Typically the rule pre-condition restricts an unindexed column while

the rule right hand side restricts an indexed column.. 128

4.9 Rules utilised by our semantic optimizer: This table summarises the rules we

propose to use for our practical semantic query optimizer. We harvest schema

constraints which are true for the lifetime of the schema. Welocate data holes

so zero queries can be detected. We analyze data to detect correlations between

columns in order to produce conditional rules. Rules that depend on data are only

sometimes true and must be revalidated if data is updated.. 129

5.1 Experimental setup: Two identically configured query batches are used. One

batch runs only semantically optimized queries while the other runs only the iden-

tical unoptimized queries. The batches never run together so they never compete

for computer resources. We use the Oracle supplied tooltkprof to measure the

average query cost.. 135

5.2 Data distribution : The above scatter plot depicts data distribution acrossCOL1,

COL2 andCOL3 of tableTAB1. The distribution of each column is a truncated

normal distribution where values outside plus or minus three standard deviations

are discarded. A similar plot is obtained by plotting any three of columnsCOL1

to COL5 of any of the six tablesTAB1 to TAB6. 137

5.3 Depicting interval lists as query restrictions: Figures 5.3(a) to 5.3(c) illustrate

how we map from an interval list into a normal SQL restrictionclause. In each

case we begin by sketching the interval list which captures the range of values the

column may assume. We then rewrite the interval list as a normal SQL restriction

clause. 142

5.4 Cost model for unsatisfiable queries: Our cost model above predicts a straight-

forward relationship betweenPu, the probability of an unsatisfiable query and the

ratio of the optimized batch costCOS Topt to the normal batch timeCOS Tnorm.

Even whentsem, the average time to semantically optimize each query is negli-

gible compared withtora, the normal time taken to parse, execute and fetch the

query, we cannot expect better optimization than indicatedby this line. 146

6.1 Example 3D projection of experimental results: The X-axis is the independent

variableprobability of an unsatisfiable query. The Y-axis is another independent

variable such asnumber of table rows. The Z-axis is the dependent variable

and depicts thecost metric ratio, for example,Rcom. The “ruggedness” of this

surface corresponds to the variation or uncertainty in the actual recorded data.

Experimental results are always plotted inred. 157

LIST OF FIGURES xvii

6.2 Cost Model Surface and Break Even Surface: Results that conform closely

to the idealised cost model will appear near to and parallel to the “cost model”

surface. Result surfaces that appear below the “break even”surface indicate a

positive optimization. The cost model surface is always plotted in blue. The

break even surface is always plotted inpink. 158

6.3 Example regression surface: The regression surface is calculated using an im-

plementation of the nonlinear least-squares (NLLS)Marquardt-Levenberg algo-

rithm and displays the relationship between the the dependent variable (cost met-

ric ratio on the Z-axis) and the two independent variables. The regression surface

is always plotted ingreen. 159

6.4 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): Figures 6.4(b) and 6.4(c) showRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size, with

the optimization cost rising slightly as table size becomesvery large (Rows>

400,000). 161

6.5 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): Figures 6.5(b) and 6.5(c) show theRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.1. 163

6.6 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): As the number of Restrictions per QueryR/Q increases from 1

to 25, a greater proportion of unsatisfiable queries is required in order to break

even. ForP = 10%, positive optimization is achieved when there is up to five

restrictions per query; i.e.,R/Q ≤ 5. Number of table rowsRows= 1,000,000. . 166

6.7 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): As the number of Intervals per RestrictionI/R increases

from 1 to 25, ratioRcom increases slowly. ForP > 0.15, positive optimization is

achieved throughout the whole range. Number of table rowsRows= 1,000,000. 168

6.8 Ratio Rcom vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): Figures 6.8(b) and 6.8(c) showRcom surface sits just above the “cost

model surface”, indicating results deviate very little from the predicted. We have

positive optimization across four orders of magnitude of table size whenP > 0.2,

although it is evident that the cost of processing the semantically optimized joins

increases relatively as table size becomes very large.. 170

xviii LIST OF FIGURES

6.9 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): As the number of Restrictions per QueryR/Q increases from 1

to 40, a greater proportion of unsatisfiable queries is required in order to break

even. ForP = 0.25, positive optimization is achieved when there is up to five

restrictions per join; i.e.,R/Q ≤ 5. Number of table rowsRows= 1,000,000. . . 173

6.10 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): As the number of intervals per restrictionI/R increases from

1 to 25, a greater proportion of unsatisfiable queries is required in order to break

even. ForI/R ≤ 5, we require just onP = 0.25 to achieve positive optimization.

Number of table rowsRows= 1,000,000. 175

6.11 “select distinct” elimination : Eliminating the redundant “distinct” keyword

from theselectclause of the batch produces an average saving of approximately

15% to 20% for queries and approximately 60% for joins, as soon as the num-

ber of rows returned by the query becomes significant. This optimization works

because an unnecessary sort of returned rows is avoided.. 177

6.12 “is not null” elimination : In the case of queries, eliminating the redundant

phrase from thewhereclause of the batch of queries scarcely affects query ef-

ficiency (Figure 6.12(a)). In the case of joins, the simplification produces a very

small, nearly uniform saving of approximately 5% (Figure 6.12(b)). 180

6.13 Query restriction introduction and elimination : The traditional scenario is

pictured in Figure 6.13(a) where a restriction on unindexedCOL20 is supple-

mented with an additional restriction on indexedCOL1 (red line). Conversely, the

restriction on unindexedCOL20 can be removed leaving only the restriction on

COL1 (greenline). A more realistic scenario is pictured in Figure 6.13(b). Here

the low selectivity columnCOL20 is indexed with a bitmap. In Figures 6.13(c)

and 6.13(d) we compare the efficiency gain produced with and without a bitmap

index onCOL20 by combining the results from Figures 6.13(a) and 6.13(b). Also

included is the effect of simply adding the bitmap index toCOL20. 185

6.14 Join restriction introduction and elimination : Restriction introduction does

not benefit the equi-joins tested in our experimental batches, apart from a narrow

range of the most selective joins. Restriction removal produces a better result,

enhancing join efficiency for selectivities in the range 0− 3%. The presence of a

bitmap index on the unselective column has no impact on overall join efficiency. 189

7.1 Extended interval addition A + B: When the requirement is relaxed that the

left and right bounds must be inclusive, interval addition still yields meaningful

results with clear semantics. This table sets out the four possibilities for each of

the left and right bounds. The result reduces to the orthodoxinterval addition

formula when both intervals are composed of inclusive bounds. 197

LIST OF FIGURES xix

7.2 Extended interval subtraction A − B: When the requirement is relaxed that the

left and right bounds must be inclusive, interval subtraction still yields mean-

ingful results with clear semantics. This table sets out thefour possibilities for

each of the left and right bounds. The result reduces to the orthodox interval

subtraction formula when both intervals are composed of inclusive bounds. . . . 198

7.3 Undefined operations for Extended Interval Arithmetic: The table lists the

arithmetic operations for which are undefined when we carry out extended in-

terval arithmetic (EIA). The first row prohibits any operations with the inclusive

infinities. The second row prohibits any division by an inclusive zero (“B” de-

notes any bound). The remaining rows list the exclusive cases involving zero

and infinity which are undefined. For multiplication, the operation with operands

reversed is omitted, since multiplication is commutative.In the Resultcolumn,

“un+” denotes “undefined positive”; “un−” denotes “undefined negative”.. . . . 201

7.4 Extended interval addition and subtraction with (−∞ and +∞): The tables

show the outcome for interval addition and subtraction, including when one or

both of the operands is an exclusive infinite bound. The left angle bracket “〈”

denotes either “(” or “ [”. Similarly, the right angle bracket “〉” denotes either

“)” or “]”. Algorithm 7.2.1 is applied to determine if the bounds are inclusive or

exclusive. 203

7.5 Extended interval multiplication and division with (−∞ , 0 and +∞): The tables

show the outcome for the multiplication and division operations including when

one or both of the operands is an exclusive infinite bound or zero. The left angle

bracket “〈” denotes either “(” or “ [”. Similarly, the right angle bracket “〉” de-

notes either “)” or “]”. “ [0]” denotes the bound is inclusive zero. “un+” denotes

the answer is undefined but positive; “un−” denotes the answer is undefined but

negative; “un” denotes the answer is undefined. Whether the result is a left or

right bound is determined whenever it is chosen to be the minimum or maximum

by the algorithms for multiplication and division. 204

7.6 Interval multiplication where one bound is an exclusive infinity : The prod-

ucts are calculated having regard for the special cases listed in Figure 7.5(a).

Algorithm 7.2.1 is then applied to decide if the bound is inclusive (i) or exclusive

(e). The minimum is the left bound; the maximum is the right bound. Refer to

Example 7.2.1. 205

7.7 Interval multiplication where one product is undefined: The undefined prod-

uct may be discarded. The correct minimum and maximum occursin the remain-

ing products. Refer toExample 7.2.2. 205

7.8 Extended interval multiplication where a product is undefined: In each case,

the undefined products may be discarded. The correct minimumand maximum

are chosen from the remaining products to form the left and right bounds respec-

tively of the resultant interval. Refer toExample 7.2.3. 206

xx LIST OF FIGURES

7.9 Extended interval division: We refer to Figure 7.5 to provide answers which

are subject to the restrictions we impose on interval division. Algorithm 7.2.1

is then applied to decide if each bound is inclusive or exclusive. Any undefined

divisions may be discarded. The correct minimum and maximumare chosen

from the remaining answers to form the left and right bounds respectively of the

resultant interval. Refer toExample 7.3.3. 212

7.10 Interval division where the divisor includes the point zero: The divisor is first

split into two disjoint intervals such that the point[0,0] is excluded. We then

apply the algorithm for division with interval lists. Referto Example 7.3.4. . . . 213

7.11 Further examples of extended interval division: Whenever the divisor includes

the point zero, we first split it into the two disjoint intervals on either side of zero.

We then apply the algorithm for division with interval lists. We argue that the

result of such interval division, expressed as an interval list, has clear semantics

and is more expressive and useful than simply disallowing the division. Refer to

Example 7.3.5. 214

7.12 The 13 Allen interval relations: Interval A = [a,b]. Interval B = [c,d]. The

Relationcolumn lists the first six basic relations and their inverses. TheFunction

column expresses the relation as a boolean function of the endpointsa,b, c,d ∈

R. The symbol “·” denotes the boolean “and” operator. The “equals” relation,

depicted on the left, brings the total to 13. The basic relations are all mutually

exclusive; i.e., any two given Allen intervals are related by exactly one of the

above basic relations.. 218

7.13 Extending the 13 Allen interval relations: A = 〈a,b〉 is the interval consisting

of left and right boundsLa,Rb where La = 〈a and Rb = b〉 . B = 〈c,d〉 is the

interval consisting of left and right boundsLc,Rd where Lc = 〈c and Rd = d〉 .

The symbol “〈” denotes either “(” or “ [”. The symbol “〉” denotes either “)”

or “]”. The symbol “·” denotes the boolean “and” operator. We replace each

endpoint “a,b, c,d” in the orthodox Allen relation with the corresponding bound

“La,Rb, Lc,Rd”. The operators “<, >,=” are overloaded such that in the “Allen

endpoint definition” column they compare Real numbers, whereas in the “Bound

definition” column they compare bounds. The Allen relations still holdin this

new formulation but now can be applied to both inclusive and exclusive intervals. 220

A.1 Typical two dimensional result graph: The X-axis (independent variable) is

probability of anunsatisfiable queryoccurring in a given batch of queries. The

Y-axis (dependent variable) is the cost metric ratio; i.e.,the ratio of the optimized

cost versus the unoptimized cost.. 237

LIST OF FIGURES xxi

A.2 Ratio Rcomvs Probability of Unsatisfiable QueryP (no indexing): Figures A.2(a)

to A.2(h) show how consistent ratioRcom is as table size increases fromRows=

100 to 500,000. The results conform closely to the cost model. Figure A.2(h)

combines all results into a single graph. Thecombinedratio Rcom is the average

of the other three cost metric ratios which we interpret as the overall query cost.. 241

A.3 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): These figures summarise the results presented above in

Figure A.2 as aRcom surface. Figures A.3(b) and A.3(c) showRcom surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size, with the optimization cost rising slightly as table size becomes very large

(Rows> 400,000). 242

A.4 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): TheRcpu surface sits just above the “cost model surface”,

indicating results deviate very little from the predicted.Figure A.4(c) provides

compelling visual confirmation thatRcpu scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 243

A.5 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): TheRdsk surface sits just above the “cost model surface”,

indicating results deviate very little from the predicted.Figure A.5(c) provides

compelling visual confirmation thatRdsk scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 244

A.6 Ratio Relpsd vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): The Relpsd surface sits just above the “cost model sur-

face”, indicating results deviate very little from the predicted. Figures A.6(c) and

A.6(d) suggest optimization is degraded slightly with respect to elapsed time for

very large table sizes (Rows> 400,000). 245

A.7 Ratio Rcom vs Probability of Unsatisfiable QueryP (indexed): Figures A.7(a)

to A.7(h) show how consistently this ratio varies with increasing table size across

four orders of magnitude. The results conform closely to thecost model for table

rowsRows= 100 to 1,000,000. Figure A.7(h) combines all results into a single

graph. ThecombinedratioRcom is the average of the other three cost metric ratios

which we interpret as the overall query cost.. 248

A.8 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRcom surface. Figures A.8(b) and A.8(c) show theRcom surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size whenP > 0.1. 249

xxii LIST OF FIGURES

A.9 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRcpu surface. Figures A.9(b) and A.9(c) showRcpu surface sits just

above the “cost model surface”, indicating results deviatevery little from the pre-

dicted. We have positive optimization across four orders ofmagnitude of table

size whenP > 0.15. 250

A.10 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): The Rdsk surface sits just above the “cost model surface”, in-

dicating results deviate very little from the predicted. Figure A.10(c) provides

compelling visual confirmation thatRdsk scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 251

A.11 Ratio Relpsd vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRelpsd surface. Figures A.11(b) and A.11(c) showRelpsd surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size whenP > 0.05. 252

A.12 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.12(a)

to A.12(h) show the increasing penalty paid by the semantic optimizer as query

complexity increases. As the number of restrictions per query (R/Q) increases

from 1 to 25, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 255

A.13 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRcom surface. As the number of Restrictions per QueryR/Q in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required

in order to break even. ForP = 10%, positive optimization is achieved when

there is up to five restrictions per query; i.e.,R/Q ≤ 5. Number of table rows

Rows= 1,000,000. 256

A.14 Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRcpu surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 257

A.15 Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRdsk surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, positive optimization is maintained upto anR/Q ≈ 20.

Number of table rowsRows= 1,000,000. 258

LIST OF FIGURES xxiii

A.16 Ratio Relpsdvs Probability of Unsatisfiable QueryPvs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRelpsd surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 259

A.17 Ratio Rcom vs Probability of Unsatisfiable QueryP (indexed): As the number

of Intervals per RestrictionI/R increases from 1 to 25, ratioRcom increases slowly.

For P > 0.15, positive optimization is achieved throughout the wholerange.

Number of table rowsRows= 1,000,000. 262

A.18 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in

Figure A.17 as aRcom surface. As the number of Intervals per RestrictionI/R

increases from 1 to 25, ratioRcom hardly increases. ForP = 5%, positive

optimization is achieved throughout the whole range. Number of table rows

Rows= 1,000,000. 263

A.19 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRcpu surface. As the number of restrictions per query (I/R) increases

from 1 to 25, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 264

A.20 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRdsksurface. As the number of restrictions per query (I/R) increases

from 1 to 25, positive optimization is maintained up to anI/R ≈ 25. Results for

disk i/o typically exhibit more variation than the other metric ratios. Number of

table rowsRows= 1,000,000. 265

A.21 Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRelpsd surface. As the number of restrictions per query (I/R) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Results for elapsed time typically exhibit more variation than

the other metric ratios. Number of table rowsRows= 1,000,000. 266

A.22 Ratio Rcom vs Probability of Unsatisfiable Join P (indexed): Figures A.22(a)

to A.22(h) show theRcom ratio stays relatively consistent as table size increases

from Rows= 1,000 to 1,000,000. The results conform quite closely to the cost

model, but not as closely as for the equivalent experiments with simple queries

(see Figure A.7). Figure A.22(h) combines all results into asingle graph and this

highlights the greater spread of results than for the equivalent experiments with

simple queries. Thecombinedratio Rcom is the average of the other three cost

metric ratios which we interpret as the overall join cost.. 269

xxiv LIST OF FIGURES

A.23 Ratio Rcom vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22

as aRcom surface. Figures A.23(b) and A.23(c) showRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.2. 270

A.24 Ratio Rcpu vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22

as aRcpu surface. Figures A.24(b) and A.24(c) showRcpu surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.15. 271

A.25 Ratio Rdsk vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): TheRdsksurface sits just above the “cost model surface” and is clearly

influenced by relative table size. With regrad to disk i/o, we requireP > 0.2 in

order to break even. In comparison with the equivalent results for simple queries

(see Figure A.10), optimization is significantly degraded by disk i/o for joins. . . 272

A.26 Ratio Relpsdvs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22 as

a Relpsd surface. Figures A.26(b) and A.26(c) showRelpsd surface sits just above

the “cost model surface” and is little influenced by increasing table size. We have

positive optimization across four orders of magnitude of table size whenP > 0.2. 273

A.27 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.27(a)

to A.27(h) show the increasing penalty paid by the semantic optimizer as join

complexity increases. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 276

A.28 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRcom surface. As the number of Restrictions per QueryR/Q in-

creases from 1 to 40, a greater proportion of unsatisfiable queries is required

in order to break even. ForP = 0.2, positive optimization is achieved when

there is up to five restrictions per join; i.e.,R/Q ≤ 5. Number of table rows

Rows= 1,000,000. 277

A.29 Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRcpu surface. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 278

LIST OF FIGURES xxv

A.30 Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRdsk surface. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. Number of table rows

Rows= 1,000,000. 279

A.31 Ratio Relpsdvs Probability of Unsatisfiable QueryPvs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRelpsd surface. As the number of restrictions per join (R/Q) in-

creases from 1 to 40, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 280

A.32 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.32(a)

to A.32(h) show the increasing penalty paid by the semantic optimizer as join

complexity increases. As the number of intervals per restriction (I/R) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 283

A.33 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRcom surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.3 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 284

A.34 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRcpu surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R≤ 5, we require just onP = 0.25 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 285

A.35 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRdsk surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.3 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 286

A.36 Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRelpsd surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.2 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 287

xxvi LIST OF FIGURES

B.1 Table Rows to Size Conversion. 290

List of Tables

2.1 Implemented SQO in commercial RDBMS: This table summarises SQO tech-

niques currently employed by three commercial RDBMS:Oracle, DB2 andSybase. 41

3.1 The four limit operators . 48

3.2 Rank of limit operators : Comparing the rank of just the limit operators alone

gives rise to 16 cases. Note that there are six cases (rather than four) where the

function returns 0; i.e., wherel1 and l2 are considered to have the same rank.

The ranking we apply is intuitive but rigorous and is a generalisation of ordering

inclusive and exclusive limits on the Real number line.. 49

3.3 The four limit operators and their negation. 50

3.4 Meta-symbols for the four limit operators and their negation. 51

3.5 Four bounds and their interpretation. 51

3.6 Conjunction of left bounds when the values are equal: This depends only on

the comparison of the left limit operators. In each case, theequivalent logical

assertion is correctly given by the higher left bound, as dictated by Algorithm 3.4.3.56

3.7 Summary of important results for conjunction and disjuncti on of bounds. . . 58

3.8 Four intervals and their interpretation 59

3.9 Corollary 3.5.2.2: Each form of the null interval may be rewritten as a logical

assertion. In each case, the truth value of the assertion is seen to befalse. The

symbol “≻” denotes either “>” or “≥”. Similarly, the symbol “≺” denotes either

“<” or “≤”. 64

5.1 Query cost metrics and their meaning. 139

5.2 The three SQL statement calls distinguished by analysis tool tkprof. 140

5.3 Cost metric ratio definitions: We do not report absolute cost metrics. Instead

we report theratio of the optimized cost metric to the unoptimized cost metric.

The above definitions show how each ratio is defined. Thecombinedratio Rcom

is the average of the other three ratios.. 141

5.4 Three query types: The three query types are distinguished by the type of re-

sult returned when submitted to the database. We use these three definitions to

facilitate the development of our cost models.. 145

xxvii

xxviii LIST OF TABLES

7.1 Some useful numeric boundsdefined over the Real numbers and their equiva-

lent definitions in set notation.. 199

A.1 Query cost metrics and their meaning. 236

A.2 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs RowsN 240

A.3 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcnt vs Probability of Unsatisfiable QueryP vs RowsN 247

A.4 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q. . 254

A.5 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R. 261

A.6 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcnt vs Probability of Unsatisfiable JoinP vs RowsN 268

A.7 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q. . 275

A.8 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R. 282

C.1 Software employed for experiments with queries. 292

C.2 Software employed for experiments with equi-joins. 292

Is Semantic Query Optimization
Worthwhile?

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Bryan H. Genet

The University of Waikato

December 2006

© Copyright 2006: Bryan H. Genet

For Luca

Tu es mon Soleil et ma Lune.

Ce que je n’ai jamais auparavant donné,

À toi je le donne librement.

Abstract

The term “semantic query optimization” (SQO) denotes a methodology whereby

queries against databases are optimized usingsemantic informationabout the

database objects being queried. The result of semanticallyoptimizing a query is

another query which is syntactically different to the original, butsemantically equiv-

alent and which may be answered more efficiently than the original. SQO is dis-

tinctly different from the work performed by the conventional SQL optimizer. The

SQL optimizer generates a set of logically equivalent alternative execution paths

based ultimately on the rules of relational algebra. However, only a small propor-

tion of the readily available semantic information is utilised by current SQL opti-

mizers. Researchers in SQO agree that SQO can be very effective. However, after

some twenty years of research into SQO, there is still no commercial implemen-

tation. In this thesis we argue that we need to quantify the conditions for which

SQO is worthwhile. We investigate what these conditions areand apply this knowl-

edge to relational database management systems (RDBMS) with static schemas

and infrequently updated data. Any semantic query optimizer requires the ability

to reasonusing the semantic information available, in order to draw conclusions

which ultimately facilitate the recasting of the original query into a form which can

be answered more efficiently. This reasoning engine is currently not part of any

commercial RDBMS implementation. We show how a practical semantic query

optimizer may be built utilising readily available semantic information, much of it

already captured by meta-data typically stored in commercial RDBMS. We develop

cost models which predict an upper bound to the amount of optimization one can

expect when queries are pre-processed by a semantic optimizer. We present a series

of empirical results to confirm the effectiveness or otherwise of various types of

SQO and demonstrate the circumstances under which SQO can beeffective.

i

Acknowledgements

It is just as well we cannot see into the future.

When I returned to the University of Waikato at the beginning of 2004, I was

determined to complete my research into semantic query optimization, which I had

only just begun at Victoria University of Wellington beforesuccumbing to the siren

call of IT contract work overseas. I brought with me nearly 15years of experience in

database technology and reassured myself I was well placed to undertake a piece of

research with a high practical content. I was determined to write a thesis that would

be comprehensible to industry practitioners, while breaking sufficient new ground

academically to satisfy the demands of the university post-graduate environment.

The University of Waikato seemed the natural place for me to resume this re-

search. I had been a student here in the 1970s, completing a first degree in Physics

and was privileged to be lectured by the late Dr Roger Osbourne, Dr Crispen Gar-

dener, the late Dr Dan Walls and many others who profoundly influenced the direc-

tion of my life and equipped me for a lifetime of learning. I returned to Waikato in

the 1980s to complete another undergraduate major in Computer Science. The De-

partment of Computer Science at that time was buoyant and thriving and I benefited

from the expertise of Dr Olivier de Val, Mr Bill Rogers, Dr Ian Graham, Professor

E.V. Krishnamurthy and others. It was the gentle eccentricity of Professor Krishna-

murthy that first inclined me toward post-graduate researchand I soon found myself

at the University of Melbourne, immersed in Prolog and AI research.

Times and fashions change and Computer Science is as subject to this as any-

thing else. I resumed my research into semantic query optimization and decided

the focus of my research ought to be the deeply unfashionablearea of relational

database management systems (RDBMS). My decision was based onthe observa-

tion that over 90% of real world industry data was contained,queried and manipu-

lated by RDBMS and the question of utilising the semantics of this data to optimize

queries had most definitely not been settled. I was of course unable to foresee the

joys, and the sorrows, that would ensue from such a decision.

Arriving now at the cusp of another era in my life drawing to a close, I have

many people whom I wish to thank for their help and encouragement over the last

three years. Firstly I thank my Supervisor, Dr Sally Jo Cunningham, who was

iii

iv Acknowledgements

brave enough to take me on when I first arrived with my proposalfor PhD research

and whose on going support, constructive criticism and academic experience has

enabled me to navigate the sometimes perilous course of thisresearch. I am grateful

to Dr Geoff Holmes for his ability to provide grounded, no nonsense advice with an

uncanny timeliness and for his review of some of the materialin this thesis. I thank

Dr Gill Dobbie of Auckland University for her consistently positive, wise advice

and for support that extends back to my time at Melbourne University. I am grateful

to Dr Annika Hinze for her collaboration early in this research and for some later

reviews. The financial support I have received via the Departmental scholarship

and the Graduate Assistant scheme has been pivotal and I am grateful to have been

judged worthy of that support.

Outside of the academic realm, I have been encouraged and sustained by the

friendship of many of the post-graduate students in the Department. Sven Bittner

and Doris Jung have been patient and interested fellow travellers. Phil Treweek

has been far more than a Senior Tutor, skillfully providing pastoral care when it

was required. I thank Dr David Streader for having enough life experience to allow

me to be myself. I am grateful to Rob Akscyn for being able to speak with the

authority of one who has actually been there and done it. My thanks to Dr Bernhard

Pfahringer for appreciating my teaching and saying so.

I thank my parents and my wonderful adult children for their support and ac-

ceptance of the somewhat eccentric orbit of my life. Finally, I am deeply grateful to

my dear friend Sue Jury, whose professionalism, insight andconstant support has

sustained me through this journey.

Table of Contents

1 Introduction 1

1.1 Preamble . 2

1.2 Summary of Chapter Contents . 5

1.3 Motivating Background . 7

1.3.1 Typical SQL Query Processing 8

1.3.2 Limitations of Current SQL Optimizers 9

1.3.3 Motivating Example . 11

2 Background Research 13

2.1 Introduction . 14

2.2 Preliminary Definitions . 15

2.3 Semantic Information and Semantic Rules19

2.3.1 Rule Discovery . 21

2.3.2 Rule Reliability . 26

2.3.3 Data Reorganisation . 28

2.4 Semantic Query Optimization . 29

2.4.1 Complexity of SQO . 30

2.5 Main Types of SQO . 31

2.5.1 Detection of Unsatisfiable Queries 31

2.5.2 Restriction Removal . 31

2.5.3 Restriction Introduction 34

2.5.4 Join Removal . 36

2.6 SQO in Commercial RDBMS . 37

2.6.1 Implemented SQO in Commercial RDBMS 39

2.7 Summary . 41

3 An Algebra of Intervals 43

3.1 Introduction . 44

3.2 Basic Assumptions and Working Definitions45

3.2.1 Overloading of Boolean Comparison Operators 45

3.2.2 A Generic Data Type . 46

3.2.3 Ordering of Instancest ∈ T 46

v

vi TABLE OF CONTENTS

3.2.4 Comparing Instancest ∈ T 46

3.2.5 Representing Minus and Plus Infinity 47

3.3 Limit Operators . 48

3.3.1 Comparing Limits . 48

3.3.2 Negating Limits . 50

3.3.3 Notation for Limits . 50

3.4 Bounds . 51

3.4.1 Notation for Bounds . 51

3.4.2 A Bound is a Logical Assertion 52

3.4.3 Comparing Bounds . 52

3.4.4 Infinite Bounds . 53

3.4.5 Functionslower andhigher: 54

3.4.6 Negating Bounds . 54

3.4.7 Conjunction and Disjunction of Bounds 55

3.5 Intervals . 58

3.5.1 Special Intervals . 60

3.6 Conjunction of Intervals . 63

3.7 Disjunction of Intervals . 65

3.8 Interval Lists . 69

3.8.1 Notation for Interval Lists 70

3.8.2 Definition of Interval List 71

3.8.3 Interval Disjunction Algorithm 71

3.9 Negation of Intervals . 72

3.10 Identity Elements For Intervals 74

3.10.1 Identity Element for Conjunction of Intervals 74

3.10.2 Identity Element for Disjunction of Intervals 75

3.10.3 Informal Examples: Negation When a Bound is Infinite . . .76

3.11 Interval Subsumption and Implication 77

3.11.1 Interval Subsumption . 77

3.11.2 Interval Implication . 78

3.12 Disjunction of Interval Lists .79

3.12.1 Disjunction of Interval List With Interval 80

3.12.2 Disjunction of Interval List With Interval List 81

3.12.3 Complexity of Interval List Disjunction82

3.13 Conjunction of Interval Lists . 82

3.13.1 Conjunction of Interval List With Interval 83

3.13.2 Conjunction of Interval List With Interval List 84

3.13.3 Complexity of Interval List Conjunction 84

3.14 Negation of Interval Lists . 85

3.14.1 Complexity of Interval List Negation 86

TABLE OF CONTENTS vii

3.15 Special Interval Lists . 87

3.15.1 The Infinite Interval List 87

3.15.2 The Null Interval List . 88

3.16 Interval List Subsumption and Implication 89

3.16.1 Interval List Subsumption 89

3.16.2 Interval List Implication 92

3.17 Summary . 93

4 A Practical Semantic Query Optimizer 95

4.1 Introduction . 96

4.2 An Intrinsic Limitation of SQO . 98

4.2.1 Utility of SQO . 98

4.3 Additional Helpful Definitions . 102

4.3.1 Query Profile . 102

4.3.2 Zero Queries, Positive Queries and Data Holes103

4.4 Semantic Query Optimizer As Preprocessor 104

4.4.1 Defining Meta-data . 105

4.4.2 Utilising Data Holes . 109

4.4.3 Harvesting Schema Constraints 113

4.5 Conditional Semantic Rules . 123

4.5.1 Meaning of a Conditional Rule 125

4.5.2 Meeting the Condition: the Subsumption Rule 125

4.5.3 Utility of Conditional Rules 126

4.6 Summary . 128

5 Empirical Methodology 131

5.1 Introduction . 132

5.2 Experimental Methodology . 133

5.2.1 The Oracle RDBMS as a “black box” 133

5.2.2 Obtaining consistent results 133

5.2.3 Experimental Setup . 135

5.2.4 Measuring query cost . 139

5.2.5 Overall Query Cost . 140

5.3 Query Normal Form and Difficulty 141

5.3.1 Query Normal Form . 141

5.3.2 Query Difficulty . 144

5.4 Cost Models . 144

5.4.1 Classifying Queries . 145

5.4.2 Cost Model: Unsatisfiable Queries 145

5.4.3 Cost Model: Zero Queries 149

5.4.4 Cost Model: Unsatisfiable Joins 149

viii TABLE OF CONTENTS

5.4.5 Cost Model: “distinct” and “is not null” removal . . 149

5.5 Summary . 150

6 Empirical Results and Analysis 153

6.1 Introduction . 154

6.2 Format of Experimental Results 156

6.3 Unsatisfiable Queries – No Indexing 159

6.3.1 Hypotheses . 159

6.3.2 Method . 160

6.3.3 Results and Analysis . 160

6.3.4 Conclusion . 161

6.4 Indexed Unsatisfiable Queries . 161

6.4.1 Hypotheses . 162

6.4.2 Method . 162

6.4.3 Results and Analysis . 162

6.4.4 Conclusion . 163

6.5 Indexed Unsatisfiable Queries – Varying Restrictions perQuery . . 164

6.5.1 Hypotheses . 164

6.5.2 Method . 164

6.5.3 Results and Analysis . 165

6.5.4 Conclusion . 165

6.6 Indexed Unsatisfiable Queries – Varying Intervals per Restriction . . 165

6.6.1 Hypotheses . 166

6.6.2 Method . 166

6.6.3 Results and Analysis . 167

6.6.4 Conclusion . 167

6.7 Indexed Unsatisfiable Joins . 168

6.7.1 Hypotheses . 168

6.7.2 Method . 169

6.7.3 Results and Analysis . 169

6.7.4 Conclusion . 170

6.8 Indexed Unsatisfiable Joins – Varying Restrictions per Join 171

6.8.1 Hypotheses . 171

6.8.2 Method . 171

6.8.3 Results and Analysis . 172

6.8.4 Conclusion . 172

6.9 Indexed Unsatisfiable Joins – Varying Intervals per Restriction . . . 172

6.9.1 Hypotheses . 173

6.9.2 Method . 173

6.9.3 Results and Analysis . 174

6.9.4 Conclusion . 174

TABLE OF CONTENTS ix

6.10 Queries “select distinct” elimination 175

6.10.1 Hypotheses . 175

6.10.2 Method . 176

6.10.3 Results and Analysis . 176

6.10.4 Conclusion . 177

6.11 Joins “select distinct” elimination 177

6.11.1 Hypotheses . 177

6.11.2 Method . 178

6.11.3 Results and Analysis . 178

6.11.4 Conclusion . 179

6.12 Queries “is not null” elimination 179

6.12.1 Hypotheses . 179

6.12.2 Method . 179

6.12.3 Results and Analysis . 180

6.12.4 Conclusion . 180

6.13 Joins “is not null” elimination .180

6.13.1 Hypotheses . 181

6.13.2 Method . 181

6.13.3 Results and Analysis . 182

6.13.4 Conclusion . 182

6.14 Query Restriction Introduction and Removal 182

6.14.1 Hypotheses . 183

6.14.2 Method . 183

6.14.3 Results and Analysis . 184

6.14.4 Conclusion . 186

6.15 Joins Restriction Introduction and Removal 187

6.15.1 Hypotheses . 187

6.15.2 Method . 187

6.15.3 Results and Analysis . 188

6.15.4 Conclusion . 188

6.16 Summary . 190

7 Related Work and Extensions 193

7.1 Introduction . 194

7.2 Interval Arithmetic . 194

7.2.1 Differences in our interval implementation 195

7.2.2 Extending Interval Addition 196

7.2.3 Extending Interval Subtraction 198

7.2.4 Algorithm for Extended Interval Arithmetic 198

7.2.5 Extending Interval Multiplication 203

7.3 Interval List Arithmetic . 208

x TABLE OF CONTENTS

7.3.1 Defining Arithmetic with Interval Lists 208

7.3.2 Extending Interval Division 210

7.4 Temporal Intervals . 215

7.4.1 Extending Date Arithmetic to Intervals 215

7.4.2 Allen’s Interval Algebra 217

7.5 Summary . 221

8 Conclusion And Future Work 225

8.1 Review . 226

8.2 Contributions . 231

8.3 Future Work . 232

A Supporting Empirical Results 235

A.1 Introduction . 236

A.2 Unsatisfiable Queries – No Indexing 238

A.2.1 Combined Ratio:Rcom . 239

A.2.2 Individual Cost Metric Ratios 240

A.3 Indexed Unsatisfiable Queries . 246

A.3.1 Combined Ratio:Rcom . 246

A.3.2 Individual Cost Metric Ratios 247

A.4 Indexed Unsatisfiable Queries – Varying Restrictions perQuery . . 253

A.4.1 Combined Ratio:Rcom . 253

A.4.2 Individual Cost Metric Ratios 254

A.5 Indexed Unsatisfiable Queries – Varying Intervals per Restriction . . 260

A.5.1 Combined Ratio:Rcom . 260

A.5.2 Individual Cost Metric Ratios 261

A.6 Indexed Unsatisfiable Joins . 267

A.6.1 Combined Ratio:Rcom . 267

A.6.2 Individual Cost Metric Ratios 268

A.7 Indexed Unsatisfiable Joins – Varying Restrictions per Join 274

A.7.1 Combined Ratio:Rcom . 274

A.7.2 Individual Cost Metric Ratios 275

A.8 Indexed Unsatisfiable Joins – Varying Intervals per Restriction . . . 281

A.8.1 Combined Ratio:Rcom . 281

A.8.2 Individual Cost Metric Ratios 282

B Table Rows To Size Conversion 289

B.1 Mapping From Relative To Absolute Table Size 290

C Software and Hardware Description 291

C.1 Software Description . 292

TABLE OF CONTENTS xi

C.1.1 Experiments with queries 292

C.1.2 Experiments with equi-joins 292

C.2 Hardware Description . 292

C.2.1 Experiments with queries 293

C.2.2 Experiments with equi-joins 293

List of Figures

2.1 Sources of semantic information: Semantic information can be drawn from a

number of different sources includingschema constraintsanddiscovered rules.

Schema constraints originate from human practitioners, while discovered rules

are typically found by the execution of software.. 19

2.2 Semantic rule discovery: Semantic information may be harvested from an anal-

ysis of (1) queries (2) data distribution and correlation (3) schema constraints.. . 26

2.3 Semantic query optimization: SQO comprises four major components. (1) Har-

vesting of schema constraints (2) discovery of semantic rules via query or data

analysis (3) data reorganisation (4) query rewrite. The shaded regions comprise

a more traditional view of SQO.. 30

2.4 Restriction removal: All values of columnCOL1 in tableTAB lie on the interval

[100,500]. A semantic optimizer can apply this knowledge to simplify queryQ

to queryQ′. 33

2.5 Restriction introduction : The restriction onCOL1 of tableTAB activates a rule

which allows an additional restriction on columnCOL2 to be added to the query.

Typically, such a rule is applied because anindexexists onCOL2 but not onCOL1. 35

2.6 Join removal: The intersection of values for the join columns is null; i.e., they

have no values in common. A semantic optimizer may deducea priori the join is

unsatisfiable. This query need not be submitted to the database. 36

2.7 Join removal: Column CUST ID is a non-null foreign key pointing to parent

columnID in tableCUSTOMER. A semantic query optimizer may deduce that the

equi-join between tablesCUSTOMER andSALES is therefore unnecessary. Exactly

the same information is already contained solely within table SALES, so the join

may be eliminated.. 38

3.1 Bounds on the Real number line: r is an arbitrary point on the Real number

line. The solid arrows depict the interpretation of the bounds formed when the

four limit operators are applied in turn to pointr. There are two left bounds:

(r , [r and two right bounds:r) , r] . We use the familiar notation of open and

closed circles to visualize exclusive and inclusive boundsrespectively. 52

xiii

xiv LIST OF FIGURES

3.2 Conjunction and disjunction of left bounds: The Boolean conjunction of two

left bounds BL1 · BL2 is logically equivalent to the higher of the two bounds

higherbound
(

BL1, BL2

)

. The Boolean disjunction of two left bounds is logically

equivalent to the lower of the two bounds.. 56

3.3 Conjunction and disjunction of right bounds: The Boolean conjunction of

two right boundsBR1 · BR2 is logically equivalent to the lower of the two bounds

lower
(

BR1, BR2

)

. The Boolean disjunction of two right bounds is logically equiv-

alent to the higher of the two bounds. 57

3.4 Intervals on the Real number line: Pointsr1 to r8 are arbitrary points on the

Real number line. Using these points we construct some intervals on the Real

number line. In each case we write the interval depicted using the familiar no-

tation of inclusive and exclusive intervals and underneathwrite the equivalent

expression using Boolean comparison operators.. 60

3.5 Intervals on the Real number line: We picture an arbitrary interval on the Real

number line where the right boundr2] is approaching the left bound[r1 . In the

first three number lines,r2 > r1. Eventually the bounds enclose the single value

r1 = r2. In the final number line,r2 < r1 and the interval isnull. 62

3.6 The Boolean conjunction of two intervalsI1 and I2 is represented graphically

by the intersection of the intervals. The conjunctionI1 · I2 returns another inter-

val which can never be more expansive than eitherI1 or I2. If the intervals are

disjoint, their intersection is null. 64

3.7 The Boolean disjunction of two intervals I1 and I2 is represented graphically

by the union of the intervals. If the intervals overlap or touch, the disjunction is

formed by lower of left bounds and the higher of right bounds.If the intervals

are disjoint, the disjunctionI1 + I2 returns aninterval list comprised of the same

two intervals. 66

3.8 Two interval lists: Interval listL1 is composed of the three disjoint intervalsI1,

I2 andI3 while interval listL2 is composed of the two disjoint intervalsJ1 andJ2. 70

3.9 Interval negation: Interval I = [vL, vR). Negating intervalI gives everything

except I. This results in an intervallist consisting of exactly two intervals. The

original valuesvL andvR are unchanged; only their limits are negated.. 72

3.10 Negation when one bound is infinite: Interval I encompasses the entire domain

T from MINF (minus infinity) tot ∈ T. Its negation¬I therefore encompasses

the complement of this interval. Refer toExample 3.10.1. 76

3.11 Negation when both bounds are infinite: Interval I occupies the entire domain

T. Its negation¬I is the null interval list0. Refer toExample 3.10.2. 76

3.12 Subsumption of intervals: Interval I1 by definitionsubsumes I2 whenever its

left boundBL1 is less than or equal toBL2 and its right boundBR1 is greater than

or equal toBR2. 77

LIST OF FIGURES xv

3.13 Interval list conjunction and disjunction : We may represent the conjunction

of two interval listsL1 andL2 as theintersectionof the two lists. Similarly, the

disjunction of the two lists is theunionof the two lists. 80

3.14 Interval list negation: We may represent the negation of an interval listL1 as the

complementof the list. 85

3.15 Subsumption of interval lists: Interval ListL2 is by definitionsubsumedby list

L1 if for every intervalJi making up listL2 is subsumed by some interval inL1. . 90

4.1 Semantic query optimizer as preprocessor: The semantic optimizer sits in

front of the normal SQL parser and optimizer and preprocesses the queries based

on semantic rules stored in the database as meta-data.. 105

4.2 Semantic query optimizer: The semantic optimizer consists of the Reasoning

Engine at its base plus software layers for the definition of meta-data and the

preprocessing of queries.. 106

4.3 Main functions of semantic query optimizer: Through this interface, users

may define meta-data for the target table objects. In addition, various types of

semantic query optimization may be switched in and out.. 107

4.4 A star schema modeling sales information: The primary key of the fact table

SALES is formed by concatenating the foreign keys which point to the dimension

tables. A query profile notesSALES is the target of many queries with restric-

tions that cite the foreign key columns. These columns are therefore indexed and

targeted for further analysis. Refer toExample 4.4.1. 108

4.5 Finding data holes: This figure depicts the legal range of values a column vari-

ableCOL1 may assume. In this example the legal range of values is described

by an interval listL consisting of a single intervalI . Suppose it is subsequently

discovered that a gap in the data exists within this range, described by the interval

G =
[

g1,g2). Then removing this gap from intervalI results in a new interval list

L′ consisting of two intervalsI1 andI2. Refer toExample 4.4.2. 109

4.6 Harvesting check constraints: Check constraints may be converted into an in-

terval list form. This meta-data is stored in tableALL INTERVAL LISTS which is

accessed by the semantic query optimizer. Refer toExample 4.4.4. 113

4.7 Utilising check constraints: The semantic query optimizer can preprocess SQL

queries where a semantic rule exists for the column (C) cited in the query restric-

tion. Such a rule is always true, so we may find the conjunctionof the interval list

representing the check constraint (Lc) and the query restriction (Rc). The result

of the conjunction (R′c) is substituted for the original restriction. This is how, for

example, we detect unsatisfiable queries.. 117

xvi LIST OF FIGURES

4.8 Utilising conditional rules: The semantic query optimizer can preprocess SQL

queries where a conditional semantic rule exists for the column cited in the query

restriction. If the rule pre-condition (left hand side) subsumes the query restric-

tion, the right hand side of the rule may be added to the query as an additional

restriction. Typically the rule pre-condition restricts an unindexed column while

the rule right hand side restricts an indexed column.. 128

4.9 Rules utilised by our semantic optimizer: This table summarises the rules we

propose to use for our practical semantic query optimizer. We harvest schema

constraints which are true for the lifetime of the schema. Welocate data holes

so zero queries can be detected. We analyze data to detect correlations between

columns in order to produce conditional rules. Rules that depend on data are only

sometimes true and must be revalidated if data is updated.. 129

5.1 Experimental setup: Two identically configured query batches are used. One

batch runs only semantically optimized queries while the other runs only the iden-

tical unoptimized queries. The batches never run together so they never compete

for computer resources. We use the Oracle supplied tooltkprof to measure the

average query cost.. 135

5.2 Data distribution : The above scatter plot depicts data distribution acrossCOL1,

COL2 andCOL3 of tableTAB1. The distribution of each column is a truncated

normal distribution where values outside plus or minus three standard deviations

are discarded. A similar plot is obtained by plotting any three of columnsCOL1

to COL5 of any of the six tablesTAB1 to TAB6. 137

5.3 Depicting interval lists as query restrictions: Figures 5.3(a) to 5.3(c) illustrate

how we map from an interval list into a normal SQL restrictionclause. In each

case we begin by sketching the interval list which captures the range of values the

column may assume. We then rewrite the interval list as a normal SQL restriction

clause. 142

5.4 Cost model for unsatisfiable queries: Our cost model above predicts a straight-

forward relationship betweenPu, the probability of an unsatisfiable query and the

ratio of the optimized batch costCOS Topt to the normal batch timeCOS Tnorm.

Even whentsem, the average time to semantically optimize each query is negli-

gible compared withtora, the normal time taken to parse, execute and fetch the

query, we cannot expect better optimization than indicatedby this line. 146

6.1 Example 3D projection of experimental results: The X-axis is the independent

variableprobability of an unsatisfiable query. The Y-axis is another independent

variable such asnumber of table rows. The Z-axis is the dependent variable

and depicts thecost metric ratio, for example,Rcom. The “ruggedness” of this

surface corresponds to the variation or uncertainty in the actual recorded data.

Experimental results are always plotted inred. 157

LIST OF FIGURES xvii

6.2 Cost Model Surface and Break Even Surface: Results that conform closely

to the idealised cost model will appear near to and parallel to the “cost model”

surface. Result surfaces that appear below the “break even”surface indicate a

positive optimization. The cost model surface is always plotted in blue. The

break even surface is always plotted inpink. 158

6.3 Example regression surface: The regression surface is calculated using an im-

plementation of the nonlinear least-squares (NLLS)Marquardt-Levenberg algo-

rithm and displays the relationship between the the dependent variable (cost met-

ric ratio on the Z-axis) and the two independent variables. The regression surface

is always plotted ingreen. 159

6.4 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): Figures 6.4(b) and 6.4(c) showRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size, with

the optimization cost rising slightly as table size becomesvery large (Rows>

400,000). 161

6.5 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): Figures 6.5(b) and 6.5(c) show theRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.1. 163

6.6 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): As the number of Restrictions per QueryR/Q increases from 1

to 25, a greater proportion of unsatisfiable queries is required in order to break

even. ForP = 10%, positive optimization is achieved when there is up to five

restrictions per query; i.e.,R/Q ≤ 5. Number of table rowsRows= 1,000,000. . 166

6.7 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): As the number of Intervals per RestrictionI/R increases

from 1 to 25, ratioRcom increases slowly. ForP > 0.15, positive optimization is

achieved throughout the whole range. Number of table rowsRows= 1,000,000. 168

6.8 Ratio Rcom vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): Figures 6.8(b) and 6.8(c) showRcom surface sits just above the “cost

model surface”, indicating results deviate very little from the predicted. We have

positive optimization across four orders of magnitude of table size whenP > 0.2,

although it is evident that the cost of processing the semantically optimized joins

increases relatively as table size becomes very large.. 170

xviii LIST OF FIGURES

6.9 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): As the number of Restrictions per QueryR/Q increases from 1

to 40, a greater proportion of unsatisfiable queries is required in order to break

even. ForP = 0.25, positive optimization is achieved when there is up to five

restrictions per join; i.e.,R/Q ≤ 5. Number of table rowsRows= 1,000,000. . . 173

6.10 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): As the number of intervals per restrictionI/R increases from

1 to 25, a greater proportion of unsatisfiable queries is required in order to break

even. ForI/R ≤ 5, we require just onP = 0.25 to achieve positive optimization.

Number of table rowsRows= 1,000,000. 175

6.11 “select distinct” elimination : Eliminating the redundant “distinct” keyword

from theselectclause of the batch produces an average saving of approximately

15% to 20% for queries and approximately 60% for joins, as soon as the num-

ber of rows returned by the query becomes significant. This optimization works

because an unnecessary sort of returned rows is avoided.. 177

6.12 “is not null” elimination : In the case of queries, eliminating the redundant

phrase from thewhereclause of the batch of queries scarcely affects query ef-

ficiency (Figure 6.12(a)). In the case of joins, the simplification produces a very

small, nearly uniform saving of approximately 5% (Figure 6.12(b)). 180

6.13 Query restriction introduction and elimination : The traditional scenario is

pictured in Figure 6.13(a) where a restriction on unindexedCOL20 is supple-

mented with an additional restriction on indexedCOL1 (red line). Conversely, the

restriction on unindexedCOL20 can be removed leaving only the restriction on

COL1 (greenline). A more realistic scenario is pictured in Figure 6.13(b). Here

the low selectivity columnCOL20 is indexed with a bitmap. In Figures 6.13(c)

and 6.13(d) we compare the efficiency gain produced with and without a bitmap

index onCOL20 by combining the results from Figures 6.13(a) and 6.13(b). Also

included is the effect of simply adding the bitmap index toCOL20. 185

6.14 Join restriction introduction and elimination : Restriction introduction does

not benefit the equi-joins tested in our experimental batches, apart from a narrow

range of the most selective joins. Restriction removal produces a better result,

enhancing join efficiency for selectivities in the range 0− 3%. The presence of a

bitmap index on the unselective column has no impact on overall join efficiency. 189

7.1 Extended interval addition A + B: When the requirement is relaxed that the

left and right bounds must be inclusive, interval addition still yields meaningful

results with clear semantics. This table sets out the four possibilities for each of

the left and right bounds. The result reduces to the orthodoxinterval addition

formula when both intervals are composed of inclusive bounds. 197

LIST OF FIGURES xix

7.2 Extended interval subtraction A − B: When the requirement is relaxed that the

left and right bounds must be inclusive, interval subtraction still yields mean-

ingful results with clear semantics. This table sets out thefour possibilities for

each of the left and right bounds. The result reduces to the orthodox interval

subtraction formula when both intervals are composed of inclusive bounds. . . . 198

7.3 Undefined operations for Extended Interval Arithmetic: The table lists the

arithmetic operations for which are undefined when we carry out extended in-

terval arithmetic (EIA). The first row prohibits any operations with the inclusive

infinities. The second row prohibits any division by an inclusive zero (“B” de-

notes any bound). The remaining rows list the exclusive cases involving zero

and infinity which are undefined. For multiplication, the operation with operands

reversed is omitted, since multiplication is commutative.In the Resultcolumn,

“un+” denotes “undefined positive”; “un−” denotes “undefined negative”.. . . . 201

7.4 Extended interval addition and subtraction with (−∞ and +∞): The tables

show the outcome for interval addition and subtraction, including when one or

both of the operands is an exclusive infinite bound. The left angle bracket “〈”

denotes either “(” or “ [”. Similarly, the right angle bracket “〉” denotes either

“)” or “]”. Algorithm 7.2.1 is applied to determine if the bounds are inclusive or

exclusive. 203

7.5 Extended interval multiplication and division with (−∞ , 0 and +∞): The tables

show the outcome for the multiplication and division operations including when

one or both of the operands is an exclusive infinite bound or zero. The left angle

bracket “〈” denotes either “(” or “ [”. Similarly, the right angle bracket “〉” de-

notes either “)” or “]”. “ [0]” denotes the bound is inclusive zero. “un+” denotes

the answer is undefined but positive; “un−” denotes the answer is undefined but

negative; “un” denotes the answer is undefined. Whether the result is a left or

right bound is determined whenever it is chosen to be the minimum or maximum

by the algorithms for multiplication and division. 204

7.6 Interval multiplication where one bound is an exclusive infinity : The prod-

ucts are calculated having regard for the special cases listed in Figure 7.5(a).

Algorithm 7.2.1 is then applied to decide if the bound is inclusive (i) or exclusive

(e). The minimum is the left bound; the maximum is the right bound. Refer to

Example 7.2.1. 205

7.7 Interval multiplication where one product is undefined: The undefined prod-

uct may be discarded. The correct minimum and maximum occursin the remain-

ing products. Refer toExample 7.2.2. 205

7.8 Extended interval multiplication where a product is undefined: In each case,

the undefined products may be discarded. The correct minimumand maximum

are chosen from the remaining products to form the left and right bounds respec-

tively of the resultant interval. Refer toExample 7.2.3. 206

xx LIST OF FIGURES

7.9 Extended interval division: We refer to Figure 7.5 to provide answers which

are subject to the restrictions we impose on interval division. Algorithm 7.2.1

is then applied to decide if each bound is inclusive or exclusive. Any undefined

divisions may be discarded. The correct minimum and maximumare chosen

from the remaining answers to form the left and right bounds respectively of the

resultant interval. Refer toExample 7.3.3. 212

7.10 Interval division where the divisor includes the point zero: The divisor is first

split into two disjoint intervals such that the point[0,0] is excluded. We then

apply the algorithm for division with interval lists. Referto Example 7.3.4. . . . 213

7.11 Further examples of extended interval division: Whenever the divisor includes

the point zero, we first split it into the two disjoint intervals on either side of zero.

We then apply the algorithm for division with interval lists. We argue that the

result of such interval division, expressed as an interval list, has clear semantics

and is more expressive and useful than simply disallowing the division. Refer to

Example 7.3.5. 214

7.12 The 13 Allen interval relations: Interval A = [a,b]. Interval B = [c,d]. The

Relationcolumn lists the first six basic relations and their inverses. TheFunction

column expresses the relation as a boolean function of the endpointsa,b, c,d ∈

R. The symbol “·” denotes the boolean “and” operator. The “equals” relation,

depicted on the left, brings the total to 13. The basic relations are all mutually

exclusive; i.e., any two given Allen intervals are related by exactly one of the

above basic relations.. 218

7.13 Extending the 13 Allen interval relations: A = 〈a,b〉 is the interval consisting

of left and right boundsLa,Rb where La = 〈a and Rb = b〉 . B = 〈c,d〉 is the

interval consisting of left and right boundsLc,Rd where Lc = 〈c and Rd = d〉 .

The symbol “〈” denotes either “(” or “ [”. The symbol “〉” denotes either “)”

or “]”. The symbol “·” denotes the boolean “and” operator. We replace each

endpoint “a,b, c,d” in the orthodox Allen relation with the corresponding bound

“La,Rb, Lc,Rd”. The operators “<, >,=” are overloaded such that in the “Allen

endpoint definition” column they compare Real numbers, whereas in the “Bound

definition” column they compare bounds. The Allen relations still holdin this

new formulation but now can be applied to both inclusive and exclusive intervals. 220

A.1 Typical two dimensional result graph: The X-axis (independent variable) is

probability of anunsatisfiable queryoccurring in a given batch of queries. The

Y-axis (dependent variable) is the cost metric ratio; i.e.,the ratio of the optimized

cost versus the unoptimized cost.. 237

LIST OF FIGURES xxi

A.2 Ratio Rcomvs Probability of Unsatisfiable QueryP (no indexing): Figures A.2(a)

to A.2(h) show how consistent ratioRcom is as table size increases fromRows=

100 to 500,000. The results conform closely to the cost model. Figure A.2(h)

combines all results into a single graph. Thecombinedratio Rcom is the average

of the other three cost metric ratios which we interpret as the overall query cost.. 241

A.3 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): These figures summarise the results presented above in

Figure A.2 as aRcom surface. Figures A.3(b) and A.3(c) showRcom surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size, with the optimization cost rising slightly as table size becomes very large

(Rows> 400,000). 242

A.4 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): TheRcpu surface sits just above the “cost model surface”,

indicating results deviate very little from the predicted.Figure A.4(c) provides

compelling visual confirmation thatRcpu scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 243

A.5 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): TheRdsk surface sits just above the “cost model surface”,

indicating results deviate very little from the predicted.Figure A.5(c) provides

compelling visual confirmation thatRdsk scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 244

A.6 Ratio Relpsd vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(no indexing): The Relpsd surface sits just above the “cost model sur-

face”, indicating results deviate very little from the predicted. Figures A.6(c) and

A.6(d) suggest optimization is degraded slightly with respect to elapsed time for

very large table sizes (Rows> 400,000). 245

A.7 Ratio Rcom vs Probability of Unsatisfiable QueryP (indexed): Figures A.7(a)

to A.7(h) show how consistently this ratio varies with increasing table size across

four orders of magnitude. The results conform closely to thecost model for table

rowsRows= 100 to 1,000,000. Figure A.7(h) combines all results into a single

graph. ThecombinedratioRcom is the average of the other three cost metric ratios

which we interpret as the overall query cost.. 248

A.8 Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRcom surface. Figures A.8(b) and A.8(c) show theRcom surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size whenP > 0.1. 249

xxii LIST OF FIGURES

A.9 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRcpu surface. Figures A.9(b) and A.9(c) showRcpu surface sits just

above the “cost model surface”, indicating results deviatevery little from the pre-

dicted. We have positive optimization across four orders ofmagnitude of table

size whenP > 0.15. 250

A.10 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): The Rdsk surface sits just above the “cost model surface”, in-

dicating results deviate very little from the predicted. Figure A.10(c) provides

compelling visual confirmation thatRdsk scarcely rises above 1 indicating we

have positive optimization across four orders of magnitudeof table size. 251

A.11 Ratio Relpsd vs Probability of Unsatisfiable Query P vs Relative Table Size

Rows(indexed): These figures summarise the results presented above in Fig-

ure A.7 as aRelpsd surface. Figures A.11(b) and A.11(c) showRelpsd surface sits

just above the “cost model surface”, indicating results deviate very little from the

predicted. We have positive optimization across four orders of magnitude of table

size whenP > 0.05. 252

A.12 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.12(a)

to A.12(h) show the increasing penalty paid by the semantic optimizer as query

complexity increases. As the number of restrictions per query (R/Q) increases

from 1 to 25, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 255

A.13 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRcom surface. As the number of Restrictions per QueryR/Q in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required

in order to break even. ForP = 10%, positive optimization is achieved when

there is up to five restrictions per query; i.e.,R/Q ≤ 5. Number of table rows

Rows= 1,000,000. 256

A.14 Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRcpu surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 257

A.15 Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRdsk surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, positive optimization is maintained upto anR/Q ≈ 20.

Number of table rowsRows= 1,000,000. 258

LIST OF FIGURES xxiii

A.16 Ratio Relpsdvs Probability of Unsatisfiable QueryPvs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.12 as aRelpsd surface. As the number of restrictions per query (R/Q) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 259

A.17 Ratio Rcom vs Probability of Unsatisfiable QueryP (indexed): As the number

of Intervals per RestrictionI/R increases from 1 to 25, ratioRcom increases slowly.

For P > 0.15, positive optimization is achieved throughout the wholerange.

Number of table rowsRows= 1,000,000. 262

A.18 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in

Figure A.17 as aRcom surface. As the number of Intervals per RestrictionI/R

increases from 1 to 25, ratioRcom hardly increases. ForP = 5%, positive

optimization is achieved throughout the whole range. Number of table rows

Rows= 1,000,000. 263

A.19 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRcpu surface. As the number of restrictions per query (I/R) increases

from 1 to 25, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 264

A.20 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRdsksurface. As the number of restrictions per query (I/R) increases

from 1 to 25, positive optimization is maintained up to anI/R ≈ 25. Results for

disk i/o typically exhibit more variation than the other metric ratios. Number of

table rowsRows= 1,000,000. 265

A.21 Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.17 as aRelpsd surface. As the number of restrictions per query (I/R) in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. Results for elapsed time typically exhibit more variation than

the other metric ratios. Number of table rowsRows= 1,000,000. 266

A.22 Ratio Rcom vs Probability of Unsatisfiable Join P (indexed): Figures A.22(a)

to A.22(h) show theRcom ratio stays relatively consistent as table size increases

from Rows= 1,000 to 1,000,000. The results conform quite closely to the cost

model, but not as closely as for the equivalent experiments with simple queries

(see Figure A.7). Figure A.22(h) combines all results into asingle graph and this

highlights the greater spread of results than for the equivalent experiments with

simple queries. Thecombinedratio Rcom is the average of the other three cost

metric ratios which we interpret as the overall join cost.. 269

xxiv LIST OF FIGURES

A.23 Ratio Rcom vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22

as aRcom surface. Figures A.23(b) and A.23(c) showRcom surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.2. 270

A.24 Ratio Rcpu vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22

as aRcpu surface. Figures A.24(b) and A.24(c) showRcpu surface sits just above

the “cost model surface”, indicating results deviate very little from the predicted.

We have positive optimization across four orders of magnitude of table size when

P > 0.15. 271

A.25 Ratio Rdsk vs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): TheRdsksurface sits just above the “cost model surface” and is clearly

influenced by relative table size. With regrad to disk i/o, we requireP > 0.2 in

order to break even. In comparison with the equivalent results for simple queries

(see Figure A.10), optimization is significantly degraded by disk i/o for joins. . . 272

A.26 Ratio Relpsdvs Probability of Unsatisfiable JoinP vs Relative Table SizeRows

(indexed): These figures summarise the results presented above in Figure A.22 as

a Relpsd surface. Figures A.26(b) and A.26(c) showRelpsd surface sits just above

the “cost model surface” and is little influenced by increasing table size. We have

positive optimization across four orders of magnitude of table size whenP > 0.2. 273

A.27 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.27(a)

to A.27(h) show the increasing penalty paid by the semantic optimizer as join

complexity increases. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 276

A.28 Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRcom surface. As the number of Restrictions per QueryR/Q in-

creases from 1 to 40, a greater proportion of unsatisfiable queries is required

in order to break even. ForP = 0.2, positive optimization is achieved when

there is up to five restrictions per join; i.e.,R/Q ≤ 5. Number of table rows

Rows= 1,000,000. 277

A.29 Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRcpu surface. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 278

LIST OF FIGURES xxv

A.30 Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRdsk surface. As the number of restrictions per join (R/Q) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. Number of table rows

Rows= 1,000,000. 279

A.31 Ratio Relpsdvs Probability of Unsatisfiable QueryPvs Restrictions per Query

R/Q (indexed): These figures summarise the results presented above in Fig-

ure A.27 as aRelpsd surface. As the number of restrictions per join (R/Q) in-

creases from 1 to 40, a greater proportion of unsatisfiable queries is required in

order to break even. Number of table rowsRows= 1,000,000. 280

A.32 Ratio Rcomvs Probability of Unsatisfiable QueryP (indexed): Figures A.32(a)

to A.32(h) show the increasing penalty paid by the semantic optimizer as join

complexity increases. As the number of intervals per restriction (I/R) increases

from 1 to 40, a greater proportion of unsatisfiable queries isrequired in order to

break even. Number of table rowsRows= 1,000,000. 283

A.33 Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRcom surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.3 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 284

A.34 Ratio Rcpu vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRcpu surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R≤ 5, we require just onP = 0.25 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 285

A.35 Ratio Rdsk vs Probability of Unsatisfiable Query P vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRdsk surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.3 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 286

A.36 Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Intervals per Restric-

tion I/R (indexed): These figures summarise the results presented above in Fig-

ure A.32 as aRelpsd surface. As the number of intervals per restrictionI/R in-

creases from 1 to 25, a greater proportion of unsatisfiable queries is required in

order to break even. ForI/R ≤ 5, we require just onP = 0.2 to achieve positive

optimization. Number of table rowsRows= 1,000,000. 287

xxvi LIST OF FIGURES

B.1 Table Rows to Size Conversion. 290

List of Tables

2.1 Implemented SQO in commercial RDBMS: This table summarises SQO tech-

niques currently employed by three commercial RDBMS:Oracle, DB2 andSybase. 41

3.1 The four limit operators . 48

3.2 Rank of limit operators : Comparing the rank of just the limit operators alone

gives rise to 16 cases. Note that there are six cases (rather than four) where the

function returns 0; i.e., wherel1 and l2 are considered to have the same rank.

The ranking we apply is intuitive but rigorous and is a generalisation of ordering

inclusive and exclusive limits on the Real number line.. 49

3.3 The four limit operators and their negation. 50

3.4 Meta-symbols for the four limit operators and their negation. 51

3.5 Four bounds and their interpretation. 51

3.6 Conjunction of left bounds when the values are equal: This depends only on

the comparison of the left limit operators. In each case, theequivalent logical

assertion is correctly given by the higher left bound, as dictated by Algorithm 3.4.3.56

3.7 Summary of important results for conjunction and disjuncti on of bounds. . . 58

3.8 Four intervals and their interpretation 59

3.9 Corollary 3.5.2.2: Each form of the null interval may be rewritten as a logical

assertion. In each case, the truth value of the assertion is seen to befalse. The

symbol “≻” denotes either “>” or “≥”. Similarly, the symbol “≺” denotes either

“<” or “≤”. 64

5.1 Query cost metrics and their meaning. 139

5.2 The three SQL statement calls distinguished by analysis tool tkprof. 140

5.3 Cost metric ratio definitions: We do not report absolute cost metrics. Instead

we report theratio of the optimized cost metric to the unoptimized cost metric.

The above definitions show how each ratio is defined. Thecombinedratio Rcom

is the average of the other three ratios.. 141

5.4 Three query types: The three query types are distinguished by the type of re-

sult returned when submitted to the database. We use these three definitions to

facilitate the development of our cost models.. 145

xxvii

xxviii LIST OF TABLES

7.1 Some useful numeric boundsdefined over the Real numbers and their equiva-

lent definitions in set notation.. 199

A.1 Query cost metrics and their meaning. 236

A.2 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs RowsN 240

A.3 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcnt vs Probability of Unsatisfiable QueryP vs RowsN 247

A.4 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q. . 254

A.5 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R. 261

A.6 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcnt vs Probability of Unsatisfiable JoinP vs RowsN 268

A.7 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q. . 275

A.8 Location of summary resultsfor the three individual cost metric ratios display-

ing Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R. 282

C.1 Software employed for experiments with queries. 292

C.2 Software employed for experiments with equi-joins. 292

Chapter 1

Introduction

1

2 Chapter 1. Introduction

1.1 Preamble

The term “semantic query optimization” (SQO) denotes a methodology

whereby queries against databases are optimized usingsemantic informationabout

the database objects being queried (Date 2003b). Semantic information includes

schema meta-data(such as the table and view definitions in a relational database),

domain knowledge(such as might be held by human domain experts) as well as

variousconstraintsdefined, stored and enforced by the database management sys-

tem (DBMS). The result of semantically optimizing a query is another query which

is syntactically different to the original, butsemantically equivalentand which may

be answered more efficiently than the original (Godfrey, Gryz & Minker 1996).

The original query and the transformed query are said to be semantically equiva-

lent if they produce the same answer, for a given database state (Siegel, Sciore &

Salveter 1992).

Informally, when we semantically optimize a query, we rewrite that query us-

ing knowledge we have about the domain of interest, such thatthe rewritten query

extracts the same answer from the database more quickly. It is important to dis-

tinguish the query rewrite we refer to here in the context of SQO from the work

performed by the conventional SQL1 optimizer. The SQL optimizer generates a set

of logically equivalent alternative execution paths basedultimately on the rules of

relational algebra (Waas & Galindo-Legaria 2000). However, in generalsemantic

information is not utilised by current SQL optimizers (Genet & Dobbie 1998)2.

Researchers in SQO agree that SQO can be very effective (Yoon, Henschen,

Park & Makki 1999, Hsu & Knoblock 1994). However, after some twenty years of

research into SQO, there is still no commercial implementation (Cheng, Gryz, Koo,

Leung, Liu, Qian & Schiefer 1999, Godfrey, Gryz & Zuzarte 2001). In this thesis

we argue that we need to quantify the conditions for which SQOis worthwhile.

We investigate what these conditions are and apply this knowledge to relational

database management systems (RDBMS) where tables are large enough to provoke

significant disk activity and where standard column indexesare consulted.

We make few assumptions about the database schemas we investigate through-

out this thesis, apart from the following:

1SQL: “Structured Query Language” is a high-level nonprocedural data language implemented
in almost every commercial DBMS. The original authors were D.D. Chamberlin and R.F. Boyce at
the IBM San Jose Laboratory in the 1970s (Chamberlin & Boyce 1974). E.F Codd described the
relational model for databases while working for IBM in the 1970s. The commercial acceptance
of SQL was precipitated by the formation of SQL Standards committees by the American National
Standards Institute and the International Standards Organization in 1986 and 1987 (Date 2003a,
Eisenberg & Melton 2000).

2There are some minor exceptions to this general observation. These are described in Section 2.6,
page 37.

1.1. Preamble 3

1. The relational tables which are the targets of our queriesand joins are “large”;

i.e., significant computational resources are required to satisfy the queries we

pose. Our objective here isrealism. We report results for tables that are

realistically indexed, which run to 106 rows and which require a few gigabytes

of disk storage to contain3.

2. We focus on scenarios whereschemasevolve only slowly or not at all. In

particular, we assume that the variousschema constraints, stored as part of

the normal RDBMS meta-data, are constant. This is typically the case for

data warehouses4 (Hobbs et al. 2004).

3. We assume throughout this thesis that data in our target tables are updated

only infrequently. We do not, for example, consider transactional environ-

ments where data is constantly changing. Infrequent data update is the norm

for data warehouses where typically data is inserted in batch mode, additional

data is added rather than existing data updated and the frequency of data re-

fresh is slow (say, once every 24 hours or once per week) compared to the

querying frequency (Lane & Schupmann 2002).

The first point above recognises that SQO is not costless. Indeed, we show

unequivocally in this thesis that any implementation of semantic optimization must

necessarily incur costs which quickly become comparable toor exceed the normal

computational costs incurred by SQL query optimizers. It isunlikely therefore that

queries which currently require scant resources to answer will benefit from SQO.

The second and third points above underline the common sensenotion that SQO

can never work unless relevant semantic information is firstcollected and made

available in a form which can be utilised by the semantic optimizer. We show in

this thesis that existing schema constraints are a rich source of semantic information

which are utilised for data insert or modification, but are currently largely ignored by

existing SQL optimizers for querying. In order for this information to be utilised, we

assume that it is constant or changes so infrequently as to make the cost of updating

it insignificant. Similarly, analysis of the data itself contained within the relational

tables can yield valuable semantic rules which can be used tosemantically optimize

queries (Chen 1996). We assume that such rules are not constantly invalidated by

regular data updates such as might occur in a transaction processing environment.

3The term “realistically”, in this context, denotes indexing strategies which reflect current in-
dustry best practice. Specifically, columns which are frequently cited in the restriction clauses of
SQL queries and which are sufficiently selective, are candidates for indexing with standard B-tree
indexes (Cyran & Lane 2003, Date 2003b, Burleson 1994). Indexingper seis beyond the scope of
this thesis.

4More detailed consideration of data warehouses per se is beyond the scope of this thesis. See
for example (Hobbs, Hillson, Lawande & Smith 2004, Lane & Schupmann 2002).

4 Chapter 1. Introduction

Any semantic query optimizer requires the ability toreasonusing the seman-

tic information available, in order to draw conclusions which ultimately facilitate

the recasting of the original query into a form which can be answered more effi-

ciently. This reasoning engine is currently not part of any commercial RDBMS

implementation. We show that an effective reasoning engine must not only have a

sound theoretical base, but be able to utilise semantic rules which are derived from

a variety of sources including schema meta-data, domain knowledge, schema con-

straints and correlations that may exist in tabular data. The basis of our reasoning

engine is aninterval algebrawhich we show can readily be used to deduce the very

conclusions required by an effective semantic query optimizer.

The main contributions of this thesis are as follows:

• We present a thorough analysis of research in SQO. We introduce definitions

that clarify and simplify the terminology used by other researchers. In addi-

tion, further definitions are introduced that enable a more detailed discussion.

• We develop a sound theoretical base for our study using aninterval algebra,

which we show may be built using only a small number of well understood

and researched axioms. We extend the interval algebra by defining aninterval

list data structure which we subsequently utilise as the basic data structure of

our implementation. To our knowledge, this is the first report of an interval

algebra used in the way we describe and generalised to operate with any data

type that has a deterministictotal ordering.

• We show how a practical semantic query optimizer may be builtutilising

readily available semantic information, much of it alreadycaptured by meta-

data typically stored in commercial RDBMS. We describe how SQOmay

proceed as a series of pre-processing steps which may be switched in and out

as changing database conditions make different forms of SQO worthwhile.

While other researchers have suggested the basic techniqueswe describe, we

focus on the fact that certain types of SQO, such as the detection of unsat-

isfiable queries, are likely to be worthwhilegiven a particular query profile.

We describe an extension to the detection of unsatisfiable queries which en-

ables “data holes” to be discovered separately across all relevant dimensions

(i.e., across all table columns that areactuallycited in query restrictions) and

incorporated incrementally into the semantic informationutilised by the se-

mantic optimizer with little or no impact on database usability. In addition,

we develop a cost model which accurately predicts the amountof optimiza-

tion we can expect and which sets a clear upper bound to this optimization.

To our knowledge, this is the first report to explicitly highlight an inherent

limitation on the effectiveness of detecting unsatisfiable queries and joins.

1.2. Summary of Chapter Contents 5

• We describe an empirical methodology which overcomes problems of re-

peatability and consistency which typically arise in experiments with RDBMS

where automatic maintenance processes may be invoked outside of the con-

trol of the experimenter and where large query and data caches are available.

We do not report results for individual queries but instead report statisticalav-

eragesthat arise from large batches of similar queries. Our results therefore

inform us as to what we can expect from whole classes of queries rather than

individual queries specific to particular databases.

• We present a series of empirical results arising from experiments to confirm

the effectiveness or otherwise of various types of SQO. Our experiments are

performed with tables which realistically reflect the conditions likely to be

encountered in schemas with table objects large enough to provoke significant

disk activity and where standard indexes are consulted. Crucially, we report

results for tables that are realistically indexed. To our knowledge, this is the

first report of empirical results for queries and equi-joinsagainst tables that

are indexed in this way and where the results are a statistical average for

batches of many similar queries.

• We describe several important extensions which utilise ourinterval algebra.

Firstly, we show how our interval algebra can be used to implement a novel

type of interval arithmetic. Our interval arithmetic is more general than tra-

ditional implementations in that we allow both inclusive and exclusive upper

and lower bounds for the numeric intervals. Furthermore, weshow how the

subtly different semantics of our implementation elegantly capture notions

such asplus and minus infinitywhile allowing arithmetic calculation to pro-

ceed across a greater set of cases than allowed for by traditional interval arith-

metic. Secondly, we show how our interval algebra subsumes the temporal

algebra of Allen (Allen 1983) and how the13 Allen interval relationscan be

meaningfully extended.

1.2 Summary of Chapter Contents

We now summarise the content of the succeeding chapters.

• In Chapter 2 we present a thorough analysis of research in SQO.We first con-

sider the discovery of semantic information and semantic rules and describe

how other researchers have classified semantic rules according to the rules’

reliability. This is followed by a precise definition of SQO itself. We then

describe the main types of semantic query optimization. Theinherent limita-

tions of current SQL query optimizers are described. We conclude the chapter

6 Chapter 1. Introduction

with a brief summary of a subset of SQO techniques currently implemented

in some commercial RDBMS.

• In Chapter 3 we develop a sound theoretical base for our study using aninter-

val algebrawhich we show may be built using only a small number of well

understood and well researched axioms. We proceed to develop an interval

definition which we show is equivalent to a sentence in first order predicate

calculus. We give definitions for three basic operations on intervals which are

forms ofconjunction, disjunctionandnegation. We extend the interval alge-

bra by defining aninterval list data structure which we subsequently utilise

as the basic data structure of our implementation. We show our interval list is

equivalent to adisjunction of disjoint intervalsand that as a consequence we

may develop sound definitions for conjunction, disjunctionand negation that

extend to interval lists.

• In Chapter 4 we show how a practical semantic query optimizer may be built

utilising readily available semantic information. We begin by highlighting

an intrinsic limiting factor in semantic optimization. We then explain how

conventional database constraints may be utilised as the initial step in the

harvesting of relevant semantic rules. We then describe howSQO may pro-

ceed as a series of pre-processing steps which can be switched in and out as

changing database conditions make different forms of SQO worthwhile. We

conclude the chapter with a detailed description of how we utilise conditional

semantic rules and how these rules are triggered using thesubsumption rule

which we incorporate into ourreasoning engine(RE).

• In Chapter 5 we firstly justify our choice of the Oracle™RDBMS5 for our ex-

periments. We then explain the difficulties of obtaining repeatable, consistent

results with RDBMS which have automatic maintenance processes execut-

ing beyond the control of the experimenter and which have large query and

data caches available. We explain our choice of cost metricswhich we use to

measure the computational cost of a query and justify the useof a combined

metric which averages the computational costs incurred from the perspective

of elapsed time, disk i/o andCPU timerespectively. We describe a qualitative

classification of query complexity or difficulty which we subsequently use to

characterise the content of the query batches we submit to the database in our

experiments. We conclude the chapter by developing a comprehensive cost

model which we use to accurately predict the amount of optimization we can

expect from detecting unsatisfiable queries.

5Oracle is the trademark ofOracle Corporation(seehttp://www.oracle.com). We refer to
Oracle’s RDBMS throughout this thesis simply as “Oracle”.

1.3. Motivating Background 7

• In Chapter 6 we present our main empirical results. We describe our hy-

potheses, experimental methodology and conclusions reached from our ex-

periments. We focus firstly on the amount of optimization we can expect

from a given query profile and the success of our cost model in predicting an

upper bound to this optimization. We show unequivocally that SQO is not

costless and that pre-processing queries in the manner we describe rapidly

incurs computational costs that are comparable to and exceed the costs of

normal SQL optimization. We demonstrate two simple but effective query

rewrite techniques. We conclude the chapter with results which demonstrate

the effectiveness of:

– introducing extra restrictions to the query which do not change the query’s

semantics but which might be expected to increase its speed;

– removing restrictions from the query which do not change thequery’s

semantics but which might be expected to increase its speed.

• In Chapter 7 we describe several important extensions which utilise our inter-

val algebra. Firstly, we show how our interval algebra can beused to imple-

ment a novel type ofinterval arithmetic. Secondly, we show how our interval

algebra subsumes the temporal algebra of Allen (Allen 1983)and how the13

Allen interval relationscan be meaningfully extended.

• In Chapter 8 we conclude the thesis by first summarising the main research

contribution, followed by a description of future researchdirections arising

from this current work.

1.3 Motivating Background

The remainder of this chapter is to provide motivation for the reader by informally

describing some essential background information.

• We briefly describe in Section 1.3.1 how an SQL query is parsedand executed

with the assistance of current SQL language optimizers.

• We then describe some inherent limitations of current SQL query optimizers

in Section 1.3.2.

• We close the chapter with a simple motivating example in Section 1.3.3.

8 Chapter 1. Introduction

1.3.1 Typical SQL Query Processing

We now briefly describe how an SQL query is parsed and executedwith the assis-

tance of current SQL language optimizers6. Consider a database tableCUSTOMER

which stores information about customers including a unique ID (the primary key

of the table) along with the customer’sNAME, ADDRESS andTELEPHONE. A database

user queries the database by submitting query text, typically using the query lan-

guage SQL. Two queries are submitted:

• select * from CUSTOMER where ID = 999;

• select * from CUSTOMER where NAME = ’SMITH’;

1. The SQL text is firstparsed. “Parsing” in this context means first verifying

it to be a syntactically valid statement and then performingdata dictionary

lookups to check table and column references are valid.

2. The parsed SQL query is then passed to theoptimizer. SQL requires an opti-

mizer because it is a declarative language (Date 2003b). The task of the SQL

optimizer is to determine an actual execution path which is logically equiv-

alent to the parsed SQL query. Typically there will be many choices of pos-

sible path with the result that determining theoptimalpath rapidly becomes

exponentially difficult. All SQL optimizers employ heuristics to overcome

this problem (Sciore & Siegel 1990, Shenoy & Ozsoyoglu 1989,King 1981)

returning the execution plan estimated to return the query answer most effi-

ciently.

3. The query is thenexecuted; i.e., data is fetched and returned to the user by

following the execution plan that was returned by the optimizer in the previ-

ous step.

The most influential factor on the choice of actual executionplan chosen by the

optimizer is the presence or absence of anindex on the columns that occur in the

query restrictions. For example, in the first of the above queries, an index on column

ID might be consulted by the optimizer while in the second queryan index on

columnNAME might be consulted. Conversely, if no index exists on the column

cited in the query restriction, the entire table must be loaded and each row checked

individually to determine if it satisfies the restriction. For example, in the second

6We do not provide a rigorous description. SQL query answering and the detailed operation of
the language optimizer are beyond the scope of this thesis. We assume a very basic reader knowl-
edge of relational databases (RDB) such as data storage in tabular format, the existence of thedata
dictionaryand the notions ofprimary keyandindex. Much of this background material is inspired
by introductory material in (Date 1995)

1.3. Motivating Background 9

example above, if no index exists on columnNAME, this would provoke the loading

of the entire table into memory to enable each row to be checked for the name

’SMITH’.

A useful index then will be one that pointsdirectly to the location on disk of

the requested data items, allowing the data to be returned quickly with a minimum

of extra processing. The usefulness of an index is typicallycharacterised by itsse-

lectivity, which simply expresses the uniqueness of the values storedin the indexed

column. Therefore, all primary key columns are said to be 100% selective because

each primary key value is unique. Suppose theCUSTOMER table in the above exam-

ple has 1,000,000 rows but there are just 1,000 unique names in theNAME column.

Then columnNAME has a selectivity of just 0.1%. In other words, the first query

above will return at most one row while the second query mightreturn of the order

of 1,000 rows.

One of the important tasks of the optimizer is to estimate thecardinality of the

result set returned by successive stages of the execution plan. The optimizer will

generally choose a plan that minimises the cardinality of the result set as early as

possible in the computation. If the selectivity of an index is too low, the optimizer

may ignore it because the expense of loading into memory index values followed

by the data rows pointed to by the index, exceeds the expense of simply loading the

entire table into memory. For example, in the second query above, it is unlikely the

optimizer would choose to consult the index on columnNAME with a selectivity of

just 0.1%.

1.3.2 Limitations of Current SQL Optimizers

We now describe some inherent limitations of current SQL query optimizers. These

limitations arise not as a result of any intrinsic lack or inefficiency in the available

commercial optimizers, but because their design is limitedto producing execution

paths that are logically equivalent to the original SQL query text, utilising the rules

of the relational algebra (Date 2003b). In general, they do not utilise semantic

information and are unaware of, for example, all but a small proportion of readily

available schema constraints encoded within the database itself (Genet & Dobbie

1998). While SQL optimizers apply the rules of relational algebra, they lack a

semanticreasoning engine (Hsu & Knoblock 2000, Godfrey et al. 1996) and are

therefore typically unable to use semantic information to influence the choice of a

suitable execution path.

• They are unable to detect logical inconsistencies in query text. For example,

consider the following query on a RDB tableCUSTOMER containing column

CITY:

10 Chapter 1. Introduction

select * from CUSTOMER where CITY > CITY;

Current SQL optimizers will submit such a query to the database unmodified.

• They are unable to detect inconsistencies between the tableDDL and the

query text. For example, suppose the same tableCUSTOMER includes a column

STATUS which the table’s definition declares to be “char(1)” indicating the

column stores a single character:

create table CUSTOMER(

ID number(8),

NAME varchar2(30),

ADDRESS varchar2(30),

STATUS char(1),

.

.

.

);

Now consider a query such as:

select * from CUSTOMER where STATUS = ’ok’;

The length of the literal “ok” is two, so this query is unsatisfiable. Nev-

ertheless, current SQL optimizers will submit such a query to the database

unmodified.

• They are unable to resolve schema constraints with query restrictions. For

example, consider a query on the same tableCUSTOMER in the presence of the

schema constraint:

check CITY in (’London’,’Paris’,’New York’);

Now consider a query such as:

select * from CUSTOMER where CITY = ’Auckland’;

Again, this query will be submitted to the database unmodified.

SQL language optimizers are generally classified asrule basedor cost based

(Babcock & Chaudhuri 2005, Warshaw & Miranker 1999, Haas, Carey, Livny &

Shukla 1997, Cherniack & Zdonik 1996). With rule based optimization, the opti-

mizer chooses an execution plan based on the access paths available and the ranks of

these access paths. The ranking of the access paths is heuristic. If there is more than

1.3. Motivating Background 11

one way to execute a SQL statement, then the rule based optimizer always uses the

operation with the lower rank. Usually, operations of lowerrank execute faster than

those associated with constructs of higher rank (Cherniack &Zdonik 1998, Luscher

& Green 2002).

Both rule and cost based optimizers ultimately rely on the relational algebra to

produce an execution plan, but the cost based optimizer usesadditional heuristics.

With cost based optimization, the optimizer uses height-balanced histograms to es-

timate the distribution of column data and hence the cardinality of the result set.

For example, consider a query which is restricted on an indexed column. The cost

based optimizer may infer the cardinality of the result set is too high to justify an

index scan, ordering a full table scan despite the presence of a relevant index (Waas

& Galindo-Legaria 2000, Chan 2005d)7.

1.3.3 Motivating Example

We conclude this introduction with a simple motivating example which captures

how the technique of semantic query optimization achieves its speed-up of query

answering.

Example 1.3.1.The Human Resources Manager of a global IT company poses the

following query to the company database:

“Give me all the information about employees with Computer Science degrees

who earn less than $50,000 per year.”

Being a global IT company, its employee database is large andthe Manager

observes the results of the query take some minutes to appear. The query in fact

returns no rows. This is because all Computer Science graduates in this company

receive salaries in excess of $50,000. A closer inspection of the employee data

would have yielded the simple semantic rule:

“If an employee has a Computer Science degree then their salary is greater than

$50,000.”

This is precisely the type of rule utilised by a semantic query optimizer. Given

the original query, the semantic optimizer woulddeducethat this query cannot

return any rows, thus obviating the need to even submit the query to the database.

In the presence of such a semantic optimizer, the answer to theManager’s query

would appear instantaneously.

7Current commercial RDBMS generally recommend cost based optimization. A detailed study
of the SQL optimizer is beyond the scope of this thesis. We simply assume its presence throughout.

Chapter 2

Background Research

13

14 Chapter 2. Background Research

2.1 Introduction

After two decades of research into semantic query optimization (SQO), there is

still no commercial implementation and SQO is neither mainstream nor widely

employed (Cheng et al. 1999, Godfrey et al. 2001). Nevertheless there is clear

agreement in the literature that SQO is able to speed up certain types of database

queries (Yoon et al. 1999, Date 2003b, Hsu & Knoblock 1994).

The main emphasis of SQO research has been deductive databases. (For ex-

ample, see (Cheng et al. 1999, Godfrey et al. 2001)). However in this thesis, we

specifically address the role of SQO in relational databases(RDB). We focus on the

querying of large table objects such as those typically found in data warehouses.

It is important to distinguish SQO from the conventional query optimization

performed by all commercial relational database management systems (RDBMS)1.

When we speak ofconventionalSQL query optimization in the context of RDBMS,

we are specifically referring to the task performed by theSQL query optimizer. All

RDBMS include such SQL optimizers. The performance of the SQL optimizer is

of central importance to a RDBMS and is one of the main ways that the various

commercial RDBMS distinguish themselves from each other. Thefunction of the

SQL query optimizer is beyond the scope of this thesis and we simply assume its

presence throughout.

The remainder of this chapter is organised as follows.

• We describe related research in the field of SQO. Our description is built

around the definitions of some important terms. We begin by considering

preliminary definitions used by other researchers in the field of SQO (Sec-

tion 2.2).

• We then focus on the use of semantic information and semanticrules (Sec-

tion 2.3) before defining the principle term “semantic queryoptimization”

itself (Section 2.4).

• We set out the main types of SQO as they have been classified by other re-

searchers (Section 2.5).

• We reiterate some inherent limitations of current SQL queryoptimizers which

are shared by all commercial RDBMS (Section 1.3.2).

• We consider SQO in the context of commercial RDBMS and report some of

the reasons suggested by other researchers as to why SQO is not routinely

employed.

1Well known commercial RDBMS includeOracle™ (seehttp://www.oracle.com), MS
SQL Server™ (seehttp://www.microsoft.com/sql), DB2™ (seehttp://www.ibm.com),
Sybase™ (seehttp://www.ianywhere.com), Postgres(seehttp://www.postgresql.org).

2.2. Preliminary Definitions 15

• We give a summary of a small set of semantic optimizations which are imple-

mented in some commercial RDBMS (Section 2.6).

• We conclude by listing the main contributions of the chapter(Section 2.7).

2.2 Preliminary Definitions

We now describe related research in the field of SQO by considering the definitions

of some important terms used in the research literature. Ourgoal is to clarify and

to some extent simplify some of this terminology. We will define the central term

semantic query optimizationin due course, but in order to do so we first define some

preliminary terms.

The aim of SQO is to use semantic knowledge about the databasedomain to

transform a query into one which is syntactically different butsemantically equiva-

lent and which can be executed more efficiently 2 (Godfrey et al. 1996, Siegel et al.

1992, Chakravarthy, Grant & Minker 1990, King 1981, Hammer & Zdonik 1980).

The queries in question cannot meaningfully be considered equivalentper sebut

must be semantically equivalentwith respect to some specific set of schema seman-

tics. So it is more correct to say thatsemantic equivalencemeans the transformed

query always produces the same answer as the original query for any database state

satisfying a given set of schema constraints(Siegel et al. 1992). In this thesis, we

assume a database schema is available and we subsequently utilise the schema as

the first step in the construction of a practical semantic query optimizer. We focus

explicitly on schema constraints beginning at Definition 2.3.1 on page 19.

For RDBMS, the semantic equivalence of two queries means, literally, that the

tuples returned by the two queries are exactly the same for a given database state,

although the result set is not necessarily presented in the same order. Since the

contents of a database will typically change over time, whenever we speak of the

answerto a query we are referring to the result set (i.e., the tuples) returned at a

particular point in time for a particular database state. Ifnew data is inserted or

existing data updated or deleted, then the database state has changed and the same

query may return a different answer set.

Definition 2.2.1. Semantic equivalence: Two database queries are semantically

equivalent if they return the same answer, for a given database state.

The notion ofquery rewriteis intrinsic to SQO and refers to the transforma-

tion or recasting of the query to a different textual expression (Aberer & Fischer

2The termsyntactically differenthere refers to the actual textual expression of the query state-
ment. We do not mean the abstract syntax of the query languageSQL. See Definition 2.2.5 on
page 17 for a precise definition ofquery efficiency.

16 Chapter 2. Background Research

1995, King 1981, Hammer & Zdonik 1980). It is important to distinguish the query

rewrite we refer to here in the context of SQO from the work performed by the

conventional SQL optimizer. The SQL optimizer generates a set of logically equiv-

alent alternative execution paths based ultimately on the rules of relational algebra.

That is, SQL optimizers performsyntacticoptimization (Date 2003b) via a set of re-

write rules based on the notion of equality, as it is defined inthe relational algebra.

In general,semanticinformation is not utilised by current SQL optimizers (Genet

& Dobbie 1998).

Definition 2.2.2. Query rewrite: This is the process of rewriting a database query

into a semantically equivalent query with a different syntax .

All SQL language interpreters require anoptimizer because SQL is a declara-

tive language (Date 2003b). The task of the SQL optimizer is to determine an actual

execution path which is logically equivalent to the original SQL query text. Typ-

ically there will be many choices of possible path with the result that determining

theoptimalpath rapidly becomes exponentially explosive. Thus findingan optimal

path in these circumstances is classified as NP-hard (Sun & Yu1994). All SQL opti-

mizers employ heuristics to overcome this problem (Sciore &Siegel 1990, Shenoy

& Ozsoyoglu 1989, King 1981) with the desirable outcome being a near-optimal

execution path.

An important feature of the SQL optimizer is that it calculates a dimension-

less metric which is a measure of how costly the query is expected to be, without

actually executing the query. This metric is readily available in all commercial

RDBMS. This makes it straightforward toestimatethe relative computational cost

of equivalent execution paths, without actually executingthe query many times and

comparing average query times.

Definition 2.2.3. SQL optimizer: This is the engine that takes as its input the SQL

query text and outputs the specific execution path to be followed in order to compute

the query answer.

The notion ofquery costis used very generally by researchers, hence the generic

definition below (Definition 2.2.4). Various writers emphasize the amount of disk

activity required to answer a query (Siegel et al. 1992), thetotal time required to

answer the query (Zhu 1992) and delays due to communication costs (Jarke & Koch

1984). In this thesis, we focus on theaveragecost of submitting a query as part of

a large batch of similar queries. We use a number of different metrics to evaluate

the computational cost of a query, including total CPU time, total number of data

blocks physically read from disk and the total elapsed time.This is described in

detail in Chapter 5 (page 131).

2.2. Preliminary Definitions 17

Definition 2.2.4. Query cost: The cost of a query is the expenditure of computing

resources required to answer that query. Expenditure is measured with a set of

nominated metrics which typically include some permutationof total CPU time,

total number of data block reads and total elapsed time.

Intuitively, a more efficient query is one that on average requires fewer resources

to execute (e.g. fewer disk reads) and therefore is executedmore quickly (Godfrey

& Gryz 1996), given a particular set of computer resources. One can only mean-

ingfully compare the efficiencies of two queries if they are semantically equivalent.

Consider two semantically equivalent queriesQ1 andQ2. QueryQ1 is more efficient

than queryQ2 if on average it is less costly, as indicated by some specific metric

such as total elapsed time.

Definition 2.2.5. Query efficiency: This is the relative cost of semantically equiva-

lent queries.

Intuitively, anunsatisfiable queryis posed against a particular schema and pro-

duces an empty result set, for a given database state. This empty result set might

occur because of alogical contradiction embodied by the query, or simply because

for the given database state, there is no data which satisfiesthe query conditions.

In this thesis we consider two sources of unsatisfiability inqueries which result

from a logical contradiction embodied by the query itself.

1. The unsatisfiability arises from a logical contradictionwithin the query text it-

self and independent of schema semantics. The following example illustrates

how such a logical contradiction can arise.

Example 2.2.1.Consider a tableTAB against which the following query is

posed:

select *

from TAB

where 1 = 2;

This query will return an empty result set independent of any schema se-

mantics or the contents of tableTAB simply because the restriction itself is

arithmetically unsatisfiable.

It is perhaps surprising that such a simple scenario is not currently detected by

at least one commercial RDBMS, in the sense that such a query will be sub-

mitted to the database in the normal manner. Why this is the case is described

in detail in Section 1.3.2 (page 9).

18 Chapter 2. Background Research

2. The unsatisfiability arises from a logical contradictionbetween the query text

and the schema semantics. The following example illustrates how such a

logical contradiction can arise.

Example 2.2.2. In RDBMS, tables are defined using the databasedata def-
inition language(DDL). Conventionally, numeric columns are declared to

restrict the precision of the number, for example, to a designated number of

decimal places. Consider a tableTAB which we have defined by the following

DDL:

create table TAB(

COL1 number(1),

COL2 varchar2(10),

COL3 date

);

ColumnCOL1 is constrained to be a single digit integer. Now consider the

following query posed against tableTAB:

select * from TAB where COL1 = 27;

Clearly such a query will return no rows. It is unsatisfiable. This might have

been deduced by simply considering the table’s DDL.

The empty result set might occur because there is no data thatsatisfies the query

conditions, for a given database state.

Example 2.2.3.Consider a database schema populated with employee data. At a

particular point in time, it happens that only data for female employees are found

in the database. So any queries which ask for data on male employees will return

empty result sets. For this database state, these queries are unsatisfiable.

Detection of unsatisfiable queries is identified as pivotal by all researchers into

SQO (Yoon et al. 1999, Genet & Dobbie 1998, Zhang & Ozsoyoglu 1997, Hsu &

Knoblock 1996, Godfrey & Gryz 1996, Illarramendi, Blanco & Goni 1994). This is

because, if we can deducea priori that a query will produce an empty result set, it

need not be posed to the database at all, resulting in a 100% saving (neglecting the

cost of detecting the unsatisfiability). Unsatisfiable queries are considered in detail

in Section 2.5.1 (page 31).

Definition 2.2.6. Unsatisfiable Query: An unsatisfiable query is one which, for a

given schema and database state, cannot return any rows.

2.3. Semantic Information and Semantic Rules 19

Discovered Rules

• Derived from query driven analysis

• Derived from data driven analysis

• Require a rule discovery phase

Semantic Information

Domain
knowledge

Business
Rules

Schema Constraints

• Includes schema metadata

• Static

• True a priori

• Stored, enforced and maintained
by DBMS

Figure 2.1:Sources of semantic information: Semantic information can be drawn from a number
of different sources includingschema constraintsanddiscovered rules. Schema constraints originate
from human practitioners, while discovered rules are typically found by the execution of software.

2.3 Semantic Information and Semantic Rules

We now consider definitions arising from the notion ofsemantic information. We

begin with a very general definition which we refine as we consider different sources

of semantic information. Refer to Figure 2.1 on page 19. Semantic information

includes schema meta-data (such as the table and view definitions in a relational

database), domain knowledge (such as might be held bydomain experts) as well

as various constraints defined, stored and enforced by the database management

system (DBMS). A prerequisite for query rewriting (Definition 2.2.2, page 16) is

obtainingvalid semantic information; i.e., semantic information which istrue of

the target database at this particular point in time.

Definition 2.3.1. Semantic information: This is any logical statement or data

which describes or constrains the data currently stored in the database and the

data that may be stored in the database.

The notion ofsemantic ruleis intrinsic to SQO. The nuance of the termrule

in this context is that the semantic information is capturedby a formal logical sen-

tence. Such logical sentences may be utilised by a reasoningsystem. In contrast,

the termsbusiness rulesanddomain knowledgedo not necessarily refer to formal

logical sentences and may include the informal knowledge ofdomain experts. Such

20 Chapter 2. Background Research

knowledge may be difficult or impossible to express in first order predicate calcu-

lus (Godfrey et al. 1996).

Definition 2.3.2. Semantic rule: A semantic rule is a sentence in first order predi-

cate calculus which expresses semantic information.

In this chapter we specifically identify a number of important sources of seman-

tic rules. We classify these semantic rules firstly by observing whether or not they

may be formally encoded within the database asconstraints.

Definition 2.3.3. Schema constraint: A schema constraint is a rule which is stored,

maintained and enforced by the DBMS and which constrains the legal values that

may be stored in the database.

The critical role of schema constraints as a rich and stable source of semantic

information is considered by (Yu & Sun 1989) and (Godfrey et al. 2001) in the

context of knowledge discovery and deductive databases respectively. In this thesis

we consider schema constraints in the context of RDBMS and specifically consider

how they may be utilised for the purpose of SQO. This is considered in detail in

Chapter 4 (page 95). For the time being we list the types of schema constraints

found in RDBMS.

• Schema meta-data: The definitions of the various schema objects such as ta-

ble definitions, view definitions and index definitions. It ishelpful to think of

the schema meta-data as the definitions created by the RDBMSdata definition

language(DDL).

• Integrity constraints: These are meta-data which define rules which constrain

data at insert and modification. All commercial RDBMS allow thefollow-

ing constraints to be defined:not null, primary key, unique key, foreign key,

check. Their purpose is to enforce relationships between data thus maintain-

ing data integrity. The use of integrity constraints for SQOis considered in

detail in Chapter 4 (page 95).

• User defined constraints: All commercial RDBMS allow constraints to be

defined manually, typically to enforce complex business rules that would be

difficult or impossible to implement using the built-in integrity constraints

listed above. Such rules may be implemented astriggerswhich fire when

certain conditions are met, for example, when new data is inserted3. User

defined constraints are often built using a procedural language which may be

an intrinsic part of the RDBMS. For example, the Oracle RDBMS includes

3Further discussion of triggers is beyond the scope of this thesis.

2.3. Semantic Information and Semantic Rules 21

the procedural languagePL/SQL . Alternatively, complex data relationships

may be implemented, using a procedural language such asJava in a layer

outside the actual database. This is the case when applications are built using

a three tier design methodology(Doke, Satzinger, Williams & Douglas 2003)

where the database is viewed simply as a persistence mechanism residing at

the bottom of three tiers and all business rules are enforcedprocedurally in

the middle tier4.

Various researchers have identified other sources of semantic information (which

may or may not be expressible in the language of the particular DBMS) such as

specialised domain knowledgeheld by domain experts (Godfrey et al. 2001) and

application business rules(Godfrey et al. 1996, Genet & Dobbie 1998, Date 2003b,

Shekhar, Hamidzadeh, Kohli & Coyle 1993, Shenoy & Ozsoyoglu 1987).

We make the important observation that schema constraints are intended to con-

strain data only at insert or modification time and are not utilised at query time.

Furthermore, while schema constraints remain valid statements about the domain

of interest, this is no guarantee that the actual data storedin the database conforms

to these rules. This contradictory situation arises with great regularity in commer-

cial DBMS because constraints are often relaxed during data insert or modification.

This is considered in more detail in Chapter 4 (page 95) where we describe the

design of a practical semantic query optimizer.

Some researchers classify rules considered for semantic optimization asstatic

or dynamic(Illarramendi et al. 1994, Chakravarthy et al. 1990). Included in static

constraints are such rules that do not change or evolve over time as the state of

the database changes. Therefore schema constraints, as we have defined them in

Definition 2.3.3 (page 20), are static.

2.3.1 Rule Discovery

Some authors specifically concentrate on rules that are derived from the database

(Chen 1996, Siegel et al. 1992). These studies use a variety oftechniques to de-

tect correlations in data which are then used to formulate rules. For example,

in (Agrawal, Imielínski & Swami 1993) the authors present an algorithm for iden-

tifying correlations in sales data between sets of Boolean attributes. Techniques for

discovering rules that exist between quantitative and categorical data in relational ta-

bles are described by (Srikant & Agrawal 1996). Mining association rules over data

which specifically representintervalsis described by (Miller & Yang 1997). Rules

discovered from the analysis of data are considered static until data updates invali-

4The top tier is typically thegraphical user interface(GUI). Further discussion of three tier design
is beyond the scope of this thesis.

22 Chapter 2. Background Research

date that assumption (Gryz, Schiefer, Zheng & Zuzarte 2001,Siegel et al. 1992).

Definition 2.3.4. Rule discovery: Rule discovery is the search for patterns, regu-

larities and correlations in the target database.

Our definition follows (Gryz et al. 2001, Hsu & Knoblock 1998,Shekhar et al.

1993, Siegel et al. 1992), but for clarity specifically refers to the uncovering of

semantic information which isadditionalto the schema constraints described above

in Definition 2.3.3 (page 20). In (Shekhar et al. 1993), the authors use the term “rule

discoveryphase” to emphasize the uncovering of previously unknown information.

Discovered rules are typically of the form:

Pi ⇒ Q

wherePi is some finite conjunction of conditions on the tuples of a relational table

andQ is a consequent condition (Miller & Yang 1997, Piatetsky-Shapiro 1991).

Example 2.3.1.A rule discovery exercise on tableEMPLOYEE discovers that all

Managers over the age of 40 have salaries of at least $150K. This information is

formulated into the following rule:

(POSITION= ’MANAGER’) and (AGE> 40)⇒ (SALARY≥ 150000)

When discovered rules are static, they need only be compiled once

(Chakravarthy et al. 1990). This is an important consideration whenever signifi-

cant computational resources must be expended to discover relevant rules. Static

rules may be discovered “off line” so there is effectively no impact on database

usability. Data warehouses are an important example where the database state typ-

ically evolves slowly enough for the computational expenseof rule discovery to be

worthwhile (Albrecht, Ḧummer, Lehner & Schlesinger 2000).

Example 2.3.2.A data warehouse comprising banking transactions is the subject

of a rule discovery exercise. Any rules generated by the analysis of historic trans-

actional data are likely to be static because the data is unlikely to ever be updated.

Similarly, other parts of the data warehouse, such as customer details, are likely

to evolve only slowly such that any discovered rules can be assumed to be valid

for long enough to make worthwhile the computational expense of discovering such

rules.

However,dynamicrules may change as the database state changes. In partic-

ular, dynamic rules may be rendered invalid by updates to thedatabase. When

dynamic rules are used, the cost of checking to see if the rules are still valid after

2.3. Semantic Information and Semantic Rules 23

a database update must be taken into account. Therefore the use of dynamic rules

may incur performance penalties at run time. To address thisproblem, in (Gryz

et al. 2001) the authors suggest rule maintenance may bedeferredafter an update

is found to be inconsistent with a rule. In this case, the ruleis tagged as invalid and

not utilised until it can be modified (or removed) to reflect the new semantics, at a

time of low database activity. We consider the question of revalidating temporary

or dynamic rules as quite separate from the central issue of SQO. Our experiments

with discovered rules, which we describe in detail in Chapter6 (page 153), make the

assumption that the database state evolves slowly enough tomake the rule discovery

exercise worthwhile.

Many semantic rules discovered in a mechanical knowledge discovery process

may be of no practical value to the semantic query optimizer (Godfrey et al. 2001,

Cheng et al. 1999, Aberer & Fischer 1995). For example, no matter how strong

the relationship captured by a discovered rule, it will nevertheless have no impact

whatsoever if the rule is never actually invoked. In this sense, such a rule is not

relevant. The following example clarifies the notion of rule relevance.

Example 2.3.3.A knowledge discovery exercise identifies a strong correlation be-

tween an employee’sbank, themake of their carand thegender of their manager.

Such a correlation might be uncovered by a mechanical analysis which carries out

an exhaustive search for such relationships. Yet this semantic knowledge, although

valid, is of little practical value. A cursory examination of the actual queries made

against the database reveals that queries incorporating the three attributes:bank,

make of carandgender of managerare never actually submitted. So the (possibly

expensive) knowledge discovery exercise is of no value.

Definition 2.3.5. Rule relevance: A semantic rule is relevant if it is able to be

utilised by the semantic query optimizer to increase query efficiency.

Rule discovery is typicallyquery drivenor data driven(Lowden & Robinson

2002, Shekhar et al. 1993, Siegel et al. 1992, Yu & Sun 1989). In query driven rule

discovery, rules are inferred from the restriction clausesof queries arriving at the

database and the results they produce. In its simplest form,the method notes when

two syntactically different queries produce exactly the same result set (althoughnot

necessarily in the same order). The more efficient query will then be substituted

whenever the less efficient query arises.

Example 2.3.4.A simple example of detecting semantic equivalence is the case of

three queries, identical except that one is uppercase, another is lower case while

the third is a mixture of cases. All three queries produce thesame answer. Sur-

prisingly, the detection of such a simple equivalence can bequite important for

24 Chapter 2. Background Research

commercial RDBMS. This is because an SQL query identified as being “the same”

as one recently parsed, will not be reparsed by the SQL optimizer, but simply sub-

mitted directly to the database with the same execution path.Furthermore, if the

answer to the previous query is still cached (i.e., in memory), the RDBMS will fetch

the answer directly from memory, obviating the need for disk access. If the query is

complex, this can result in a significant time saving.

The SQL optimizer of at least one major commercial RDBMS doesno such

textual reformatting. In such a RDBMS, all three queries described above will be

judged as being different from one another and each will be separately parsed. Even

the addition of extra whitespace will provoke a re-parse (Chan 2006a).

A simple analysis of queries can note which database objectsand attributes are

actually being queried, creating a focus for the rule discovery exercise. However

a subtle problem may arise in that the rules produced may onlyoptimize queries

which are the same (or similar to) previous ones received andanalyzed. This leaves

many potential semantic optimizations unexplored (Shekhar et al. 1993).

In data driven rule discovery, we look primarily at data distribution

(Shekhar et al. 1993, Han, Cai & Cercone 1993). Data is analyzedoff line in or-

der to discover patterns or correlations that may be formulated into semantic rules.

This type of analysis is often described asdata miningand the application of data

mining techniques to discover semantic knowledge for subsequent use in query op-

timization is described by many researchers in the area (Hsu& Knoblock 2000,

Chen 1996, Hsu & Knoblock 1996, Han, Huang, Cercone & Fu 1996, Shekhar

et al. 1993, Yu & Sun 1989).

Example 2.3.5.An analysis of an Employee database reveals that only femaleem-

ployees take maternity leave. The following query is posed:

select *

from EMPLOYEE

where GENDER = ’male’

and MATERNITY_LEAVE = ’yes’;

If there is no index on columnsMATERNITY LEAVE andGENDER, this simple query

will provoke a full scan of tableEMPLOYEE, which may be computationally expensive

if EMPLOYEE is large. Conversely, if we are able to invoke the simple semantic rule

that only female employees take maternity leave, this queryneed never be submitted

to the database.

Being independent of any queries, data driven rules may be compiled incremen-

tally without affecting run time performance. The objective of searching forrules in

this manner is the assumption that the discovery of, say, a correlation between two

2.3. Semantic Information and Semantic Rules 25

column variables, will somehow confer an advantage. So in the context of RDBMS,

a reasonable heuristic might be to look for a correlation between an indexed and an

unindexed column.

Example 2.3.6.Consider a database which stores information about ships which

dock at a particular port. A tableDOCK includes columnsSHIP TYPE and two

columnsARRIVE andDEPART which record the arrival and departure time respec-

tively of ships that visit. ColumnSHIP TYPE is indexed whileARRIVE andDEPART

are not indexed. TableDOCK is frequently the target of queries which are typically

restricted on arrival and departure time. An analysis of data in tableDOCK reveals

that only ships of type’A’ arrive on Monday or Friday. A semantic rule is formu-

lated:

ARRIVE∈ {’Monday’, ’Friday’ } ⇒ SHIP TYPE= ’A’

Now queries which ask for arrivals on a Monday or a Friday can addthe restriction

that the ship must be of type’A’. Since columnSHIP TYPE is indexed, the addition

of the extra predicate increases query efficiency. This is an example ofrestriction

introductionwhich is described in detail in Section 2.5.3, page 34.

Various researchers identify the problem of finding rules which can actually be

utilised by a semantic optimizer (as opposed to simply finding rules, for example,

by applying data mining techniques) and advocate the use of heuristics to guide this

search (Godfrey et al. 2001, Grant, Gryz, Minker & Raschid 1997, Bell 1996, Siegel

et al. 1992, Chakravarthy et al. 1990). Although rule discovery per seis beyond the

scope of this thesis, we nevertheless list several of the most common heuristics

because they foreshadow the type of rule which we employ in our own practical

semantic optimizer which we describe in detail in Chapter 4 (page 95). An im-

portant feature of the following heuristics is that they depend on both query driven

analysis (to identify suitable target tables and columns) and data driven analysis (to

formulate the association or correlation into a usable rule).

• If queries against a tableT include restrictions on an unindexed columnCi,

then look for rules which relateCi to an indexed columnC j of tableT. The

objective is to allow an additional constraint based on the indexed column

C j to be introduced. This is an example ofrestriction introductionwhich is

described in detail below in Section 2.5.3, page 34.

• If queries against a tableT include restrictions on both columnsCi (unin-

dexed) and columnsC j (indexed) andCi can be inferred fromC j, then re-

moveCi from the query. This is an example ofrestriction removalwhich is

described in detail below in Section 2.5.2, page 31.

26 Chapter 2. Background Research

Queries

Query driven
rule discovery

Data driven rule
discovery

Schema driven
rule discovery

Domain
expert

Domain
knowledge

Integrity
constraints

Database

Data
distribution

Semantic Rule
Discovery Business rules

Figure 2.2:Semantic rule discovery: Semantic information may be harvested from an analysis
of (1) queries (2) data distribution and correlation (3) schema constraints.

• If queries are frequently made against tableT which include range restrictions

on columnCi, then look for value ranges in columnCi for which there are no

satisfying tuples. This is an example ofdetection of unsatisfiable queries

which is described in detail below in Section 2.5.1, page 31.

In (Lowden & Robinson 2002), both query driven and data driventechniques

are combined. Initially, the join columns cited in equi-join queries become the tar-

gets for further data driven analysis. The objective in thiscase is specifically the

discovery of rules to assist with tablejoins, rather than queries on a single attribute.

In addition, primary key and corresponding foreign key information is harvested

from the DBMS meta-data, again to serve as the starting point for further data anal-

ysis. In this case, the objective is the elimination of redundant joins between the

table containing the primary key and the table containing the foreign key. This is

an example ofjoin removaland is described in detail in Section 2.5.4, page 36. We

summarize three important approaches to the discovery of semantic information in

Figure 2.2 (page 26).

2.3.2 Rule Reliability

In (Godfrey et al. 2001), the authors differentiate between rules which are assumed

to be always trueand have been defined using existing DBMS mechanisms (for

example RDBMScheckconstraints) andsoft constraintswhich are discovered rules

2.3. Semantic Information and Semantic Rules 27

assumed to be true “most” of the time. Soft constraints are themselves divided into

absolute soft constraintsmeaning the current state of the database contains no data

that violates the rule andstatistical soft constraintsto which a majority of the data

comply and a small exception do not. Therefore we have a threelevel hierarchy

defined by a rule’sreliability; i.e., the probability that it is valid at a particular time:

1. Schema constraints: static, true for all data, rule is valid for the lifetime of the

schema;

2. Absolute soft constraints: dynamic, true for all data, rule is valid for current

database state only;

3. Statistical soft constraints: dynamic, true for most data, rule is valid for cur-

rent database state only.

(Hsu & Knoblock 1998) pursue a similar theme of the reliability of a discovered

rule. They claim that while most approaches to SQO assume that database seman-

tics are static, in practice they are dynamic. They propose aquantitative metric

calledrobustness, which is the probability that a discovered rule is consistent with

a database state. A rule hashigh robustnessif it is unlikely to become inconsis-

tent after database updates. Robustness of a rule may be estimated from readily

available DBMS meta-data. Only rules with high robustness are used for semantic

optimization, thereby limiting the cost of re-validating rules.

One intrinsic property of all schema constraints (as we havedefined them in

Definition 2.3.3, page 20) is that they are created and encoded into the database by

human practitioners. It is reasonable then to assume such rules are robust in that

they must reflect the intended schema semantics. In contrast, data driven discov-

ered rules are found by the execution of software and we cannot in general assume

their robustness. This is in part because we cannot reasonably assume that schema

constraints themselves have been enforced for the lifetimeof the schema. This ap-

parent anomaly is explained further in Chapter 4 (page 95), but in the meantime we

foreshadow the discussion of this problem with an example.

Example 2.3.7.A large company carries out nightly bulk loads, consolidating sales

data into a single data warehouse table. A large summary table, SALES, includes

columnsPURCHASE DATE and SHIP DATE to record the dates when a purchased

item is bought and then shipped to a customer. A schema constraint is defined to

check that the recorded shipping date is always later than thepurchase date:

check SHIP DATE > PURCHASE DATE;

However, this constraint is relaxed during the bulk load to enhance performance

and therefore anomalies where this constraint is violated (for example when

28 Chapter 2. Background Research

PURCHASE DATE is null) are not detected. TheSALES table is now the target of

a data analysis to discover semantic rules which may enhance query performance.

Now any rules that utilise theSHIP DATE or PURCHASE DATE columns will be valid

with respect to the data, but may be invalid with respect to the intended schema

semantics.

When soft constraints are considered for utilisation by a semantic optimizer,

some metric is typically used to rank their usefulness. Suchrules are often termed

association rules(Savasere, Omiecinski & Navathe 1995, Park, Chen & Yu 1995,

Mannila, Toivonen & Verkamo 1994) and two metrics are typically cited: support

(a measure of how often the rule occurs in the data set) andconfidence(a measure of

how often the rule is true within the data set) (Agrawal et al.1993). These metrics

are more formally defined as follows. Consider a tableT comprisingn rows for

which an association ruleR has been discovered of the formPi ⇒ Q wherePi is

some finite conjunction of conditions on the tuples comprisingT andQ is the rule’s

consequent condition. Then:

support(R) =
|Pi or Q|

n

confidence(R) =
|Pi and Q|

Pi

where|C| denotes the number of tuples satisfying conditionC. For example, when

half the tuples in a target table satisfy eitherPi or Q, the potential rule is supported

by 50% of the data. A confidence of 90% for the rule indicates the consequent

Q can be correctly inferred 90% of the timePi is true. These metrics are typically

chosen prior to the rule discovery phase to limit the complexity of the rule discovery

task. So, one would set a minimum support below which the potential rule would

not be considered for practical use. Similarly, one would set a minimum confidence

(effectively a measure of the strength of the rule) below which the potential rule

would not be considered for practical use.

2.3.3 Data Reorganisation

The discovery of semantic information not only leads to query rewrite but can pro-

vide compelling reasons to reorganise the storage of data within a database.

Definition 2.3.6. Data reorganisation: This is the physical relocation of data plus

the creation of auxiliary data structures such as clusters,indexes or materialized

views, for the purpose of increasing query efficiency.

One undertakes data reorganisation with the aim of optimizing access to data,

2.4. Semantic Query Optimization 29

primarily data which is stored on disk5. The discovery of certain semantic informa-

tion provides compelling evidence for the creation of (for example) clusters, indexes

or materialized views.

Example 2.3.8.A simple analysis of queries made against a particular database

reveals that the most expensive queries are joins between three tablesA, B and

C. The database administrator (DBA) decides to co-locate tables A, B and C and

checks that the join columns are indexed. The tables themselves are now subject to

further scrutiny with a view to discovering rules to be utilised by a semantic query

optimizer.

Clearly, data reorganisation is a type of query optimizationand depends on se-

mantic information for its success. The extraction of this kind of information, along

with data reorganisation, is traditionally associated with normal DBA duties.

2.4 Semantic Query Optimization

We now summarise the main components of semantic query optimization and pro-

vide a precise definition.

Definition 2.4.1. Semantic query optimization: SQO is the process of uncovering

semantic information (from all available sources) plus query rewrite, where the aim

is to transform the original query into one which is semantically equivalent but

more efficient.

Most researchers in the field (Aberer & Fischer 1995, Chakravarthy et al. 1990,

Godfrey et al. 1996, Gryz et al. 2001, Yu & Sun 1989) use this term to refer to query

rewrite. However, we specifically include the activity associated with uncovering

semantic information such as rule discovery, in addition toactual query rewrite.

Query rewrite is therefore a necessary but not sufficient condition for SQO. What-

ever methods are employed to derive semantic information, ultimately this activity

results in the actual transformation of the query into a syntactically different but

semantically equivalent query.

We summarise the main components of SQO and their interaction in Figure 2.3.

Our view is that the harvesting of schema constraints, the discovery of semantic

rules via query or data analysis, data reorganisation and query rewrite are all essen-

tial aspects of SQO.

5This is a well researched topic, beyond the scope of this thesis. We simply note that disk access
times are typically orders of magnitude greater than memoryaccess times.

30 Chapter 2. Background Research

Semantic Query Optimization

Data
Reorganization

Schema
Constraints

Discovered
Rules

Query Rewrite

Semantic Information

Figure 2.3: Semantic query optimization: SQO comprises four major components. (1) Har-
vesting of schema constraints (2) discovery of semantic rules via query or data analysis (3) data
reorganisation (4) query rewrite. The shaded regions comprise a more traditional view of SQO.

2.4.1 Complexity of SQO

When a large rule set exists, which may potentially be used to semantically opti-

mize a query, the problem arises as to which ones are the best to use. The number

of transformations suggested by a semantic optimizer can quickly become combina-

torially explosive (Siegel et al. 1992). This is known as theutility problem (Lowden

& Robinson 2002, Han et al. 1993). This is why SQOper seis classified as NP-

hard (Albrecht et al. 2000, Rishe, Sun & Barton 1995), an unsurprising result given

that conventional SQL optimization is also NP-hard (Sun & Yu1994). Most re-

searchers suggest the use of heuristics to guide the choice of rules and to prune the

number of possible transformations to the optimal or near-optimal ones (Shekhar,

Srivastava & Dutta 1992, Siegel et al. 1992, Shenoy & Ozsoyoglu 1987, King 1981).

Other researchers employ a statistical approach (typically a Chi-square test) to judge

the effectiveness of a set of derived rules (Lowden & Robinson 2002, Lowden &

Robinson 1999, Sayli & Lowden 1996). In each case the objective is to limit the

number of possible transformations available to the semantic optimizer, precluding

significant degradation in optimizer efficiency.

2.5. Main Types of SQO 31

2.5 Main Types of SQO

We now summarise and describe the main types of SQO as they have been classi-

fied by various researchers (Chomicki 2002, Lowden & Robinson 2004, Lowden &

Robinson 2002, Cheng et al. 1999, Lee, Bressan, Goh & Ramakrishnan 1999, God-

frey, Grant, Gryz & Minker 1998, Pang, Lu & Ooi 1991, Chakravarthy et al. 1990,

King 1981).

2.5.1 Detection of Unsatisfiable Queries

A query is unsatisfiable if it cannot logically return any rows (Definition 2.2.6,

page 18). The detection of such queries is identified as a major advantage by all re-

searchers into SQO (Yoon et al. 1999, Genet & Dobbie 1998, Zhang & Ozsoyoglu

1997, Hsu & Knoblock 1996, Godfrey & Gryz 1996, Illarramendiet al. 1994).

For example, (Lowden & Robinson 1999) reports savings made bydetecting un-

satisfiable queries are an order of magnitude greater than other optimizations. The

advantage arises simply because an unsatisfiable query neednot be posed to the

database at all, resulting in a 100% saving, neglecting the cost of detecting that

unsatisfiability.

In the examples that accompany Definition 2.2.6 (page 18), weillustrated query

unsatisfiability arising from a logical contradiction within the query text itself and

independent of schema semantics (Example 2.2.1, page 17), from a logical contra-

diction between the query text and the schema semantics (Example 2.2.2, page 18)

and because there is no data that satisfies the query restrictions, for the current

database state (Example 2.2.3, page 18). In the practical semantic optimizer we

describe in Chapter 4 (page 95), all three types of unsatisfiable query are detected.

To our knowledge, no commercial RDBMS implementation performs this opti-

mization. Furthermore, we show in Chapter 5 (page 131) using acost model, that

detecting query unsatisfiability is not costless but may require significant resources

at runtime. We confirm this in Chapter 6 (page 153) with the results of our empirical

investigation.

2.5.2 Restriction Removal

A query restriction may be deduced to be redundant and its elimination simplifies

the query by eliminating the need to process that restriction. We now describe four

scenarios where restrictions may be eliminated or at least simplified by considera-

tion of the schema semantics.

• The following example illustrates how restriction removalcan arise from a

knowledge of the schema meta-data stored as an intrinsic part of the RDBMS.

32 Chapter 2. Background Research

Example 2.5.1.Consider a columnCOL1 of tableTABwhich is constrained at

table creation time to be “not null”. This prevents any rows being inserted

into TAB for which COL1 is null. Therefore whenever the restriction “COL1

is not null” appears in queries againstTAB, it can be eliminated.

We report empirical results for this type of optimization inSection 6.12 on

page 179.

• The following example is similar to the one above and illustrates how a query

might be simplified from a knowledge of the schema semantics.

Example 2.5.2. Consider a columnID which is the primary key of table

TAB. In the following query, the key word “distinct” appears in the select

clause:

select distinct ID

from TAB

where COL1 > 10;

The effect of the “distinct” key word is to trigger a sort of the result set so

that duplicates can be eliminated. However, since columnID is the primary

key, we can be sure all results returned will be unique. A semantic optimizer

might deduce this, saving the cost of the redundant sort.

We report empirical results for this type of optimization inSection 6.10 on

page 175.

• The following example illustrates how restriction removalcan arise naturally

from a knowledge of the range of values actually found in the database for a

particular column.

Example 2.5.3. This example of restriction removal is illustrated in Fig-

ure 2.4 (page 33). Consider a tableTAB with a column attributeCOL1 which

appears in the restriction of an SQL queryQ. A prior knowledge discovery

exercise has determined that all values ofCOL1 lie on the interval[100,500].

QueryQ is:

select *

from TAB

where COL1 >= 0

and COL1 <= 400;

2.5. Main Types of SQO 33

400 100 500 R

Q : select * from TAB where COL1 ≥ 0 and COL1 ≤ 400;

Q′ : select * from TAB where COL1 ≤ 400;

• Transformed query is simpler

• Fewer restrictions to process

• Many similar queries increase probability answer is cached

100 ≤ COL1 ≤ 500

0

Figure 2.4: Restriction removal: All values of columnCOL1 in tableTAB lie on the interval
[100,500]. A semantic optimizer can apply this knowledge to simplify queryQ to queryQ′.

The restriction inQ may be rewritten as the interval[0,400]. From a knowl-

edge of these two intervals, a semantic optimizer may deduce that the SQL

restriction may be rewritten as “COL1 <= 400”, recasting the original query

into Q′:

select *

from TAB

where COL1 <= 400;

The transformed query is simpler in that there are fewer restrictions to pro-

cess. Furthermore, any similar “out of range” queries onCOL1 will be recast

by a semantic optimizer into the simplified form above. For example, consider

queries that restrictCOL1 to an interval which subsumes the actual column

limits, such as[20,550]. All such queries will be recast as the more general

query:

select *

from TAB;

This generalisation process increases the chance that the DBMS already has

the answer cached6, thereby eliminating the disk activity associated with

fetching the answer tuples from disk.

• The following example illustrates how restriction removalcan arise as a re-

sult of the application of a rule that has discovered a correlation between an

indexed and an unindexed column.
6RDBMS typically cache in a memory queue both the parsed SQL query and its result set. There-

fore a query which occurs repeatedly will never be aged out the queue.

34 Chapter 2. Background Research

Example 2.5.4.Consider a frequently queried tableTAB. A rule discovery

exercise has discovered a correlation between unindexed columnCOL1 and

indexed columnCOL2. The rule is expressed as:

if COL2 between ’A’ and ’E’ then COL1 = ’pqr’;

The following query is posed:

select *

from TAB

where COL1 = ’pqr’

and COL2 = ’C’;

From a knowledge of the second query restriction “COL2 = ’C’” and the

above rule, a semantic optimizer may deduce that the first query restriction

“ COL1 = ’pqr’” is inferred by the second. SinceCOL2 is indexed butCOL1

is not, the semantic optimizer removes the first restrictionand rewrites the

query to:

select *

from TAB

where COL2 = ’C’;

We report empirical results for this type of optimization inSection 6.14 on

page 182.

2.5.3 Restriction Introduction

A query restriction may imply an additional (redundant) restriction which, when in-

troduced, increases efficiency. This typically occurs when the introduced restriction

involves an indexed attribute (Lowden & Robinson 2002, Shenoy & Ozsoyoglu

1987). The following example illustrates how restriction introduction can arise

naturally after a rule discovery exercise has discovered a correlation between the

columns of a frequently queried table.

Example 2.5.5.This example of restriction introduction is illustrated inFigure 2.5

(page 35) and is similar to, but the converse of, Example 2.5.4 above. Consider a

frequently queried tableTAB. A rule discovery exercise has discovered a correlation

between columnsCOL1 andCOL2. The rule discovery was initiated by three critical

observations:

• COL2 has an index of high selectivity;

2.5. Main Types of SQO 35

Q : select * from TAB where COL1 = ‘xyz’;

Q′ : select * from TAB where COL1 = ‘xyz’ and COL2 = ‘A’;

Rule : if COL1 in [‘abc’, ‘pqr’, ‘xyz’] then COL2 = ‘A’;

Figure 2.5:Restriction introduction : The restriction onCOL1 of tableTAB activates a rule which
allows an additional restriction on columnCOL2 to be added to the query. Typically, such a rule is
applied because anindexexists onCOL2 but not onCOL1.

• COL1 frequently appears in the restriction clause of SQL queriesagainst table

TAB;

• COL1 is not indexed.

The correlation betweenCOL1 andCOL2 may be expressed as the following rule:

if COL1 in [’abc’,’pqr’,’xyz’] then COL2 = ’A’;

Now consider the following query against tableTAB:

select *

from TAB

where COL1 = ’xyz’;

From a knowledge of the query restriction and the above rule, asemantic optimizer

may deduce that the additional restriction “COL2 = ’A’” may be introduced and

recast the query to:

select *

from TAB

where COL1 = ’xyz’

and COL2 = ’A’;

The recast query will invoke the index onCOL2, returning the answer tuples more

quickly.

The rule in Example 2.5.5 above could be expressed as an implication in the

form “¬X or Y” and encoded within the RDBMS as acheck constraint. However

this would only achieve the enforcement of the condition at data insert or modifica-

tion. No commercial RDBMS currently allows the encoding of rules such as these

within the DBMS that are invoked at query time7.

7However,deductive databasesdo allow such rules to be defined and invoked in queries in a
similar manner to that described above in Example 2.5.5 (Godfrey et al. 1998).

36 Chapter 2. Background Research

2.5.4 Join Removal

Join removal occurs when a redundant table join is detected and avoided. The join

operation in RDB is typically the most expensive (D’Andrea & Janus 1996, Date

2003b, Burleson 1994), so it is reasonable to expect its elimination could greatly

increase query efficiency. We now describe two scenarios where an unnecessary

join operation might be detected by a semantic query optimizer and avoided.

• The following example illustrates how join removal can arise naturally from a

knowledge of the range of values actually found in the database for the joined

columns.

Example 2.5.6. This example of join removal is illustrated in Figure 2.6

(page 36). Consider tablesTAB1 andTAB2 with column attributesCOL4 and

COL2 respectively which frequently appear together as the join columns in

equi-join SQL queries. A prior knowledge discovery exercisehas determined

that all values ofTAB1.COL4 lie on the interval[100,300] while all values of

TAB2.COL2 lie on the interval[400,700]. The following query is posed:

select t1.COL1, t2.COL2

from TAB1 t1, TAB2 t2

where t1.COL4 = t2.COL2;

A semantic optimizer may deduce from a knowledge of the two joincolumn

intervals[100,300] and [400,700] that this query cannot return any rows; it

is unsatisfiable.

100 ≤ t2.COL2 < 300

100 300
R

400 700 R

Query: select t1.COL1, t2.COL2
 from TAB1 t1, TAB2 t2
 where t1.COL4 = t2.COL2;

400 ≤ t1.COL4 ≤ 700

Query is unsatisfiable

Figure 2.6:Join removal: The intersection of values for the join columns is null; i.e., they have no
values in common. A semantic optimizer may deducea priori the join is unsatisfiable. This query
need not be submitted to the database.

2.6. SQO in Commercial RDBMS 37

• The following example illustrates how join removal can arise from a knowl-

edge of the schema constraints.

Example 2.5.7. This example of join removal is illustrated in Figure 2.7

(page 38) which depicts a fragment of a database of sales information. Table

CUSTOMER is a reference table containing customer details and tableSALES

records information about products bought by customers. ColumnCUST ID

from tableSALES is a non-null foreign key pointing to parent columnID in ta-

bleCUSTOMER, a relationship which is enforced by a constraint stored within

the DBMS. The following queryQ is posed:

select c.ID, s.PROD ID, s.QUANTITY

from CUSTOMER c, SALES s

where s.CUST ID = c.ID;

By considering the foreign key constraint, a semantic queryoptimizer may

deduce that the equi-join between tablesCUSTOMER and SALES is unneces-

sary. Exactly the same information is already contained solely within table

SALES, so the join may be eliminated, resulting in the semantically equivalent

but simpler queryQ′:

select s.CUST ID, s.PROD ID, s.QUANTITY

from SALES s;

2.6 SQO in Commercial RDBMS

Our background in the IT industry has led to the observation that SQO is a largely

unutilised technique, despite the prevailing view amongstacademic researchers that

SQO is useful. In (Date 2003b), the author comments that semantic optimization

could potentially provide much greater performance improvements than more tradi-

tional algebraic optimizers, but that few commercial products, if any, do much in the

way of semantic optimization. In (Bloesch & Halpin 1997), theauthors comment

that relational query optimizers ignore many semantic optimization opportunities

arising from a knowledge of the schema semantics.

We now look at some of the reasons advanced by other researchers as to why

SQO is not routinely employed. This is followed by a brief review of semantic

optimization techniques currently employed by a selectionof commercial RDBMS.

SQO is known to be useful (Yoon et al. 1999, Date 2003b, Hsu & Knoblock

1994). For example (Hsu & Knoblock 1994) reported in 1994 that SQO was

achieving average speedups of 20–40% in experiments where semantic knowledge

was “hand-coded” into rules able to be utilised by various experimental optimizers.

38 Chapter 2. Background Research

SALES

CUSTOMER

ID NAME ADDRESS PHONE

ID CUST_ID PROD_ID QUANTITY PURCHASE_DATE

Q: select c.ID, s.PROD_ID, s.QUANTITY
from CUSTOMER c, SALES s
where s.CUST_ID = c.ID

Q′: select s.CUST_ID, s.PROD_ID, s.QUANTITY
from SALES s;

Figure 2.7:Join removal: ColumnCUST ID is a non-null foreign key pointing to parent column
ID in tableCUSTOMER. A semantic query optimizer may deduce that the equi-join between tables
CUSTOMER andSALES is therefore unnecessary. Exactly the same information is already contained
solely within tableSALES, so the join may be eliminated.

Some researchers have claimed significant benefits for empirical studies from their

own flavour of SQO (Hsu & Knoblock 1996, Sayli & Lowden 1996) and there are

some experimental implementations (Cheng et al. 1999, Godfrey et al. 2001).

In (Cheng et al. 1999), the authors put forward two reasons whySQO has never

caught on in the commercial world where most databases are RDBMS:

• SQO is designed for deductive databases where the relatively high cost of

applying complex rules (in comparison to much less complex rules in RDB)

is more likely to make the extra computational effort of implementing SQO

worthwhile;

• CPU speeds are not high enough for the extra computational cost of SQO to

be acceptable.

In (Godfrey et al. 2001), the authors consider the role of schema constraints in

capturingbusiness rulesand identify four reasons for SQO techniques not being

employed:

• The potential for using schema constraints to capture business rules is only

now being realized, so opportunities for SQO have until now seemed limited;

2.6. SQO in Commercial RDBMS 39

• The expense of checking schema constraints at data insert orupdate time has

limited the use of such constraints, so opportunities for SQO have until now

seemed limited;

• Many semantic rules which could potentially be utilised by asemantic query

optimizer are simply not discovered;

• Even if a semantic rule is discovered there may be no justification for making

it a schema constraint.

The third point reinforces the notion of arule discovery phase(Section 2.3.1, page 21).

Without such a phase, only rules that are knowna priori can be employed. The last

point addresses the notion of therelevanceof the discovered rule (Definition 2.3.5,

page 23). A discovered rule may reflect a true correlation between data and is

therefore valid, but it may address a part of the domain whichis of no interest (for

example, because the rule antecedent never appears in a query).

2.6.1 Implemented SQO in Commercial RDBMS

We conclude this section with a brief review of what, if any, semantic optimization

techniques are employed in commercial RDBMS8. We begin by reiterating our com-

ment from Section 2.5.1 (page 31) that, to our knowledge, no commercial RDBMS

implements the detection of unsatisfiable queries.

However, despite a paucity of documentation with respect toSQO in the com-

mercial literature, there are some examples of semantic transformations performed

by commercial RDBMS. Some of these are described below and thensummarised

in Table 2.1 which follows. The following is not a full rigorous review but is in-

tended only to indicate the state of SQO in commercial systems.

• DISTINCT elimination: Sybase9 and DB210 report the removal of unnecessary

DISTINCT keywords, potentially saving the cost of a sort operation (Cheng

et al. 1999). The following example illustrates this optimization.

Example 2.6.1.Consider a tableCUSTOMER which includes primary key col-

umnID and columnNAME. The following query is posed:

select DISTINCT c.ID, c.NAME

from CUSTOMER;

8All of the following information was gathered from publiclyavailable resources, primarily in-
ternet websites. The availability of this type of information is subject to the same limitations as other
similar information which might be considered commercially sensitive. In each case we provide an
internet address as an entry point to the vendor concerned.

9Sybase is now marketed under the commercial title of “Adaptive Server Anywhere”. Seehttp:
//www.ianywhere.com.

10Seehttp://www.ibm.com

40 Chapter 2. Background Research

Since columnID is the primary key of the table, all tuples returned by this

query must be distinct. Therefore this query would be recast internally as:

select c.ID, c.NAME

from CUSTOMER;

We studied the execution plans produced by the Oracle RDBMS SQLop-

timizer11 for cases analogous to the example above and we concluded this

semantic optimization of this type is not implemented in theOracle RDBMS.

• Optimization ofMIN, MAX functions: Oracle and Sybase report optimization

of the functionsMIN andMAX in the case where an index is present on the

target column. The optimization works by scanning the appropriate index in

ascending (for theMIN function) or descending (for theMAX function) order

and returning the first row. In this way a redundant sort operation is avoided.

Sybase implements this operation transparently while Oracle requires an ex-

plicit hint12 to be included with the SQL text to force the use of the appropri-

ate index.

• Restriction Introduction: DB2 is reported to implement a type of predicate

introduction (Cheng et al. 1999) in that additional joins maybe considered in

the case of equi-join queries if they can be transitively connected to the join

columns of the original query.

Example 2.6.2.Consider the following three way join between tablesTAB1,

TAB2 andTAB3:

select t1.COL1, t2.COL1, t3.COL1

from TAB1 t1, TAB2 t2, TAB3 t3

where t2.Y = t1.X

and t3.Z = t2.Y;

A semantic optimizer may deduce that the additional predicate “t1.X = t3.Z”

can be introduced, producing the following transformed query:

select t1.COL1, t2.COL1, t3.COL1

from TAB1 t1, TAB2 t2, TAB3 t3

where t2.Y = t1.X

and t3.Z = t2.Y

and t1.X = t3.Z;

11See (Chan 2006d) for a concise explanation of manifesting the execution path chosen by the
Oracle SQL optimizer.

12In the Oracle RDBMS, hints may be included within SQL query text to force the use of particular
access paths. Further discussion of hints is beyond the scope of this thesis. See for example (Fogel
& Lane 2006b).

2.7. Summary 41

This might result in increased efficiency if the new join can be used early in

the execution plan to reduce the cardinality of the result set.

• Redundant Join Removal: Sybase and DB2 report the removal of redundant

joins in certain circumstances, although only Sybase documents this explicitly

with an example similar to Example 2.5.7 above (page 37). We studied the

execution plans produced by the Oracle RDBMS SQL optimizer to look for

evidence of redundant join removal and concluded this semantic optimization

is not implemented in Oracle.

• Other optimizations: Sybase report several other optimizations such as the

elimination of the redundant clause “or 1 = 0”. We investigated this spe-

cific example with Oracle and despite reporting an executionplan which sug-

gested this redundancy had been eliminated, actual measurement of execution

times for medium to large tables strongly suggested this redundant clause pro-

voked a full table scan. Sybase report the rewrite of single “IN” clauses such

as “COL1 in (100)” which is recast as “COL1 = 100”. Our experiments

with Oracle show this simple rewrite is in fact implemented but is undocu-

mented.

Type of SQO RDBMS Comment
Restriction removal DB2, Sybase “distinct” elimination.
Restriction removal Oracle, Sybase Optimization ofMIN, MAX function.
Restriction removal Sybase Remove clause “or 1 = 0”
Restriction introduction DB2 Additional join clauses added.
Join removal DB2, Sybase See Example 2.5.7, page 37.
Other Oracle, Sybase Rewrite “COL1 in (100)” to “ COL1 = 100”

Table 2.1:Implemented SQO in commercial RDBMS: This table summarises SQO techniques
currently employed by three commercial RDBMS:Oracle, DB2 andSybase.

2.7 Summary

In this chapter we described related research in the field of SQO. The main contri-

butions of this chapter include the following:

• We present a concise set of definitions of important terms used by other re-

searchers in the field of SQO, including a precise and expanded definition of

the principle term “semantic query optimization” (Sections 2.2 and 2.4).

• We describe the main sources of semantic information including schema con-

straintswhich are already part of the meta-data stored and maintained by

42 Chapter 2. Background Research

the RDBMS itself anddiscovered ruleswhich are typically formulated via

an analysis of queries (query driven rule discovery) or data(data driven rule

discovery) (Section 2.3).

• We show how semantic rules may be differentiated according to theirrelia-

bility . Rules which arestaticsuch as schema constraints may be applied for

the lifetime of the schema, whiledynamicrules such as those formulated by

the discovery of correlations in data may need to be revalidated or marked as

invalid whenever data updates occur. This may have a significant impact on

database performance (Section 2.3).

• We set out the main types of SQO as they have been classified by other re-

searchers and provide concrete examples of how such optimization opportu-

nities can arise in practice (Section 2.5).

• We consider SQO in the context of commercial RDBMS and briefly review a

small set of semantic optimizations which are implemented in some commer-

cial RDBMS (Section 2.6).

Chapter 3

An Algebra of Intervals

43

44 Chapter 3. An Algebra of Intervals

3.1 Introduction

In Section 1.3.2 of the previous chapter, we explained that while SQL optimizers

apply the rules of relational algebra, they lack asemanticreasoning engine (Hsu

& Knoblock 2000, Godfrey et al. 1996) and, apart from the verylimited cases de-

scribed in Section 2.6.1, are therefore unable to use semantic information to influ-

ence the choice of a suitable execution path. The main objective of this current

chapter is to build the theoretical foundation for our reasoning engine, which we

describe in detail in the following chapter. We now describean interval data type

around which we build aninterval algebrawhich we show is analogous to Boolean

Algebra and which forms the foundation of our reasoning engine. We accept the

Boolean Algebra as axiomatic (Pohl & Shaw 1986) along with certain axioms con-

cerned with thetotal orderingof data types (Gemignani 1990). We use the interval

data type to succinctly capture the notion ofthe valid or legal range of values a

variable may assume. Our interval is a generalisation of the notion of an interval

on the Real number line (Muñoz & Lester 2005). We define three basic operations:

conjunction, disjunctionandnegationfor the interval data type and show how the

resulting algebra can be used to reason about values enclosed by the interval. We

provide an appealing graphical interpretation which depicts the interaction of inter-

vals. We focus on intervals built from the three atomic data types found in relational

databases:numeric, stringanddate.

We then define a further data type, theinterval list, which isa collection of dis-

joint intervals. We extend our definitions of conjunction, disjunction and negation

to the interval list structure and show how these operationsareclosedwith respect

to the interval list.

The remainder of this chapter is organised as follows.

• We begin by setting out our basic assumptions with regard to theordering of

instancesof the data types we deal with and introduce constants to represent

minus infinityandplus infinity (Section 3.2).

• We then define two data types:limits (Section 3.3) andbounds(Section 3.4)

that comprise our interval data type.

• We define precisely the notion of aninterval and introduce the special inter-

vals theinfinite intervaland thenull interval (Section 3.5).

• With respect to the interval data type, we define the binary operationscon-

junction (Section 3.6) anddisjunction(Section 3.7).

• We then define a new data type, theinterval list, which is a collection or list

of disjoint intervals (Section 3.8).

3.2. Basic Assumptions and Working Definitions 45

• We describe how to negate an interval (Section 3.9).

• We show how the infinite interval and the null interval act asidentity elements

for the conjunction and disjunction operations (Section 3.10).

• We define two further binary operations for intervals,subsumptionand im-

plication (Section 3.11).

• We then extend to interval lists the disjunction operation (Section 3.12), the

conjunction operation (Section 3.13) and the negation operation (Section 3.14).

• We define the special interval lists theinfinite interval listand thenull interval

list (Section 3.15).

• We then extend the operationssubsumptionand implication to interval lists

(Section 3.16).

• We conclude by listing the main contributions of the Chapter (Section 3.17).

3.2 Basic Assumptions and Working Definitions

In this section we set out our basic assumptions and provide working definitions for

some important terms which we employ throughout this chapter. We first describe

how modern programming languagesoverloadthe Boolean comparison operators.

Then we introduce a generic data type and state some important assumptions about

how this data type can be deterministically ordered. Finally we introduce constants

for plus infinity andminus infinity and show how these are fully usable in the con-

text of a programming language, provided they have a restricted and well defined

meaning.

3.2.1 Overloading of Boolean Comparison Operators

Throughout this chapter we shall often use intervals on the Real number line for

examples. But we might just as well use thestring or datedata types. The key

property of these data types which we utilise is that each hasa well defined de-

terministic ordering. This is usually accepted without question and is universally

implemented by programming languages and by relational database management

systems (RDBMS) in particular.

In fact, the ordering method is different for each different data type. When

numbers are compared, numeric ordering is used. When stringsare compared, lex-

igraphic ordering is used. When dates are compared, date ordering is used.

46 Chapter 3. An Algebra of Intervals

For this reason, in relational databases and most programming languages, the

Boolean comparison operators “<, >,≤,≥,=” are said to beoverloadedbecause

their validity depends on the correct ordering method beinginvoked according to

data type. We will also overload these symbols as we proceed through the chapter

and define unambiguous orderings for a number of different data types. In each

case, the type of ordering we mean will be evident from the context.

3.2.2 A Generic Data Type

When we do not need to distinguish between data types that may be totally or-

dered(Gemignani 1990) (for example, the three atomic data typesnumeric, string

anddate) we will employ the generic notationT and refer to instances ofT using

t ∈ T. When we employ this notation, we mean any data type that is able to be

totally ordered can be substituted forT without changing the validity of the state-

ment.

3.2.3 Ordering of Instancest ∈ T

We take as axiomatic the existence of a well defined total ordering (Gemignani

1990) for the data types to which our generic data typeT refers. Therefore any

set of instances ofT can be deterministically ordered from left to right and we

can meaningfully employ the Boolean comparison operators “<, >,≤,≥,=” in the

conventional way. Consider a set ofn instances ofT which we have ordered, with

the leftmost instance having the lowest rank and the rightmost instance the highest

rank. We can make use of the Boolean comparison operator “<” to express this

ordering:

t1 < t2 < · · · < tn

3.2.4 Comparing Instancest ∈ T

We now define a deterministic function “compareT” which we will use to compare

the rank of any two instancest1, t2 ∈ T. We design our function to return−1 if the

rank oft1 is less thant2, 0 if they are the same rank and 1 ift1 has a higher rank than

t2.

Algorithm 3.2.1. Comparing Instancest1, t2 ∈ T: We define using pseudo-code

the following deterministic function compareT:

compareT (t1, t2) return integer is

ret← 1;

i f t1 = t2 then ret← 0

3.2. Basic Assumptions and Working Definitions 47

elsi f t1 < t2 then ret← −1

endi f;

return ret;

The Boolean comparison operators “=” and “<” in the above definition are over-

loaded as we explain in Section 3.2.1 (page 45). Although we are simply comparing

ranks, the method used to decide their rank depends on the data type to which we

are referring.

From now on, whenever we use the Boolean comparison operatorswith a partic-

ular data type, we will be doing so only because we have already defined a determin-

istic function “compare” for that particular data type which returns appropriately

the values−1, 0 or 1, in the manner set out above in Algorithm 3.2.1.

3.2.5 Representing Minus and Plus Infinity

We wish to incorporate the notion ofminus infinity andplus infinity into our func-

tion compareT defined above in Algorithm 3.2.1. When we use these terms we

intend only to convey the idea of a value which would always bethe first(last) value

were it added to any ordered list of valuest ∈ T. We will use the special symbol

“ MINF” to denote minus infinity and the symbol “PINF” to denote plus infinity.

We treat these two special values simply as constants and addthem to whatever set

of values comprise the domain we are considering.

Definition 3.2.1. MINF : This is the lowest ranked value in any set of values con-

taining at least one occurrence of constant MINF. That is:

MINF ≤ t ∀t ∈ T

Definition 3.2.2. PINF : This is the highest ranked value in any set of values con-

taining at least one occurrence of constant PINF. That is:

PINF ≥ t ∀t ∈ T

Using the above definitions, we adjust our algorithm forcompareT to allow for

the possibility of these constants occurring.

Algorithm 3.2.2. Comparing Instancest1, t2 ∈ T when MINF,PINF ∈ T: We

define using pseudo-code the following deterministic function compareT. The fol-

lowing function is optimal in the sense that it requires the minimum number of

comparisons to achieve its objective:

compareT (t1, t2) return integer is

ret← 1;

48 Chapter 3. An Algebra of Intervals

i f t1 = t2 then ret← 0

elsi f t1 = MINF then ret← −1

elsi f t1 = PINF then ret← 1

elsi f t2 = PINF then ret← −1

elsi f t2 = MINF then ret← 1

elsi f t1 < t2 then ret← −1

end i f;

return ret;

3.3 Limit Operators

We now employ the familiar parenthesis and bracket notationto help defineexclu-

siveandinclusive(respectively) upper and lower bounds for an interval. It will be

useful for the definitions that follow to consider these symbols asoperatorsthat

operate on instancest ∈ T.

Definition 3.3.1. Limit operator: We define four limit operators as set out below in

Table 3.1.

Limit Operator Description
[Left inclusive limit
(Left exclusive limit
] Right inclusive limit
) Right exclusive limit

Table 3.1:The four limit operators .

We employ these symbols as operators which may only operate on instancest ∈ T

where we have a well defined ordering as described above in Algorithm 3.2.2. We

have exactly four limit operators: twoleft limit operators“ [” and “(” plus two right

limit operators“]” and “)”.

3.3.1 Comparing Limits

We now show how the limit operators can be deterministicallyordered. Our order-

ing is intuitive and is a generalisation of ordering inclusive and exclusive limits on

the Real number line. In fact, it is not really the limit operators themselves that are

being ordered but the result of their operating on a data typeinstance. Nevertheless,

it turns out to be convenient to treat the operators as if theyenjoy an independent

existence.

3.3. Limit Operators 49

We wish to compare two limit operators, say,l1 andl2. Since there are exactly

four limit operators, we have exactly 16 cases to consider. Table 3.2 lists the 16

cases and the result of applying thecomparelimit function.

Limit l1 Limit l2 comparelimit (l1, l2)
((0
([1
() 1
(] 1
[(−1
[[0
[) 1
[] 0
) (−1
) [−1
)) 0
)] −1
] (−1
] [0
]) 1
]] 0

Table 3.2:Rank of limit operators : Comparing the rank of just the limit operators alone gives
rise to 16 cases. Note that there are six cases (rather than four) where the function returns 0; i.e.,
wherel1 andl2 are considered to have the same rank. The ranking we apply is intuitive but rigorous
and is a generalisation of ordering inclusive and exclusivelimits on the Real number line.

Algorithm 3.3.1. Comparing Limit Operators: Using Table 3.2, we now define us-

ing pseudo-code a deterministic function “comparelimit” which we will use to com-

pare the rank of any two limits l1 and l2. The following is an optimal implementation

of Table 3.2 in the sense that it uses a minimum number of comparisons.

comparelimit (l1, l2) return integer is

ret← 1;

i f l1 = l2 then ret← 0

elsi f l1 = (then ret← 1

elsi f l1 =) then ret← −1

elsi f l2 = (then ret← −1

elsi f l2 =) then ret← 1

else ret← 0

end i f;

return ret;

Algorithm 3.3.1 defines an ordering method which is neither numeric nor lexi-

graphic nor date. The 16 cases set out above in Table 3.2 are not at all arbitrary

50 Chapter 3. An Algebra of Intervals

but are dictated by considering what makes sense for a data type with a determinis-

tic total ordering such as the Real numbers. Note that there are six cases (rather than

four) where thecomparelimit function returns 0; i.e., wherel1 andl2 are considered

to have the same rank. The extra two cases arise because we define “[” to have the

same rank as “]”. This captures the intuitive notion that “[t ” and “ t]” bracket the

same instancet ∈ T.

3.3.2 Negating Limits

Although we will not utilise this result until Section 3.4.6below (page 54), we now

define thenegationof a limit. We will write the negation of a limit operatorl asl
′

.

Definition 3.3.2. Negation of Limit: There are just four cases to consider and these

are set out in Table 3.3.

Limit: l Negation of Limit: l
′

[)
(]
] (
) [

Table 3.3:The four limit operators and their negation.

Algorithm 3.3.2. Negating Limit Operators: Using Table 3.3, we now define using

pseudo-code an algorithm “neglimit” to return the negation of a limit l.

neglimit (l) return limit is

ret←;

i f l = [then ret←)

elsi f l = (then ret←]

elsi f l =] then ret← (

elsi f l =) then ret← [

end i f;

return ret;

3.3.3 Notation for Limits

We will sometimes require meta-symbols to denote either of the two left limits, the

two right limits, or their negation. Table 3.4 sets out thesesymbols:

3.4. Bounds 51

Meta-symbol Denotation Description
〈 [or (left limit
〉] or) right limit
〈′] or) negated left limit
〉′ [or (negated right limit

Table 3.4:Meta-symbols for the four limit operators and their negation.

3.4 Bounds

The result of operating on an instancet ∈ T with any limit operator is abound.

There are exactly four types of bound: twoleft boundsand tworight bounds1.

Definition 3.4.1. Bound: Consider two instances t1, t2 ∈ T and a variable x∈ T.

Using the four limit operators defined in Section 3.3 (page 48), we may form four

bounds which have the interpretation described in Table 3.5.

Limit Value Bound Description Interpretation
[t1 [t1 left inclusive bound {x : x ≥ t1}
(t1 (t1 left exclusive bound {x : x > t1}
] t2 t2] right inclusive bound {x : x ≤ t2}
) t2 t2) right exclusive bound {x : x < t2}

Table 3.5:Four bounds and their interpretation.

Example 3.4.1.Consider Figure 3.1 which depicts four bounds where the data type

is the Real numbersR. The bounds consist of instance r∈ R plus an associated

limit operator. We use the familiar notation of open and closed circles to visualize

exclusive and inclusive bounds and depict the meaning of these bounds by plotting

them on the Real number line.

3.4.1 Notation for Bounds

We see from Definition 3.4.1 above that each bound consists ofa limit operatorand

a value. The pair “limit,value” form a tuple. However we will not introduce a

meta-symbol to bracket these pairs or a meta-symbol to delineate them. We will

instead simply write them alongside each other.

For example, consider an arbitrary boundB. We can decompose this into a limit

operator l and a valuev . We may write:

B = lv where l ∈ { (,), [,] }, v ∈ T

1It might be more orthodox to refer to these asupper boundsand lower boundsrespectively.
However we use the descriptorsleft andright to avoid ambiguity in the descriptions of the algorithms
for conjunction and disjunction which follow.

52 Chapter 3. An Algebra of Intervals

R

R

R

R

r−2 r−1 r r+1 r+2 r+3

r−2 r−1 r r+1 r+2 r+3

r−2 r−1 r r+2 r+3

r−2 r−1 r r+1 r+2 r+3

r+1

[r

r]

(r

r)

Figure 3.1:Bounds on the Real number line: r is an arbitrary point on the Real number line.
The solid arrows depict the interpretation of the bounds formed when the four limit operators are
applied in turn to pointr. There are two left bounds:(r , [r and two right bounds:r) , r] . We use the
familiar notation of open and closed circles to visualize exclusive and inclusive bounds respectively.

We place no significance on the order we write the limit and value. When we write

bounds with actual atomic instances (for example in Table 3.5) we simply follow

the convention of writing left bounds in the order “limit value” and right bounds

in the order “value limit”.

3.4.2 A Bound is a Logical Assertion

Consider the interpretation column of Table 3.5 (page 51). This highlights the fact

that a bound is a contracted form of logical assertion where the variable is implicit,

utilising the Boolean operators “>” and “≥” for the left bounds while “<” and “≤”

are utilised for the right bounds.

3.4.3 Comparing Bounds

We now show, given our target data typeT (which has a well defined total ordering)

and ordering of limit operators described in Algorithm 3.3.1 (page 49), how we

may unambiguously compare the rank of any two bounds. In the algorithms that

follow, we consider two arbitrary boundsB1 andB2 which consist, respectively, of

3.4. Bounds 53

instancest1, t2 ∈ T plus their associated limit operatorsl1 andl2. That is:

B1 = l1t1

B2 = l2t2

Algorithm 3.4.1. Comparing Bounds: We define a deterministic function

comparebound which compares the rank of any two bounds B1 and B2 and is given

by the following pseudo-code:

comparebound(B1, B2) return integer is

ret← 0;

i f t1 < t2 then ret← −1

elsi f t1 > t2 then ret← 1

else ret← comparelimit (l1, l2)

end i f;

return ret;

Our comparing of bounds proceeds by first comparing the data type instancest1
andt2. Implicitly, we call thecompareT function associated with data typeT (Al-

gorithm 3.2.1, page 46), which by our definition is guaranteed to exist. Only if the

two data type instances have equal rank do we callcomparelimit (Algorithm 3.3.1,

page 49). We note thatcomparelimit is quite independent of data typeT whereas

compareT is entirely dependent on its method implementation.

3.4.4 Infinite Bounds

In Section 3.2.5 (page 47) we defined constants “MINF” and “PINF” which would

always be the first or last values respectively were they included in any ordered list

of values. We now use these constants along with the inclusive limit operators

“ [” and “]” to define two infinite bounds: theinfinite left boundand theinfinite

right bound. When we use these terms, we mean simply that the infinite left bound

would always be the leftmost bound were it to be included in any ordered list of

bounds. Similarly, the infinite right bound would always be the rightmost bound

were it to be included in any ordered list of bounds. From now on we will use the

symbols “MIB” and “PIB” to denote the infinite left bound and infinite right bound

respectively.

Definition 3.4.2. Infinite left bound: This is the bound formed by applying the left

inclusive limit operator[to the constant MINF. That is:

MIB ≡ [MINF

54 Chapter 3. An Algebra of Intervals

Definition 3.4.3. Infinite right bound: This is the bound formed by applying the

right inclusive limit operator] to the constant PINF. That is:

PIB ≡ PINF]

3.4.5 Functionslower and higher:

We now define two useful auxiliary functions for bounds whichwe will utilise later

in this chapter. We use Algorithm 3.4.1 (page 53) to define a function “lower”

to return the lower of two bounds and a function “higher” to return the higher of

two bounds. In the following algorithms, the Boolean operators “>” and “<” are

overloaded. The comparison which is performed implicitly utilises Algorithm 3.4.1

(page 53).

Algorithm 3.4.2. Lower Bound: We define the following pseudo-code function to

return the lower of two bounds B1 and B2:

lower(B1, B2) return bound is

ret← B1;

i f B1 > B2 then

ret← B2

end i f;

return ret;

Algorithm 3.4.3. Higher Bound: We define the following pseudo-code function to

return the higher of two bounds B1 and B2:

higherbound(B1, B2) return bound is

ret← B1;

i f B1 < B2 then

ret← B2

end i f;

return ret;

3.4.6 Negating Bounds

We now consider what happens when we negate a left or a right bound. Consider

an arbitrary left boundBL consisting of a left limit[and valuevL. We introduce a

3.4. Bounds 55

variablex ∈ T, write this bound as an inequality, then negate it:

BL = [vL

= {x : x ≥ vL}

¬BL = ¬{x : x ≥ vL}

= {x : x < vL}

= vL)

So the left bound has become a right bound but the valuevL remains the same.

The new bound is formed because the limit operator has been negated, according to

Definition 3.3.2 (page 50).

Similarly, beginning with right boundBR = vR] and negating it:

BR = vR]

= {x : x ≤ vR}

¬BR = ¬{x : x ≤ vR}

= {x : x > vR}

= (vR

So the right bound has become a left bound but the valuevR remains the same.

The new bound is formed because the limit operator has been negated, according to

Definition 3.3.2 (page 50).

These observations lead to the following definition.

Definition 3.4.4. Negation of Bound: Consider an arbitrary bound B consisting

of limit l and value v. That is, B= lv. We write the negation of limit l as l
′

. The

negation of B is written¬B and is defined by:

¬B = l
′

v

3.4.7 Conjunction and Disjunction of Bounds

We now show that the Boolean conjunction of twoleft bounds is equivalent to the

higherof those bounds. Similarly, the Boolean conjunction of tworight bounds is

the lower of those bounds.

For Boolean disjunction of bounds, the converse is true. The Boolean disjunc-

tion of two left bounds is equivalent to thelower of those bounds. Similarly, the

Boolean disjunction of tworight bounds is thehigherof those bounds.

We first consider the Boolean conjunction of twoleft bounds and prove the

correct result is the higher of these bounds. We then state the other theorems by

analogy.

56 Chapter 3. An Algebra of Intervals

T

BL1+BL2

T

BL1.BL2

BL2

BL2 T

T BL1

BL1

Figure 3.2:Conjunction and disjunction of left bounds: The Boolean conjunction of two left
bounds BL1 · BL2 is logically equivalent to the higher of the two boundshigherbound

(

BL1, BL2

)

. The
Boolean disjunction of two left bounds is logically equivalent to the lower of the two bounds.

We complete this section by showing that the disjunction of aleft and right

bound always yields “true” whenever the left bound is less than or equal to the

right bound.

Theorem 3.4.1.Conjunction of Left Bounds: This is illustrated in Figure 3.2.

Consider two arbitrary left bounds BL1 and BL2 over domain T. Then the Boolean

conjunction of the bounds BL1 · BL2 is given by:

BL1 · BL2 = higherbound
(

BL1, BL2

)

Proof: Inspection of Algorithm 3.4.1 (page 53) shows the only time limits are com-

pared is when the values are equal to a value vL say. So it is sufficient to check

BL1 ·BL2 is given by the higher of the two bounds when this condition occurs. There

are exactly four possibilities and these are set out in Table3.6. In each case, the

equivalent logical assertion is correctly given by the higher left bound, as dictated

by Algorithm 3.4.3.

BL1 · BL2 Assertion higherbound

[vL · [vL (x ≥ vL) · (x ≥ vL) = x ≥ vL [vL

[vL · (vL (x ≥ vL) · (x > vL) = x > vL (vL

(vL · [vL (x > vL) · (x ≥ vL) = x > vL (vL

(vL · (vL (x > vL) · (x > vL) = x > vL (vL

Table 3.6:Conjunction of left bounds when the values are equal: This depends only on the
comparison of the left limit operators. In each case, the equivalent logical assertion is correctly
given by the higher left bound, as dictated by Algorithm 3.4.3.

Theorem 3.4.2.Conjunction of Right Bounds: This is illustrated in Figure 3.3.

Consider two arbitrary right bounds BR1 and BR2 over our domain T. Then the

3.4. Bounds 57

T

BR1+BR2

T

BR1.BR2

BR2

BR2 T

T BR1

BR1

Figure 3.3: Conjunction and disjunction of right bounds: The Boolean conjunction of two
right boundsBR1 · BR2 is logically equivalent to the lower of the two boundslower

(

BR1, BR2

)

. The
Boolean disjunction of two right bounds is logically equivalent to the higher of the two bounds.

Boolean conjunction of the bounds BR1 · BR2 is given by:

BR1 · BR2 = lower
(

BR1, BR2

)

Proof: This proof is analogous to the proof of Theorem 3.4.1 (page 56) above.

Theorem 3.4.3.Disjunction of Left Bounds: This is illustrated in Figure 3.2. Con-

sider two arbitrary left bounds BL1 and BL2 over our domain T. Then the Boolean

disjunction of the bounds BL1 + BL2 is given by:

BL1 + BL2 = lower
(

BL1, BL2

)

Proof: This proof is analogous to the proof of Theorem 3.4.1 (page 56) above.

Theorem 3.4.4.Disjunction of Right Bounds: This is illustrated in Figure 3.3.

Consider two arbitrary right bounds BR1 and BR2 over our domain T. Then the

Boolean disjunction of the bounds BR1 + BR2 is given by:

BR1 + BR2 = higherbound
(

BR1, BR2

)

Proof: This proof is analogous to the proof of Theorem 3.4.1 (page 56) above.

We complete this section by showing that the disjunction of aleft and right

bound always yields “true” whenever the left bound is less than or equal to the

right bound.

Theorem 3.4.5.Disjunction of Left and Right Bounds: Consider an arbitrary left

bound BL and an arbitrary right bound BR. Left bound BL is composed of a limit

58 Chapter 3. An Algebra of Intervals

and a value: BL = lLvL while right bound BR is composed of a value and a limit:

BR = vRlR. Then:

BL ≤ BR ⇒ BL + BR = true

Proof: There are two cases to consider. In the first case, BL ≤ BR because the

values vL < vR. In the second case, BL ≤ BR because the values are equal to a value

v say, but the limits lL ≤ lR. Consider a variable x∈ T.

In the first case, vL < vR. Since all values t∈ T are by our definition able to be

totally ordered, then it is axiomatic that(x ≤ vR) + (vR ≤ x) = true by the axiom

of totality (Gemignani 1990). But vL < vR so we may write:

x ≤ vR + vR ≤ x = true

x ≤ vR + vL ≤ x = true

x ≥ vL + x ≤ vR = true

BL + BR = true

In the second case, inspection of Algorithm 3.4.1 (page 53) shows that the only

way left limit lL can be less than or equal to right limit lR is when lL = [and lR =].

Then:

BL + BR = (x ≥ v) + (x ≤ v)

= true

3.4.7.1 Summary: Conjunction and Disjunction of Bounds

We now summarise the results for the conjunction and disjunction of bounds from

this section in Table 3.7.

Description Operation Algorithm
Conjunction of left bounds BL1 · BL2 higher

(

BL1, BL2

)

Conjunction of right bounds BR1 · BR2 lower
(

BR1, BR2

)

Disjunction of left bounds BL1 + BL2 lower
(

BL1, BL2

)

Disjunction of right bounds BR1 + BR2 higher
(

BR1, BR2

)

Disjunction of left and right bounds BL + BR true if BL ≤ BR

Table 3.7:Summary of important results for conjunction and disjuncti on of bounds.

3.5 Intervals

We now define the data type,interval, which will be central to our algebra of

intervals. Our definition is a generalisation of an intervalon the Real number

3.5. Intervals 59

line (Muñoz & Lester 2005). We first show informally in Example 3.5.1 how left

and right bounds combine to construct aninterval.

Example 3.5.1.Consider the two Real number instances a,b ∈ R and a variable

x ∈ R. Using the four bounds defined above in Definition 3.4.1 we may form four

real intervals which have the interpretation described in Table 3.8. Note that if

Left Bound Right Bound Interval Interpretation
[a b] [a,b] {x : a ≤ x ≤ b}
(a b] (a,b] {x : a < x ≤ b}
[a b) [a,b) {x : a ≤ x < b}
(a b) (a,b) {x : a < x < b}

Table 3.8:Four intervals and their interpretation .

b < a, the interval is empty. The special case of the interval[a,a] denotes the point

a.

Definition 3.5.1. Interval: Consider our data type T for which we have a well

defined total ordering. Consider an arbitrary left bound BL and an arbitrary right

bound BR. An interval IT over the domain of T is defined by the Boolean conjunction

of the left and right bounds. That is:

IT = BL · BR

But the left and right bounds can be written in terms of their values tL, tR ∈ T plus

an associated limit operator〈, 〉:

BL = 〈tL where 〈 ∈ { (, [}

BR = tR〉 where 〉 ∈ {) ,] }

So we may write:

IT = BL · BR

= 〈tL · tR〉

Example 3.5.2.Figure 3.4 depicts some arbitrary intervals on the Real number

line. In each case we write the interval depicted using the familiar notation of in-

clusive and exclusive real intervals and underneath write the equivalent expression

using Boolean operators.

Our interval definition imposes no extra conditions other than those already dis-

cussed. We insist only thatBL and BR are left and right bounds respectively. In

particular, we say nothing as to whether intervalIT actually encloses any instances

t ∈ T.

60 Chapter 3. An Algebra of Intervals

r7 < x < r8 : xєR

r5 ≤ x < r6 : xєR

r3 < x ≤ r4 : xєR

r1 ≤ x ≤ r2 : xєR

r8 r7

r6 r5

r4 r3

r2 r1

(r7,r8)

[r5,r6)

(r3,r4]

[r1,r2]

R

R

R

R

Figure 3.4:Intervals on the Real number line: Pointsr1 to r8 are arbitrary points on the Real
number line. Using these points we construct some intervalson the Real number line. In each case
we write the interval depicted using the familiar notation of inclusive and exclusive intervals and
underneath write the equivalent expression using Boolean comparison operators.

3.5.1 Special Intervals

In Definition 3.5.1 (page 59) we defined theinterval data type that will be central to

our interval algebra. Before we can describe the algebra itself, we first define some

special intervals which we then utilise in our description.Our goal is to define an

algebra which is analogous to Boolean algebra. We therefore require someidentity

elements, analogous to the Boolean constants “true” and “false”. These are the

special intervals we describe in the remainder of this section and this foreshadows

Section 3.10 (page 74).

3.5.1.1 The Infinite Interval

In Definitions 3.2.1 and 3.2.2 (page 47) we defined two specialvalues, “MINF” and

“PINF” which we use as constants to denote valuesminus infinityandplus infinity

respectively. Then in Definitions 3.4.2 and 3.4.3 (page 53) we utilised these two

constants to define an infinite left bound “MIB” and an infinite right bound “PIB”.

We now use these special bounds along with Definition 3.5.1 (page 59) to define the

infinite interval.

Definition 3.5.2. Infinite Interval : This is the interval defined by setting the left

bound to MIB and the right bound to PIB. We use the symbol1 to denote the

3.5. Intervals 61

infinite interval. Therefore we may write:

MIB,PIB ≡ [MINF,PINF]

≡ 1

If we think of the infinite interval as an assertion, it asserts that the valid or legal

range of values for this domain must lie between plus or minusinfinity, an assertion

that isalways true. We employ the symbol “1” across all data types represented by

T, in each case relying on context to convey the type of infiniteinterval to which

we are referring.

Theorem 3.5.1.The infinite interval1 is equivalent2 to the Boolean constant “true”.

Proof: From Definition 3.5.2 above we may write the infinite interval as

[MINF,PINF]. But this is equivalent to the Boolean expression:

{x : MINF ≤ x ≤ PINF}

for some variable x∈ T. By Definitions 3.2.1 and 3.2.2 (page 47), this expression

must always be true since all instances of T must fall (inclusively) between MINF

and PINF.

3.5.1.2 The Null Interval

Definition 3.5.1 (page 59), our interval definition, makes noassumption as to the

relative rank of bounds making up the interval. For example,if our data type is the

Real numbers, we do not assume the left value is always less than or equal to the

right value, as intuition might dictate.

Example 3.5.3.Figure 3.5 depicts an arbitrary interval on the Real number line

where the right bound r2] is approaching the left bound[r1 . Eventually the bounds

enclose the single value r1 = r2. But there are no constraints on the values of r1 and

r2 so, for example, r2 may be less than r1, giving rise to anull interval. The interval

still exists, as do the bounds that comprise it. However, the interval encloses no

instances of r∈ R.

Definition 3.5.3. The Null Interval: Consider an arbitrary interval I over our

domain T consisting of a left bound BL and a right bound BR. That is, I= BL · BR.

Then I is the null interval if and only if BR < BL. We use the symbol0 to denote the

null interval. We may write:

I = 0 ⇔ BR < BL

2We mean “equivalent” in the sense that when an interval is considered as a Boolean assertion,
the infinite interval behaves exactly like the truth value “true”.

62 Chapter 3. An Algebra of Intervals

[r1,r2] = 0

[r1,r2] = [r1,r1]

[r1,r2]

[r1,r2]

r2 r1

r2

r1

r2 r1

r2 r1

R

r2 r1

[r1,r2]

R

R

R

R

Figure 3.5: Intervals on the Real number line: We picture an arbitrary interval on the Real
number line where the right boundr2] is approaching the left bound[r1 . In the first three number
lines, r2 > r1. Eventually the bounds enclose the single valuer1 = r2. In the final number line,
r2 < r1 and the interval isnull.

The null interval, as we have defined it above, never enclosesany values and is

analogous to theempty setwhich contains no members. If we think of the null

interval as an assertion, it asserts that there isno valid or legal range of values

enclosed by the interval, in this domain. We employ the symbol “ 0” across all data

types, in each case relying on context to convey the type of null interval to which we

are referring. Several consequences follow immediately from the above definition.

Theorem 3.5.2.Consider the arbitrary values t, t′ ∈ T such that t′ > t. Then the

following is true of the intervals formed from values t and t′:

(t, t) = 0 (3.1)

[t, t) = 0 (3.2)

(t, t] = 0 (3.3)

〈t′, t〉 = 0 (3.4)

Proof: The right bound in all the above is less than the left bound.

In the case of the first three Equations 3.1 to 3.3, where the left and right values

t ∈ T are identical, the rank of the bound is determined solely bycomparing the

left limit operator with the right limit operator. This can belooked up in Table 3.2

(page 49) and in each case returns1, indicating the left bound is greater than the

3.6. Conjunction of Intervals 63

right bound. Therefore by Definition 3.5.3 above (page 61), in each of the three

cases the interval must be null.

In the case of the last Equation 3.4, by Algorithm 3.4.1 (page53), the right

bound must be less than the left bound because t′ > t, irrespective of the value of

the left limit or the right limit. Therefore by Definition 3.5.3 above, the interval must

be null.

Corollary 3.5.2.1. There are no other forms of the null interval other than the cases

depicted in Equations 3.1 to 3.4.

Proof: By Definition 3.5.3, an interval is null if and only if its right bound is less

than its left bound.

When both left and rightvaluesare the same there can only be four different

ways of writing the limits (two left limits times two right limits). The only permuta-

tion missing from Equations 3.1 to 3.3 is “[t, t]” which is not null since the bounds

are equal. Therefore, the three forms depicted in Equations3.1 to 3.3 are the only

null intervals when the values are the same.

When the values are different, by Algorithm 3.4.1 (page 53), the limits are ir-

relevant and the rank of the bounds is determined solely by the rank of the values.

Therefore, the only other case to consider is when t′ ≤ t. But in this case, the left

bound must be less than or equal to the right bound, so the interval cannot be null.

Therefore Equation 3.4 is the only interval form which is nullwhen the values are

different.

Corollary 3.5.2.2. The null interval0 is equivalent3 to the Boolean constant “false”.

Proof: From Theorem 3.5.2 above, the interval(t, t) is always null, for all t∈ T. So

whenever the null interval occurs we might just as well substitute (t, t). But we can

think of(t, t) as the following logical assertion about some variable x∈ T:

{x : x > t · x < t}

where t is some constant. This assertion is always false. Similarly, we can substitute

any of the other forms of the null interval depicted in Equations 3.1 to 3.4. All four

cases are set out in Table 3.9 below. In each case the truth value of the assertion

evaluates tofalse.

3.6 Conjunction of Intervals

In this section we define a binary operatorconjunctionwhich is analogous to Boolean

conjunction. We first derive a theorem for this operation using Boolean algebra. We

3We mean “equivalent” in the sense that when an interval is considered as a Boolean assertion,
the null interval behaves exactly like the truth value “false”.

64 Chapter 3. An Algebra of Intervals

Null Interval Assertion Truth Value
(t, t) {x : x > t · x < t} false

[t, t) {x : x ≥ t · x < t} false

(t, t] {x : x > t · x ≤ t} false

〈t′, t〉 {x : x ≻ t′ · x ≺ t · t′ > t} false

Table 3.9:Corollary 3.5.2.2: Each form of the null interval may be rewritten as a logical assertion.
In each case, the truth value of the assertion is seen to befalse. The symbol “≻” denotes either “>”
or “≥”. Similarly, the symbol “≺” denotes either “<” or “≤”.

then give an explicit algorithm for this operation.

Informally, the conjunction of two intervals is the interval formed by thehigher

of left boundsand lower of right bounds. Conjunction of intervals is illustrated in

Figure 3.6.

I1

T

con(I1,I2)

BL2 BR1

BL2 BR2

BL1

T

T BR1

I2

Figure 3.6:The Boolean conjunction of two intervalsI1 andI2 is represented graphically by the
intersection of the intervals. The conjunctionI1 · I2 returns another interval which can never be more
expansive than eitherI1 or I2. If the intervals are disjoint, their intersection is null.

Theorem 3.6.1.Conjunction of Intervals: The Boolean conjunction of interval I1

with interval I2 is given by:

I1 · I2 = higher
(

BL1, BL2

)

· lower
(

BR1, BR2

)

Proof:

I1 · I2 =
(

BL1 · BR1

)

·
(

BL2 · BR2

)

= BL1 · BR1 · BL2 · BR2

=
(

BL1 · BL2

)

·
(

BR1 · BR2

)

= higher
(

BL1, BL2

)

·
(

BR1 · BR2

)

by Thm 3.4.1

= higher
(

BL1, BL2

)

· lower
(

BR1, BR2

)

by Thm 3.4.2

We now use the above theorem to define a conjunction algorithmfor inter-

vals. The following algorithm uses the functions “lower” and “higher” from Al-

3.7. Disjunction of Intervals 65

gorithms 3.4.2 and 3.4.3 (page 54).

Algorithm 3.6.1. Conjunction of Intervals: The conjunction “con” of interval I1
with interval I2 is given by the following pseudo-code function:

con(I1, I2) return interval is

return higher
(

BL1, BL2

)

· lower
(

BR1, BR2

)

;

The conjunction of two intervals always returns another (possibly null) interval.

That is, the binary operation conjunction isclosedfor intervals. Furthermore, the

conjunction of two intervals can never result in an expandedinterval; i.e., the re-

sulting interval can never encompass more than the smaller of the two intervals.

3.7 Disjunction of Intervals

In this section we define a binary operatordisjunctionwhich is analogous to Boolean

disjunction. We first define precisely what we mean by intervals thatoverlap, in-

tervals thattouch and intervals that aredisjoint. We then derive a theorem for the

disjunction operation using Boolean algebra.

Informally, the disjunction of two intervals is given by thefollowing. If two

intervals overlap or they touch, their disjunction is the interval formed by thelower

of left boundsand higher of right bounds. This is illustrated in Figures 3.7(a)

and 3.7(b). If the intervals are disjoint, the result is the interval list containing

the two (disjoint) intervals. This is illustrated in Figure3.7(c).

Intuitively, two intervalsoverlapwhen their intersection is non-null. Refer to

Figure 3.7(a). Using the result of Theorem 3.5.2 and Theorem3.6.1, this leads

immediately to the following definition.

Definition 3.7.1. Interval Overlap: Consider two arbitrary intervals I1 and I2 over

T. These intervals overlap if and only if their intersectionis non-null. That is:

overlap(I1, I2) ⇔ ¬ (I1 · I2 = 0)

⇔ ¬
(

higher
(

BL1, BL2

)

> lower
(

BR1, BR2

))

⇔ higher
(

BL1, BL2

)

≤ lower
(

BR1, BR2

)

Intuitively, two intervalstouch when the right bound of one interval has the

same value as the left bound of the other interval, but one limit is inclusive while

the other is exclusive (or vice versa). Refer to Figure 3.7(b). This leads to the

following definition.

Definition 3.7.2. Interval Touch: Consider two arbitrary intervals I1 and I2 over

T comprising values a1,b1,a2,b2 ∈ T and limits〈1, 〈2∈ { (, [} and〉1, 〉2 ∈ {),] } such

66 Chapter 3. An Algebra of Intervals

I1+I2

I2

I1

T BL1 BR2

BL2 BR2

BL1

T

T BR1

(a) Disjunction of overlapping intervals

I1+I2

I2

I1

BR2 T BL1

BL2 BR2

BL1

T

T BR1

(b) Disjunction of touching intervals

I2 I1
I1+I2

I2

I1

BL2 BR2 T BL1

BL2

BR1

BR2

BL1

T

T BR1

(c) Disjunction of disjoint intervals

Figure 3.7:The Boolean disjunction of two intervalsI1 andI2 is represented graphically by the
union of the intervals. If the intervals overlap or touch, the disjunction is formed by lower of left
bounds and the higher of right bounds. If the intervals are disjoint, the disjunctionI1 + I2 returns an
interval list comprised of the same two intervals.

that

I1 = BL1 · BR1

= 〈1a1 · b1〉1

I2 = BL2 · BR2

= 〈2a2 · b2〉2

3.7. Disjunction of Intervals 67

Writing the negation of left limit〈 as 〈′ and negation of right limit〉 as 〉′, these

intervalstouchif and only if the following is true:

touch(I1, I2) ⇔
(

b1 = a2 · 〉1= 〈
′
2

)

+
(

a1 = b2 · 〈1= 〉
′
2

)

We now define disjoint intervals as intervals that neither overlap nor touch.

Definition 3.7.3. Disjoint Intervals: Consider two arbitrary intervals I1 and I2 over

T. These intervals are disjoint if and only if they neither overlap nor touch. That is:

dis joint(I1, I2) ⇔ ¬overlap(I1, I2) · ¬touch(I1, I2)

Now we utilise Definition 3.7.3 above to derive a theorem for the disjunction of

two intervals.

Theorem 3.7.1.Disjunction of Intervals: The Boolean disjunction of interval I1

with interval I2 is given by the following.

• If the intervals overlap or touch then:

I1 + I2 = lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

• If the intervals are disjoint then:

I1 + I2 = {I1, I2}

Proof: The proof of the second case above when the intervals are disjoint is trivial.

In the first case, we consider first when the intervals overlap, then when the intervals

touch.

Consider Figure 3.7(a) (page 66), which depicts overlapping intervals. We

have:

I1 + I2 =
(

BL1 · BR1

)

+
(

BL2 · BR2

)

=
(

BL1 + BL2

)

·
(

BL1 + BR2

)

·
(

BR1 + BL2

)

·
(

BR1 + BR2

)

(3.5)

Looking at the first term of Equation 3.5 above:

(

BL1 + BL2

)

= lower
(

BL1, BL2

)

by Theorem 3.4.3

Similarly, looking at the last term of Equation 3.5 above:

(

BR1 + BR2

)

= higher
(

BR1, BR2

)

by Theorem 3.4.4

68 Chapter 3. An Algebra of Intervals

So we may write I1 + I2 as:

lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

·
(

BL1 + BR2

)

·
(

BR1 + BL2

)

(3.6)

But the remaining terms in Equation 3.6 above,
(

BL1 + BR2

)

and
(

BR1 + BL2

)

are both

equal to “true” by Theorem 3.4.5 since in both cases the left bound is less than or

equal to the right bound (otherwise there would be no overlap).So:

I1 + I2 = lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

· true · true

= lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

Now consider Figure 3.7(b) (page 66), which depicts touching intervals. Re-

ferring to Equation 3.6 above, the term
(

BL1 + BR2

)

is again equal to “true” by

Theorem 3.4.5. At the touching bounds, the values are equal to a value v say, but

one limit is inclusive while the other is exclusive (by Definition 3.7.2). Suppose the

touching right bound is inclusive; i.e., BR1 = v]. Then the touching left bound must

be BL2 = (v. Then the term
(

BR1 + BL2

)

in Equation 3.6 above is given by:

(

BR1 + BL2

)

= BR1 = v] + (v

= {x : x ≤ v + x > v}

= true

Therefore, Equation 3.6 again reduces to:

I1 + I2 = lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

· true · true

= lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

The intervals of Figure 3.7(a) depicts interval I1 preceding interval I2. It is also

possible that interval I2 precedes interval I1. In this case, the proof proceeds in an

identical fashion to the above.

The disjunction of two intervals produces either another interval (if the two in-

tervals overlap or touch) or exactly the two original intervals (if the two intervals

are disjoint). Therefore, the binary operation disjunction is not closedfor intervals,

since a set or collection of intervals results in the case where the intervals are dis-

joint. This result is the motivation for a new data type, theinterval list, which is a

disjunction of disjoint intervals. We define precisely whatwe mean byinterval list

in Section 3.8 below (page 69).

We complete this section by using Definitions 3.7.1, 3.7.2 and 3.7.3 to define

algorithms for intervaloverlap, touchanddisjointness.

Algorithm 3.7.1. Overlap of Intervals: The Boolean function “overlap” of interval

I1 = BL1 · BR1 with interval I2 = BL2 · BR2 is given by the following pseudo-code

3.8. Interval Lists 69

function:

overlap(I1, I2) return boolean is

return higher
(

BL1, BL2

)

≤ lower
(

BR1, BR2

)

;

Algorithm 3.7.2. Touch of Intervals: Consider interval I1 comprising left bound

l1a1 and right bound b1r1 where l1, r1 are respectively the left and right limits and

a1,b1 are respectively the left and right values. Similarly, interval I2 comprises

left bound l2a2 and right bound b2r2 where l2, r2 are respectively the left and right

limits and a2,b2 are respectively the left and right values. Then the Booleanfunc-

tion “touch” of interval I1 = l1a1 · b1r1 with interval I2 = l2a2 · b2r2 is given

by the following pseudo-code function. This function calls the negation of limits

Algorithm 3.3.2 (page 50):

touch(I1, I2) return boolean is

return (b1 = a2 and r1 = neg(l2)) or (a1 = b2 and l1 = neg(r2)) ;

Algorithm 3.7.3. Disjointness of Intervals: The Boolean function “dis joint” of

interval I1 = BL1 · BR1 with interval I2 = BL2 · BR2 is given by the following pseudo-

code function:

dis joint(I1, I2) return boolean is

return not overlap(I1, I2) and not touch(I1, I2) ;

3.8 Interval Lists

We now introduce theinterval list, which is simply a collection of intervals that

do not intersect. We first describe informally what we mean bythe term interval

list, looking at it first as a logical assertion and then as a helpful data structure. We

impose the special condition that our interval lists be composed ofdisjoint intervals.

We then provide a precise definition.

It will often be convenient to picture a list of several intervals at once, with each

interval defining a legal range of values, all with respect toa particular variable.

Example 3.8.1.Referring to Figure 3.8, we have depicted two interval lists L1

and L2. Interval list L1 is composed of the three disjoint intervals I1, I2 and I3 while

interval list L2 is composed of the two disjoint intervals J1 and J2. The interpretation

of the interval lists is straightforward. Interval list L1 asserts that the valid or legal

range of values (in this example the values are Real numbers)must lie between the

bounds comprising I1 or between the bounds comprising I2 or between the bounds

comprising I3. Interval list L2 asserts that the valid or legal range of values must

lie between the bounds comprising J1 or J2.

70 Chapter 3. An Algebra of Intervals

L2

L1

J1 J2

I3 I1

R

R I2

Figure 3.8:Two interval lists: Interval listL1 is composed of the three disjoint intervalsI1, I2 and
I3 while interval listL2 is composed of the two disjoint intervalsJ1 andJ2.

In Section 3.5 (page 58), we emphasized that an interval is anassertion about

the legal or valid range of values a variable may assume. Logically, an interval list

is adisjunctionof such assertions; i.e., a list of intervals connected by the Boolean

“or” operator.

Later in this chapter we will use both the interval and interval list as helpful data

structures. As a data structure, an interval list is acollectionor setof intervals in

the sense that many programming languages use these terms (Doke et al. 2003).

Whenever we employ such a list of intervals, we will insist that each is disjoint;

i.e., no interval overlaps or touches any other interval. However, we do not insist

interval lists are in any sense anorderedcollection of intervals. Indeed we make no

attempt to define an ordering for intervals in this context4.

3.8.1 Notation for Interval Lists

In order to conveniently represent interval lists, we borrow from the notation of

summation algebra (Poole 2005) and employ the “
∑

” symbol to denote Boolean

disjunction and the “
∏

” symbol to denote Boolean conjunction (Maurer 2004).

The following definitions make this explicit.

Definition 3.8.1. Boolean Sum: Consider a set of n Boolean assertions

A1,A2, · · · ,An. We denote the disjunction of these assertions by:

n
∑

i=1

Ai ≡ A1 + A2 + · · · + An

Definition 3.8.2. Boolean Product: Consider a set of n Boolean assertions

4In fact it is possible to define a deterministic ordering for intervals. We have implemented such
an ordering based on consideration first of the rank of the intervals’ left bounds. If these are equal
we then consider the rank of the intervals’ right bounds. However, we do not utilise interval ordering
for the disjunction, conjunction and negation operations we define in this chapter.

3.8. Interval Lists 71

A1,A2, · · · ,An. We denote the conjunction of these assertions by:

n
∏

i=1

Ai ≡ A1 · A2 · · · · · An

In order to emphasize an interval listL is a disjunction ofdisjoint intervals, when

it is convenient to do so, we will write the disjunction simply as a list enclosed by

braces in the following manner:

L = I1 + I2 + · · · + In

= {I1, I2, · · · , In}

3.8.2 Definition of Interval List

We can now precisely define what we mean by an interval list.

Definition 3.8.3. Interval List: Consider a set of n disjoint intervals I1, I2, · · · , In

over the domain T. Then an interval list L is the Boolean disjunction of these

intervals. That is:

L =
n
∑

i=1

I i

= I1 + I2 + · · · + In

= {I1, I2, · · · , In}

3.8.3 Interval Disjunction Algorithm

We can now give an algorithm for the disjunction of two intervals. The data type

returned by the function is always an interval list consisting of either one inter-

val (when the intervals overlap or touch) or two intervals (when the intervals are

disjoint). This algorithm makes use of Algorithm 3.7.3, the“disjoint” function

(page 69). Interval disjunction is depicted in Figure 3.7 (page 66).

Algorithm 3.8.1. Disjunction of Intervals: The disjunction “dis” of interval I1
with interval I2 is given by the following pseudo-code function:

dis(I1, I2) return interval list is

L← {};

i f dis joint(I1, I2) then

L← {I1 , I2};

else

L← {lower
(

BL1, BL2

)

· higher
(

BR1, BR2

)

}

endi f;

return L;

72 Chapter 3. An Algebra of Intervals

3.9 Negation of Intervals

[vR, PINF] [MINF, vL)

vR vL

vL

T

T vR

I

¬I = { [MINF, vL) , [vR, PINF] }

Figure 3.9:Interval negation: Interval I = [vL, vR). Negating intervalI gives everythingexcept
I . This results in an intervallist consisting of exactly two intervals. The original valuesvL andvR

are unchanged; only their limits are negated.

The negation of intervalI encloses every valueexceptthe values enclosed by

interval I . Consider Figure 3.9 which illustrates the negation of an interval. Con-

sidering an interval as the Boolean conjunction of a left bound with a right bound,

negating an interval must negate this conjunction. This leads directly to the Theo-

rem 3.9.1 below.

Theorem 3.9.1.Negation of Interval: Consider a non-null interval I over domain

T. We can decompose this interval into its left and right bounds BL and BR. Then

each bound can be decomposed further into a value and an associated limit:

I = BL · BR

= 〈vL · vR〉

Let the negation of left limit〈 be written as〈′ and the negation of right limit〉 be

written as〉′, determined by looking up Table 3.3 (page 50). We make use of the two

constants MINF and PINF from Section 3.2.5 (page 47). Then the negation¬I of

interval I is given by the following interval list composed ofexactly two intervals:

¬I = {
[

MINF · vL〈
′ , 〉′vR · PINF

]

}

Proof: For simplicity we will assume the left and right limits are both inclusive.

Considering an interval as the Boolean conjunction of a left bound with a right

3.9. Negation of Intervals 73

bound and negating, we get:

¬I = ¬ (BL · BR)

= ¬ [vL + ¬ vR]

= vL) + (vR by Def 3.4.4

= {x : (x < vL) + (vR < x)}

= {x : (MINF ≤ x < vL) + (vR < x ≤ PINF)} by Defs 3.2.1, 3.2.2

= [MINF, vL) + (vR,PINF] by Def 3.5.1

= { [MINF, vL) , (vR,PINF] } by Def 3.8.3

In the above proof we assumed the left and right limits were bothinclusive, but an

analogous proof can be written for any combination of limits.

With the exception of the two special cases when the left bound is MINF or the

right bound isPINF, the negation of an interval returns an intervallist. Therefore,

the unary operation negation isnot closedfor intervals.

We now derive the results for the negation of the two special intervals0 (the null

interval) and1 (the infinite interval).

Theorem 3.9.2.Negating the Null Interval: The negation of the null interval0 is

the infinite interval1.

Proof:

0 = (t, t) ∀t ∈ T by Thm 3.5.2

= {x : x > t · x < t}

Negating the above expression, we may write:

¬0 = {x : ¬ (x > t · x < t)}

= {x : ¬ (x > t) + ¬ (x < t)}

= {x : (x ≤ t) + (x ≥ t)}

= 1 by Thm 3.4.5

Theorem 3.9.3.Negating the Infinite Interval: The negation of the infinite interval

1 is the null interval0.

74 Chapter 3. An Algebra of Intervals

Proof:

1 = MIB · PIB by Defs 3.4.2, 3.4.3

¬1 = ¬ (MIB · PIB)

= ¬MIB + ¬PIB

= {x : ¬ (x ≥ MINF) + ¬ (x ≤ PINF) }

= {x : (x < MINF) + (x > PINF)}

= {x : 0+ 0}

= 0

We now use Theorem 3.9.1 and Theorems 3.9.2 and 3.9.3 to construct an algo-

rithm for interval negation.

Algorithm 3.9.1. Negation of Interval: In the following, we write the negation of

left limit 〈 as 〈′ and the negation of right limit〉 as 〉′. Then the negation “neg” of

interval I = 〈vL, vR〉 is given by the following pseudo-code function:

neg(I) return interval list is

L← {};

i f I = 0 then

L← {1}

elsi f I = 1 then

L← {0}

else

L← { [MINF, vL〈
′ , 〉′vR,PINF] }

endi f;

return L;

3.10 Identity Elements For Intervals

In this section we use the definitions of the null and infinite intervals from Sec-

tions 3.5.1 (page 60) and the theorems for the conjunction, disjunction and negation

of intervals to derive twoidentity elementsfor intervals. These are analogous to the

Boolean constants “true” and “false”.

3.10.1 Identity Element for Conjunction of Intervals

We now show how the infinite interval1 from Definition 3.5.2 (page 60) acts as the

identity element when we apply the binary operator “·” (conjunction) to intervals.

3.10. Identity Elements For Intervals 75

Theorem 3.10.1.The infinite interval1 is the identity element when we apply the

binary operator “·” (conjunction) to intervals.

Proof: Consider an arbitrary interval I over our domain T and its conjunction with

infinite interval1. We may write:

I = BL · BR

1 = MIB · PIB by Def 3.5.2

Therefore:

I · 1 = higher(BL,MIB) · lower(BR,PIB) by Thm 3.6.1

= BL · BR by Defs 3.4.2, 3.4.3

= I

Similarly:

1 · I = higher(MIB, BL) · lower(PIB, BR)

= BL · BR

= I

Since I was an arbitrary interval,1 is therefore the identity element when we apply

the binary operator “·” (conjunction) to intervals.

3.10.2 Identity Element for Disjunction of Intervals

We now show how the null interval0 from Definition 3.5.3 (page 61) acts as the

identity element when we apply the binary operator “+” (disjunction) to intervals.

Theorem 3.10.2.The null interval0 is the identity element when we apply the

binary operator “+” (disjunction) to intervals.

Proof: Consider an arbitrary interval I over our domain T and its disjunction with

null interval 0. Since the null interval cannot enclose any values, we know a priori

that there can be no overlap with I. So we may write:

I + 0 = {I , 0} by Thm 3.7.1

= I + false by Cor 3.5.2.2

= I

Similarly:

0+ I = {0 , I }

= false + I

= I

Since I was an arbitrary interval,0 is therefore the identity element when we apply

the binary operator “+” (disjunction) to intervals.

76 Chapter 3. An Algebra of Intervals

3.10.3 Informal Examples: Negation When a Bound is Infinite

We now informally consider some examples of negating intervals where one or both

of the bounds are infinite. Our purpose is to show that the algorithm we have stated

for the negation of an interval is sound and that the way we propose to treat infinite

values and bounds is sound.

t
T

T

I = [MINF, t]

¬I = (t, PINF]

Figure 3.10:Negation when one bound is infinite: Interval I encompasses the entire domainT
from MINF (minus infinity) tot ∈ T. Its negation¬I therefore encompasses the complement of this
interval. Refer toExample 3.10.1.

Example 3.10.1.This example is illustrated in Figure 3.10. Consider an interval I

comprising a left bound which is the infinite left bound MIB andan inclusive right

bound given by BR = t]. We wish to find the negation of I. We may write:

I = MIB, BR

= [MINF, t] by Def 3.4.2

Therefore:

¬I = ¬ ([MINF, t])

= { [MINF, MINF) , (t, PINF] } by Thm 3.9.1

= { 0 , (t, PINF] } by Thm 3.5.2

= { (t, PINF] } by Thm 3.10.1

¬I = 0

T

T

I = [MINF, PINF] = 1

Figure 3.11:Negation when both bounds are infinite: Interval I occupies the entire domainT.
Its negation¬I is the null interval list0. Refer toExample 3.10.2.

Example 3.10.2.In this example we consider the extreme case where our interval

I encompasses all values in the domain T. That is, I is the infinite interval. This

example is illustrated in Figure 3.11. We may write:

3.11. Interval Subsumption and Implication 77

I = 1

= MIB, PIB

= [MINF, PINF] by Def 3.5.2

Therefore:

¬I = ¬ ([MINF, PINF])

= { [MINF, MINF) , (PINF, PINF] } by Thm 3.9.1

= { 0 , 0} by Thm 3.5.2

= { 0} by Thm 3.10.1

3.11 Interval Subsumption and Implication

In this section we define two further Boolean functions,sub (subsumes) andimp

(implies) which operate on our interval data type. Our objective is to define a func-

tion analogous to the Boolean “implies”. This will enhance the use of our interval

algebra as a reasoning engine.

3.11.1 Interval Subsumption

We now consider subsumption of intervals. Consider Figure 3.12. We firstly define

precisely what we mean by subsumption of intervals and then derive a theorem

which follows from the definition.

T

T

I1

I2
BL1 BR1

BL2 BR2

Figure 3.12:Subsumption of intervals: Interval I1 by definitionsubsumes I2 whenever its left
boundBL1 is less than or equal toBL2 and its right boundBR1 is greater than or equal toBR2.

Definition 3.11.1. Interval Subsumption: Consider two arbitrary intervals I1 and

I2. Interval I1 consists of left bound BL1 and right bound BR1. Similarly, interval I2
consists of left bound BL2 and right bound BR2. Then I1 subsumesI2 if and only if

BL1 ≤ BL2 and BR1 ≥ BR2. That is:

I1 subsumes I2 ⇔
(

BL1 ≤ BL2

)

·
(

BR1 ≥ BR2

)

We now give an algorithm for the Boolean function “sub” (subsumes). This def-

inition implicitly utilises the “comparebound” function of Algorithm 3.4.1 (page 53).

78 Chapter 3. An Algebra of Intervals

Algorithm 3.11.1. Interval Subsumption: The Boolean function “sub” (subsumes)

is given by the following pseudo-code function:

sub(I1, I2) return boolean is

return
(

BL1 ≤ BL2

)

and
(

BR1 ≥ BR2

)

;

We now prove a theorem which follows from Definition 3.11.1 above.

Theorem 3.11.1.Conjunction of Subsumed Intervals: Given intervals I1 and I2
as defined above in Definition 3.11.1 and given that I1 subsumes I2, then:

I1 · I2 = I2

Proof: From the conjunction algorithm of Theorem 3.6.1 (page 64) wehave that

I1 · I2 = higher
(

BL1, BL2

)

· lower
(

BR1, BR2

)

But using the subsumption definition above, higher
(

BL1, BL2

)

= BL2

while lower
(

BR1, BR2

)

= BR2. Therefore:

I1 · I2 = BL2 · BR2

= I2

3.11.2 Interval Implication

We now consider implication with intervals. We use the term “implies” precisely to

mean Boolean implication and employ the symbol “→”. We take as axiomatic that

for any propositionsP andQ:

P→ Q ≡ ¬P+ Q

Consider again Figure 3.12. We firstly show that if intervalI1 subsumes intervalI2

thenI2 implies I1.

Theorem 3.11.2.Interval Implication: Consider an interval I1 = BL1 · BR1 which

subsumes interval I2 = BL2 · BR2. Then I2→ I1.

Proof (by contradiction): Assume I1 subsumes I2 but that I2 does not imply I1. That

3.12. Disjunction of Interval Lists 79

is:

¬ (I2→ I1) = ¬ (¬I2 + I1)

= I2 · ¬I1

= BL2 · BR2 · ¬
(

BL1 · BR1

)

= BL2 · BR2 ·
(

¬BL1 + ¬BR1

)

=
(

BL2 · BR2 · ¬BL1

)

+
(

BL2 · BR2 · ¬BR1

)

=
(

BL2 · ¬BL1 · BR2

)

+
(

BR2 · ¬BR1 · BL2

)

Consider the first term
(

BL2 · ¬BL1 · BR2

)

. Since by definition BL1 ≤ BL2, it must be

false that BL2 · ¬BL1. Similarly, considering the second term
(

BR2 · ¬BR1 · BL2

)

, it

must be false that BR2 · ¬BR1. Therefore:

¬ (I2→ I1) = false + false

= false

Therefore it cannot be the case that¬ (I2→ I1) and we therefore conclude that

(I2→ I1).

We now give an algorithm for the Boolean function “imp” (implies). This algo-

rithm utilises the subsumption function of Algorithm 3.11.1.

Algorithm 3.11.2. Interval Implication: The Boolean function “imp” (implies) is

given by the following pseudo-code function:

imp(I1, I2) return boolean is

return sub(I2, I1) ;

3.12 Disjunction of Interval Lists

In this section we extend the definition of interval disjunction from Sections 3.7

(page 65) to apply to intervallists. We are led to this new definition by noting that

an interval list (as we have defined it in Definition 3.8.3, page 71) is nothing more

than a Boolean disjunction of intervals. We make use of the summation notation

from Section 3.8.1 (page 70). The disjunction of interval lists on the Real number

line is depicted in Figure 3.13 as the union of the two lists.

Theorem 3.12.1. Disjunction of Interval Lists: Consider interval lists

L1 = {I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jm}. Then the disjunction of these lists

L1 + L2 is given by:

L1 + L2 =

m
∑

j=1

n
∑

i=1

(

I i + J j

)

80 Chapter 3. An Algebra of Intervals

R

R

L1 + L2

L1 . L2

L2 = {J1,J2}

L1 = {I1,I2,I3}

J1 J2

I3 I1

R

R I2

Figure 3.13:Interval list conjunction and disjunction : We may represent the conjunction of
two interval listsL1 andL2 as theintersectionof the two lists. Similarly, the disjunction of the two
lists is theunionof the two lists.

Proof:

L1 + L2 =

n
∑

i=1

I i +

m
∑

j=1

J j

= (I1 + I2 + · · · + In) + J1

+ (I1 + I2 + · · · + In) + J2

...

+ (I1 + I2 + · · · + In) + Jm

=

m
∑

j=1

n
∑

i=1

(

I i + J j

)

Theorem 3.12.1 above shows interval list disjunction can bebroken down into

two steps. We first find the disjunction of listL1 with each intervalJj in turn com-

prising list L2. We then find the disjunction of these intermediate results.This is

made explicit by Algorithm 3.12.2 in Section 3.12.1 below.

3.12.1 Disjunction of Interval List With Interval

Inspection of Theorem 3.12.1 above hints at how we should proceed to implement

interval list disjunction. We first define how to find the disjunction of an interval list

with a single interval. We require an auxiliary function “concat” which appends a

single intervalJ to the end of an interval listL = {I1, I2, · · · , In}. Since interval lists

are constructed fromdisjoint intervals, function “concat” may only be called when

the resulting list maintains this constraint. That is, interval J does not overlap or

3.12. Disjunction of Interval Lists 81

touch any interval comprising listL.

Algorithm 3.12.1. Concatenation of Interval to Interval List: Interval J is joined

to the end of interval list L= {I1, I2, · · · , In} as defined by the following pseudo-

code:

concat(L, J) return interval list is

return {I1, I2, · · · , In, J};

We now give an algorithm to find the disjunction of an intervallist with a single

interval. This algorithm calls Algorithm 3.8.1 (page 71), the interval disjunction

function and function “concat” above.

Algorithm 3.12.2. Disjunction of Interval and Interval List: Consider a single

interval J and an interval list L= {I1, I2, · · · , Jn}. The disjunction dis(L, J) is given

by the following pseudo-code:

dis(L, J) return interval list is

Jtmp← J;

Ltmp← {};

f or i in 1..n loop

i f dis joint
(

Jtmp, I i

)

then

Ltmp← concat
(

Jtmp, I i

)

else

Jtmp← dis
(

Jtmp, I i

)

end i f;

end loop;

Ltmp← concat
(

Ltmp, Jtmp

)

;

return Ltmp;

The key functionality contained in Algorithm 3.12.2 above is that each time

the intervalJ overlaps or touches the current intervalI i from list L, this modifiesJ

according to the disjunction rule of Theorem 3.7.1 (page 67). If J andI i are disjoint,

thenI i is simply concatenated to the interval list to be returned.

3.12.2 Disjunction of Interval List With Interval List

We now complete the full algorithm of the disjunction of two interval lists by util-

ising Algorithm 3.12.2 above.

Algorithm 3.12.3. Disjunction of Interval Lists: Consider interval lists L1 =

{I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jm}. The disjunction dis(L1, L2) of interval

list L1 with interval list L2 is given by the following pseudo-code:

dis(L1, L2) return interval list is

82 Chapter 3. An Algebra of Intervals

Ltmp← L1;

f or i in 1..m loop

Ltmp← dis
(

Ltmp, Ji

)

;

end loop;

return Ltmp;

We note that the binary operation disjunction with respect to interval lists is

closed, since the result of the disjunction operation is always another interval list.

3.12.3 Complexity of Interval List Disjunction

We now describe the complexity of our interval list disjunction algorithm. We pro-

ceed in three steps, beginning with the basic interval disjunction algorithm (Algo-

rithm 3.8.1, page 71), then to disjunction with an interval list and an interval (Algo-

rithm 3.12.2) and finally to disjunction of two interval lists (Algorithm 3.12.3).

• The basic interval disjunction algorithm of Theorem 3.7.1 consists in essence

of two comparison operations (“lower of left bounds, higherof right bounds”)

in the worst case. We will use constantc to designate this complexity.

• Now suppose we have an interval listL1 made up of intervalsI1, I2, · · · , In and

an intervalJ. Then the complexity of the disjunction algorithmdis(L1, J) of

Algorithm 3.12.2 is given bync, since we repeat the basic operationsn times.

• Now we replace intervalJ with another interval listL2 = {J1, J2, · · · , Jm}.

The disjunction algorithmdis(L1, L2) of Algorithm 3.12.3 therefore has com-

plexity given bymncsince we repeat the operations of the Algorithm 3.12.2

algorithmm times.

From the above we conclude the worst case complexity of interval list disjunction

is O(mn) wherem andn are the respective number of intervals in each interval list.

Therefore interval list disjunction has polynomial complexity.

The design of Algorithm 3.12.3 allows for a parallel implementation. If the call

to Algorithm 3.12.2 is carried out in parallel, then the complexity of interval list

disjunction approachesO(kn) wheren is the number of intervals in the first interval

list andk is some constant denoting the cost of a single call to Algorithm 3.12.2.

3.13 Conjunction of Interval Lists

In this section we extend the definition of interval conjunction from Sections 3.6

(page 63) to apply to intervallists. We make use of the summation notation from

Section 3.8.1 (page 70). The conjunction of interval lists on the Real number line is

depicted in Figure 3.13 as the intersection of the two lists.

3.13. Conjunction of Interval Lists 83

Theorem 3.13.1.Consider interval lists L1 = {I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jm}.

Then the conjunction of these lists L1 · L2 is given by:

L1 · L2 =

m
∑

j=1

n
∑

i=1

(

I i · J j

)

Proof:

L1 · L2 =

n
∑

i=1

I i ·

m
∑

j=1

J j

= (I1 + I2 + · · · + In) · (J1 + J2 + · · · + Jm)

= (I1 + I2 + · · · + In) · J1

+ (I1 + I2 + · · · + In) · J2

...

+ (I1 + I2 + · · · + In) · Jm

=

m
∑

j=1

n
∑

i=1

(

I i · J j

)

Theorem 3.13.1 above shows interval list conjunction can bebroken down into

two steps. We first find the conjunction of listL1 with each intervalJj in turn

comprising listL2. We then find the disjunction of these intermediate results.This

is made explicit by Algorithm 3.13.1 in Section 3.13.1 below.

3.13.1 Conjunction of Interval List With Interval

Inspection of Theorem 3.13.1 above hints at how we should proceed to implement

interval list conjunction. We first define how to find the conjunction of an inter-

val list L with a single intervalJ. Intuitively, we apply the conjunction rule from

Theorem 3.6.1 (page 64) usingJ and each interval comprisingL in turn. Indeed,

this follows immediately from the distributive property ofBoolean algebra (Pohl

& Shaw 1986). We also make use of the “concat” function from Algorithm 3.12.1

(page 81).

Algorithm 3.13.1. Conjunction of Interval and Interval List: Consider a single

interval J and an interval list L= {I1, I2, · · · , In}. The conjunction con(L, J) is given

by the following pseudo-code:

con(L, J) return interval list is

Jtmp← J;

Ltmp← {};

f or i in 1..n loop

Jtmp← con(J, I i) ;

84 Chapter 3. An Algebra of Intervals

Ltmp← concat
(

Ltmp, Jtmp

)

;

end loop;

return Ltmp;

We may use the “concat” function with confidence in Algorithm 3.13.1 above

because the intervalJtmp which results from the conjunction ofJ and I i can never

expandI i. Hence,Jtmp will never overlap any interval inLtmp.

3.13.2 Conjunction of Interval List With Interval List

We now complete the full definition of the conjunction of two interval lists by util-

ising Algorithm 3.13.1 above. This definition also necessarily calls the disjunction

function of Algorithm 3.12.3 above, which is why it was defined first. This follows

from the observation of Section 3.8 (page 69) that an interval list is a disjunct of

intervals.

Algorithm 3.13.2. Conjunction of Interval Lists: Consider interval lists L1 =

{I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jm}. The conjunction con(L1, L2) is given by

the following pseudo-code:

con(L1, L2) return interval list is

L1tmp← {};

L2tmp← {};

f or i in 1..m loop

L1tmp← con(L1, Ji) ;

L2tmp← dis
(

L2tmp, L1tmp

)

;

end loop;

return L2tmp;

We note that the binary operation conjunction with respect to interval lists is

closed, since the result of the conjunction operation is always another interval list.

3.13.3 Complexity of Interval List Conjunction

We now describe the complexity of our interval list conjunction algorithm. We

proceed in three steps, beginning with the basic interval conjunction algorithm (Al-

gorithm 3.6.1, page 65), then to conjunction with an interval list and an interval (Al-

gorithm 3.13.1) and finally to conjunction of two interval lists (Algorithm 3.13.2).

• The basic interval conjunction algorithm of Theorem 3.6.1 consists in essence

of two comparison operations (“higher of left bounds, lowerof right bounds”)

in the worst case. We will use constantc to designate this complexity.

3.14. Negation of Interval Lists 85

• Now suppose we have an interval listL1 made up of intervalsI1, I2, · · · , In and

an intervalJ. Then the complexity of the conjunction algorithmcon(L1, J) of

Algorithm 3.13.1 is given bync, since we repeat the basic operationsn times.

• Now we replace intervalJ with another interval listL2 = {J1, J2, · · · , Jm}. The

conjunction algorithmcon(L1, L2) of Algorithm 3.13.2 therefore has com-

plexity given bymncsince we repeat the operations of the Algorithm 3.13.1

algorithmm times. However, the conjunction algorithm itself calls thedis-

junction algorithmm times. Therefore, using the complexity result we de-

rived in Section 3.12.3 for interval list disjunction, we must replace the “m”

with “mn”, yielding a complexity of(mn) nc= n2mc.

From the above we conclude the worst case complexity of interval list conjunction

is O
(

n2m
)

wheremandn are the respective number of intervals in each interval list.

Therefore interval list conjunction has polynomial complexity.

The design of Algorithm 3.13.2 allows for a parallel implementation. If the call

to Algorithm 3.13.1 is carried out in parallel, then the complexity of interval list

conjunction approachesO
(

kn2
)

wheren is the number of intervals in the first interval

list andk is some constant denoting the cost of a single call to Algorithm 3.13.1.

3.14 Negation of Interval Lists

In this section we extend the definition of interval negationfrom Section 3.9 (page 72)

to apply to intervallists. We make use of the summation notation and product no-

tation from Section 3.8.1 (page 70). The negation of an interval list on the Real

number line is depicted in Figure 3.14 as the complement of the list.

¬L1

L1

I3 I1

R

R I2

Figure 3.14:Interval list negation: We may represent the negation of an interval listL1 as the
complementof the list.

Theorem 3.14.1.Consider and interval lists L= {I1, I2, · · · , In}. Then the negation

of this list¬L is given by:

¬L =
n
∏

i=1

¬I i

86 Chapter 3. An Algebra of Intervals

Proof:

¬L = ¬

n
∑

i=1

I i

= ¬ (I1 + I2 + · · · + In)

= ¬I1 · ¬I2 · · · · · ¬In

=

n
∏

i=1

¬I i

We arrive at the last line by applying De Morgan’s law (Pohl & Shaw 1986)

and find the conjunct of the negated intervals making up the list L. The above

theorem leads directly to the following algorithm which calls the interval negation

function of Algorithm 3.9.1 (page 74) and the interval list conjunction function of

Algorithm 3.13.2.

Algorithm 3.14.1. Negation of Interval List: neg(L): Consider an interval list L

comprised of disjoint intervals I1, I2, · · · , In. Then the negation neg(L) is given by

the following pseudo-code:

neg(L) return interval list is

L1tmp← {};

L2tmp← {1};

f or i in 1..n loop

L1tmp← neg(I i) ;

L2tmp← con
(

L1tmp, L2tmp

)

;

end loop;

return L2tmp;

We note that the unary operation negation with respect to interval lists isclosed,

since the result of the negation operation is always anotherinterval list.

3.14.1 Complexity of Interval List Negation

We now describe the complexity of our interval list negationalgorithm. We proceed

in two steps, beginning with the basic interval negation algorithm (Algorithm 3.9.1,

page 74), then to negation with an interval list (Algorithm 3.14.1).

• The basic interval negation algorithm of Algorithm 3.9.1 consists in essence

of two table look ups to find the negation of the left and right limits respec-

tively. We will use constantc to designate this complexity.

• Now suppose we have an interval listL made up of intervalsI1, I2, · · · , In.

Then the worst case complexity of the negation algorithmneg(L) of Algo-

rithm 3.14.1 is given bync, since we repeat the basic operationsn times.

3.15. Special Interval Lists 87

However, the negation algorithm itself calls the conjunction algorithm (which

in turn calls the disjunction algorithm)n times. Therefore, using the com-

plexity result we derived in Section 3.13.3, we must replacethe “n” term with

“n2m”, yielding a complexity ofn3c.

From the above we conclude the worst case complexity of interval list negation

is O
(

n3
)

wheren is the number of intervals in the interval list. Therefore interval

list negation has polynomial complexity. The design of Algorithm 3.14.1 does not

allow for a parallel implementation because it progressively accumulates the result

of the conjunction of the negated intervals.

3.15 Special Interval Lists

We now define two special interval lists: theinfinite interval listand thenull interval

list, which are analogous to theinfinite interval of Section 3.5.1.1 (page 60) and

the null interval of Section 3.5.1.2 (page 61). We then show how these special

interval lists act as identity elements for interval lists,in an analogous fashion to

Theorems 3.10.1 and 3.10.2 (page 74).

3.15.1 The Infinite Interval List

Informally, we may picture the infinite interval list in an analogous manner to the

infinite interval of Section 3.5.1.1 (page 60). That is, it isa list of intervals that

encloses all values in the domain. We use the infinite interval symbol1 to represent

the infinite interval list as well, relying on context to makethe distinction. Ulti-

mately both of these notations are equivalent to the Boolean constant “true”. A

precise definition follows.

Definition 3.15.1. The infinite interval list: This is the interval list consisting of a

single infinite interval. That is:

1 =
n
∑

i=1

1

= true1 + true2 + · · · + truen by Thm 3.5.1

= {1}

According to the definition above, the infinite interval listcomprises a list ofat

least oneinfinite interval. Since we insist the intervals comprisingan interval list

are disjoint, we always reduce such a list to a single infiniteinterval. We now show

the infinite interval list acts as theidentity elementfor the conjunction of interval

lists.

88 Chapter 3. An Algebra of Intervals

Theorem 3.15.1.The infinite interval list1 is the identity element when we apply

the binary operator “con” (conjunction) to interval lists.

Proof: Let L = {I1, I2, · · · , In} be an arbitrary interval list comprising n disjoint in-

tervals. Then by Theorem 3.13.1 the conjunction of this listwith the infinite interval

list 1 is given by:

L · 1 =
m
∑

j=1

n
∑

i=1

(I i · 1)

=

n
∑

i=1

(I i) by Thm 3.10.1

= L

Similarly

1 · L =
n
∑

j=1

m
∑

i=1

(

1 · I j

)

=

n
∑

j=1

(

I j

)

by Thm 3.10.1

= L

Since L was an arbitrary interval,1 is the identity element for interval lists under

the operation “con” (conjunction).

3.15.2 The Null Interval List

Informally, we may picture the null interval list in an analogous manner to the null

interval of Section 3.5.1.2 (page 61). That is, it is a list ofintervals that never en-

closes any values. We use the null interval symbol0 to represent the null interval

list as well, relying on context to make the distinction. Ultimately both of these

notations are equivalent to the Boolean constant “false”. A precise definition fol-

lows.

Definition 3.15.2.The null interval list 0: This is the interval list consisting of0..n

null intervals. That is:

0 =
n
∑

i=0

0

According to the definition above, the null interval list consists ofzeroor more

null intervals. Therefore, the empty interval list containing no intervals is also by

definition equivalent to the null interval list. We now show the null interval list acts

as the identity element for the disjunction of interval lists.

Theorem 3.15.2.The null interval list{0} is the identity element when we apply the

3.16. Interval List Subsumption and Implication 89

binary operator “dis” (disjunction) to interval lists.

Proof: Let L = {I1, I2, · · · , In} be an arbitrary interval list comprising n disjoint

intervals. Then by Theorem 3.12.1 the disjunction of this list with the null interval

list 0 is given by:

L + 0 =
m
∑

j=0

n
∑

i=1

(I i + 0)

=

n
∑

i=1

(I i) by Thm 3.10.2

= L

Similarly

0+ L =
n
∑

j=1

m
∑

i=0

(

0+ I j

)

=

n
∑

j=1

(

I j

)

by Thm 3.10.2

= L

Since L was an arbitrary interval,0 is the identity element for interval lists under

the operation “dis” (disjunction).

3.16 Interval List Subsumption and Implication

In this section we define two further Boolean functions,sub (subsumes) andimp

(implies) which operate on our interval list data type. Thisis an extension of Sec-

tion 3.11 (page 77) where we defined subsumption and implication for intervals.

3.16.1 Interval List Subsumption

We now consider subsumption of interval lists. Consider Figure 3.15. We firstly

define precisely what we mean by subsumption of interval lists.

Definition 3.16.1. Subsumption of Interval Lists: Consider two arbitrary inter-

val lists L1 and L2. Interval list L1 = {I1, I2, · · · , In} while interval list L2 =

{J1, J2, · · · , Jm}. Then L1 subsumesL2 if and only if every interval Jj making up

list L2 is subsumed by some interval Ii in L1. That is:

∀J j ∃I i : sub
(

I i , J j

)

, i = 1..n, j = 1..m

Using the above definition, we now derive a theorem for the subsumption of an

intervalJ by an interval listL. In the following we use “sub” to denote “subsumes”.

90 Chapter 3. An Algebra of Intervals

L2

L1

I3 I4

J1 J2 J3 J4

T

T

I1 I2

Figure 3.15:Subsumption of interval lists: Interval ListL2 is by definitionsubsumedby list L1

if for every intervalJi making up listL2 is subsumed by some interval inL1.

Theorem 3.16.1.Subsumption of Interval by Interval List: Consider an interval

list L = {I1, I2, · · · , In} and an interval J. Then:

L sub J ⇔

n
∑

i=1

(I i sub J)

Proof: By Definition 3.16.1, L subsumes J if and only if J is subsumedby some

interval Ii , i = 1..n. That is:

L sub J ⇔

n
∑

i=1

I i

sub J

⇔ I1subJ + I2subJ + · · · + InsubJ

⇔

n
∑

i=1

(I i sub J)

We now derive a theorem for the subsumption of an interval list L2 by an interval

list L1.

Theorem 3.16.2.Subsumption of Interval List by Interval List: Consider an in-

terval list L1 = {I1, I2, · · · , In} and an interval list L2 = {J1, J2, · · · , Jm}. Then:

L1 sub L2 ⇔

m
∏

j=1

n
∑

i=1

(

I i sub Jj

)

Proof: Asserting that “L1 subsumes L2” means precisely that L1 subsumes Jj for

3.16. Interval List Subsumption and Implication 91

all j = 1..m. That is:

L1 sub L2 ⇔ (L1 sub J1) · (L1 sub J2) · · · · · (L1 sub Jm)

⇔ (I1subJ1 + I2subJ1 + · · · + InsubJ1)

· (I1subJ2 + I2subJ2 + · · · + InsubJ2)

...

· (I1subJm + I2subJm + · · · + InsubJm)

⇔

m
∏

j=1

n
∑

i=1

(

I i sub Jj

)

We now use Theorems 3.16.1 and 3.16.2 to give an algorithm forthe Boolean

function “sub” (subsumes). We proceed in two steps, firstly defining a pseudo-code

function for subsumption of intervalJ by interval list L = {I1, I2, · · · , In}. This

definition utilises the interval “sub” function defined in Algorithm 3.11.1 (page 78).

We then define the full subsumption algorithm for interval lists.

Algorithm 3.16.1. Subsumption of Interval by Interval List: sub(L, J): Consider

an interval list L comprised of disjoint intervals I1, I2, · · · , In and an interval J.

Then the Boolean function “sub” (subsumes) is given by the following pseudo-code:

sub(L, J) return boolean is

tmp← false;

f or i in 1..n loop

tmp← sub(I i , J) ;

i f tmp then i← n;

end loop;

return tmp;

We now use the above function to define the full subsumption algorithm for interval

lists:

Algorithm 3.16.2. Subsumption of Interval List by Interval List: sub(L1, L2):

Consider an interval list L1 comprised of disjoint intervals I1, I2, · · · , In and an in-

terval list L2 comprised of disjoint intervals J1, J2, · · · , Jm. Then the Boolean func-

tion “sub” (subsumes) is given by the following pseudo-code:

sub(L1, L2) return boolean is

tmp← false;

f or j in 1..m loop

tmp← sub(L1, J j);

i f not tmp then j← m;

end loop;

return tmp;

92 Chapter 3. An Algebra of Intervals

3.16.2 Interval List Implication

We now consider implication with interval lists. Consider again Figure 3.15. Our

objective here is to capture the intuitive notion that if we assume the truth of the

more restrictive interval listL2 then we can logically assume the truth of the less

restrictive interval listL1 that subsumesL2.

Theorem 3.16.3.Interval List Implication: Consider two arbitrary interval lists

L1 = {I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jn} such that L1 subsumes L2. Then

L2→ L1.

Proof (by contradiction): Assume that L1 subsumes L2 but that L2 does not imply

L1. That is:

¬ (L2→ L1) = ¬(¬L2 + L1)

= L2 · ¬L1

=

m
∑

j=1

J j

· ¬

n
∑

i=1

I i

=

m
∑

j=1

J j

·

n
∏

i=1

¬I i

=

n
∏

i=1

¬I i

·

m
∑

j=1

J j

= (¬I1 · ¬I2 · · · · · ¬In) · (J1 + J2 + · · · + Jm)

= (¬I1 · ¬I2 · · · · · ¬In · J1)

+ (¬I1 · ¬I2 · · · · · ¬In · J2)

...

+ (¬I1 · ¬I2 · · · · · ¬In · Jm)

Consider each of the terms in the disjunction above, for example the second term:

(¬I1 · ¬I2 · · · · · ¬In · J2)

Interval J2 must be subsumed by some Ii where i = 1..n. But this means J2 →

I i, by Theorem 3.11.2. So it cannot be the case that¬I i · J2. Therefore it must

be that(¬I1 · ¬I2 · · · · · ¬In · J2) is false. The same is true for each term in the

disjunction. Therefore we have a contradiction. So it cannotbe that L2 does not

imply L1. Therefore L2 does imply L1.

Algorithm 3.16.3. Implication with Interval Lists: Consider two arbitrary interval

lists L1 = {I1, I2, · · · , In} and L2 = {J1, J2, · · · , Jm}. We now define the Boolean

function “imp” (implication) of interval list L1 by interval list L2 with the following

pseudo-code function.

3.17. Summary 93

imp(L2, L1) return boolean is

return sub(L1, L2) ;

3.17 Summary

The main objective of this chapter is to build the theoretical foundation for our

Reasoning Engine. We achieve this by defining aninterval data type around which

we build aninterval algebrawhich we show is analogous to Boolean Algebra. We

use theinterval data type to succinctly capture the notion ofthe valid or legal range

of values a variable may assume. Starting with the simple assumption of the validity

of Boolean Algebra, in addition to the basic assumption that the data types we utilise

can betotally ordered, we show that it is straightforward to define all the object

structures and behaviours we require.

The main contributions of this Chapter include the following.

• We begin this chapter by setting out our basic assumptions and working def-

initions. We take the Boolean Algebra as being axiomatic along with the

ability to impose a deterministic total ordering on the datatypes we consider

(Section 3.2).

• We then define the data structureslimit (Section 3.3) andbound(Section 3.4)

which we subsequently use to define our basic data structure,the interval

(Section 3.5).

• We show that the interval is a contracted form of a sentence infirst order logic

consisting of the conjunction of two assertions: one concerning the left bound

and the other concerning the right bound (Section 3.4.2).

• We then define three basic operations:conjunction(Section 3.6),disjunction

(Section 3.7) andnegation(Section 3.9) with intervals. We show that of these

three operations, only conjunction isclosedwith respect to intervals.

• We give definitions for the special intervalsthe infinite intervalandthe null

interval (Section 3.5.1) and show that these act as the identity elements1 and

0 with respect to conjunction and disjunction of intervals (Section 3.10).

• We give algorithms for the Boolean binary operationssubsumptionand im-

plication using intervals (Section 3.11).

• We define theinterval list to be a disjunction of disjoint intervals (Section 3.8).

We extend our definitions of conjunction (Section 3.13), disjunction (Sec-

tion 3.12) and negation (Section 3.14) to apply to interval lists and show that

these three operations areclosedwith respect to interval lists.

94 Chapter 3. An Algebra of Intervals

• We derive the complexity of the three interval list operations disjunction (Sec-

tion 3.12.3), conjunction (Section 3.13.3) and negation (Section 3.14.1) and

show them to have polynomial complexity in the worst case. Inthe case of

disjunction and conjunction of interval lists, the algorithms allow for a paral-

lel implementation which reduces the complexity.

• We give definitions for the special interval liststhe infinite interval listand

the null interval listand show that these act as the identity elements1 and0

with respect to conjunction and disjunction of interval lists (Section 3.15).

• We give algorithms for the Boolean binary operationssubsumptionand im-

plication using interval lists (Section 3.16).

The operations we have defined in this chapter form the foundation of our Rea-

soning Engine, upon which we have built a practical semanticquery optimizer. Our

semantic optimizer is described in detail in Chapter 4.

Chapter 4

A Practical Semantic Query

Optimizer

95

96 Chapter 4. A Practical Semantic Query Optimizer

4.1 Introduction

In this chapter we describe the design of a practical semantic query optimizer. Our

design anticipates some of the important conclusions we draw from our empirical

study in that we propose to utilise those techniques from ourresearch into seman-

tic query optimization which are likely to have the most positive influence on the

performance of query evaluation.

We begin by highlighting what we consider to be an intrinsic limiting factor of

semantic query optimizationper se. Much of SQO, by its very nature, is limited in

its effectiveness by the fact that it depends on the detection of queries which are,

in some sense, anomalous. But if anomalous queries are hardlyever submitted,

perhaps the extra effort of semantically optimizing queries is not worthwhile. To

our knowledge, this is the first study to specifically highlight this property of SQO.

Our semantic optimizer is designed to preprocess SQL queries and sits in front

of the normal SQL parser and optimizer. We reiterate that much of the meta-data

required for a simple but effective semantic query optimizer is already available

within commercial RDBMS. We propose, for example, to make use of schema con-

straints that are encoded within the database but which are currently ignored during

the process of query evaluation.

While many researchers advocate the mechanical discovery ofsemantic rules

which might be of benefit to a semantic query optimizer, we argue that such a rule

discovery exercise is unlikely to be optimal without a knowledge of thequery pro-

file1 where we first discover what database objects are actually being queried. This

knowledge can then be used to focus a subsequent rule discovery exercise.

Our semantic optimizer can utilise two types of semantic rule. The first type of

semantic rule isalways trueand includes the schema constraints currently stored

and maintained by the DBMS. Therefore, they may be added at anytime to SQL

query restrictions without altering the logical outcome ofthe query. We use this

fact to rewrite the query such that it may be evaluated more efficiently. When we

say a rule is “always true” we mean the rule istrue for the lifetime of the schema.

Therefore, we make the assumption that schema evolution is rare or does not occur

at all. Such an assumption is quite reasonable, especially for data warehouses. We

do not specifically address the issue of schema evolution with our practical semantic

optimizer2.

The second type of semantic rule issometimes true. This includes the discovery

of data “holes”3 which we deduce will return zero rows4. In addition, we show

1See Definition 4.3.1, page 102.
2However, we deal with this topic in Chapter 2.
3See Definition 4.3.3, page 104.
4Hence the termzeroqueries. See Definition 4.3.2, page 104.

4.1. Introduction 97

how conditional rulesmay be elegantly encoded using the interval list form we

described in Chapter 3. This allows us, for example, to capture the knowledge of

domain experts and use it to enhance the performance of the semantic optimizer. To

our knowledge, this is the first study to report the use of intervals or interval lists in

this manner.

When we say a rule is “sometimes true” we mean the validity of the rule de-

pends on the database state remaining static; i.e., stored data is not modified for the

duration the rule is utilised. This is because this type of rule is derived from an

analysis ofdata, and is not a consequence of the application semantics.

Example 4.1.1.A data analysis discovers a precise correlation between the values

stored in two columns ci and cj of a table T which is part of a data warehouse. A

semantic rule is formulated based on this correlation. The following evening, data

in table T is refreshed, invalidating the rule derived the previous evening.

The point of the above example is that any time data is updated, we run the

risk of “sometimes true” rules being invalidated. Therefore, the cost of revalidating

such rules must be taken into account in any usable semantic optimizer5. The data

analysis we report in the search for such rules is simple and unlikely to require

significant computational resources. Furthermore it is carried out “off-line” and so

does not impact on query evaluation.

The remainder of this Chapter is organised as follows.

• We begin by highlighting an intrinsic limiting factor of semantic query opti-

mization (Section 4.2).

• We then introduce four new terms:query profile, zero query, positive query

anddata holes(Section 4.3).

• We follow with a description of how our practical semantic query optimizer

functions as a preprocessor, sitting in front of the normal SQL query optimizer

(Section 4.4).

• We describe how we define meta-data for use with our semantic optimizer

(Section 4.4.1).

• We propose a new type of semantic query optimization which searches for

“data holes” and utilises them to identify zero queries which, in an analo-

gous fashion to unsatisfiable queries, need not be submittedto the database

(Section 4.4.2).

5This problem was described in Section 2.3, page 19.

98 Chapter 4. A Practical Semantic Query Optimizer

• We describe in detail how we harvest a subset of existing schema constraints

which are already stored as part of the RDBMS and how these are utilised by

our semantic optimizer (Section 4.4.3).

• We then explain how the optimizer may be extended with conditional rules

which are derived from a data driven analysis and which typically capture

correlations between non-indexed and indexed columns (Section 4.5). These

rules may be elegantly expressed as interval lists and are invoked by applica-

tion of the Subsumption Rule (Section 4.5.2).

• Finally, we summarise the main contributions of the Chapter (Section 4.6).

4.2 An Intrinsic Limitation of SQO

In this section we focus on an intrinsic limiting factor of semantic query optimiza-

tion per se. That is, much of semantic query optimization, by its very nature, is

limited in its effectiveness by the fact that it depends on the detection of queries

which are, in some sense, anomalous. The detection of unsatisfiable queries, some-

times described as the “ultimate win” for SQO (Godfrey et al.2001), is a clear

example. It is easy to see how preventing unsatisfiable queries from being sub-

mitted to the database might result in more efficient query processing. However,

if unsatisfiable queries are never (or hardly ever) made against the target database

schema, then perhaps the extra processing required to detect unsatisfiable queries is

not worthwhile6.

A similar argument can be made regarding the detection of outof range queries

or queries which are satisfiable but nevertheless return zero rows because they target

“holes”7 in the data. If such queries are hardly ever submitted then perhaps the effort

expended in detecting such queries is ultimately of little or no value.

We explicitly acknowledge this limitation on the usefulness of SQO and we

regard it as an intrinsic property of SQO itself. To our knowledge, this is the first

study to specifically highlight this property of SQO.

However, we do not think this built in limitation negates thepotential of SQO.

The remainder of this Section explains why this is so.

4.2.1 Utility of SQO

We now set out why SQO may be useful even in environments whereanoma-

lous queries are hardly ever submitted. We look firstly at thepotential cost to the

6There are, to our knowledge, no published studies which research the relative prevalence of
anomalous queries in industry RDBMS.

7See Definition 4.3.3, page 104.

4.2. An Intrinsic Limitation of SQO 99

database environment of submitting unsatisfiable queries.Secondly, we describe

the impact on data integrity of relaxing schema constraintsduring bulk insert of

new data. Thirdly, we briefly examine the consequences of automatically gener-

ated SQL queries. Finally, we consider the likelihood of sub-optimal SQL queries

against view definitions in typical data warehouse schemas.

4.2.1.1 Unsatisfiable queries may be costly

Consider the case where the probability of an unsatisfiable join being submitted

against a pair of large target tables is historically very low (say, less than 1%).

However, this probability says nothing about the impact that such a query might

have. If such a query is submitted and the target tables are large enough, this has

the potential to take over a large proportion of available computational resources,

negatively impacting on other database users and processes. It is easy to imagine

that preventing such a situation from ever happening might itself make worthwhile

the effort of semantically optimizing all queries.

4.2.1.2 Impact of relaxing schema constraints

Consider the case where schema constraints encoded within the database are relaxed

whenever tables are populated with new data. This commonly occurs in data ware-

houses where tables are large and regularly refreshed in “batch mode” with large

volumes of data. If schema constraints are enforced in such circumstances, the

constraint is triggered and checked for each new row of data,resulting in greatly

increased processing times. However, if the constraint is relaxed, there is a penalty

to be paid for saving time: data integrity may never be checked.

Example 4.2.1. In the Oracle RDBMS, data may be validated against a schema

constraintafter the new data has been inserted. This guarantees data integrity

but may still require more time to complete than is acceptable. There is a further,

potentially more serious problem, which is that ifany data row fails the integrity

check, the entire batch of new data is rolled back (Ashdown 2005a). Thus it may be

impractical to enforce schema constraints during bulk insert of new data.

We emphasize that no commercial RDBMS currently enforces schema con-

straints at query time. Therefore, if schema constraints have been relaxed during

data insert or update, data integrity cannot be guaranteed unless constraints have

been re-enabled and integrity checks allowed to proceed. Itis easy to imagine how

this uncertain, ambiguous situation might give rise to erroneous query results.

Example 4.2.2.Consider a data warehouse which performs nightly bulk loads of

sales figures from a number of regional stores, consolidating the data into a sin-

gleSALES table. Data volumes are large so various schema constraintsare relaxed

100 Chapter 4. A Practical Semantic Query Optimizer

during the bulk load of new data to ensure the operation completes before the begin-

ning of the next business day. One of the constraints which is temporarily disabled

in this way checks that all prices charged for items sold are positive and less than a

sensible maximum value:

check (UNIT PRICE > 0 and UNIT PRICE <= 5000);

However, at one store invoices have been cancelled by overwriting the price charged

with−999. While this practice is allowed for by the local software, it isnot detected

by the data warehouse software. Thus all total sales calculations performed by the

data warehouse are likely to contain considerable error.

A semantic query optimizer that harvests schema constraints resolves the prob-

lem of relaxed schema constraints. That is, even in the presence of data that violates

schema integrity, semantically optimizing the queries guarantees that all query an-

swers actually conform to the schema semantics. This is because schema constraints

are effectively enforced at query time by the semantic query optimizer.

4.2.1.3 Automatically generated queries

We now briefly consider the impact of automatically generated queries. SQL queries

may be automatically generated by GUI8 tools which provide a visual interface

into the underlying database. These include query builders9 and report writers10.

The aim of such tools is often to provide non-specialists with a “point and click”

methodology to construct database queries without the necessity of knowing SQL.

Typically, the user points to objects in the database and then establishes a relation-

ship between them (such as identifying a join column) beforesubmitting the query

and receiving the results in a “user friendly” format. It is easy to imagine that the

result of automatically translating the query of a naı̈ve user might result in a highly

sub-optimal SQL query, such as a cartesian product on two large tables. A seman-

tic query optimizer might be employed in such a situation as aquery conditioner,

filtering näıve queries and applying schema knowledge to rewrite queries into more

sensible alternatives. For example, rather than joining the requested tables directly,

a semantic optimizer might instead consult a materialized view (DeHaan, Larson &

Zhou 2005, Zaharioudakis, Cochrane, Lapis, Pirahesh & Urata2000).

4.2.1.4 Sub-optimal queries against views

In Example 2.5.7 (page 37), we showed how redundant joins mayarise in queries

against tables which are related via a primary key and corresponding foreign key
8GUI: “graphical user interface”
9See for example Oracle’s “Query Builder”(http://download-east.oracle.com/docs/

cd/B19306_01/appdev.102/b16373/qry_bldr.htm).
10See for example “Crystal Reports” (http://www.crystalreports.co.uk/)

4.2. An Intrinsic Limitation of SQO 101

column. Indeed this is one of the main targets for optimization, join elimination,

identified by SQO researchers (see Section 2.5.4, page 36). However, sub-optimal

queries may arise naturally in the case where the query is made against a view

comprising one or more table joins, for example in data warehouses built with astar

schema11 (Cheng et al. 1999).

Example 4.2.3.Consider Figure 4.4 (page 108), which depicts part of a data ware-

house. Suppose we have created the viewCUSTOMER SUMMARY with the following

DDL:

create view CUSTOMER_SUMMARY(

KEY,

NAME,

ORDER_COUNT,

TOTAL_QUANTITY

) as

select c.KEY, c.NAME, COUNT(1), SUM(s.QUANTITY)

from CUSTOMER c, SALES s

where s.CUSTOMER_KEY = c.KEY

group by c.KEY, c.NAME;

Now we pose the following query against the view:

select *

from CUSTOMER_SUMMARY

where KEY = 2006;

The SQL optimizer must rewrite the above query to consult the base tableSALES. A

naı̈ve execution plan might produce the following:

select c.KEY, c.NAME, COUNT(1), SUM(s.QUANTITY)

from CUSTOMER c, SALES s

where s.CUSTOMER_KEY = c.KEY

group by s.CUSTOMER_KEY

having s.CUSTOMER_KEY = 2006;

If this execution plan is followed, all aggregates based onCUSTOMER KEY will first

be calculated, then all rows eliminated except for the singlerow which satisfies the

HAVING restriction. This would be very inefficient, so let us assume the optimizer

applies the rules of the relational algebra and pushes the query’s restriction “where

KEY = 2006” into the WHERE clause. The result would therefore be the following

more efficient query:

11See Example 4.4.1, page 106 for a detailed description of a star schema.

102 Chapter 4. A Practical Semantic Query Optimizer

select c.KEY, c.NAME, COUNT(1), SUM(s.QUANTITY)

from CUSTOMER c, SALES s

where s.CUSTOMER_KEY = c.KEY

and c.KEY = 2006

group by s.CUSTOMER_KEY;

However, we can still do better. A semantic optimizer might deduce that sincec.KEY

is in fact the primary key of tableCUSTOMER, the sort triggered by thegroup by

clause is redundant.

The main point of this example is that there is nothing intrinsically wrong or

inefficient about either the view definition or the query against the view. Neverthe-

less, a sub-optimal execution path was produced in the absence of knowledge of the

schema semantics.

4.3 Additional Helpful Definitions

We now introduce four new definitions,query profile, zero query, positive query

anddata holes, which we will utilise in the remainder of this Chapter.

4.3.1 Query Profile

Anecdotal evidence suggests that in business applicationsthat utilise RDBMS, it is

often the case that most query activity is based around a small subset of the tables.

For example, in data warehouses one large aggregated table may be the target of all

queries.

Definition 4.3.1. Query profile (QP): A query profile is a high level description of

queries actually made against the target database. Such a profile would include as

a minimum:

• the tables actually queried;

• the columns cited in query restriction clauses;

• the join columns in any table joins.

We use this new term to refer to a query analysis whose aim is not to identify a

particular result set, but rather to identify SQO strategies which are likely to enhance

query efficiency. For example, at its simplest level, a QP notes which objects have

actually been queried. This is valuable information; we nowknow what objects

should be targeted for optimization. Finding a QP is distinctly different from the

query driven rule discovery defined in Definition 2.3.4 (page22). We do not attempt

4.3. Additional Helpful Definitions 103

to formulate semantic rules, only to identify suitable starting points for the discovery

of such rules.

Discovery of QP is analogous to the rule discovery phase12 advocated by

(Shekhar et al. 1993) where it is envisaged that semantic knowledge is discovered

from the database and converted into semantic rules which may then be utilised

by the semantic query optimizer. While other writers suggestknowledge discovery

might be guided by what queries are actually made, we make thestronger claim

that discovery of the query profile ought to be a pre-requisite for rule discovery and

strongly influence its focus. This is because one may infer suitable starting points

in the search forrelevant(Definition 2.3.5, page 23) semantic information. This

is equivalent to an initial heavy pruning of the space of possible rules, making it

much more likely discovered rules are relevant. We note thatthe capture of a query

profile is already a normal part of DBA activities and it is easy to capture a simple

QP using available software.

Example 4.3.1. In the Oracle RDBMS, several methods are available to access

details of queries actually made against the database and their computational cost.

We now briefly describe two of these.

1. The viewV$SQLSTATS contains resource usage information for all SQL state-

ments that have been recently executed. For example, querying column

SQL TEXT will yield the first 1000 characters of all recent SQL queries.Cru-

cially, these statements can be ordered by cost. For example, one may order

by columnBUFFER GETS to detect high CPU using statements, byDISK READS

to detect high disk I/O or bySORTS to detect queries requiring sorting (Chan

2006b).

2. The software toolTKPROF reports each SQL statement executed along with

the resources it has consumed, the number of times it was called, and the

number of rows which it processed. This information may be automatically

accumulated in an operating system file over an arbitrary period of time and

may include the resources utilised by one or many simultaneous sessions ac-

cessing the target database.TKPROF is described in more detail in Chapter 5

and is the main method by which computational cost is measuredin our own

empirical investigations (Chan 2006c).

4.3.2 Zero Queries, Positive Queries and Data Holes

We noted in Definition 2.2.6 (page 18) that unsatisfiable queries are logically ex-

cluded (for example, by the schema semantics) from returning any rows. Detection

12See Definition 2.3.4, page 22.

104 Chapter 4. A Practical Semantic Query Optimizer

of unsatisfiable queries is identified as pivotal by all researchers into SQO (Yoon

et al. 1999, Genet & Dobbie 1998, Zhang & Ozsoyoglu 1997, Hsu &Knoblock

1996, Godfrey & Gryz 1996, Illarramendi et al. 1994) becausesuch queries, if they

can be detected, need not be submitted to the database at all.Thus the potential

exists for considerable savings in query cost, provided thecost of detecting the un-

satisfiability is small in comparison to the cost of retrieving the empty answer set

from the database. In practice, as our empirical results in Chapter 6 confirm, the ma-

jor efficiency gain in this situation is, unsurprisingly, the suppression of unnecessary

disk activity (Siegel et al. 1992).

In addition to queries which are unsatisfiable because of theschema semantics,

there may also be queries which return zero rows simply because there is no data

currently residing in the database which satisfy the query restrictions.

Definition 4.3.2. Zero Query: A zero query is one which is unsatisfiable because

the query restrictions cannot be satisfied by data currentlyresiding in the database

in its current state.

A zero query returns no rows, not because these are logicallyexcluded by the

schema semantics, but because the query restrictions cannot be satisfied by data

currently residing in the database. It is helpful to think ofthese queries as targeting

gaps or holes in the data. In (Rishe, Sun & Barton 2003), the authors describe a

data mining algorithm which aims to discover empty rectangles in two dimensional

data and suggest that this “empty space knowledge” might be exploited by a se-

mantic query optimizer. We describe the exploitation of zero queries for exactly

this purpose in Section 4.4.2 (page 109). This idea leads to the following definition.

Definition 4.3.3. Data Holes: A data hole is an interval for which no data currently

exists in the database.

We use the term “interval” in the above definition exactly in the sense that we

have defined the term in Definition 3.5.1 (page 59). Our purpose is to identify value

ranges for which we can be sure a zero query will result. This is described in detail

below in Section 4.4.2 (page 109).

For completeness, we also define the new term:positive query.

Definition 4.3.4. Positive Query: A positive query is one which returns at least one

row, for a given database state.

4.4 Semantic Query Optimizer As Preprocessor

In this section we sketch the design of a practical semantic query optimizer. Our

optimizer sits in front of the normal SQL parser and optimizer and preprocesses

4.4. Semantic Query Optimizer As Preprocessor 105

the queries based on semantic rules stored in the database asmeta-data. Figure 4.1

(page 105) illustrates this design. The semantic query optimizer itself is comprised

Semantic
Query

Optimizer

SQL
Parser &
Optimizer

Data

Meta
Data

SQL
Query

Display Query
Result

Operating System

RDBMS

Figure 4.1:Semantic query optimizer as preprocessor: The semantic optimizer sits in front of
the normal SQL parser and optimizer and preprocesses the queries based on semantic rules stored in
the database as meta-data.

of the Reasoning Engine (RE) at its base combined with softwarelayers for the

collection and definition of meta-data plus a simple query preprocessing interface.

This is illustrated in Figure 4.2 (page 106). The functions performed by the meta-

data and preprocessing layers are illustrated in the use case diagram of Figure 4.3

(page 107). Through this interface, users may define meta-data for the target table

objects. In addition, various types of semantic query optimization may be switched

in and out.

4.4.1 Defining Meta-data

In this section we describe the process of collecting the meta-data which eventually

will be utilised by the RE to semantically preprocess SQL queries. We present this

as a typical series of steps which we carry out as a preliminary to the invocation of

the optimizer itself.

1. Collect Query Profile: We argue that the first step in any effective imple-

mentation of SQO should be an examination of the table objects which are

106 Chapter 4. A Practical Semantic Query Optimizer

Semantically
optimized
SQL query

Raw SQL
query

Reasoning Engine (RE)

Define

MetaData

PreProcess

Queries

Semantic Query Optimizer

Figure 4.2:Semantic query optimizer: The semantic optimizer consists of the Reasoning Engine
at its base plus software layers for the definition of meta-data and the preprocessing of queries.

actually being queried. Anecdotal evidence strongly suggests that it is fre-

quently the case that a small subset of the tables making up a schema are

actually the query targets. A basic query profiler might notethe following

information:

• which tables are actually queried;

• which table pairs are joined and the join columns;

• the restrictions applied to both queries and joins. In particular, the

columns that appear in the restriction clauses are noted.

Example 4.4.1.Consider Figure 4.4 (page 108), which depicts part of a data

warehouse. The warehouse includes a summary table calledSALES which

summarises all sales made by customer, date, product code and invoice num-

ber. The configuration illustrated in Figure 4.4 is often described as astar

schema. In the context of data warehouse design, tableSALES is called the

fact tablewhile tablesPRODUCT, CUSTOMER, SALES DATE andINVOICE are

calleddimension tables. In this configuration, the primary key of tableSALES

is formed by concatenating the foreign keys pointing to eachdimension table.

A query profile discovers that a large number of queries are made against the

SALES table, with the foreign key columns (PRODUCT KEY,

CUSTOMER KEY, DATE KEY, INVOICE NO) most often appearing in the query

restrictions. The foreign key columns are therefore individually indexed and

targeted for further analysis.

In commercial RDBMS, this information is relatively easy to obtain without

special software. For example, in the case of the Oracle RDBMS,this infor-

4.4. Semantic Query Optimizer As Preprocessor 107

User

Analyze Data

Define

MetaData

Collect Query

Profile

Manual Rule

Input

Collect

Schema

Semantics

Detect Data

Holes

Detect

Unsatisfiable

Queries

Rewrite

OutOfRange

Queries

Invoke Rule

Substitution

Preprocess

Queries

Set Targets

Collect Target

Limits

Figure 4.3:Main functions of semantic query optimizer: Through this interface, users may de-
fine meta-data for the target table objects. In addition, various types of semantic query optimization
may be switched in and out.

mation can be collected with great accuracy over arbitrary periods of time and

then analyzed with a standard software tool such asTKPROF13.

2. Harvest Schema Constraints: Our next step is to harvest the various con-

straints defined and stored as part of the normal RDBMS meta-data. The

default setting makes the assumption that if the various constraints already

exist as part of the target schema, they are also worthwhile to harvest for

the purposes of our semantic optimizer. However, the harvesting of schema

constraints can also be restricted to a subset of tables identified by the query

profile collected in Step 1 above. We describe the harvestingof schema con-

straints in more detail below in Section 4.4.3 (page 113).

3. Analyze Data: After collecting a query profile and harvesting the existing

schema semantics, we then target the table objects identified by the query

13See Chapter 5 for a more complete description of Oracle’sTKPROF.

108 Chapter 4. A Practical Semantic Query Optimizer

product_key
customer_key

invoice_no
date_key

quantity

unit_price

key

name
description

PRODUCT

SALES

key

name
address
phone

CUSTOMER

key

timestamp
day

month
year

SALES_DATE

invoice_no

store_id
employee_id
total_price

INVOICE

Figure 4.4:A star schema modeling sales information: The primary key of the fact tableSALES
is formed by concatenating the foreign keys which point to the dimension tables. A query profile
notesSALES is the target of many queries with restrictions that cite theforeign key columns. These
columns are therefore indexed and targeted for further analysis. Refer toExample 4.4.1.

profile for more analysis. This is our rule discovery phase. Currently, this

phase is highly restricted and is not subject to the problem of “exponential

explosion” described by, for example, (Sun & Yu 1994, Sciore& Siegel 1990,

Shenoy & Ozsoyoglu 1989, King 1981). We perform two simple types of rule

discovery on table columns identified as being restricted insimple queries or

joins, or that form the join columns in equi-joins:

• For continuous data, we collect minimum and maximum values (e.g. if

the target column stores real numbers). For discrete data, we collect

the distinct values (e.g. if the target column stores the fivestring values

A,B,C,D,E).

• We perform a limited search for data holes on a subset of columns which

are judged (from the query profile) as being “important” in that they

frequently appear in query restrictions or as join columns14. Each target

column is analyzed to find theN largest gaps in the data, whereN =

1,2,3, . . . and is typically less than 10. This is restricted to columns of

type numeric or date. We describe the search for data holes inmore

detail below in Section 4.4.2.

14We reiterate that this type of judgment is already commonly made as part of normal DBA duties.
Columns which are frequently cited in query restrictions orare join columns are typically candidates
for indexing. This was described in Section 2.3.3, page 28.

4.4. Semantic Query Optimizer As Preprocessor 109

The motivation for both these data analysis activities is toincrease the prob-

ability of detecting unsatisfiable queries (Definition 2.2.6, page 18) and zero

queries (Definition 4.3.2, page 104). We emphasize the rule discovery phase

need not be restricted to the two simple procedures described above. Other

types of analysis may be applied such as clustering (see Example 4.4.5,

page 114 below). The search for useful semantic rules is quite independent

of other functions performed by the semantic optimizer and we report the two

strategies above because they are effective but extremely simple to implement.

4. Monitor Queries: We perform a limited type of query driven rule discov-

ery15. Currently this is restricted to monitoring zero queries. Queries which

return no rows are flagged and their restrictions noted. Thisinformation is

accumulated and used to enhance the semantic information for the cited col-

umn. This is explained in detail below in Section 4.4.2.

4.4.2 Utilising Data Holes

COL1

a1 a2

I

COL1 constrained by interval list: L = {I} = {(a1 , a2]}

Gap G = [g1, g2)

COL1 now constrained by interval list: L′ = {I1 , I2} = {(a1 , g1) , [g2, a2]}

I1 I2

g1 g2

G

a1 a2

data hole

Figure 4.5:Finding data holes: This figure depicts the legal range of values a column variable
COL1 may assume. In this example the legal range of values is described by an interval listL
consisting of a single intervalI . Suppose it is subsequently discovered that a gap in the dataexists
within this range, described by the intervalG =

[

g1,g2). Then removing this gap from intervalI
results in a new interval listL′ consisting of two intervalsI1 andI2. Refer toExample 4.4.2.

We now explain why collecting information about data holes in a target col-

umn allows us to refine the semantic information we have aboutthat column. In

Section 4.4.1 above, we described two techniques to collectinformation about data

holes, one data driven and the other query driven. In both cases the motivation is to

increase the probability of detecting zero queries. This inturn is motivated by the

15See Section 2.3.1 (page 21) for a detailed description of query driven rule discovery.

110 Chapter 4. A Practical Semantic Query Optimizer

observation that exactly the same advantage can be gained asfor the detection of

unsatisfiable queries; i.e., such queries need not be submitted to the database at all.

However information about data holes is collected, this is used to modify the

meta-data held for the target column. We emphasize that the extra semantic knowl-

edge we hold about a column (additional to the meta-data already stored and main-

tained by RDBMS) is captured in just one form, the interval list. Typically we begin

by recording only the minimum and maximum values for that column. Then this

information is progressively enhanced as further information about data holes is

discovered.

Example 4.4.2.Consider Figure 4.5, which depicts the legal range of values that

column variableCOL1 may assume. This information was discovered by noting the

minimum and maximum values for the column. This range is described by interval

list L consisting of a single interval I. It is subsequently discovered that a gap

G exists between
[

g1,g2). Removing this gap from interval list L results in a new

interval list L′ = {(a1,g1) ,
[

g2,a2
]

}. We arrive at the new interval list L′ by noting

that, logically, the gap G must be removed from the original interval list L. That is,

we find the conjunction of L with the negation of G:

L′ = L · ¬G

In practice then, the progressive enhancement of semantic information about

a target column proceeds by successive application of the negation algorithm for

intervals (Algorithm 3.9.1, page 74) and the conjunction algorithm for interval lists

(Algorithm 3.13.2, page 84).

We now consider in more detail the data driven and query driven search for data

holes.

4.4.2.1 Data driven search for data holes

In our data driven search for data holes, each target column is analyzed to find

the N largest gaps in the data, whereN = 1,2,3, . . . and is typically less than

10. This is currently restricted to columns of type numeric or date and to a small

subset of columns deemed to be of particular interest. We make the assumption

this analysis may be performed “offline” so it does not negatively impact query

evaluation. Although this activity is currently not automated and individual target

columns are chosen manually, we argue this technique shows considerable promise,

for the following reasons.

• It is simple. In the case of numeric and date data, we may calculate the gap

directly by considering the distance between successive data items in a sorted

list of data.

4.4. Semantic Query Optimizer As Preprocessor 111

• It is naturally limited by the application of the simple heuristic to search only

for the first few maximal gaps. Ultimately, the decision as tohow many gaps

to utilise is a trade-off between refining the semantic information held about

a target column and the increasing complexity of the interval list that results

from the progressive application of that knowledge.

• It is independent of any dimensional knowledge. We target only single columns

and retrieve information about gaps in that column alone, incontrast to (Rishe

et al. 2003) who search specifically for empty rectangles in two dimensional

data. We argue our approach provides maximum flexibility since the seman-

tic information we accumulate is independent of any particular query form or

syntax.

• Partial knowledge is useful. Suppose the table containing the target column is

so large that sorting the entire column is impractical. In this case, a statistical

sample of the table data can be taken, data holes detected andthen checked to

ensure the ranges really are empty.

4.4.2.2 Query driven search for data holes

Queries which return no rows are flagged and their restrictions noted. This infor-

mation is accumulated and used to enhance the semantic information for the cited

columns.

Example 4.4.3.Consider a tableTAB which includes columnsCOL1 and COL2.

For columnCOL1, a numeric column containing continuous data, we begin with

knowledge only of the minimum and and maximum values and this is captured by

interval list L1:

L1 = {[0,500]}

For COL2, a string column containing discrete data, we begin with a knowledge of

the distinct values and this is captured by interval list L2:

L2 = {[A,A] , [B, B] , [C,C] , [D,D] , [E,E] , [F, F] , [G,G]}

We pose the following two queries, both of which are satisfiable but nevertheless

return no rows; i.e., they are zero queries.

1. select *

from TAB

where COL1 >= 100 and COL1 < 400;

2. select *

112 Chapter 4. A Practical Semantic Query Optimizer

from TAB

where (COL1 > 350 and COL1 <= 500)

or COL2 in (’A’,’G’);

From query1 we may conclude the interval[100,400) represents a hole forCOL1.

From query2 we may conclude the interval(350,500] represents a hole forCOL1

and also that the intervals [A,A] and [G,G] are holes for COL2.

After the first query, L1 may be modified to become:

L1 = {[0,100) , [400,500]}

After the second query, L1 may be modified to become:

L1 = {[0,100)}

while L2 may be modified to become:

L2 = {[B, B] , [C,C] , [D,D] , [E,E] , [F, F]}

It is possible that the accumulation, in this query driven manner, of knowledge

about data holes might result in an interval list consistingof many narrow intervals.

This can be controlled by the application of a simple heuristic such as:

• Limit the number of intervals comprising the interval list to some small num-

ber (say 10).

• Accumulate “gap knowledge” only in the case where the width of an existing

gap is increased.

Currently, our query driven search for data holes proceeds “offline” and is some-

what contrived in that we are not limited by processing timesand we have prior

knowledge of both our data distribution and range of query restrictions. However,

as our empirical results in Chapter 6 confirm, our current implementation is well

able to cope with ten or more intervals in a single interval list semantic description

of a target column.

Although it is beyond the scope of this thesis, we predict that the accumulation

of knowledge about data holes in the manner we set out above, will be particu-

larly effective for sparse data where satisfiable queries are posed with roughly equal

probability across the entire range of data.

4.4. Semantic Query Optimizer As Preprocessor 113

4.4.3 Harvesting Schema Constraints

We now describe in detail how we use the existing schema semantics to derive rules

which can be utilised by our semantic query optimizer. The “check” constraint

type is the most useful to our semantic optimizer, but we alsoemploy some other

constraint types to produce simple but effective query rewrite.

4.4.3.1 Check constraints

ALL_INTERVAL_LISTS
ID OWNER TABLE_NAME COLUMN_NAME DATATYPE ILIST

17 APP_OWNER SALES UNIT_PRICE NUMBER { (0,5000] }
28 APP_OWNER CUSTOMER CUST_CODE VARCHAR2 { [‘A’,’A’] , [‘B’,’B’] , [‘C’,’C’] }

Check constraint on SALES.UNIT_PRICE :
check (UNIT_PRICE > 0 and UNIT_PRICE <= 5000);

Check constraint on CUSTOMER.CUST_CODE :
check CUST_CODE in (‘A’,‘B’,‘C’);

Figure 4.6:Harvesting check constraints: Check constraints may be converted into an interval
list form. This meta-data is stored in tableALL INTERVAL LISTS which is accessed by the semantic
query optimizer. Refer toExample 4.4.4.

Commercial RDBMS allow check constraints to be associated withparticular

columns of a target table. Their purpose is to check that new data inserted into the

target column conforms to a rule (the constraint) which mustbe a boolean sentence

that evaluates toTRUE, FALSE or null16. We restrict slightly the type of boolean

sentence that can be utilised by our optimizer.

• The sentence may only contain references to the target column variable it-

self17.

• The check constraint must be able to be expressed as an interval list.

With regard to the first point above, there is one important exception. Our optimizer

16All commercial RDBMS implement a three value boolean logic system using the two boolean
truth valuesTRUE andFALSE with the addition of the valuenull. This subject is beyond the scope
of this thesis but does not compromise the points made above.

17In the Oracle RDBMS, check constraints may also reference the other column variables in the
same row.

114 Chapter 4. A Practical Semantic Query Optimizer

is able to utiliseimplications; i.e., check constraints of the form:

¬Pci or Qc j

wherePci is some boolean sentence concerning columnci andQc j is some boolean

sentence concerning columncj and both columnsci andcj belong to the same ta-

ble. With regard to the second point above, this doesnot constitute an additional

limitation because the interval list is effectively a disjunctive normal form (Pohl &

Shaw 1986); i.e.,anyboolean check constraint with one variable can ultimately be

converted into the interval list form.

Example 4.4.4.Reconsider the check constraint of Example 4.2.2 (page 99) which

(at data insert time) restricts to a sensible range the valueof the column

UNIT PRICE in tableSALES. Similarly, consider a check constraint which restricts

the value of columnCUST CODE in table CUSTOMER to the valuesA, B or C. Fig-

ure 4.6 illustrates how we convert the check constraints intoan equivalent interval

list. This meta-data is stored in tableALL INTERVAL LISTS which is accessed by

the semantic optimizer.

Recall that check constraints are applied only at data insertand update time.

Our optimizer effectively applies the constraint at query time. This is a crucial

difference. Since the constraint represents a statement about the target column

which is always true, the semantic optimizer may apply the conjunction rule18 to

the constraint interval list and whatever constraint on thetarget column appears in

the query. This is how the semantic optimizer detects, for example, unsatisfiable

queries. The following example shows how we combine the results of different

phases of the harvesting of schema semantics.

Example 4.4.5. Reconsider Example 4.2.2 (page 99). Consider column

UNIT PRICE. Suppose that in addition to the check constraint, a simple analysis

reveals that the minimum price stored is in fact$2.99 while the maximum price is

$1750.00. Furthermore, the application of a simple clustering algorithm has re-

vealed the prices fall naturally into three main groups:2.99-49.99, 75.00-399.99

and650.00-1750.00. We therefore have three sources of semantic information con-

cerning columnSALES.UNIT PRICE, each of which converts readily to an interval

list. Since all three statements must be true, we combine themby applying the con-

junction rule. We proceed in three steps:

1. Harvest the check constraint on columnUNIT PRICE to produce interval list

18See Section 3.13 (page 82) for a precise description of the conjunction rule.

4.4. Semantic Query Optimizer As Preprocessor 115

L1:

L1 = {(0,5000]}

2. Find the minimum and maximum values for columnUNIT PRICE to form in-

terval I = [2.99,1750.00]. Apply the conjunction rule with L1 to form new

interval list L2:

L2 = con(L1, I)

= con({(0,5000]}, [2.99,1750.00])

= {[2.99,1750.00]}

3. Form the results of the clustering into an interval list C.Apply the conjunction

rule with L2 to form new interval list L3:

C = {[2.99,49.99] , [75.00,399.99] , [650.00,1750.00]}

L2 = {[2.99,1750.00]}

L3 = con(L2,C)

= con({[2.99,1750.00]}, {[2.99,49.99] , [75.00,399.99] , [650.00,1750.00]})

= {[2.99,49.99] , [75.00,399.99] , [650.00,1750.00]}

As each stage of the analysis proceeds, the resulting interval list is stored as meta-

data in tableALL INTERVAL LISTS. Each of the steps described above resulted in

further refinement of the semantic information obtained. Note that we may stop the

analysis of the target column at any time if, for example, theanalysis is judged to

be too computationally intensive.

In the next example we illustrate how meta-data stored in table

ALL INTERVAL LISTS is utilised by the semantic optimizer to recast the original

SQL query into a more efficient query.

Example 4.4.6.Reconsider Example 4.4.5 above. Suppose we wish to know how

many sales there are for products whose price is between$50.00 and$60.00. The

following SQL query is posed:

select count(1)

from SALES s

where s.UNIT_PRICE between 50.00 and 60.00;

Under normal circumstances this query will be sent to the database and, because

of the large size of the target tableSALES, require substantial resources to answer.

However, the semantic optimizer preprocesses this query, performing the following

steps:

116 Chapter 4. A Practical Semantic Query Optimizer

1. Retrieve meta-data fromALL INTERVAL LISTS pertaining to the column re-

strictions, if it exists. In this case, the interval list L1 is retrieved:

L1 = {[2.99,49.99] , [75.00,399.99] , [650.00,1750.00]}

2. If an interval list was retrieved, rewrite the column restriction as an interval

list. In this case, the interval list L2 is the result:

L2 = {[50.00,60.00]}

3. Find the conjunction of the two interval lists L1 and L2:

con(L1, L2) = con({[2.99,49.99] , [75.00,399.99] , [650.00,1750.00]}, {[50.00,60.00]})

= {}

The conjunction of the two interval lists yields null. This isan unsatisfiable query

which will return no rows. This query need not be submitted to thedatabase.

We complete the description of how we utilise check constraints by summarising

in Figure 4.7 the steps taken by the semantic optimizer to preprocess SQL queries.

4.4.3.2 Cost of Semantic Preprocessing

We now describe how the costs incurred in semantically preprocessing queries arise.

We first consider the cost of preprocessing queries then consider the extra cost of

processing joins in an analogous manner.

1. Query preprocessing cost: Consideration of Figure 4.7 above reveals why

semantically preprocessing queries is not costless. For each query restriction,

we must

• search for the relevant interval listLc

• convert the restriction into an interval listRc

• find the conjunction ofLc andRc

• convert the conjunction back to an SQL restriction

2. Join preprocessing cost: When joins are preprocessed in an analogous man-

ner, the followingextracosts arise.

• Suppose the join clause is “where t1.COL1 = t2.COL3”. This im-

plies that whatever restrictions apply to “t1.COL1”, we can also apply

these to “t2.COL3” and vice versa. So before any join restrictions are

considered, we already must search for two interval lists and find one

conjunction.

4.4. Semantic Query Optimizer As Preprocessor 117

yes

no

Query Q:
select * from T where Rc

Semantic
rule for column C

exists?

Lc

Convert Rc
to interval list

Apply conjunction rule
R′c = con(Lc,Rc)

Substitute R′c for Rc
Query Q′:
select * from T where R′c

Pass query to
SQL optimizer

Figure 4.7: Utilising check constraints: The semantic query optimizer can preprocess SQL
queries where a semantic rule exists for the column (C) cited in the query restriction. Such a rule
is always true, so we may find the conjunction of the interval list representing the check constraint
(Lc) and the query restriction (Rc). The result of the conjunction (R′c) is substituted for the original
restriction. This is how, for example, we detect unsatisfiable queries.

• For each join restriction, we carry out the same steps set outabove for

queries.

• We must consider the special case when one of the join restrictions cites

one of the join columns. Suppose the join clause is “where t1.COL1

= t2.COL3” and one of the restrictions is “and t1.COL1 < 10”. But

this restriction must logically also apply to “t2.COL3”. Therefore an

extra conjunction is required.

In general, semantically preprocessing equi-joins incursapproximately four

times the cost of semantically preprocessing queries.

4.4.3.3 Primary key and unique key constraints

When primary key and unique key columns appear in theselectclause of the SQL

query, we make the disarmingly simple change of removing theredundant key word

“distinct”, if it exists. This small change increases the efficiency of the query be-

cause it removes the necessity to sort the query results and remove duplicates when

118 Chapter 4. A Practical Semantic Query Optimizer

in fact we knowa priori that no duplicates can exist19. In the following examples,

we show how the Oracle RDBMS itself judges the cost of the queries by requesting

the actual execution plan the SQL optimizer chooses to answer the queries. The

target tables, the queries and the execution plans in all of the examples for the re-

mainder of this Section are all real and were carried out on the same database and

under the same conditions as for the empirical results we report in Chapter 620.

Example 4.4.7.We pose two simple SQL queries, one with the (redundant) keyword

“ distinct” and one without. The target table in this example,TAB5, contains

1× 106 rows and occupies2.8Gb of disk storage. ColumnID is the primary key of

TAB5, guaranteeing the uniqueness of each value retrieved.

select distinct t5.ID

from TAB5 t5

where t5.COL1 > t5.COL2;

This query returned1641rows and the SQL optimizer chose the following execution
plan. We are concerned primarily with the total cost and totaltime which are the
top figures in theCost andTime columns respectively21.

| Operation | Name | Rows | Bytes | Cost | Time |

| SELECT STATEMENT | | 1 | | 12578 | 03:21|

| SORT AGGREGATE | | 1 | | | |

| VIEW | | 55369 | | 12578 | 03:21|

| VIEW | | 55369 | 973K| 12578 | 03:21|

| HASH JOIN | | | | | |

| HASH JOIN | | | | | |

| INDEX FAST FULL SCAN| PK_TAB5 | 55369 | 973K| 2524 | 00:41|

| INDEX FAST FULL SCAN| NX_TAB5_COL1 | 55369 | 973K| 2979 | 00:48|

| INDEX FAST FULL SCAN | NX_TAB5_COL2 | 55369 | 973K| 2979 | 00:48|

We pose the same query without the “distinct” keyword:

select t5.ID

from TAB5 t5

where t5.COL1 > t5.COL2;

for which the SQL optimizer produces the following execution plan:
19For simplicity, currently we do not allow the occurrence ofnull values in the unique key

columns.
20The Oracle SQL optimizer, for all results reported this thesis, is set to “cost based”. Cost

based optimization does not function correctly unless up-to-date statistics exist pertaining to data
distribution in the target tables (Chan 2005d). It may be assumed that up-to-date statistics exist for
all the following examples.

21The execution plan printout has been edited for presentation purposes. A more detailed dis-
cussion of the format of the SQL optimizer’s execution plan and its precise meaning is beyond the
scope of this thesis. We utilise this facility here because it clearly indicates the effect of the keyword
“distinct” on relative query cost.

4.4. Semantic Query Optimizer As Preprocessor 119

--

| Operation | Name | Rows | Bytes | Cost | Time |

--

| SELECT STATEMENT | | 1 | 12 | 6650 | 01:46 |

| SORT AGGREGATE | | 1 | 12 | | |

| VIEW | | 55369 | 648K| 6650 | 01:46 |

| HASH JOIN | | | | | |

| INDEX FAST FULL SCAN| NX_TAB5_COL1 | 55369 | 648K| 2979 | 00:48 |

| INDEX FAST FULL SCAN| NX_TAB5_COL2 | 55369 | 648K| 2979 | 00:48 |

--

Comparing the total cost:12578versus6650and total time:03 : 21versus01 : 46

we see removal of the “distinct” keyword halves the cost of the query.

We now give a similar example, but this time we look at an equi-join between

two large tables where the join column is in fact the primary key for both tables.

Example 4.4.8.The target tables in this example,TAB5 and TAB6, both contain

1 × 106 rows and occupy2.8Gb of disk storage each. ColumnID is the primary

key for both tables. The simplicity of the following query andthe fact that it returns

no rows do nothing to mitigate the negative effect of the redundant “distinct”

keyword.

select distinct t5.ID

from TAB5 t5, TAB6 t6

where t5.ID = t6.ID;

for which the SQL optimizer produces the following execution plan:

| Operation | Name | Rows | Bytes |TempSpc| Cost | Time |

| SELECT STATEMENT | | 1000K| 11M| | 4626 | 01:14|

| HASH UNIQUE | | 1000K| 11M| 38M| 4626 | 01:14|

| HASH JOIN | | 1000K| 11M| 17M| 791 | 00:13|

| INDEX FAST FULL SCAN| PK_TAB5 | 1000K| 5859K| | 168 | 00:03|

| INDEX FAST FULL SCAN| PK_TAB6 | 1000K| 5859K| | 168 | 00:03|

We pose the same query without the “distinct” keyword:

select t5.ID

from TAB5 t5, TAB6 t6

where t5.ID = t6.ID;

for which the SQL optimizer produces the following execution plan:

120 Chapter 4. A Practical Semantic Query Optimizer

| Operation | Name | Rows | Bytes |TempSpc| Cost | Time |

| SELECT STATEMENT | | 1000K| 11M| | 791 | 00:13 |

| HASH JOIN | | 1000K| 11M| 17M| 791 | 00:13 |

| INDEX FAST FULL SCAN| PK_TAB5 | 1000K| 5859K| | 168 | 00:03 |

| INDEX FAST FULL SCAN| PK_TAB6 | 1000K| 5859K| | 168 | 00:03 |

Comparing the total cost:4626versus791 and total time:01 : 14versus00 : 13

we see removal of the “distinct” keyword reduces the cost by over80%. We

include an extra column “TempSpc” in the execution plans above which indicates

the temporary space the SQL optimizer needs to utilise to answer the query. The

redundant “distinct” keyword triggers the appropriation of an extra38Mb of

temporary space.

The objective of presenting Examples 4.4.7 and 4.4.8 above is to highlight the

beneficial effect of a seemingly trivial syntactic change to the SQL query.We ar-

gue that such a simple rewrite procedure should be implemented in any practical

semantic query optimizer.

4.4.3.4 Not null constraints

The purpose of the “not null” constraint on a column is to ensure that only non-

null values are ever inserted into that column. This suggests another simple rewrite

rule, analogous to the removal of the “distinct” keyword described above in Sec-

tion 4.4.3.3. We propose to remove redundant “is not null” restrictions where

the cited column already has the “not null” constraint. Again, the proposed rewrite

seems disarmingly simple, so perhaps the extra processing is not worthwhile. The

following example examines this issue.

Example 4.4.9.The target table in this example,TAB1, contains2× 105 rows and
occupies539Mb of disk storage. ColumnsCOL1, COL2, COL3, COL4, COL5 are all
constrained to be non-null, as is the primary key columnID. The following shows
the relevant fragment of the table’s definition held by the RDBMS:

Name Null? Type

----------------- -------- ----------

ID NOT NULL NUMBER

COL1 NOT NULL NUMBER

COL2 NOT NULL NUMBER

COL3 NOT NULL NUMBER

COL4 NOT NULL NUMBER

COL5 NOT NULL NUMBER

. . .

. . .

4.4. Semantic Query Optimizer As Preprocessor 121

Furthermore, highly selective indexes exist on all six columns. The following shows
index information held by the RDBMS for tableTAB1:

Index STATUS TABLE_NAME Columns distinct sel%

-------------------- ------- ----------- -------- --------- ------

PK_TAB1 VALID TAB1 ID 200,000 100.0

NX_TAB1_COL1 VALID TAB1 COL1 142,172 71.1

NX_TAB1_COL2 VALID TAB1 COL2 142,162 71.1

NX_TAB1_COL3 VALID TAB1 COL3 142,008 71.0

NX_TAB1_COL4 VALID TAB1 COL4 141,933 71.0

NX_TAB1_COL5 VALID TAB1 COL5 142,161 71.1

Now consider the following SQL query againstTAB1 which returns just318rows:

select ID

from TAB1

where COL2 < COL1

and COL3 is not null

and COL4 is not null

for which the SQL optimizer produces the following execution plan:

--

| Operation | Name | Rows | Bytes | Cost | Time |

--

| SELECT STATEMENT | | 11108 | 325K| 5251 | 01:24 |

| TABLE ACCESS FULL| TAB1 | 11108 | 325K| 5251 | 01:24 |

--

We see the SQL optimizer has opted for a full table scan despite the small cardinality

of the answer set and the existence of selective indexes, with atotal cost of5251.

We now pose the same query with the redundant restriction “and COL4 is not

null” removed:

select ID

from TAB1

where COL2 < COL1

and COL3 is not null;

for which the SQL optimizer produces the following execution plan:

| Operation | Name | Rows | Bytes | Cost | Time |

| SELECT STATEMENT | | 11108 | 260K| 4019 | 01:04 |

| VIEW | idx$_jn$_001 | 11108 | 260K| 4019 | 01:04 |

| HASH JOIN | | | | | |

| HASH JOIN | | | | | |

| HASH JOIN | | | | | |

122 Chapter 4. A Practical Semantic Query Optimizer

| INDEX FAST FULL SCAN| NX_TAB1_COL1 | 11108 | 260K| 597 | 00:10 |

| INDEX FAST FULL SCAN| NX_TAB1_COL2 | 11108 | 260K| 597 | 00:10 |

| INDEX FAST FULL SCAN | NX_TAB1_COL3 | 11108 | 260K| 597 | 00:10 |

| INDEX FAST FULL SCAN | PK_TAB1 | 11108 | 260K| 505 | 00:09 |

This time the optimizer opts to use various relevant indexesand the cost reduces

to 4019. Finally, we remove the last redundant restriction “and COL3 is not

null”:

select ID

from TAB1

where COL2 < COL1;

for which the SQL optimizer produces the following execution plan:

--

| Operation | Name | Rows | Bytes | Cost | Time |

--

| SELECT STATEMENT | | 11108 | 195K| 2612 | 00:42 |

| VIEW | idx$_jn$_001 | 11108 | 195K| 2612 | 00:42 |

| HASH JOIN | | | | | |

| HASH JOIN | | | | | |

| INDEX FAST FULL SCAN| NX_TAB1_COL1 | 11108 | 195K| 597 | 00:10 |

| INDEX FAST FULL SCAN| NX_TAB1_COL2 | 11108 | 195K| 597 | 00:10 |

| INDEX FAST FULL SCAN | PK_TAB1 | 11108 | 195K| 505 | 00:09 |

--

Comparing the total costs for the three execution plans, we seeremoval of the re-

dundant “is not null” restrictions reduces the cost from5251to 4019to 2612

while the total time reduces from01 : 24 to 01 : 04 to 00 : 42. Removal of the

redundant restrictions has halved the query cost.

The point of the above example is not the details of exactly what execution path

is chosen by the optimizer, but the fact that the redundant “is not null” clauses

have not only provoked the unnecessary checking of data thatis already declared to

be “not null” in the database’s own meta-data but ultimatelyled to a full table scan

despite the presence of relevant selective indexes. We argue any practical semantic

optimizer ought to perform this simple query rewrite.

4.4.3.5 Foreign key constraints

The purpose of a foreign key constraint is to maintain referential integrity between

parent and child columns. As is the case with all the databaseconstraints we exam-

ine in this chapter, the constraint operates only at data insert or update time (if it is

enabled) and has no effect whatsoever on queries that cite the foreign key column.

4.5. Conditional Semantic Rules 123

But if all data has been inserted with the foreign key constraint enabled, then

every unique value found in the foreign key column is guaranteed to exist in the

corresponding primary key column. So any semantic information about intervals

that exists for the parent column must also apply to the foreign key column that

points to it22.

We make use of this relationship by automatically copying over to the foreign

key column the semantic information we have derived for the parent column. The

foreign key column must beat leastas restricted as the parent column it points to,

but it might well be more restricted. If the foreign key column is frequently cited in

query restrictions, this is strong motivation for a data analysis on this column.

Example 4.4.10.TableCUSTOMER contains a foreign key columnCITY CODE which

points to parent columnCODE, the primary key of reference tableCITY. Suppose

that tableCITY also has the following check constraint on columnCODE:

check CODE in (’Auckland’,’Wellington’,’Sydney’,’Melbourne’);

As we have explained above in Section 4.4.3, this semantic information is harvested

and appears as meta-data (in the form of an interval list) in table

ALL INTERVAL LISTS under the entry for CITY.CODE. Since column

CUSTOMER.CITY CODE is a foreign key pointing toCITY.CODE, we are justified

in immediately copying over the same semantic information under the entry for

CUSTOMER.CITY CODE.

However, a subsequent data analysis of columnCUSTOMER.CITY CODE reveals

that all values are either’Wellington’ or ’Melbourne’. This result is more

restrictive than the original, so it replaces the interval list under the entry for

CUSTOMER.CITY CODE.

4.5 Conditional Semantic Rules

In this section we describe how the effectiveness of the semantic query optimizer

can be enhanced by the addition of simpleconditionalrules. The semantic rules we

have described so far are assumed to bealways true. Therefore, we can utilise them

without any pre-conditions. For example, in the case of check constraints which

we have converted to a corresponding interval list, we simply apply the conjunction

rule with the relevant query restrictions, since both must be true. This is described

in detail above in Section 4.4 (page 104).

We now show how the interval list form we use to store semanticrules allows us

to easily write conditional rules which aresometimes trueand which may be used

22For simplicity, we do not consider the case where the foreignkey column is allowed to be
null. When this is the case, we cannot strictly say the foreign key column inheritsall of the parent
constraints since one of the parent constraints must, by definition, be “not null”.

124 Chapter 4. A Practical Semantic Query Optimizer

to rewrite the original SQL query. We begin with an example which illustrates how

the knowledge of a human domain expert may be captured and encoded into a rule

which is able to be utilised by the semantic optimizer.

Example 4.5.1.Consider the schema fragment of Figure 4.4 (page 108). An entire

range of products has been retired and are no longer available for sale as of 30

June 2006. A domain expert notes the obsolete products have product codes which

fall into three ranges:1 to 100, 300 to 350 and900 to 999. So it must be the case

that if a product falls into one of these three ranges, the sale was made on or before

30 June 2006. The company did not exist before 1 January 2000,so this must be the

earliest possible date23. This information can be encoded into a simple rule using

two interval lists. Let P stand for the product codes and D the sales date. Then our

rule has the form “if P then D” where:

P = {[1,100] | [300,350] | [900,999]}

D = {[20000101,20060630]}

Now consider a query which asks for total sales of product “55” during the month

of August 2006:

select count(1)

from SALES s

where PRODUCT_KEY = 55

and DATE_KEY between 20060801 and 20060831;

Writing both restrictions as interval lists we obtain:

P′ = {[55,55]}

D′ = {[20060801,20060831]}

Interval list P′ triggers the rule “if P then D” because interval list PsubsumesP′.

Therefore the restriction captured by interval list D must also be true and we may

apply the conjunction rule to D and D′:

con
(

D,D′
)

= con({[20000101,20060630]}, {[20060801,20060831]})

= {}

The conjunction of the two interval lists yields null. This isan unsatisfiable query

which will return no rows. This query need not be submitted to thedatabase.

23For simplicity we assume the product codes are all numeric and the date may be represented by
an integer of the form “YYYYMMDD”.

4.5. Conditional Semantic Rules 125

4.5.1 Meaning of a Conditional Rule

We now clarify exactly what is meant by a conditional rule of the form:

i f Lci then Lc j

whereLci andLc j are interval lists. These interval lists are statements concerning

the allowed values of particular columnsci andcj respectively, of some tableT.

Recall from Chapter 3 that an interval list is simply a shorthand way of writing a

sentence in first order logic which constrains the values of avariable to be within

certain ranges.

Therefore, when we write “if Lci thenLc j ” we mean precisely that if the values

of columnci fall within the ranges allowed byLci , it must also be the case that the

values of columncj fall within the ranges allowed byLc j .

4.5.2 Meeting the Condition: the Subsumption Rule

Example 4.5.1 above illustrates how we decide if the pre-condition for a conditional

semantic rule is met by a query restriction. We simply note ifthe query restriction

is subsumedby the rule pre-condition. If it is, we may add the right hand side of

the conditional rule to the query as an additional restriction. This is ultimately a

consequence of Theorem 3.16.3 (page 92). We now state this relationship precisely

as the Subsumption Rule.

Theorem 4.5.1.The Subsumption Rule:

• Let ci and cj be the ith and jth columns respectively of table T.

• Let Lci be an interval list describing a range of allowed values for ci.

• Let Lc j be an interval list describing a range of allowed values for cj.

• Let C be a conditional rule of the form:if Lci then Lcj .

Now consider a query Q which includes a restriction Rci on column ci. Then the

Subsumption Rule is:

If Lci subsumes Rci then replace Rci by
(

Rci and Lc j

)

.

Proof: This follows directly from the fact that if Lci subsumes Rci then Rci must

logically imply Lci (Theorem 3.16.3). But Lci in turn logically implies Lc j . Therefore,

by the extended syllogism rule of Boolean Algebra (Pohl& Shaw 1986) Rci logically

implies Lc j .

126 Chapter 4. A Practical Semantic Query Optimizer

4.5.3 Utility of Conditional Rules

We use conditional rules to implementrestriction introduction(Section 2.5.3 page 34)

andrestriction removal(Section 2.5.2, page 31). Currently no commercial RDBMS

allows such rules to be captured for the purposes of query optimization and there is

no mechanism available in any commercial RDBMS to add predicates to queries.

We argue that such conditional rules are desirable to:

• capture the knowledge of domain experts which might not otherwise be utilised;

• capture the results of a mechanical analysis of data which specifically searches

for correlations between the data values of different columns in a table.

The second item is typically the scenario that researchers in SQO have in mind

when restriction introduction and removal is discussed (Lowden & Robinson 2002,

Cheng et al. 1999, Lee et al. 1999). This raises the question asto how adding an

additional predicate to an SQL query (as opposed to simplifying the query) could

be advantageous. The answer is found in the presence or absence of indexeson the

target columns.

4.5.3.1 Implementing Restriction Introduction

To implement restriction introduction, we look for correlations between a columnci

which has no existing index and a columncj which is indexed, where the unindexed

column is the subject of the rule pre-condition. The hope then is that when queries

are restricted on columnci we may add the correlated restrictions on columncj,

provoking the SQL optimizer to use the index on columncj. The following example

illustrates this methodology.

Example 4.5.2.Consider the schema fragment of Figure 4.4 (page 108). A mechan-

ical search for semantic rules on tableINVOICE reveals that columnSTORE ID is

highly correlated with the primary keyINVOICE NO. A domain expert notes this

is not surprising since each different store is issued with non-overlapping ranges

of invoice numbers. A simple rule set emerges which relates each STORE ID to a

particular range of invoice number:

• if STORE_ID = ’Auckland’

then INVOICE_NO between 1 and 1000000;

• if STORE_ID = ’Wellington’

then INVOICE_NO between 1000001 and 2000000;

• if STORE_ID = ’Sydney’

then INVOICE_NO between 2000001 and 3000000;

4.5. Conditional Semantic Rules 127

• if STORE_ID = ’Melbourne’

then INVOICE_NO between 3000001 and 4000000;

These rules are easily converted into interval lists and entered as conditional rules

for the semantic optimizer to use. Now whenSTORE ID is cited in the query re-

strictions, the corresponding range of invoice numbers is added as an additional

restriction. This increases query efficiency becauseINVOICE NO is indexed while

STORE ID is not.

4.5.3.2 Implementing Restriction Removal

To implement restriction removal, we look for correlationsbetween a columnci

which has an existing index of high selectivity and a columncj which is not in-

dexed, where the indexed column is the subject of the rule pre-condition. (This

is the converse of the method for restriction introduction described above in Sec-

tion 4.5.3.1). If the rule pre-condition is met (i.e.,Lci subsumes the query restriction

Rci) then, logically, the rule consequentLc j could be added to the query without

changing the query result. However, this additional restriction itself is unlikely to

optimize the query since the columncj is unindexed. In this case our objective is to

eliminatea query restriction on columncj, sayRc j . This is logically permitted ifRc j

can be implied by the rule consequentLc j (i.e., Rc j subsumesLc j). The following

example illustrates this methodology.

Example 4.5.3.Reconsider the schema fragment of Figure 4.4 (page 108). A me-

chanical search for semantic rules on tableINVOICE is carried out in the converse

sense to that described above in Example 4.5.2. This time,INVOICE NO forms the

rule pre-condition and it is found to be highly correlated with columnSTORE ID. A

simple rule emerges:

• if INVOICE_NO between 1 and 1000000

then STORE_ID = ’Auckland’;

The following query is posed:

select *

from INVOICE

where INVOICE_NO between 500 and 600

and STORE_ID in (’Auckland’,’Melbourne’);

Semantic optimization proceeds in two steps:

1. The rule pre-condition “if INVOICE NO between 1 and 1000000” sub-

sumes the query restriction “INVOICE NO between 500 and 600” so the

rule consequent “STORE ID = ’Auckland” can logically be added to the

query.

128 Chapter 4. A Practical Semantic Query Optimizer

2. However, the query restriction “STORE ID in (’Auckland’,’Melbourne’)”

is implied by “STORE ID = ’Auckland’”. Therefore it can be eliminated.

We complete the description of how we utiliseconditionalrules by summarising

in Figure 4.8 the steps taken by the semantic query optimizerto preprocess SQL

queries.

yes

yes

no

no

Query Q:

select * from T where Rci

Conditional

rule for Rci
exists?

if Lci then Lcj

Convert Rci

to interval list

Add to query :
Query Q′:
select * from T

where Rci and Lcj

Pass query to
SQL optimizer

Lci subsumes Rci?

Figure 4.8: Utilising conditional rules: The semantic query optimizer can preprocess SQL
queries where a conditional semantic rule exists for the column cited in the query restriction. If
the rule pre-condition (left hand side) subsumes the query restriction, the right hand side of the rule
may be added to the query as an additional restriction. Typically the rule pre-condition restricts an
unindexed column while the rule right hand side restricts anindexed column.

4.6 Summary

In this Chapter we have described the design of a practical semantic query optimizer.

We summarise in Figure 4.9 the rules we propose to use for our practical semantic

query optimizer.

The main contributions of this Chapter include the following.

• We highlight an intrinsic limitation of SQO in that it depends on the detection

of queries which are anomalous. But if anomalous queries are hardly ever

4.6. Summary 129

Rule Source Preparation Triggered By Action Rule Type
Check constraint

on column ci

Convert to

interval list Lci

and store

Column ci cited in

query restriction

Rci

Substitute Rci

with con(Lci,Rci)

Always true

Primary key (PK)

or Unique key

(UK) constraint

on column ci

nil PK or UK cited in

“select” clause

with keyword

“distinct”

Delete redundant

“distinct”

keyword

Always true

Foreign key (FK)

constraint on

column ci

Inherit all

constraints for

corresponding

parent column

Column ci cited in

query restriction

Rci

Substitute Rci

with con(Lci,Rci)

Always true

Not null

constraint on

column ci

nil Column ci cited in

query restriction

with “is not null”

Delete redundant

restriction

“ci is not null”

Always true

Data holes in

column ci

Analyze column

ci to locate gaps.

Convert to

interval list Lci

and store

Column ci cited in

query restriction

Rci

Substitute Rci

with con(Lci,Rci)

Sometimes true.

Must be

revalidated on

data update.

Conditional rules Analyze columns

ci and cj. Make

rule of form

“if Lci then Lcj”

Column ci cited in

query restriction

Rci

If Lci subsumes

Rci then add Lcj as

an additional

restriction

Sometimes true.

Must be

revalidated on

data update.

Figure 4.9:Rules utilised by our semantic optimizer: This table summarises the rules we pro-
pose to use for our practical semantic query optimizer. We harvest schema constraints which are true
for the lifetime of the schema. We locate data holes so zero queries can be detected. We analyze
data to detect correlations between columns in order to produce conditional rules. Rules that depend
on data are only sometimes true and must be revalidated if data is updated.

submitted, perhaps the extra effort of semantically optimizing queries is not

worthwhile. To our knowledge, this is the first study to specifically highlight

this property of SQO (Section 4.2).

• We then introduce four new terms:query profile, zero query, positive query

anddata holes(Section 4.3). We argue that the first step in any effective im-

plementation of SQO should be the discovery of the query profile which can

then be used to initiate a highly focused rule discovery phase (Section 4.4.1).

• We propose a new type of semantic query optimization which searches for

“data holes” and utilises them to identify zero queries which, in an analogous

fashion to unsatisfiable queries, need not be submitted to the database. We

describe two practical methods of discovering data holes, one data driven and

one query driven (Section 4.4.2).

• We describe how we harvest a subset of existing schema constraints which

are already stored as part of the RDBMS and how these are utilised by our

semantic optimizer as rules which are “always true” and which can therefore

be added at any time to queries without altering the query outcome (Sec-

tion 4.4.3). We show why the cost of semantically preprocessing equi-joins

is approximately four times the cost of semantically preprocessing queries

(Section 4.4.3.2).

130 Chapter 4. A Practical Semantic Query Optimizer

• We explain how the optimizer may be extended with conditional rules which

are derived from a data driven analysis and which typically capture correla-

tions between non-indexed and indexed columns (Section 4.5). These rules

may be elegantly expressed as interval lists and are invokedby application

of the Subsumption Rule (Section 4.5.2). To our knowledge, this is the first

study to utilise intervals or interval lists in this manner.

Chapter 5

Empirical Methodology

131

132 Chapter 5. Empirical Methodology

5.1 Introduction

In Chapter 2, we described how current SQL query optimizers cannot utilise se-

mantic information to optimize queries. We concluded that areasoning enginewas

required which takes semantic information as its input and deduces certain conclu-

sions which allow the original SQL query to be recast to another equivalent query

which can be answered more efficiently. Then in Chapter 3 we described aninterval

algebrawhich we use as the basis of a reasoning engine. In Chapter 4 we described

a practical semantic query optimizer which utilises the reasoning engine and which

implements various types of semantic query optimization.

In this chapter we present the methodology we employ to carryout a series

of empirical investigations whose overall aim is to demonstrate the efficacy of our

semantic query optimizer. Our experiments simulate real relational database en-

vironments. Thus we seek to not only demonstrate SQO in principle, but also to

demonstrate that a practical semantic optimizer can readily be built utilising seman-

tic information already available within the relational database environment.

We begin by describing our experimental methodology and explain the diffi-

culty of obtaining consistent, repeatable results with RDBMSthat have automatic

database maintenance processes and which have large query caches available. We

explain why the experimenter must be careful about what is actually being measured

in such circumstances. In particular, we explain why it can be näıve and misleading

to useelapsed timeonly as the measure of query efficiency.

We precede our empirical results with the development of a simple cost model

pertaining to unsatisfiable queries. We explain how the costmodel can greatly as-

sist in predicting the circumstances under which SQO becomes worthwhile. We

use the cost model to show that it is straightforward to predict an upper bound to

the amount of optimization one can expect when queries are pre-processed by a

semantic optimizer.

The remainder of this chapter is organised as follows.

• We explain the difficulty of obtaining consistent, repeatable empirical results

with RDBMS where automatic maintenance processes may executeat un-

predictable times and where large memory caches are available and how we

remediate this problem (Section 5.2.2). We describe how we simulate a busy

database environment (Section 5.2.3). We explain how judging the cost of a

query by elapsed time alone can be misleading and the metricswe employ to

judge theaverage query cost(Sections 5.2.4 and 5.2.5).

• We describe a query normal form which reflects the interval list data type we

defined in Chapter 3 (Section 5.3.1). We then describe a qualitative method

of classifyingquery difficulty (Section 5.3.2).

5.2. Experimental Methodology 133

• We derive a cost model which predicts the relationship between efficiency

gain due to semantic optimization and the probability of an unsatisfiable

query being submitted (Section 5.4).

• We conclude by listing the main contributions of the Chapter (Section 5.5).

5.2 Experimental Methodology

In this section we describe the methodology we employ throughout our experi-

ments. We begin by explaining how we treat the Oracle RDBMS as a “black box”

and the rationale behind this assumption. We then focus on the problems that arise

when trying to obtain consistent, repeatable results with RDBMS that have many

automatic maintenance processes and which have large querycaches available. We

explain why the experimenter must be careful about what is actually being measured

in such circumstances.

5.2.1 The Oracle RDBMS as a “black box”

There are a very large number of parameters in the Oracle RDBMS that can be

altered by the user: for example,size of SGA, Java pool size, sort area size, data

block checksum(Rich 2005). In practice, it is infeasible to try to control more than

a small number of these and in fact Oracle provides default settings which are rarely

altered. A key difference between theOracle 10server (which we use throughout

our experiments) and older incarnations of the Oracle RDBMS isthat most of the

key parameters are determined automatically by the Oracle server using built in

heuristics (Cyran, Lane & Polk 2005b). The most influential user-defined param-

eter is arguablySGA TARGET (Cyran, Lane & Polk 2005d). This can be (roughly)

thought of as the amount of RAM set aside for all Oracle processes.

Given the above, it makes sense to configure the Oracle serveras little as possi-

ble and accept the defaults provided by Oracle. In this way weestablish a baseline

for all Oracle instances. Furthermore, this is both recommended by Oracle them-

selves and is considered current “best practice” in the industry. It also enables us

to treat the Oracle server primarily as a “black box” thus eliminating the need to

consider a large number of extra variables.

5.2.2 Obtaining consistent results

We now explain the difficulty of obtaining consistent, repeatable results with the

Oracle RDBMS, as it is typically configured. We explain why the experimenter

must be careful about what is actually being measured. In particular, we explain

134 Chapter 5. Empirical Methodology

why it can be näıve and misleading to useelapsed timeonly as the measure of

query efficiency.

Two factors present in the Oracle RDBMS have the potential to affect the con-

sistency of empirical measurements. These are:

• Various automatic maintenance processes may execute at unpredictable times,

utilising CPU and disk resources. This is increasingly the case as more routine

maintenance tasks, formally performed manually by the DBA,are replaced

by automatic tasks that may be scheduled or triggered withinthe database

system.

• Large query caches mean that parsed SQL queries, along with query results,

can remain in memory for long periods of time. Thus the speed with which

an SQL query is answered is deeply affected by the queries which have gone

before.

With regard to the first item above, the Oracle RDBMS, in common with other

major commercial RDBMS, has moved in recent years to implementpartial au-

tomation of database administration. The commercial motivation for this is clear but

there are also positive effects for the DBA in that some routine maintenance tasks

are now automatically scheduled or triggered and carried out without human inter-

vention (Fogel & Lane 2006a, Cyran, Lane & Polk 2005e). Two key areas which

are now automatic are:extent managementandsegment space management1. Both

of these reduce the amount of DBA intervention required, particularly as database

objects grow large.

With regard to the second item above, the purpose of caching the result of SQL

parsing and query results is to enhance the speed with which queries are processed.

When an SQL query is made against the database, the database management system

first checks to see if the query is the same as one it has recently parsed. If it is

judged to be the same (typically because the query is textually identical to a previous

query), the existing parse tree is used because this is quicker than a re-parse (Chan

2005e). The database management system then checks to see if the data required

is still in the data cache; retrieval from memory is far quicker than retrieval from

disk (Cyran, Lane & Polk 2005a). So the speed with which an individual SQL

query is answered is deeply affected by the query context; i.e., what queries have

immediately preceded the current query and what tables havebeen the target of

these queries. It is important to note that when table rows are retrieved from disk,

1A more complete discussion of these parameters and their significance is be-
yond the scope of this thesis. However, detailed information about these and other
Oracle database parameters can be accessed via Oracle’s online documentation:
http://www.oracle.com/pls/db102/db102.homepage

5.2. Experimental Methodology 135

it is not the case that only those rows which satisfy the queryare retrieved. Rather,

data is retrieved from disk inblocks. In the case of the Oracle RDBMS, data is

typically retrieved in 8K blocks. This data is then placed inmemory and remains

there until it is aged out by further queries (Chan 2005c). Therefore, a subsequent

query does not have to be identical to a previous query in order to take advantage of

cached data. It is sufficient that subsequent queries address data which is proximate

to previously queried data2.

The objective of describing these aspects of commercial RDBMSand the Ora-

cle RDBMS in particular, is to explain why usingelapsed timeonly as the measure

of query efficiency can be seriously misleading. In reality, the experimenter can-

not know beforehand when automatic maintenance processes will run and it is ex-

tremely difficult to run identical query batches in such a way that previous batches

do not influence the results of subsequent batches. The next section describes our

solution to this problem.

5.2.3 Experimental Setup

Semantic
Optimizer

SQL
Optimizer

Database

Q queries

Q queries

Cost: Cnorm

Cost: Copt

Figure 5.1:Experimental setup: Two identically configured query batches are used. One batch
runs only semantically optimized queries while the other runs only the identical unoptimized queries.
The batches never run together so they never compete for computer resources. We use the Oracle
supplied tooltkprof to measure the average query cost.

We now describe the experimental setup we use to minimise inconsistency in

our empirical results. Refer to Figure 5.1. The main objective of our experiments

2This is in fact the motivation for the co-location of table data into clusters. In the context of
RDBMS, clustering means that tables which are frequently queried together are co-located in the
same physical location on disk. This maximises the probability that queried data will already be
present in memory, thereby minimising disk activity.

136 Chapter 5. Empirical Methodology

is to demonstrate the efficacy of SQO in certain circumstances. Accordingly, our

fundamental experimental activity is to compare the cost ofrunning a large batch

of semantically optimized queries against the cost of running those same queries

without any semantic optimization. Each of the following subsections focuses on

a different aspect of our experimental setup and we explain the importance of each

and why we have chosen these particular experimental conditions.

5.2.3.1 Accurately measuring query cost:tkprof

We do not simply measure elapsed time in order to judge the cost of a query batch.

Rather, we use the Oracle system itself to take its own measurements, which are

very precise. We use a software tool,tkprof,3 to take these measurements and this

enables us to look at the query cost in a number of different ways. For example,

we may look at the CPU time separately from the number of disk blocks physically

fetched from disk, or the number of query rows fetched. A detailed description of

the measurements we use follows in Section 5.2.4 (page 139) below.

5.2.3.2 Simulating a busy database environment

All our experiments are carried out usingsix target tables, rather than a single table.

Each of the six tables has an identical definition and has the same statistical distri-

bution of values in its columns and is the same size (i.e., hasthe same number of

rows) but the table rows are non-identical. Each table has anidentical probability

of being queried (16) during the running of any batch and tables are queried in ran-

dom order. The primary objective of this arrangement is to simulate more closely

a busy database environment where a number of tables are being queried, rather

than just a single table, as is reported by most experimenters in this area (Lowden

& Robinson 2002, Gryz et al. 2001, Gryz, Liu & Qian 1999, Cheng etal. 1999). A

secondary objective is to avoid the situation where an entire table is cached at some

point in the batch run, thereby systematically distorting the cost measurements.

5.2.3.3 Measuring average query cost

We do not measure the cost of individual SQL queries in the manner reported

by (Gryz et al. 2001, Cheng et al. 1999). Rather, we measure the cost of submitting

batchesof many similar4 queries. Thus our results represent a statistical average

3Thetkprof software tool is well known and heavily employed by Oracle database practitioners
to determine, for example, the most costly SQL queries in a batch. It operates by precisely recording
the cost of each separate database operation. A more thorough discussion of this tool is beyond the
scope of this thesis.

4We define precisely what we mean by “similar” queries in Section 5.4 (page 144) below.

5.2. Experimental Methodology 137

which we argue is a better measure of true query cost in that itprovides a metric for

a whole class of queries, rather than one representative or typical query.

5.2.3.4 Distribution of experimental data

 4.65e+07

 4.7e+07

 4.75e+07

 4.8e+07
 4.8e+07

 4.85e+07

 4.9e+07

 4.95e+07

 5e+07

 4.9e+07

 4.95e+07

 5e+07

 5.05e+07

 5.1e+07

COL3

Data Distribution: TAB1

COL1

COL2

COL3

Figure 5.2:Data distribution : The above scatter plot depicts data distribution acrossCOL1, COL2
andCOL3 of tableTAB1. The distribution of each column is a truncated normal distribution where
values outside plus or minus three standard deviations are discarded. A similar plot is obtained by
plotting any three of columnsCOL1 to COL5 of any of the six tablesTAB1 to TAB6.

Although our target tables consist of columns whose data type is a mixture of

numeric, string and date (as might be expected in a real worldtable), for the pur-

poses of measurement we restrict5 only the first five columns (COL1 to COL5) which

are all numeric6. The distribution of data values in these columns is atruncated

normal distribution. That is, values are randomly generated to conform to a normal

distribution of given mean and standard deviation, but we discard values beyond

plus or minus three standard deviations. We choose this distribution:

• to more realistically simulate real world data. A normal distribution arguably

5Precisely, we mean that only columnsCOL1 to COL5 are cited in the SQL query restriction
clauses.

6There is no loss of generalisation in imposing this restriction since our interval algebra, de-
scribed in detail in Chpater 3, requires only that the data type has a determinsitic total ordering. Our
practical semantic optimizer, described in Chapter 4, is currently able to reason withnumeric, string
anddatedata types. However, restricting to numeric data for the purposes of our experiments eases
the generation of queries and facilitates comparison with other empirical studies that typically also
work with numeric data.

138 Chapter 5. Empirical Methodology

simulates a wider range of actual data distributions than, say, a uniform dis-

tribution (Larsen & Marx 1981).

• to facilitate the generation of queries. We use our knowledge of the actual

distribution of data to construct different types of queries. This is described

below in Section 5.4.1 (page 145).

Data distribution across three columns is pictured in Figure 5.2. Each of the columns

COL1 to COL5 has a distribution with a different mean but same standard deviation.

None of the tablesTAB1 to TAB6 contains duplicated data; only the statistical distri-

bution is the same.

5.2.3.5 Standardising batch conditions

Before any batch run, the target database instance is closed down and re-started.

Furthermore, we specifically empty the cached shared memoryresources of the

database instance. We then precede the actual query batcheswith a dummy batch

(identical for both normal and optimized batches) whose results are discarded. These

actions ensure the query cache is empty at the beginning of each run and then in the

same state for both normal and optimized batches before the actual measured batch

proceeds. Repeated measurements have shown these preliminary procedures are

vital to minimise systematic error accumulating in the results.

5.2.3.6 Indexing restricted columns

Each of the restricted columns,COL1 to COL5, is indexed separately with a standard

B-tree index7. The primary motivation for indexing in this way is that it isthe

most likely strategy to be followed in real world database environments for table

objects with the characteristics that our six tables share.Indeed, it would be an

extraordinary situation in practice (and probably an oversight) that these columns

would not be indexed. The selectivity of the queried columns is never allowed to

fall below the level at which the Oracle SQL optimizer might decide not to consult

the appropriate index.

Furthermore, each of the queried columnsCOL1 to COL5 is indexed separately,

as opposed to indexing multiple columns in a single index. This ensures that each

of the columns is theleading column8 in an existing index. This provides the best

7Indexing is a well researched topic and beyond the scope of this thesis. We simply employ the
standard Oracle indexing strategy appropriate to the size of the queried tables and the selectivity of
the restricted columns.

8Only leading columns in an index can be utilised to improve query performance. For example,
suppose an index is created on (COL1,COL2,COL3), in that order. Then queries restricted on (COL1),
(COL1 andCOL2), (COL1 andCOL2 andCOL3) may all utilise this index. However, queries restricted
on, for example, (COL2) or (COL3) cannot utilise this index.

5.2. Experimental Methodology 139

compromise and the greatest flexibility since the Oracle SQLoptimizer is capable

of deciding the efficacy ofcombiningany of these indexes. For example, suppose

a query is restricted on columnsCOL1 andCOL4. The Oracle optimizer is capable

of deducing the advantage of combining these indexes, as if the compound index

(COL1,COL4) existed (Chan 2005b).

5.2.4 Measuring query cost

In this section we describe three query metrics which we use to measure the true

query cost. The metrics we use are all statistics output by the Oracle database tool

tkprof which we described briefly above in Section 5.2.3. We set out and explain

each of these three metrics in Table 5.1.9 For each of the metrics described in

Metric Meaning Rcost =
COSTopt

COSTnorm

CPU Total CPU time in seconds for all Rcpu

parse, execute, or fetch calls for
the statement.

ELAPSED Total elapsed time in seconds for all Relpsd

parse, execute, or fetch calls for
the statement.

DISK Total number of data blocks physically Rdsk

read from the datafiles on disk for all
parse, execute, or fetch calls.

COMBINED The average of the other three metrics. Rcom

This metric is only ever reported as aratio.

Table 5.1:Query cost metrics and their meaning.

Table 5.1, Oracle further distinguishes between three phases or calls when an SQL

statement is processed:PARSE, EXECUTE andFETCH. These are set out in Table 5.2.

We typically report the sum of these three calls as a single metric unless we wish to

distinguish between the three phases.

We wish to minimise random uncertainties that might influence the outcome of

our experiments, such as changing machine load, and to minimise the number of

variables we need to consider. To this end, we do not report absolute cost metrics.

Instead, we report theratio of the two batch results. For example, when we use

9This information is primarily sourced from the Oracle online documentation: http://download-
west.oracle.com/docs/cd/B1411701/server.101/b10752/sqltrace.htm#1018

140 Chapter 5. Empirical Methodology

Call Meaning

PARSE Translates the SQL statement into an execution plan,
including checks for proper security authorization and checks
for the existence of tables, columns and other referenced objects.

EXECUTE Actual execution of the statement by Oracle.
For INSERT, UPDATE, and DELETE statements, this modifies
the data. For SELECT statements, this identifies the selected rows.

FETCH Retrieves rows returned by a query. Fetches are only
performed for SELECT statements.

Table 5.2:The three SQL statement calls distinguished by analysis tool tkprof.

the metricDISK, we employ the ratio of the optimizedDISK versus the normal

DISK values, rather than the absolute values themselves. The ratios we report are

always of the formRcost=
COS Topt

COS Tnorm
where the numeratorCOS Topt is always the cost

measured from the optimized query batch and the denominatorCOS Tnorm is always

the cost measured from the corresponding unoptimized (normal) batch.

5.2.5 Overall Query Cost

Each of the three metrics focuses on a different aspect of computational cost. In

order to judgeoverall query costwe combine the three cost metric ratios into one by

taking the arithmetic average of the three ratios at each data point. This is reported

as thecombined(COM) metric ratio.

Definition 5.2.1. Combined Cost Metric Ratio: Rcom

Rcom =
1
3

3
∑

i=1

COS Ti
opt

COS Ti
norm

(5.1)

where COS Ti represents each of the three cost metrics described above inTable 5.1.

For simplicity, we do not attempt to weight the individual metric ratios, but

judge each individual cost measure as being of equal importance. The combined

metric ratio has shown itself to be a remarkably stable measure of overall query

cost, across a wide range of experimental conditions. One may observe from the

experimental results that while individual cost metric ratios (for exampleDISK: the

total number of disk blocks physically read) display considerable variation from the

predicted value, it is frequently the case that the combinedratio averages out these

5.3. Query Normal Form and Difficulty 141

individual differences. The metrics that display the most variation areDISK (the to-

tal number of data blocks physically read from disk) andELAPSED (the total elapsed

time). This is to be expected and is discussed above in Section 5.2.2 (page 133).

Cost Metric Ratio Definition

Rcpu
CPUopt

CPUnorm

Relpsd
ELAPS EDopt

ELAPS EDnorm

Rdsk
DIS Kopt

DIS Knorm

Rcom
1
3

∑3
i=1

COS Ti
opt

COS Ti
norm

Table 5.3: Cost metric ratio definitions: We do not report absolute cost metrics. Instead we
report theratio of the optimized cost metric to the unoptimized cost metric.The above definitions
show how each ratio is defined. ThecombinedratioRcom is the average of the other three ratios.

We summarise the ratios we report and their definitions in Table 5.3.

5.3 Query Normal Form and Difficulty

We now describe the form of the queries that make up our test batches and the

limitations we place on those queries. Our objective is to restrict the difficulty or

complexity of queries we use in our experiments by, for example, disallowing sub-

queries within the SQL text, but at the same time allowing queries a reasonable

expressive power. We study either simple queries with restrictions against a single

target table or equi-joins with restrictions against a pairof target tables. All query

and equi-join restrictions address numeric columns only. However, we classify the

restriction clauses in a novel way. All our restriction clauses may be described by

an interval list which we introduced in Section 3.8 (page 69). This section explains

how the restriction clauses arise naturally from our definition of the interval list.

5.3.1 Query Normal Form

Consider Figure 5.3 which illustrates three query restrictions of increasing complex-

ity. In Figure 5.3(a) we picture an interval list consistingof a single interval. This

translates into a simple SQL restriction on columnCOL1 consisting oftwo boolean

statements representing respectively the left and right bounds of the interval. In

Figure 5.3(b) the interval list comprises two intervals, resulting in a more complex

restriction onCOL1 consisting oftwo pairsof boolean statements representing re-

142 Chapter 5. Empirical Methodology

(a)

COL1 a1 a2

I

COL1 constrained by interval list:

L = {I} = {(a1 , a2]}

Restriction as SQL:

where (COL1 > a1 and COL1 <= a2)

(b)

COL1 a1 a2

I1

COL1 constrained by interval list:

L = {I1 , I2} = {(a1,a2] , (a3,a4)}

Restriction as SQL:

where ((COL1 > a1 and COL1 <= a2) or (COL1 > a3 and COL1 < a4))

a3 a4

I2

(c)

COL1 a1 a2

I1

COL1 constrained by interval list:

L1 = {I1 , I2} = {(a1,a2] , (a3,a4)}

COL2 constrained by interval list:

L2 = {J1 , J2 , J3} = {[b1,b2) , (b3,b4) , [b5,b6]}

Restriction as SQL:

where ((COL1 > a1 and COL1 <= a2) or (COL1 > a3 and COL1 < a4))
and ((COL2 >= b1 and COL2 < b2) or (COL2 > b3 and COL2 < b4) or (COL2 >= b5 and COL2 <= b6))

a3 a4

I2

COL2
b1 b2 b3 b4 b5 b6

J1 J2 J3

Figure 5.3: Depicting interval lists as query restrictions: Figures 5.3(a) to 5.3(c) illustrate
how we map from an interval list into a normal SQL restrictionclause. In each case we begin by
sketching the interval list which captures the range of values the column may assume. We then
rewrite the interval list as a normal SQL restriction clause.

spectively the first and second intervals. In Figure 5.3(c) we picture both column

COL1 and columnCOL2 being restricted.

All queries made against our test tables strictly conform tothe pattern illustrated

in Figure 5.3. We refer to this as ourquery normal form. That is, for both simple

queries with restrictions and equi-joins with restrictions, in each case the restriction

5.3. Query Normal Form and Difficulty 143

clauses may be represented by one or more interval lists. Thefollowing makes this

explicit.

Definition 5.3.1. Interval List Restriction (ILR): An interval list restriction is an

SQL query restriction that is derived from and may be represented by a single in-

terval list.

We use the acronym ILR to refer to this type of restriction, todistinguish it

from the general sense of the term “restriction” in the context of SQL. The simplest

ILR is a null restriction, represented by an empty interval list. The simplest non-

null ILR is represented by an interval list comprising a single interval and therefore

corresponds totwo boolean statements representing respectively the left andright

bounds of the interval. Using the above definition, we now look at the appearance

of the SQL queries used in our experiments.

• Simple queries with restrictions against a single target table: All SQL queries

of this form have the following pattern.

Pattern Example

<display clause> SELECT t.COL1, t.COL2, t.COL3

<source clause> FROM TAB t

<ILR 1> WHERE ((t.COL1 >= 1 and t.COL1 < 25) or

(t.COL1 > 50 and t.COL1 < 55) or

(t.COL1 >= 100 and t.COL1 <= 200))

<ILR 2> AND (t.COL3 > 500 and t.COL3 <= 505);

• Equi-joins with restrictions against a pair of target tables. All SQL queries of

this form have the following pattern.

Pattern Example

<display clause> SELECT t1.COL1, t1.COL5, t2.COL7

<source clause> FROM TAB1 t1, TAB2 t2

<join clause> WHERE t1.COL1 = t2.COL7

<ILR 1> AND ((t1.COL5 > 2 and t1.COL5 < 4) or

(t1.COL1 >= 10 and t1.COL1 < 50))

<ILR 2> AND ((t2.COL8 >= 1 and t2.COL8 < 17) or

(t2.COL8 > 25 and t2.COL8 <= 50));

In accordance with the definition of an interval list (see Definition 3.8.3, page 71),

we insist all intervals comprising an interval list are disjoint; i.e., no intervalover-

laps (Definition 3.7.1, page 65) ortouches(Definition 3.7.2, page 65) any other.

This is illustrated in Figure 5.3 and is reflected in the equivalent SQL restriction

clauses. For simplicity, a column variable is referenced byjust one ILR; i.e., for

144 Chapter 5. Empirical Methodology

any SQL query, each column variable may appear in at most one ILR10. In this the-

sis, we study only cases where the ILRs are joined by the boolean AND operator11.

5.3.2 Query Difficulty

We now describe our method of qualitatively classifying query difficulty. The query

normal form described above in Section 5.3.1 suggests two ways of describing the

relative difficulty12 of a query. We consider both the number of ILRs joined by

boolean operatorAND and the number of intervals within each ILR:

• Vertical difficulty: The number of ILRs contained in the SQL query. In this

thesis, we consider only queries where each interval list restriction is joined

by boolean operatorAND. Thus an SQL query with one ILR is said to have a

vertical difficulty of 1 while an SQL query with three ILRs is said to have a

vertical difficulty of 3.

• Horizontal difficulty: The average number of intervals comprising each ILR.

Thus an SQL query with an average of two intervals per ILR is said to have a

horizontal difficulty of 2 while an SQL query with an average of five intervals

per ILR is said to have a horizontal difficulty of 5.

In our experiments, we vary the relative difficulty of the SQL queries by separately

varying both the vertical and horizontal difficulty. Ultimately, we are led to this

classification because extending the horizontal difficulty increases the number of

intervals comprising an interval list, thereby increasingthe number of iterations of

the conjunction and disjunction algorithms that are required13. Similarly, extending

the vertical difficulty increases the number of times the algorithms must be called.

In this way, we expect our empirical results to directly reflect the performance of

these algorithms.

5.4 Cost Models

In this section we develop several cost models with the objective of quantitatively

predicting the amount of optimization we can expect from a semantic query opti-

mizer. We first reiterate definitions for several types of SQLquery which we classify

10However, in practice, the software used in our experiments will process normally multiple ILRs
referencing the same column variable.

11However, in practice, the software used in our experiments will process ILRs joined by either
AND or OR.

12We use the term “difficulty”, rather than “complexity” to avoid ambiguity with “big O”, the
computational complexity.

13See Section 3.13.3 (page 84) and Section 3.12.3 (page 82) fora detailed discussion of the “big
O” computational complexity of these algorithms.

5.4. Cost Models 145

in order to understand what query environments are requiredfor semantic optimiza-

tion to be effective. We then show how our cost models can be used to predictan

upper bound for the amount of optimization we can expect for certain types of query

environment.

5.4.1 Classifying Queries

We now reiterate definitions for the three types of SQL query which we distinguish

by the type of result they produce when submitted to the database. Table 5.4 gives

definitions forpositive, unsatisfiableandzeroqueries.

Query Type Meaning

positive The query returns one or more rows.

unsatisfiable The query islogically excluded from returning any rows
because of schema semantics.

zero The query is unsatisfiable because there is currently no data residing
in the database which satisfies the query restrictions (data “holes”).

Table 5.4: Three query types: The three query types are distinguished by the type of result
returned when submitted to the database. We use these three definitions to facilitate the development
of our cost models.

5.4.2 Cost Model: Unsatisfiable Queries

We now develop a cost model for SQO in the presence of unsatisfiable queries. We

refer to Figure 5.1 (page 135) which depicts our experimental setup and to Table 5.2

(page 140) which describes the three phases of query execution delineated by the

analysis tooltkprof.

Consider a batch ofQ queries,qu of which are unsatisfiable, which we submit

once to the database instance where they will be processed normally (a normal

batch) and once to the same database instance where they willbe pre-processed by

our semantic optimizer (anoptimizedbatch).

• Let tprs be the average time required by the SQL optimizer to parse each

query. This corresponds to thePARSE phase described in Table 5.2.

• Let tsem be the average time required by the semantic preprocessor for each

query. This applies only to the query batch that is to be semantically opti-

mized.

146 Chapter 5. Empirical Methodology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
O

S
T

(o
pt

)/
C

O
S

T
(n

or
m

)

Probability of Unsatisfiable Query

Ratio COST(opt)/COST(norm) vs Probability of Unsatisfiable Query

Cost model
Break even line

Figure 5.4:Cost model for unsatisfiable queries: Our cost model above predicts a straightfor-
ward relationship betweenPu, the probability of an unsatisfiable query and the ratio of the optimized
batch costCOS Topt to the normal batch timeCOS Tnorm. Even whentsem, the average time to seman-
tically optimize each query is negligible compared withtora, the normal time taken to parse, execute
and fetch the query, we cannot expect better optimization than indicated by this line.

• Let tget be the average time required to execute and fetch each query.This

corresponds to theEXECUTE andFETCH phases described in Table 5.2.

For the normal batch, the total time required to run the batch, T1 is given by:

T1 = Q
(

tprs + tget

)

(5.2)

For an optimized batch,qu are unsatisfiable and so need never be submitted to the

database. So the total time required to run the batch,T2 is given by:

T2 = (Q− qu)
(

tsem+ tprs + tget

)

+ qutsem

= Q tsem+ Q tprs+ Q tget− qutsem− qutprs − qutget+ qutsem

= Q
(

tsem+ tprs + tget

)

− qu

(

tprs + tget

)

Now settora = tprs+ tget. The timetora corresponds to the three query phasesPARSE,

EXECUTE andFETCH set out in Table 5.2. We may write:

T2 = Q (tsem+ tora) − qutora (5.3)

5.4. Cost Models 147

The result for the total batch timeT2 given in Equation 5.3 for a semantically opti-

mized batch is completely intuitive: we pay the penalty of the extra processing time

tsem in the first term and make the saving from not submitting thequ queries to the

database in the second term.

5.4.2.1 Difference between processing times

Consider thedifferencebetween the two processing times,T2 − T1:

T2 − T1 = Q (tsem+ tora) − qutora − Q
(

tprs + tget

)

= Q tsem+ Q tora − qutora − Q tora

= Q tsem− qutora (5.4)

So, to minimizeT2 − T1 (and preferably make it negative; i.e., a timesaving) we

could minimise the first term on the right by minimisingtsem, the average time re-

quired to semantically preprocess each query. Similarly, if the second term on the

right is large, we might also achieve a time saving. This confirms the intuition

that the higher the cost of processing the queries normally,the higher the potential

saving. Or, if the proportion of unsatisfiable queries is high, we achieve the same

effect.

5.4.2.2 Ratio of processing times

Theratio of the two processing times,T2/T1 is given by:

T2

T1
=

Q (tsem+ tora) − qutora

Q tora
(5.5)

To make a timesaving(positive optimization), this ratio must be less than 1:

Q (tsem+ tora) − qutora

Q tora
< 1

Q (tsem+ tora) − qutora < Q tora

Q (tsem+ tora) < Q tora + qutora

Q tsem+ Q tora < Q tora + qutora

Q tsem < qutora

tsem <
qu

Q
tora (5.6)

The ratioqu/Q in Equation 5.6 may be interpreted as theprobability of an unsatis-

fiable query, Pu. So, for positive optimization we must have:

tsem < Putora (5.7)

148 Chapter 5. Empirical Methodology

Suppose the probability of an unsatisfiable query occurringis 10%. Then, on aver-

age,tsemmust be a factor of ten less thantora to break even. That is, the average time

required to semantically optimize a query cannot exceed onetenth of the normal

time required to parse, execute and fetch the query. This places an upper bound on

the amount of semantic optimization we can expect in the presence of unsatisfiable

queries.

5.4.2.3 Linear relationship

Consider Equation 5.5. We may write:

T2

T1
=

Q (tsem+ tora) − qutora

Q tora

=
Q (tsem+ tora)

Q tora
−

qutora

Q tora

= −
qu

Q
+

(tsem+ tora)
tora

T2

T1
= −Pu +

(tsem+ tora)
tora

(5.8)

If we assume the timestsemandtora are constant, then Equation 5.8 predicts a linear

relationship between the batch time ratioT2/T1 and the probability of an unsatisfi-

able queryPu. Furthermore, Equation 5.8 predicts a line gradient of−1. Consider

the case whenPu = 0; i.e., all queries arepositive. Then if tsem << tora we ex-

pect the intercept on the y-axis to be 1. Equivalently, we cannever do better than

tsem = 0; i.e., we take a negligible time to semantically optimize each query. Fig-

ure 5.4 graphs the relationship between the batch time ratioand the probability of

an unsatisfiable query predicted by this cost model fortsem<< tora.

Our cost model above predicts a straightforward relationship betweenPu, the

probability of an unsatisfiable query, and the ratio of the optimized batch time to the

normal batch time. These predictions are one of the major motivators for the formal

hypotheses and experiments which are described in detail inChapter 6 “Empirical

Results”.

5.4.2.4 Cost metrics

In this Section we have developed our cost model by supposingit is the query

execution timewe are measuring. But we could equally well have measuredtotal

CPU timeused to process the query or theamount of disk i/o required to process the

query. In each case, an analogous argument to the above couldhave been developed

and in each case it is theratio of the optimized to unoptimized metric that we wish

to measure. We therefore expect the cost model to apply to allthree of these metrics.

5.4. Cost Models 149

In fact, we argue in Section 5.2.4 above that it is more meaningful to consider the

averageof the three metric ratios , which we denote byRcom.

5.4.3 Cost Model: Zero Queries

In Section 4.4.2 (page 109) we showed how the detection of data holes can be used

to enhance the efficiency of SQO. The critical point of this section is that oncedata

holes have been discovered in a columnCi, this information can be added to existing

constraints on the allowable range of values for columnCi, effectively increasing the

probability of detecting unsatisfiable queries againstCi. The cost model developed

above in Section 5.4.2 is therefore applicable also to zero queries.

5.4.4 Cost Model: Unsatisfiable Joins

The cost model developed above in Section 5.4.2 could have been developed by

considering unsatisfiablejoins, as opposed to unsatisfiable queries. This is because

the semantic optimizer is configured as a preprocessor and wemake the assumption

that the cost of preprocessing a query/join is approximately constant. In the case

of joins however, we expect this preprocessing cost to be more significant. This is

described in detail in Section 4.4.3.2 (page 116). The cost model developed above

in Section 5.4.2 is therefore applicable also to zero queries.

5.4.5 Cost Model: “distinct” and “ is not null” removal

We now develop a cost model to predict the effect of removing the phrases

“distinct” and “is not null” in situations where they are redundant. Both

of these are examples of restriction removal, which was described in Section 2.5.2

(page 31). In the case of “distinct” removal, the advantage is gained by remov-

ing the necessity to sort the result set. In the case of “is not null” removal, the

advantage is gained by removing the necessity to check each member of the result

set is non-null. We make the following simplifying assumptions:

1. The cost of sorting the result set is directly proportional to the cardinality of

the result set;

2. The cost of checking each member of the result set is non-null is directly

proportional to the cardinality of the result set.

We write the time for a normal unoptimized query batch asT1 and the time for the

equivalent optimized batch asT2. Tsort is the total time taken to sort all result sets

in the batch.Tnull is the total time taken to check each member of the result set is

non-null.

150 Chapter 5. Empirical Methodology

5.4.5.1 “distinct” removal

Suppose these two batches are identical except the optimized batch does not need

to be sorted. Therefore:

T2 = T1 − Tsort

whereTsort is the total time taken to sort all result sets in the batch. Sothe ratio of

the optimized to the unoptimized batch time is just:

T2

T1
=

T1 − Tsort

T1
(5.9)

If the cardinality of the result set is small,Tsort will be negligible and the ratioT2
T1

will approach 1. The cost model also dictatesT2
T1

to be constant across all result set

cardinalities (because of assumption 1 above in Section 5.4.5).

5.4.5.2 “is not null” removal

Exactly the same argument can be applied, by substituting the redundant sort time,

tsort, with the redundant check time (that each member of the result set is non-null),

tchk. In this case, the ratio of the optimized to the unoptimized batch time is:

T2

T1
=

T1 − Tchk

T1
(5.10)

If the cardinality of the result set is small,Tchk will be negligible and the ratioT2
T1

will approach 1. The cost model also dictatesT2
T1

to be constant across all result set

cardinalities (because of assumption 2 above in Section 5.4.5).

5.5 Summary

In this Chapter we present the methodology we employ to carry out a series of em-

pirical investigations whose overall aim is to demonstratethe efficacy of our seman-

tic query optimizer. The main contributions of this Chapter include the following.

• We explain the difficulty of obtaining consistent, repeatable empirical results

with RDBMS where automatic maintenance processes may executeat un-

predictable times and where large memory caches are available and how we

remediate this problem (Section 5.2.2).

• We describe how we simulate a busy database environment by querying six

non-identical tables of the same relative size, sharing thesame data distribu-

tion (Section 5.2.3).

5.5. Summary 151

• We describe how to get the Oracle RDBMS itself to measure with great ac-

curacy the true cost of query execution and how we use theratio of the opti-

mized over the unoptimized cost to minimize systematic error (Section 5.2.4).

• We explain why judging query cost by elapsed time alone may bemisleading

and why we use the average of three metric ratios to convey a more meaning-

ful measure of query cost (Section 5.2.5).

• We describe how a query normal form arises naturally from ourearlier defi-

nition of theinterval list data type (Section 5.3.1).

• We describe a qualitative method for judging query difficulty which we sub-

sequently use in our experiments (Section 5.3.2).

• We derive a cost model which predicts the relationship between efficiency

gain due to semantic optimizationand theprobability of an unsatisfiable

querybeing submitted (Section 5.4).

• We derive a cost model which predicts theefficiency gain due to the removal

of redundant “distinct” and “is not null” phrases(Section 5.4.5).

Chapter 6

Empirical Results and Analysis

153

154 Chapter 6. Empirical Results and Analysis

6.1 Introduction

In this chapter, we follow the description of our experimental methodology in Chap-

ter 5 with a full review of our experimental results. We demonstrate the effectiveness

of the different types of SQO we described first in Chapter 2 and expanded upon in

Chapter 4.

A critical feature of our experiments is that the database schema we employ is

representative of of schemas found in a wide range of real database applications. We

make a minimum of assumptions as to the actual schema details, instead giving av-

eraged results for query batches against large1 tables with columns that areindexed.

To our knowledge, these are the first comprehensive empirical results which demon-

strate SQO for queries with restrictions and equi-joins, inthe presence of standard

B-tree indexes. This is important because it is most unlikelyin practice that tables

with similar characteristics to the ones we query in our experiments wouldnot be

indexed. Other writers have demonstrated the effectiveness of SQO only in limited

circumstances where typically only a small number of queries have been optimized

(sometimes manually), table sizes are relatively small andtarget columns are not

indexed (Gryz et al. 1999, Cheng et al. 1999).

All results reported are derived frombatchesof similar queries. Each batch

comprised between 100 and 1000 queries depending on the total time (typically

between 1 and 4 hours) required for the batch to complete. Forexample, batches

of simple queries against a single target table consisted of1000 individual queries

whereas batches of equi-joins between two target tables consisted of 100 individual

queries. We do not attempt to predict outcomes for individual queries. Our results

are a statistical average and our objective is to identify the precise circumstances for

which semantic query optimization is likely to be worthwhile.

We refer in the following sections to the number of “restrictions per query”

(R/Q) and to the number of “intervals per restriction” (I/R). We use these terms

in the specific sense ofquery difficulty as we define it in Section 5.3 (page 141)

where we described our qualitative classification of query difficulty. We evaluate

the relative difficulty of a query by noting the number of restriction clauses (verti-

cal difficulty) and the number of intervals described by each restriction (horizontal

difficulty). Our motivation is the notion that more complex queries arelikely to re-

quire more resources to answer and indeed this is precisely what our experimental

results below confirm.

The experiments we report below are divided into the following three groups:

1We will quantify what we mean by “large” in due course but in the meantime we mean tables
that are large enough to provoke significant disk activity and provoke the SQL optimizer to consult
relevant indexes.

6.1. Introduction 155

1. Unsatisfiable queries and joins: The objective of these experiments is to re-

veal the relationship between thegain in query efficiencyand theprobability

of an unsatisfiable query or joinin the presence of a semantic query pre-

processor (Sections 6.3 to 6.9).

2. Removal of redundant SQL phrases: The objective of these experiments is to

confirm or otherwise the efficacy of simplifying the SQL query text by remov-

ing certain phrases which a semantic query optimizer deduces are redundant

(Sections 6.10 to 6.13).

3. Restriction introduction and removal: The objective of these experiments is

to investigate the effect of introducing or removing restrictions into the SQL

query text which a semantic query optimizer deduces will reduce the cardi-

nality of the result set (Sections 6.14 to 6.15).

We begin each experiment by stating formal hypotheses. Thisis followed by

a description of each experiment, a graphical summary of results and comments

concerning the significance of these results. For clarity, we present only summary

graphs for each experiment, which display results for thecombinedmetric ratio

(Definition 5.2.1, page 140) which we derived in Chapter 5. A full set of results

corresponding to each experiment from the first group may be found in Appendix A.

The remainder of this chapter is organised as follows.

• In Section 6.2 we describe the format of our experimental results.

• In Section 6.3 we report baseline results for experiments with unsatisfiable

queries on tables that arenot indexed. We investigate the dependence of the

gain in query efficiencyon theprobability of an unsatisfiable queryandrela-

tive table size.

• In Section 6.4 we report results for experiments with unsatisfiable queries

on tables thatare realistically indexed. We investigate the dependence of

the gain in query efficiencyon theprobability of an unsatisfiable queryand

relative table size.

• In Section 6.5 we report results for experiments with unsatisfiable queries on

indexed tables where we investigate the dependence of thegain in query effi-

ciencyon theprobability of an unsatisfiable queryandnumber of restrictions

per query.

• In Section 6.6 we report results for experiments with unsatisfiable queries

on indexed tables where we investigate the dependence of thegain in query

efficiencyon theprobability of an unsatisfiable queryandnumber of intervals

per restriction.

156 Chapter 6. Empirical Results and Analysis

• In Section 6.7 we report results for experiments with unsatisfiable joins on

indexed tables where we investigate the dependence of thegain in join effi-

ciencyon theprobability of an unsatisfiable joinandrelative table size.

• In Section 6.8 we report results for experiments with unsatisfiable joins on

indexed tables where we investigate the dependence of thegain in join effi-

ciencyon theprobability of an unsatisfiable joinandnumber of restrictions

per join.

• In Section 6.9 we report results for experiments with unsatisfiable joins on

indexed tables where we investigate the dependence of thegain in join effi-

ciencyon theprobability of an unsatisfiable joinandnumber of intervals per

restriction.

• In Section 6.10 we investigate the efficacy of eliminating the key word

“distinct” in queries in which it is redundant in the context of the select

clause “select distinct”.

• In Section 6.11 we investigate the efficacy of eliminating the key word

“distinct” in joins in which it is redundant in the context of the selectclause

“select distinct”.

• In Section 6.12 we investigate the efficacy of eliminating the key phrase “is

not null” in queries in which it is redundant in the context of thewhere

clause “where COL is not null”.

• In Section 6.13 we investigate the efficacy of eliminating the key phrase “is

not null” in joins in which it is redundant in the context of thewhereclause

“where COL is not null”.

• In Section 6.14 we investigate the efficacy ofrestriction introduction and re-

moval with queries.

• In Section 6.15 we investigate the efficacy ofrestriction introduction and re-

moval with joins.

• Finally in Section 6.16 we summarise the main contributionsof this chapter.

6.2 Format of Experimental Results

We use a three dimensional graphical projection to present important result sum-

maries. In each case:

6.2. Format of Experimental Results 157

• the X-axis is the independent variableprobability of an unsatisfiable queryin

a given batch of queries;

• the Y-axis is another independent variable, one ofnumber of table rows, num-

ber of restrictions per queryor number of intervals per restriction;

• the Z-axis is the dependent variablecost metric ratio.

The “ruggedness” of this surface corresponds to the variation or uncertainty in the

actual recorded data. An example is displayed in Figure 6.1.This is plotted as ared

surface. This category of graph may include the following features.

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Figure 6.1: Example 3D projection of experimental results: The X-axis is the independent
variableprobability of an unsatisfiable query. The Y-axis is another independent variable such as
number of table rows. The Z-axis is the dependent variable and depicts thecost metric ratio, for
example,Rcom. The “ruggedness” of this surface corresponds to the variation or uncertainty in the
actual recorded data. Experimental results are always plotted inred.

• Cost Model Surface: This is the plot off (x) = 1−x and represents the surface

predicted by the cost model developed in Section 5.4 (page 144) where the

time taken by the extra semantic optimizing step is negligible. Therefore, in

the absence of any other optimization, we cannot reasonablyexpect the cost

metric ratio to be below this surface. This is plotted as ablue surface. See

Figure 6.2.

• Break Even Surface: This surface marks the cost metric ratio of 1, repre-

senting equal costs for both optimized and normal batches. Therefore, any

158 Chapter 6. Empirical Results and Analysis

Cost model
Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Figure 6.2:Cost Model Surface and Break Even Surface: Results that conform closely to the
idealised cost model will appear near to and parallel to the “cost model” surface. Result surfaces
that appear below the “break even” surface indicate a positive optimization. The cost model surface
is always plotted inblue. The break even surface is always plotted inpink.

results below this surface represent apositiveoptimization; i.e., the seman-

tically optimized cost is less than the normal cost. Conversely, any results

above this surface represent anegativeoptimization; i.e., the semantically

optimized cost is actually more than the normal cost. This isplotted as apink

surface. See Figure 6.2.

• Regression surface: We calculate aregression surfacefor each result set

using an implementation of the nonlinear least-squares (NLLS) Marquardt-

Levenberg algorithm(Press, Flannery, Teukolsky & Vetterling 1992) as im-

plemented byGnuplot (Broeker, Campbell, Cunningham & Denholm 2006,

Drakos & Moore 2006)2. The form of the regression surface is given by the

following:

f (x, y) = A+ Bx+Cx2 + Dy+ Ey2

where f (x, y) is the dependent variable,x and y are the independent vari-

ables,A,B,C,D,E are constants determined by the regression analysis. This is

plotted as agreensurface. See Figure 6.3.

2Gnuplot is a portable command-line driven interactive data and function plotting utility. See
http://www.gnuplot.info.

6.3. Unsatisfiable Queries – No Indexing 159

Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Figure 6.3:Example regression surface: The regression surface is calculated using an imple-
mentation of the nonlinear least-squares (NLLS)Marquardt-Levenberg algorithmand displays the
relationship between the the dependent variable (cost metric ratio on the Z-axis) and the two inde-
pendent variables. The regression surface is always plotted in green.

6.3 Unsatisfiable Queries – No Indexing

The objective of these experiments is to establish a baseline with regard to the de-

pendence of thegain in query efficiencyon theprobability of an unsatisfiable query

and relative table size. It is most unlikely in practice that tables of the size and

makeup we query in our experiments wouldnot be indexed. However, we are mo-

tivated to query a set of unindexed tables:

• to set a baseline against which our other experiments with tables thatare

realistically indexed may be compared;

• to relate our work with other published research that typically cite results for

unindexed tables (Gryz et al. 1999, Cheng et al. 1999).

6.3.1 Hypotheses

1. The gain in query efficiency increases linearly with increasing probability

of an unsatisfiable query and will be close to the idealised cost model of

Section 5.4.2.3 (page 148).

2. The gain in query efficiency is independent of table size.

160 Chapter 6. Empirical Results and Analysis

6.3.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the combined cost metric ratioRcomas defined in Table 5.1

(page 139). Each query consists of a single restriction defined by one interval. None

of the columns cited in query restrictions is indexed.

Example 6.3.1.The following is a typical query drawn from the batch used in these

experiments:

select t.COL3, t.COL7, t.COL9, t.COL5, t.COL2

from TAB3 t

where t.COL1 >= 47682608

and t.COL1 < 47682656;

6.3.3 Results and Analysis

We present summary results which show the relationship betweenP, RowsandRcom

in Figure 6.4. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andRows(Figure 6.4(a))

• The cost metric ratio surfaceRcom with the regression surface superimposed

(Figure 6.4(b))

• The regression surface with “cost model” and “break even” surfaces (Fig-

ure 6.4(c))

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears (Figure 6.4(d))

Figures 6.4(b) and 6.4(c) showRcomsurface sits just above the “cost model surface”,

indicating results deviate very little from the predicted.We have positive optimiza-

tion across four orders of magnitude of table size, with the optimization cost rising

slightly as table size becomes very large (Rows> 400,000).

6.4. Indexed Unsatisfiable Queries 161

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(a) Rcom surface for100 to 500,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.4:Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table SizeRows
(no indexing): Figures 6.4(b) and 6.4(c) showRcom surface sits just above the “cost model surface”,
indicating results deviate very little from the predicted.We have positive optimization across four
orders of magnitude of table size, with the optimization cost rising slightly as table size becomes
very large (Rows> 400,000).

6.3.4 Conclusion

The cost model of Section 5.4.2.3 (page 148) accurately predicts the dependence

of gain in query efficiencyon probability of an unsatisfiable query. Crucially, this

cost model sets an upper bound for the amount of optimizationwe can expect from

detecting unsatisfiable queries. That is, even if the cost ofdetecting unsatisfiable

queries is negligible (and it is not), the maximum amount of optimization is irre-

vocably determined by the prevalence of unsatisfiable queries. The hypotheses are

confirmed.

6.4 Indexed Unsatisfiable Queries

The objective of these experiments is to establish the dependence of thegain in

query efficiencyon theprobability of an unsatisfiable queryandrelative table size.

The methodology is identical to the experiments reported above in Section 6.3, with

162 Chapter 6. Empirical Results and Analysis

the key difference that all columns cited in query restrictions are indexed with a

“normal” B-tree index (Chan 2005a).

6.4.1 Hypotheses

1. The gain in query efficiency increases linearly with increasing probability

of an unsatisfiable query and will be close to the idealised cost model of

Section 5.4.2.3 (page 148).

2. The gain in query efficiency is independent of table size.

6.4.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the combined cost metric ratioRcomas defined in Table 5.1

(page 139). Each query consists of a single restriction defined by one interval.

Example 6.4.1.The following is a typical query drawn from the batch used in these

experiments:

select t.COL4, t.COL2, t.COL8, t.COL10

from TAB6 t

where t.COL5 >= 52310468

and t.COL5 < 52310572;

6.4.3 Results and Analysis

We present summary results which show the relationship betweenP, RowsandRcom

in Figure 6.5. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andRows

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears

6.4. Indexed Unsatisfiable Queries 163

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(a) Rcom surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.5:Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table SizeRows
(indexed): Figures 6.5(b) and 6.5(c) show theRcom surface sits just above the “cost model surface”,
indicating results deviate very little from the predicted.We have positive optimization across four
orders of magnitude of table size whenP > 0.1.

Figures 6.5(b) and 6.5(c) show theRcom surface sits just above the “cost model

surface”, indicating results deviate very little from the predicted. We have positive

optimization across four orders of magnitude of table size whenP > 0.1.

6.4.4 Conclusion

This series of experimental results confirms that the detection of unsatisfiable queries

can significantly enhance overall query efficiency by preventing such queries being

submitted to the database. Our cost model from Section 5.4.2.3 (page 148) suc-

cessfully predicts the dependence of this efficiency gain on the probability of un-

satisfiable queries occurring. This efficiency gain is maintained across at least four

orders of magnitude of table size and we conclude the effect is so strong as to be

almost independent of table size. Crucially, our target tables are all sensibly indexed

so our results are realistic and we have a high expectation that such results will be

confirmed in commercial database environments.

Comparison of these results with those presented above in Section 6.3 reveals

164 Chapter 6. Empirical Results and Analysis

that in the case of unindexed tables, the cost of detecting unsatisfiable queries is

negligible. However, when table columns are sensibly indexed, this cost cannot be

discounted.

We therefore conclude semantic query optimization is worthwhile in the pres-

ence of unsatisfiable queries, provided the probability of such queries being sub-

mitted is not vanishingly small. For our prototype reasoning engine, a threshold

probability of approximately 10% justifies the extra processing required by the se-

mantic optmizer. The hypotheses are confirmed.

6.5 Indexed Unsatisfiable Queries – Varying Restric-

tions per Query

The objective of these experiments is to establish the dependence of thegain in

query efficiency on theprobability of an unsatisfiable queryand thenumber of

restrictions per query. The methodology is identical to the experiments reported

above in Section 6.4, except that we hold table size constantat 1,000,000 rows

while varying number of restrictions per queryR/Q.

6.5.1 Hypotheses

1. The gain in query efficiency increases linearly with increasing probability

of an unsatisfiable query and will be close to the idealised cost model of

Section 5.4.2.3 (page 148).

2. The gain in query efficiency is degraded by increasing query complexity.

6.5.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Number of restrictions per queryR/Q. Each restriction is defined by a single

interval.

The dependent variable is the combined cost metric ratioRcomas defined in Table 5.1

(page 139). All results are for tables with number of rowsRows= 1,000,000. All

columns cited in query restrictions are indexed with a “normal” B-tree index.

Example 6.5.1.The following is a typical query drawn from the batch used in these

experiments. In this example, R/Q = 3:

6.6. Indexed Unsatisfiable Queries – Varying Intervals per Restriction 165

select t.COL10

from TAB2 t

where (t.COL5 > 52042096 and t.COL5 < 52042200) -- Restriction 1

and (t.COL3 > 50721696 and t.COL3 <= 50721744) -- Restriction 2

and (t.COL4 > 50841160 and t.COL4 <= 50841264) -- Restriction 3

6.5.3 Results and Analysis

We present summary results which show the relationship betweenP, R/Q andRcom

in Figure 6.6. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andR/Q

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (restrictions per queryR/Q) disappears

As the number of Restrictions per QueryR/Q increases from 1 to 25, a greater

proportion of unsatisfiable queries is required in order to break even. ForP = 10%,

positive optimization is achieved when there is up to five restrictions per query; i.e.,

R/Q ≤ 5.

6.5.4 Conclusion

For low values ofR/Q, our cost model from Section 5.4.2.3 (page 148) successfully

predicts the dependence of gain in query efficiency with probability of an unsatisfi-

able query, yielding results identical to those presented above in Section 6.4. How-

ever, as the number of restrictions per query rises, the increasing query complexity

requires the semantic optimizer to do more work. A greater and greater proportion

of unsatisfiable queries is required to “break even”. The hypotheses are confirmed.

6.6 Indexed Unsatisfiable Queries – Varying Inter-

vals per Restriction

The objective of these experiments is to establish the dependence of thegain in

query efficiency on theprobability of an unsatisfiable queryand thenumber of

intervals per restriction. The methodology is identical to the experiments reported

166 Chapter 6. Empirical Results and Analysis

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface forR/Q = 1 to 25.

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.6:Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
(indexed): As the number of Restrictions per QueryR/Q increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. For P = 10%, positive optimization is
achieved when there is up to five restrictions per query; i.e., R/Q ≤ 5. Number of table rows
Rows= 1,000,000.

above in Section 6.4, except that we hold table size constantat 1,000,000 rows

while varying number of intervals per restrictionI/R.

6.6.1 Hypotheses

1. The gain in query efficiency increases linearly with increasing probability

of an unsatisfiable query and will be close to the idealised cost model of

Section 5.4.2.3 (page 148).

2. The gain in query efficiency is degraded by increasing query complexity.

6.6.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Number of intervals per restrictionI/R. Each query has a single restriction.

6.6. Indexed Unsatisfiable Queries – Varying Intervals per Restriction 167

The dependent variable is the cost ratioRcom as defined in Table 5.1 (page 139). All

results are for tables with number of rowsRows= 1,000,000. All columns cited in

query restrictions are indexed with a “normal” B-tree index.

Example 6.6.1.The following is a typical query drawn from the batch used in these

experiments. In this example, I/R= 3:

select t.COL7, t.COL4, t.COL3

from TAB2 t

where (

(t.COL5 > 52042096 and t.COL5 < 52042200) or -- Interval 1

(t.COL5 >= 52287616 and t.COL5 < 52287668) or -- Interval 2

(t.COL5 >= 52310468 and t.COL5 < 52310572) -- Interval 3

)

6.6.3 Results and Analysis

We present summary results which show the relationship betweenP, I/R andRcom

in Figure 6.7. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andI/R

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (restrictions per queryI/R) disappears

As the number of Intervals per RestrictionI/R increases from 1 to 25, ratioRcom

increases slowly. ForP > 0.15, positive optimization is achieved throughout the

whole range.

6.6.4 Conclusion

For low values ofI/R, our cost model from Section 5.4.2.3 (page 148) successfully

predicts the dependence of gain in query efficiency with probability of an unsat-

isfiable query, yielding results identical to those presented above in Section 6.4.

However, as the number of intervals per restriction rises, the increasing query com-

plexity requires the semantic optimizer to do more work. A greater and greater

proportion of unsatisfiable queries is required to “break even”. The hypotheses are

confirmed.

168 Chapter 6. Empirical Results and Analysis

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.7:Ratio Rcom vs Probability of Unsatisfiable Query P vs Intervals per Restriction
I/R (indexed): As the number of Intervals per RestrictionI/R increases from 1 to 25, ratioRcom

increases slowly. ForP > 0.15, positive optimization is achieved throughout the wholerange.
Number of table rowsRows= 1,000,000.

6.7 Indexed Unsatisfiable Joins

The objective of these experiments is to establish the dependence of thegain in join

efficiency on theprobability of an unsatisfiable joinand relative table size. The

methodology is identical to the experiments reported abovein Section 6.4, except

that we submit batches of equi-joins between two tables rather than simple queries

against a single table.

6.7.1 Hypotheses

1. The gain in join efficiency increases linearly with increasing probability of

an unsatisfiable join and will be close to the idealised cost model of Sec-

tion 5.4.2.3 (page 148).

2. The gain in join efficiency is independent of table size.

6.7. Indexed Unsatisfiable Joins 169

6.7.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the cost ratioRcom as defined in Table 5.1 (page 139).

Each join consists of a single join clause citing the equi-join columns plus a single

restriction defined by one interval.

Example 6.7.1.The following is a typical join drawn from the batch used in these

experiments:

select t1.COL6 c1, t2.COL10 c2

from TAB2 t1, TAB6 t2

where t2.COL1 = t1.COL3

and t2.COL1 > 47128904

and t2.COL1 < 47223256;

6.7.3 Results and Analysis

We present summary results which show the relationship betweenP, RowsandRcom

in Figure 6.8. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andRows

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears

Figures 6.8(b) and 6.8(c) showRcomsurface sits just above the “cost model surface”,

indicating results deviate very little from those predicted by the cost model. We have

positive optimization across four orders of magnitude of table size whenP > 0.2,

although it is evident that the cost of processing the semantically optimized joins

increases relatively as table size becomes very large.

170 Chapter 6. Empirical Results and Analysis

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.8: Ratio Rcom vs Probability of Unsatisfiable Join P vs Relative Table SizeRows
(indexed): Figures 6.8(b) and 6.8(c) showRcom surface sits just above the “cost model surface”,
indicating results deviate very little from the predicted.We have positive optimization across four
orders of magnitude of table size whenP > 0.2, although it is evident that the cost of processing the
semantically optimized joins increases relatively as table size becomes very large.

6.7.4 Conclusion

The results we obtain for semantically optimized joins are analogous to the results

reported above in Section 6.4 for queries. The detection of unsatisfiable joins can

significantly enhance overall join efficiency by preventing such joins being submit-

ted to the database. Our cost model from Section 5.4.2.3 (page 148) successfully

predicts the dependence of this efficiency gain on the probability of unsatisfiable

joins occurring. This efficiency gain is maintained across at least four orders of

magnitude of table size and we conclude the effect is strong but not entirely inde-

pendent of table size. Crucially, our target tables are all sensibly indexed so our

results are realistic and we have a high expectation that such results will be con-

firmed in commercial database environments.

Comparison of these results with those presented above in Section 6.4 reveals

that in the case of queries, the cost of detecting unsatisfiable queries is relatively

smaller than the cost of detecting unsatisfiable joins.

6.8. Indexed Unsatisfiable Joins – Varying Restrictions perJoin 171

We therefore conclude semantic query optimization is worthwhile in the pres-

ence of unsatisfiable joins, provided the probability of such joins being submitted

is high enough. For our prototype reasoning engine, a threshold probability of ap-

proximately 20% justifies the extra processing required by the semantic optmizer.

The hypotheses are confirmed, but with regard to the caveats expressed above.

6.8 Indexed Unsatisfiable Joins – Varying Restrictions

per Join

The objective of these experiments is to establish the dependence of thegain in join

efficiencyon theprobability of an unsatisfiable joinand thenumber of restrictions

per join. The methodology is identical to the experiments reported above in Sec-

tion 6.5, except that we submit batches of equi-joins between two tables rather than

simple queries against a single table.

6.8.1 Hypotheses

1. The gain in join efficiency increases linearly with increasing probability of

an unsatisfiable join and will be close to the idealised cost model of Sec-

tion 5.4.2.3 (page 148).

2. The gain in join efficiency is degraded by increasing join complexity.

6.8.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

• Number of restrictions per joinR/Q. Each restriction is defined by a single

interval.

The dependent variable is the cost ratioRcom as defined in Table 5.1 (page 139). All

results are for tables with number of rowsRows= 1,000,000. All columns cited in

join restrictions are indexed with a “normal” B-tree index.

Example 6.8.1.The following is a typical join drawn from the batch used in these

experiments. In this example, R/Q = 3:

select t1.COL10, t2.COL1

from TAB2 t1, TAB5 t2

where t1.COL3 = t2.COL4

172 Chapter 6. Empirical Results and Analysis

and (t1.COL5 >= 52042096 and t1.COL5 < 52042200) -- Restriction 1

and (t2.COL3 > 50721696 and t2.COL3 <= 50721744) -- Restriction 2

and (t1.COL4 > 50841160 and t1.COL4 <= 50841264) -- Restriction 3

6.8.3 Results and Analysis

We present summary results which show the relationship betweenP, R/Q andRcom

in Figure 6.9. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andR/Q

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (restrictions per queryR/Q) disappears

Figure 6.9 plotsRcom vs Probability of Unsatisfiable QueryP vs Restrictions per

QueryR/Q and summarises the results as aRcom surface. For lowR/Q, semantic

pre-processing incurs little overhead and theRcom surface sits just above the “cost

model surface”. However asR/Q rises, the pre-processing cost becomes signifi-

cant and we require a greater proportion of unsatisfiable queries to make semantic

optimization worthwhile.

6.8.4 Conclusion

For low values ofR/Q, our cost model from Section 5.4.2.3 (page 148) successfully

predicts the dependence of gain in join efficiency with probability of an unsatisfiable

join, yielding results very similar to those presented above in Section 6.7. However,

as the number of restrictions per join rises, the increasingjoin complexity requires

the semantic optimizer to do more work. A greater and greaterproportion of unsat-

isfiable joins is required to “break even”. The hypotheses are confirmed.

6.9 Indexed Unsatisfiable Joins – Varying Intervals

per Restriction

The objective of these experiments is to establish the dependence of thegain in join

efficiency on theprobability of an unsatisfiable joinand thenumber of intervals

6.9. Indexed Unsatisfiable Joins – Varying Intervals per Restriction 173

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(a) Rcom surface forR/Q = 1 to 40.

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.9:Ratio Rcom vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
(indexed): As the number of Restrictions per QueryR/Q increases from 1 to 40, a greater proportion
of unsatisfiable queries is required in order to break even. For P = 0.25, positive optimization
is achieved when there is up to five restrictions per join; i.e., R/Q ≤ 5. Number of table rows
Rows= 1,000,000.

per restriction. The methodology is identical to the experiments reported above in

Section 6.6, except that we submit batches of equi-joins between two tables rather

than simple queries against a single table.

6.9.1 Hypotheses

1. The gain in join efficiency increases linearly with increasing probability of

an unsatisfiable join and will be close to the idealised cost model of Sec-

tion 5.4.2.3 (page 148).

2. The gain in join efficiency is degraded by increasing join complexity.

6.9.2 Method

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

174 Chapter 6. Empirical Results and Analysis

• Number of intervals per restrictionI/R. Each join has a single restriction.

The dependent variable is the cost ratioRcom as defined in Table 5.1 (page 139). All

results are for tables with number of rowsRows= 1,000,000. All columns cited in

join restrictions are indexed with a “normal” B-tree index.

Example 6.9.1.The following is a typical query drawn from the batch used in these

experiments. In this example, I/R= 3:

select t1.COL7, t2.COL4, t2.COL3

from TAB2 t1, TAB6 t2

where t1.COL1 = t2.COL2

and (

(t1.COL5 > 52042096 and t1.COL5 < 52042200) or -- Interval 1

(t1.COL5 >= 52287616 and t1.COL5 < 52287668) or -- Interval 2

(t1.COL5 >= 52310468 and t1.COL5 < 52310572) -- Interval 3

);

6.9.3 Results and Analysis

We present summary results which show the relationship betweenP, I/R andRcom

in Figure 6.10. The four sub-figures depict:

• The cost metric ratio surfaceRcom plotted against the two independent vari-

ablesP andI/R

• The cost metric ratio surfaceRcom with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcom, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (intervals per restrictionI/R) disappears

Figure 6.10 plotsRcom vs Probability of Unsatisfiable QueryP vs Intervals per

RestrictionI/Rand summarises the results as aRcom surface. For lowI/R, semantic

pre-processing incurs little overhead and theRcom surface sits just above the “cost

model surface”. As the number of intervals per restrictionI/R increases from 1 to

25, a greater proportion of unsatisfiable queries is required in order to break even.

For I/R≤ 5, we require just onP = 0.25 to achieve positive optimization.

6.9.4 Conclusion

For low values ofI/R, our cost model from Section 5.4.2.3 (page 148) successfully

predicts the dependence of gain in join efficiency with probability of an unsatisfi-

able join, yielding results similar to those presented above in Section 6.7. However,

6.10. Queries “select distinct” elimination 175

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(a) Rcom surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure 6.10:Ratio Rcom vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): As the number of intervals per restrictionI/R increases from 1 to 25, a greater
proportion of unsatisfiable queries is required in order to break even. ForI/R ≤ 5, we require just
on P = 0.25 to achieve positive optimization. Number of table rowsRows= 1,000,000.

as the number of intervals per restriction rises, the increasing join complexity re-

quires the semantic optimizer to do more work. A greater and greater proportion of

unsatisfiable joins is required to “break even”. The hypotheses are confirmed.

6.10 Queries “select distinct” elimination

The objective of this experiment is to confirm or otherwise the efficacy of eliminat-

ing the key word “distinct” in queries in which it is redundant in the context of

the select clause “select distinct”. This is described in detail in Section 4.4.3.3

where we gave a typical example (Example 4.4.7, page 118) which suggested that

removal of this redundancy could halve the query cost.

6.10.1 Hypotheses

• Removing the redundant keyword “distinct” from the select clause “select

distinct” will increase query efficiency.

176 Chapter 6. Empirical Results and Analysis

• The effect will be negligible below a certain threshold proportional to the

number of rows returned by the query.

6.10.2 Method

In this experiment we submit batches of queries to the database, identical except

that one batch has allselectclauses containing the redundant “distinct” keyword

while the other does not. As for the previous experiments, wemeasure theratio

of the optimized batch cost (redundant “distinct” keyword eliminated) to the

unoptimized batch cost (includes redundant “distinct” keyword). We reason that

since the “distinct” keyword triggers a redundant sort, then the advantage of

eliminating it will be negligible when the time required to sort the rows returned by

the query is very small, relative to the total query processing time. For this reason:

• The independent variable in this case is the average number of rows returned

per query:Rows/Query.

• The dependent variable is the cost ratioRcomas defined in Table 5.1 (page 139).

All results are for tables with number of rowsRows= 500,000. All queries con-

sist of a single restriction defined by a single interval. Allcolumns cited in query

restrictions are indexed with a “normal” B-tree index.

Example 6.10.1.The following is a typical query drawn from the batch used in

these experiments:

select distinct t.ID, t.COL7, t.COL4, t.COL3

from TAB2 t

where t.COL2 > 52042096

and t.COL2 < 52042200;

6.10.3 Results and Analysis

Figure 6.11(a) plotsRcom versusRows/Query. This optimization works because an

unnecessary sort of returned rows is avoided when the redundant keyword

“distinct” is eliminated from the select clause of the query. When the number of

rows returned is small, the sort requires negligible time sono advantage is gained.

WhenRows/Query> 1,000 the cost of the sort becomes significant and produces a

nearly uniform average saving of approximately 15% to 20%. This is not quite the

saving suggested by Example 4.4.7 (page 118) where the SQL optimizer predicted

a saving of around 50%. However, the 50% figure is anestimatefor just one query.

The 20% result we report here is empirical for batches comprising 100 queries, so it

6.11. Joins “select distinct” elimination 177

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100000 200000 300000 400000 500000

R
co

m

Rows/Query

Results
Break even line

(a) Queries “select distinct” elimination

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100000 200000 300000 400000 500000

R
co

m

Rows/Join

Results
Break even line

(b) Joins “select distinct” elimination

Figure 6.11:“select distinct” elimination : Eliminating the redundant “distinct” keyword from
theselectclause of the batch produces an average saving of approximately 15% to 20% for queries
and approximately 60% for joins, as soon as the number of rowsreturned by the query becomes
significant. This optimization works because an unnecessary sort of returned rows is avoided.

is a statistical average. Although it is beyond the scope of this experiment, we con-

jecture the sort cost increases suddenly in the step-wise fashion of Figure 6.11(a)

because it triggers disk i/o.

6.10.4 Conclusion

Elimination of the redundant keyword “distinct” is worthwhile whenever the

number of rows returned by the query exceeds a certain threshold. The threshold is

determined by the cost of the redundant sort. The hypothesesare confirmed.

6.11 Joins “select distinct” elimination

The objective of this experiment is to confirm or otherwise the efficacy of eliminat-

ing the key word “distinct” in joins in which it is redundant in the context of the

select clause “select distinct”. This is described in detail in Section 4.4.3.3

where we gave a typical example (Example 4.4.8, page 119) which suggested that

removal of this redundancy could reduce the join cost by 80%.

6.11.1 Hypotheses

• Removing the redundant keyword “distinct” from the select clause “select

distinct” will increase join efficiency.

• The effect will be negligible below a certain threshold determinedby the num-

ber of rows returned by the join.

178 Chapter 6. Empirical Results and Analysis

6.11.2 Method

In this experiment we submit batches of joins to the database, identical except that

one batch has allselect clauses containing the redundant “distinct” keyword

while the other does not. As for the previous experiments, wemeasure theratio

of the optimized batch cost (redundant “distinct” keyword eliminated) to the

unoptimized batch cost (includes redundant “distinct” keyword). We reason that

since the “distinct” keyword triggers a redundant sort, then the advantage of

eliminating it will be negligible when the time required to sort the rows returned by

the join is very small, relative to the total join processingtime. For this reason:

• The independent variable in this case is the average number of rows returned

per join: Rows/Join.

• The dependent variable is the cost ratioRcomas defined in Table 5.1 (page 139).

All results are for tables with number of rowsRows= 500,000. All joins con-

sist of a single restriction defined by a single interval. Allcolumns cited in query

restrictions are indexed with a “normal” B-tree index.

Example 6.11.1.The following is a typical join drawn from the batch used in these

experiments:

select distinct t1.ID id1, t2.ID id2, t1.COL8 c1

from TAB6 t1, TAB1 t2

where t2.COL2 = t1.COL2

and t2.COL5 > 51547332

and t2.COL5 < 52588692;

6.11.3 Results and Analysis

Figure 6.11(b) plotsRcom versusRows/Join. This optimization works because an

unnecessary sort of returned rows is avoided when the redundant keyword

“distinct” is eliminated from the select clause of the join. When the number of

rows returned is small, the sort requires negligible time sono advantage is gained.

WhenRows/Join > 1,000 the cost of the sort becomes significant and produces a

nearly uniform average saving of approximately 60%. This isnot quite the saving

suggested by Example 4.4.8 (page 119) where the SQL optimizer predicted a saving

of around 80%. However, the 80% figure is anestimatefor just one query. The 60%

result we report here is empirical for batches comprising 100 joins, so it is a sta-

tistical average. Although it is beyond the scope of this experiment, we conjecture

the sort cost increases suddenly in the step-wise fashion ofFigure 6.11(b) because

it triggers disk i/o.

6.12. Queries “is not null” elimination 179

6.11.4 Conclusion

Elimination of the redundant keyword “distinct” is worthwhile whenever the

number of rows returned by the join exceeds a certain threshold. The threshold is

determined by the cost of the redundant sort. The hypothesesare confirmed.

6.12 Queries “is not null” elimination

The objective of this experiment is to confirm or otherwise the efficacy of elimi-

nating the key phrase “is not null” in queries in which it is redundant in the

context of thewhereclause “where COL is not null”. This is described in de-

tail in Section 4.4.3.4 where we gave a typical example (Example 4.4.9, page 120)

which suggested that removal of this redundancy could halvethe query cost.

6.12.1 Hypotheses

• Removing the redundant key phrase “is not null” from the where clause

“where COL is not null” will increase query efficiency.

• The effect will be negligible below a certain threshold proportional to the

number of rows returned by the query.

6.12.2 Method

In this experiment we submit batches of queries to the database, identical except that

one batch has allwhereclauses containing the redundant “is not null” phrase

while the other does not. As for the previous experiments, wemeasure theratio

of the optimized batch cost (redundant “is not null” eliminated) to the unop-

timized batch cost (includes redundant “is not null” keyword). We reason the

advantage of eliminating the phrase will be negligible whenthe time required to

check the rows returned by the query is very small, relative to the total query pro-

cessing time. For this reason:

• The independent variable in this case is the average number of rows returned

per query:Rows/Query.

• The dependent variable is the cost ratioRcomas defined in Table 5.1 (page 139).

All results are for tables with number of rowsRows= 500,000. All queries con-

sist of a single restriction defined by a single interval. Allcolumns cited in query

restrictions are indexed with a “normal” B-tree index.

180 Chapter 6. Empirical Results and Analysis

Example 6.12.1.The following is a typical query drawn from the batch used in

these experiments:

select distinct t.ID, t.COL7, t.COL4, t.COL3

from TAB2 t

where t.COL2 > 52042096

and t.COL2 < 52042200

and t.ID is not null;

6.12.3 Results and Analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100000 200000 300000 400000 500000

R
co

m

Rows/Query

Results
Break even line

(a) Queries “is not null” elimination

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100000 200000 300000 400000 500000

R
co

m

Rows/Join

Results
Break even line

(b) Joins “is not null” elimination

Figure 6.12:“is not null” elimination : In the case of queries, eliminating the redundant phrase
from thewhereclause of the batch of queries scarcely affects query efficiency (Figure 6.12(a)). In
the case of joins, the simplification produces a very small, nearly uniform saving of approximately
5% (Figure 6.12(b)).

Figure 6.12(a) plotsRcom versusRows/Query. We first considered this opti-

mization in Example 4.4.9 (page 120) where the SQL optimizerpredicted a saving

of around 50%. However, our experiments with batches of queries consistently

failed to show any significant optimization across a wide range ofRows/Query.

6.12.4 Conclusion

The results displayed in Figure 6.12(a) suggest we have gained very little or nothing

by eliminating the redundant phrase “is not null” from the whereclause. We

conclude that, on average, for queries the effect is too small to be significant. The

hypotheses are not confirmed.

6.13 Joins “is not null” elimination

The objective of this experiment is to confirm or otherwise the efficacy of eliminat-

ing the key phrase “is not null” in joins in which it is redundant in the context

6.13. Joins “is not null” elimination 181

of the where clause “where COL is not null”. This is described in detail in

Section 4.4.3.4 where we gave a typical example (Example 4.4.9, page 120) which

suggested that removal of this redundancy could halve the query cost.

6.13.1 Hypotheses

• Removing the redundant key phrase “is not null” from the where clause

“where COL is not null” will increase query efficiency.

• The effect will be negligible below a certain threshold proportional to the

number of rows returned by the query.

6.13.2 Method

In this experiment we submit batches of joins to the database, identical except that

one batch has allwhereclauses containing the redundant “is not null” phrase

while the other does not. As for the previous experiments, wemeasure theratio

of the optimized batch cost (redundant “is not null” eliminated) to the unop-

timized batch cost (includes redundant “is not null” keyword). We reason the

advantage of eliminating the phrase will be negligible whenthe time required to

check the rows returned by the join is very small, relative tothe total join process-

ing time. For this reason:

• The independent variable in this case is the average number of rows returned

per join: Rows/Join.

• The dependent variable is the cost ratioRcomas defined in Table 5.1 (page 139).

All results are for tables with number of rowsRows= 500,000. All joins con-

sist of a single restriction defined by a single interval. Allcolumns cited in query

restrictions are indexed with a “normal” B-tree index.

Example 6.13.1.The following is a typical join drawn from the batch used in these

experiments:

select distinct t1.ID id1, t2.ID id2, t1.COL8 c1

from TAB6 t1, TAB1 t2

where t2.COL2 = t1.COL2

and t2.COL5 > 51547332

and t2.COL5 < 52588692

and t1.ID is not null

and t2.ID is not null;

182 Chapter 6. Empirical Results and Analysis

6.13.3 Results and Analysis

Figure 6.12(b) plotsRcomversusRows/Query. We first considered this optimization

in Example 4.4.9 (page 120) where the SQL optimizer predicted a saving of around

50%. However, our experiments with batches of joins produced a consistent saving

of just 5% across a wide range ofRows/Query.

6.13.4 Conclusion

Elimination of the redundant phrase “is not null” produces a measurable but

very small increase in query efficiency of approximately 5%. The effect we mea-

sured was almost uniform across a wide range ofRows/Join. Although we have

confirmed an efficiency gain, the magnitude of the gain is considerably less than the

50% gain suggested by the SQL optimizer itself which we report in Section 4.4.3.4

(page 120). We conjecture the reason for this is that the relatively small computa-

tional cost of checking all values are non-null is swamped bythe caching of tabular

data as the query batch proceeds. The hypotheses are nevertheless confirmed.

6.14 Query Restriction Introduction and Removal

The objective of this series of experiments is to investigate the efficacy of intro-

ducing additional predicates into queries, or eliminatingthem. This was described

in detail in Sections 2.5.3 (page 34) and 2.5.2 (page 31) respectively. The extra

predicates are generated as a consequence of a rule that has been discovered that

correlates the values of an unindexed column of low selectivity and an indexed col-

umn of high selectivity. In the following experiments, the rule is of the form:

if COL20 = ’x’ then COL1 between a and b;

In the above rule,COL20 is the unindexed column of low selectivity whileCOL1

is the indexed column with high selectivity. We expect queries restricted only on

COL20 to provoke a full table scan, since no index exists on this column. Conversely,

an additional predicate restricted onCOL1 would be expected to provoke the SQL

optimizer into consulting the index onCOL1, thus avoiding a full table scan. This is

restriction introduction.

It is equally possible to view the correlation captured by the rule above the other

way around. That is, we discover a rule of the form:

if COL1 between p and q then COL20 = ’y’;

Again,COL20 is the unindexed column of low selectivity whileCOL1 is the indexed

column with high selectivity. When a query appears with restrictions on bothCOL1

6.14. Query Restriction Introduction and Removal 183

and COL20 and the restriction onCOL20 can be inferred from the restriction on

COL1 via the above rule, then we reason the restriction onCOL20 can be ignored,

simplifying the query. This isrestriction removal.

For the purposes of comparison, we report on bothrestriction introductionand

restriction removalsimultaneously. In addition, we introduce another variable by

considering the following two scenarios.

1. The column of low selectivity (COL20) is unindexed.

2. The column of low selectivity (COL20) is indexed using abitmap index(Cyran,

Lane & Polk 2005c).

The first scenario above is typically what researchers in SQOhave in mind when re-

striction introduction and removal is described (Chomicki 2002, Lowden & Robinson

2002, Cheng et al. 1999).

The second scenario above recognises the fact that, in practice, it is most likely

that the column cited in the rule pre-condition would be indexed with a bitmap

index, which is particularly suited to columns of low selectivity (Chan 2005f). It

turns out this has a positive effect on the query efficiency, as our results below in

Section 6.14.3 show.

6.14.1 Hypotheses

• Restriction introduction: Adding a restriction on an indexed column of high

selectivity will increase query efficiency.

• Restriction removal: Removing a restriction on an unindexed column of low

selectivity will increase query efficiency.

• Effect of bitmap: The presence of a bitmap index on the unselective column

will reduce the relative effectiveness of restriction introduction.

6.14.2 Method

1. We first establish a baseline with a batch of normal queriesrestricted only on

COL20, the unindexed column with low selectivity. The following is a typical

baseline query drawn from the batch used in these experiments:

select t.COL1, t.COL20

from TAB1 t

where t.COL20 = ’B’;

184 Chapter 6. Empirical Results and Analysis

2. The restriction introduction rule is then applied and an additional predicate

generated for each normal query that restricts columnCOL1, which is indexed

with a normal B-tree index. The modified queries are then re-submitted. The

baseline query is modified in the following way:

select t.COL1, t.COL20

from TAB1 t

where t.COL20 = ’B’

and t.COL1 between 46700008 and 46879992;

3. The restriction elimination rule is then applied and the restriction onCOL20 is

removed, leaving only the restriction onCOL1. The modified queries are then

re-submitted. The query is modified in the following way:

select t.COL1, t.COL20

from TAB1 t

where t.COL1 between 46700008 and 46879992;

The independent variable isCardinality, expressed as a percentage of the total num-

ber of table rows. The dependent variable isRcom, the combined metric cost ratio.

Number of table rows is 750,000.

6.14.3 Results and Analysis

Consider Figure 6.13(a) which pictures the traditional scenario where a restriction

on unindexedCOL20 is supplemented with an additional restriction on indexedCOL1

(red line). Our results repeatedly confirmed that once the cardinality of the result set

exceeds a certain threshold (approximately 10% for our target tables), this provokes

the SQL optimizer to opt for a full table scan. This is becausethe SQL optimizer

judges the resources required to first consult the index onCOL1 would exceed the

resources required to perform a full table scan. Therefore,no advantage is conferred

by the additional predicate in this situation, which coversapproximately 90% of the

range of query selectivities from 10− 100%. In fact, there is only a small range

of query selectivities from approximately 0− 2% where the additional predicate

confers an advantage. The results for query selectivities in the range 2− 10% are

initially counter-intuitive. The additional predicate, far from reducing query cost,

provokes the optimizer into choosing a path which is up to 3 times more costly than

a full table scan. We studied the execution plans produced bythe SQL optimizer in

these circumstances and repeatedly confirmed the optimizerjudges it worthwhile to

consult the index onCOL1 for cardinalities under approximately 10%. In fact, the

actual execution time turns out in these circumstances to besignificantly longer. We

6.14. Query Restriction Introduction and Removal 185

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

Break even line

(a) No index onCOL20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

BITMAP: Introduce restriction
BITMAP: Eliminate restriction

Break even line

(b) Bitmap index onCOL20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

BITMAP: Introduce restriction
BITMAP only

Break even line

(c) Comparing efficiency gain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

BITMAP: Introduce restriction
BITMAP only

Break even line

(d) Comparing efficiency gain: cardinality 0− 20%

Figure 6.13:Query restriction introduction and elimination : The traditional scenario is pic-
tured in Figure 6.13(a) where a restriction on unindexedCOL20 is supplemented with an additional
restriction on indexedCOL1 (red line). Conversely, the restriction on unindexedCOL20 can be re-
moved leaving only the restriction onCOL1 (greenline). A more realistic scenario is pictured in
Figure 6.13(b). Here the low selectivity columnCOL20 is indexed with a bitmap. In Figures 6.13(c)
and 6.13(d) we compare the efficiency gain produced with and without a bitmap index onCOL20 by
combining the results from Figures 6.13(a) and 6.13(b). Also included is the effect of simply adding
the bitmap index toCOL20.

emphasize that our optimizer settings are the standard, default setting for the Oracle

RDBMS and optimizer statistics were always “fresh”.

Consider thegreenline of Figure 6.13(a) which pictures the traditional scenario

where a restriction on unindexedCOL20 has been eliminated. Again, once the cardi-

nality of the result set exceeds a certain threshold (approximately 10% for our target

tables), this provokes the SQL optimizer to opt for a full table scan. However, we

obtain a useful increase in query efficiency across the selectivity range 0− 10%, a

far better result than for restriction introduction.

Now consider Figure 6.13(b) where we display results for exactly the same

query batches, but this time we have placed a bitmap index onCOL20 (red line).

The primary beneficial effect of the bitmap is that the SQL optimizer now accurately

predicts the cardinality of the result set. We studied the execution plans produced by

the SQL optimizer in these circumstances and repeatedly confirmed the optimizer

firstly “pre-selects” using the bitmap index, then scans using the B-tree index3. The

3The details of the execution plan are beyond the scope of thisanalysis. In fact, the Oracle

186 Chapter 6. Empirical Results and Analysis

cost of scanning the two indexes is not the same; scanning thebitmap index is typ-

ically judged by the SQL optimizer to be a factor of 10 less costly than scanning

the B-tree index. The overall effect of using both indexes is that query efficiency is

increased up to a selectivity of approximately 10% when the SQL optimizer orders

a full table scan regardless of the indexes.

Consider thegreenline of Figure 6.13(b) which pictures the scenario where a

restriction on unindexedCOL20 has been eliminated. Comparing the efficiency gain

with the restriction introduction case, we again see restriction elimination yields a

better result, although for query selectivity from 10−50% the gain is less than 10%.

Consider Figures 6.13(c) and 6.13(d). These display exactlythe same results

as Figures 6.13(a) and 6.13(b) but plotted on the same graph for ease of compar-

ison. Also included is the efficiency gain produced by simply placing the bitmap

on COL20 without the addition or removal of restrictions. The baseline in each

case is the cost for queries restricted only onCOL20 without a bitmap. Consid-

ering the magnified results displayed in Figure 6.13(d), we see that in the case of

the bitmappedCOL20, the major efficiency gain is produced simply by the pres-

ence of this index (pink line). A small additional gain is produced by introducing

a restriction (blue line) and again the biggest advantage is realised by eliminating a

restriction (greenline).

6.14.4 Conclusion

We now consider the experimental results with respect to thehypotheses above in

Section 6.14.1.

• Restriction introduction: The traditional scenario of restriction introduction is

highly restricted in its usefulness. In order to provoke theSQL optimizer into

efficiently utilising the index associated with the additionalpredicate, the op-

timizer must be able toaccuratelypredict the cardinality of the result set. Our

results repeatedly showed it was quite easy to “fool” the optimizer into mak-

ing the wrong decision. This is most dramatically shown in Figure 6.13(a)

for query selectivities between 2− 10% where the optimizer has significantly

underestimated the cost of index scanning. Restriction introduction increased

query efficiency only for query selectivities in the narrow range of approxi-

mately 0− 2%. For query selectivities greater than approximately 10%, the

SQL optimizer orders a full table scan and the extra predicate has no effect.

The hypothesis is therefore confirmed only for the lowest query selectivities

in the narrow range of approximately 0− 2%.

optimizer uses ahash jointo efficiently correlate the information contained in these two indexes and
it is primarily this that leverages the advantage of using both indexes.

6.15. Joins Restriction Introduction and Removal 187

• Restriction removal: The removal of the redundant restriction on the unse-

lective column was a more effective strategy than adding a restriction on the

selective column, regardless of the presence of a bitmap index on the unselec-

tive column. Restriction removal increased query efficiency across approxi-

mately the range for which the SQL optimizer does not order a full table scan

(0−10% in our experiments). The hypothesis is therefore confirmed for query

selectivities in the range of approximately 0− 10%.

• Effect of bitmap: The primary beneficial effect of adding a bitmap index

to unselective columnCOL20 is that it allows the SQL optimizer to accu-

rately predict the cardinality of the result set. This is clearly shown in Fig-

ure 6.13(d). In fact the benefit of the bitmap index alone on the unselective

column is almost as great as when this is combined with the additional re-

striction on the selective column with the B-tree index. The hypothesis is

thereforenotconfirmed because in fact the bitmap index enhances the restric-

tion introduction strategy.

6.15 Joins Restriction Introduction and Removal

The objective of this series of experiments is to investigate the efficacy of introduc-

ing additional predicates into joins, or eliminating them.These experiments repeat

the scenario described in detail above for queries in Section 6.14 but with restric-

tions applied to one half of the equi-join.

6.15.1 Hypotheses

• Restriction introduction: Adding a restriction on an indexed column of high

selectivity will increase join efficiency.

• Restriction removal: Removing a restriction on an unindexed column of low

selectivity will increase join efficiency.

• Effect of bitmap: The presence of a bitmap index on the unselective column

will reduce the relative effectiveness of restriction introduction.

6.15.2 Method

1. We first establish a baseline with a batch of normal joins where one table is

restricted only onCOL20, the unindexed column with low selectivity. The

following is a typical baseline join drawn from the batch used in these exper-

iments:

188 Chapter 6. Empirical Results and Analysis

select t1.COL1, t1.COL20, t2.COL1, t2.COL20

from TAB1 t1, TAB2 t2

where t1.COL5 = t2.COL5

and t1.COL20 = ’B’;

2. The restriction introduction rule is then applied and an additional predicate

generated for each normal join that restricts columnCOL1, which is indexed

with a normal B-tree index. The modified joins are then re-submitted. The

baseline join is modified in the following way:

select t1.COL1, t1.COL20, t2.COL1, t2.COL20

from TAB1 t1, TAB2 t2

where t1.COL5 = t2.COL5

and t1.COL20 = ’B’

and t1.COL1 between 46700008 and 46879992;

3. The restriction elimination rule is then applied and the restriction onCOL20

is removed, leaving only the restriction onCOL1. The modified joins are then

re-submitted. The join is modified in the following way:

select t1.COL1, t1.COL20, t2.COL1, t2.COL20

from TAB1 t1, TAB2 t2

where t1.COL5 = t2.COL5

and t1.COL1 between 46700008 and 46879992;

The independent variable isCardinality, expressed as a percentage of the total num-

ber of table rows. The dependent variable isRcom, the combined metric cost ratio.

Number of table rows is 750,000.

6.15.3 Results and Analysis

We first note that results for joins with and without a bitmap index on the unselective

COL20 are almost identical, so no significant advantage (or disadvantage) results

from this index. For join selectivities between 0− 30% the SQL optimizer has

significantly underestimated the cost of consulting the B-tree index onCOL1. The

restriction removal strategy produces a better result thanrestriction introduction,

which is analogous to the result reported for queries above in Section 6.14.

6.15.4 Conclusion

We now consider the experimental results with respect to thehypotheses above in

Section 6.15.1.

6.15. Joins Restriction Introduction and Removal 189

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

Break even line

(a) No index onCOL20

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

BITMAP: Introduce restriction
BITMAP: Eliminate restriction

Break even line

(b) Bitmap index onCOL20

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

BITMAP: Introduce restriction
BITMAP: Eliminate restriction

BITMAP only
Break even line

(c) Comparing efficiency gain

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10

R
co

m

Cardinality (% of table rows)

Introduce restriction
Eliminate restriction

BITMAP only
Break even line

(d) Comparing efficiency gain: cardinality 0− 10%

Figure 6.14:Join restriction introduction and elimination : Restriction introduction does not
benefit the equi-joins tested in our experimental batches, apart from a narrow range of the most se-
lective joins. Restriction removal produces a better result, enhancing join efficiency for selectivities
in the range 0− 3%. The presence of a bitmap index on the unselective column has no impact on
overall join efficiency.

• Restriction introduction: Adding additional restrictions to the equi-joins that

we tested is not a promising strategy to increase query efficiency. Although

we measured an efficiency gain for joins with very low selectivity, we found

the SQL optimizer significantly underestimated the cost of consulting the B-

tree index on the column cited in the introduced restriction. This is the same

result we observed as for simple queries, only the effect is more pronounced.

The hypothesis is not confirmed except for a very narrow rangeof join selec-

tivities where the SQL optimizer is able to accurately predict the cardinality

of the result set.

• Restriction removal: Removing the redundant restriction on the unselective

column yielded a modest gain in join efficiency for joins with selectivities

in the range 0− 3%. Restriction removal is a more promising strategy than

restriction introduction, a result that we also observed for simple queries. The

hypothesis is confirmed for a narrow range of joins with very low selectivity.

• Effect of bitmap: The presence or absence of a bitmap index on the unse-

lective column has no effect on overall join efficiency. The hypothesis is not

190 Chapter 6. Empirical Results and Analysis

confirmed.

6.16 Summary

The main objective of this Chapter is to present the results ofa series of experiments

whose overall aim is to demonstrate the effectiveness of the different types of SQO

we described first in Chapter 2 and expanded upon in Chapter 4. A critical feature

of our experiments is that the database schema we employ closely simulates typical

schemas found in real RDBMS environments. In particular, we give results for

queries against large tables with columns that areindexed. To our knowledge, these

are the first comprehensive empirical results which demonstrate SQO for queries

and equi-joins, in the presence of standard indexes.

The main contributions of this Chapter include the following.

• In the case ofunindexed tables, we confirm that the gain in query efficiency

increases linearly with increasing probability of an unsatisfiable query. The

gain in query efficiency is accurately predicted by the idealised cost model of

Section 5.4.2.3 and is almost independent of table size. Crucially, our cost

model sets an upper bound for the amount of optimization we can expect

from detecting unsatisfiable queries. That is, even if the cost of detecting

unsatisfiable queries is negligible (and it is not), the maximum amount of op-

timization is irrevocably determined by the prevalence of unsatisfiable queries

(Section 6.3).

• In the case ofindexed tables, we confirm that the gain in query efficiency

increases linearly with increasing probability of an unsatisfiable query. The

gain in query efficiency is accurately predicted by the idealised cost model of

Section 5.4.2.3 and is almost independent of table size (Section 6.4).

• In the case ofindexed tables, we confirm that the gain in join efficiency in-

creases linearly with increasing probability of an unsatisfiable join. The gain

in join efficiency is accurately predicted by the idealised cost model of Sec-

tion 5.4.2.3 and is almost independent of table size (Section 6.7).

• Although the extra computational costs incurred by the semantic query pre-

processor are relatively small (compared to the computational cost of pro-

cessing the query with the normal SQL optimizer) for unindexed tables, these

costs cannot be discounted when tables are sensibly indexed. For our pro-

totype semantic optimizer, the probability of an unsatisfiable query needs to

be approximately 10% (for queries) or 20% (for equi-joins) to break even

(Sections 6.3, 6.4 and 6.7).

6.16. Summary 191

• In the case ofindexed tables, we confirm for both queries and joins that as

query difficulty (as defined in Section 5.3.2) increases, so does the cost of

semantically preprocessing the queries. An increasing proportion of unsat-

isfiable queries is required to break even. However, for modest numbers of

restrictions per query (R/Q ≈ 5) and intervals per restriction (I/R ≈ 5) our

prototype semantic optimizer breaks even when the probability of an unsatis-

fiable query (P) reaches≈ 0.2 (Sections 6.5, 6.6, 6.8 and 6.9).

• We confirm that, for both queries and joins, it is worthwhile eliminating the

redundant keyword “distinct” from the select clause “select distinct”.

However, averaged out over a large number of queries(joins), the net sav-

ing made was significantly less than predicted by the SQL optimizer (Sec-

tions 6.10 and 6.11).

• With regard to eliminating the redundant key phrase “is not null” from

the where clause “where COL is not null”, for queries we were unable

to show a consistent average efficiency gain. For joins, we measured a con-

sistent average gain of just 5%. Both of these results are substantially less

than predicted by the SQL optimizer (Sections 6.12 and 6.13). Comparing

this result with the result for eliminating the redundant keyword “distinct”

above, we may conclude that the cost of performing the redundant sort is

more significant than the cost of checking values are non-null.

• We consistently observed that for both queries and joins, the restriction re-

moval strategy was significantly more effective thanrestriction introduction.

With standard SQL optimizer settings, the Oracle RDBMS tendedto underes-

timate the cost of B-tree index scanning on the introduced predicate, resulting

in sub-optimal execution paths. Restriction removal was seen to be effective

for queries and joins with low selectivity; i.e., where the cardinality of the

result set was low compared to total table size. These results strongly suggest

an effective SQO strategy for tables of the type we have studied would be

to look for rules that allow restrictions on columns of low selectivity to be

eliminated. (Sections 6.14 and 6.15).

Chapter 7

Related Work and Extensions

193

194 Chapter 7. Related Work and Extensions

7.1 Introduction

The interval algebra we develop in Chapter 3 is central to our research. It is the

basis of our reasoning engine which we utilise to implement SQO. So far in this

thesis, we have primarily focussed on the operations conjunction, disjunction and

negation with intervals and interval lists. However, in this chapter we focus on

the use of intervals in other areas of research. We highlightthe versatility of the

interval algebra we have implemented and how it can be utilised in a variety of

areas with very little extension or modification. We begin byexaminingarithmetic

with intervalsover the Real numbers. We then examinetemporal intervalswhere

the intervals are conceived to specifically represent periods of time.

The remainder of this chapter is set out as follows.

• We firstly focus on interval arithmetic, showing how the fourbasic arithmetic

operations of orthodox interval arithmetic can be meaningfully extended by

subtly altering the treatment of the two infinities and zero,while extending the

range of intervals to include both inclusive and exclusive limits (Section 7.2).

• We then show how arithmetic with intervals can be easily extended to arith-

metic with interval lists and how this can be used to extend interval division

(Section 7.3).

• We study the special case of temporal intervals, describinghow the Allen

interval algebra (Allen 1983) is fully expressible within our own interval al-

gebra and how it can be meaningfully extended to include bothinclusive and

exclusive limits (Section 7.4).

7.2 Interval Arithmetic

The fundamental idea of interval arithmetic is that calculations are performed on

pairs of intervals, rather than pairs of numbers (Clemmesen 1984). Applying an

arithmetic operation, such as addition, to a pair of intervals yields an interval con-

taining all numbers resulting from applying the same operation to all pairs of num-

bers from the two intervals (Hickey, Ju & Emden 2001, Clemmesen 1984). The in-

tervals referred to in interval arithmetic are conventionally defined on the Real num-

bers by their endpoints in the following way (Muñoz & Lester 2005, Walster 2000).

[a,b] = {x ∈ R : a ≤ x ≤ b}

7.2. Interval Arithmetic 195

The numbersa,b ∈ R form the left and right bounds of the interval1. If a > b the

interval is empty2 and the interval[a,a] denotes the pointa (Muñoz & Lester 2005,

Hickey et al. 2001).

The intervals that result from the application of the four arithmetic operations

addition (+), subtraction (−), multiplication (×) and division (÷) are given by the

following formulae (Mũnoz & Lester 2005, Hickey et al. 2001, Walster 2000).A is

the interval[a,b] andB is the interval[c,d] wherea,b, c,d ∈ R.

A+ B = [a+ c,b+ d]

A− B = [a− d,b− c]

A× B = [min(S1) ,max(S1)] whereS1 ∈ {ac,ad,bc,bd}

A÷ B = [min(S2) ,max(S2)] whereS2 ∈ {a/c,a/d,b/c,b/d}

For interval multiplication, the left and right bounds are chosen fromS1, the set of

products{ac,ad,bc,bd}. For interval division, the left and right bounds are chosen

from S2, the set of quotients{a/c,a/d,b/c,b/d}. Interval division is not defined

when the interval divisor (B in the formula above) includes zero.

The basic interval arithmetic operations on the Real numbersdefined above

areclosed, provided interval divisors containing zero are disallowed for division

(Walster 2000). They can also be extended to handleminus infinity andplus infin-
ity. In this case the set of numbers is called theExtended Realswhich is defined to

be the setR∪ {−∞,+∞}. The following extra definitions are applied to intervals on

the Extended Reals (Hickey et al. 2001).

[−∞,b
]

= {x ∈ R : x ≤ b}
[

a,+∞
]

= {x ∈ R : a ≤ x}
[−∞,+∞

]

= R

7.2.1 Differences in our interval implementation

We now describe several important differences between our implementation of in-

tervals and the orthodox implementation described above.

We first introduced the idea of incorporatingminus infinity and plus infinity

into our generic data typeT in Section 3.2.5 (page 47) and the Extended Reals was

the model we had in mind. We have implemented a version of the four interval

arithmetic operations described above for the numeric datatype and these incorpo-

rate the handling ofminus infinity andplus infinity in an analogous manner to that

1In this thesis we use the terms “left” and “right” respectively throughout, rather than the more
orthodox “upper” and “lower” to avoid confusion with our definitions for conjunction and disjunc-
tion in Chapter 3.

2We use this as our definition of the null interval. See Section3.5.1.2, page 61.

196 Chapter 7. Related Work and Extensions

described by, for example, (Hickey et al. 2001, Walster 2000).

• However, our implementation is more general in that we useminus infinity

and plus infinity with data types other than numeric. When we use these

terms with non-numeric data types, we intend only to convey the idea of a

value which would always be the first(last) value were it added to any ordered

list of values. While our implementation does not in general allow arithmetic

on non-numeric data types3, it nevertheless recognisesminus infinityandplus

infinity as special constants and these are dealt with in a meaningfulway such

that the conjunction, disjunction and negation operationson interval data are

implemented correctly.

• Our interval implementation differs in its treatment oflimits. Limits were first

described in Section 3.3 (page 48) and we deliberately treated the four lim-

its “(,) , [,]” as operatorsthat may only operate on values to producebounds

(Section 3.4, page 51). The outcome for intervals is that we allow both in-

clusive and exclusive bounds. So rather than just the interval [a,b] we allow

the four intervals:(a,b), [a,b), (a,b], [a,b]. This allows us to meaningfully

apply the arithmetic operators to a wider set of intervals.

We now describe how we extend interval arithmetic to includeintervals with both

inclusive and exclusive bounds. For clarity we initially consider only the Real num-

bers and neglect the special cases involvingminus infinity andplus infinity. We

then give our own algorithm forextended interval arithmeticand show howminus

infinity andplus infinity can be effortlessly incorporated.

7.2.2 Extending Interval Addition

We gave the formula for interval addition in Section 7.2 (page 194) above as:

A+ B = [a+ c,b+ d]

whereA is the interval[a,b] andB is the interval[c,d] anda,b, c,d ∈ R. However,

if we relax the requirement that the left and right bounds must be inclusive, we still

obtain meaningful results with clear semantics. Figure 7.1(page 197) sets out all

the possibilities that may arise in this extended interval addition. We now provide

an informal proof for the results shown in Figure 7.1.

Theorem 7.2.1.Extended Interval Addition: The result of applying the addition

operator to intervals comprising both inclusive and exclusive bounds is given by the

table of Figure 7.1.

3See Section 7.4 below (page 215) for examples of interval arithmetic with thedatedata type.

7.2. Interval Arithmetic 197

Aa Bc Aa + Bc Ab Bd Ab + Bd

[a [c [a+c b] d] b+d]

[a (c (a+c b] d) b+d)

(a [c (a+c b) d] b+d)

(a (c (a+c b) d) b+d)

Figure 7.1:Extended interval addition A + B: When the requirement is relaxed that the left and
right bounds must be inclusive, interval addition still yields meaningful results with clear semantics.
This table sets out the four possibilities for each of the left and right bounds. The result reduces to
the orthodox interval addition formula when both intervalsare composed of inclusive bounds.

Proof: We use the right arrow symbol “→” in the proof below to mean “ap-

proaches” in the sense of the Calculus of Limits (Anton 1984).Consider the result

for orthodox interval addition:

A = [a,b]

B = [c,d]

A+ B = [a+ c,b+ d]

=
[

x, y
]

where x= a+ c, y = b+ d

Consider how this result must change if the first interval A is(a,b]. We replace the

exclusive left bound with an inclusive left bound in the following way:

A = (a,b]

=
[

a′,b
]

where a′ > a

Adding the two intervals yields the following:

A+ B =
[

a′ + c,b+ d
]

Now consider what happens as a′ approaches a from the right:

lim
a′→a+

(

a′ + c
)

= x

Therefore we may write:

A+ B = (x,b+ d]

= (a+ c,b+ d]

An analogous argument can be made for the other cases depicted in Figure 7.1.

Inspection of Figure 7.1 yields the simple rule that if one ormore of the bound

limits is exclusive, “(” or “)”, then the result of the addition is also exclusive.

198 Chapter 7. Related Work and Extensions

7.2.3 Extending Interval Subtraction

We gave the formula for interval subtraction in Section 7.2 (page 194) above as:

A− B = [a− d,b− c]

whereA is the interval[a,b] andB is the interval[c,d] anda,b, c,d ∈ R. However,

if we relax the requirement that the left and right bounds must be inclusive, we still

obtain meaningful results with clear semantics. Figure 7.2sets out all the possibil-

ities that may arise in this extended interval subtraction.The proof of the results

Aa Bd Aa - Bd Ab Bc Ab - Bc

[a d] [a-d b] [c b-c]

[a d) (a-d b] (c b-c)

(a d] (a-d b) (c b-c)

(a d) (a-d b) (c b-c)

 Figure 7.2:Extended interval subtraction A − B: When the requirement is relaxed that the left
and right bounds must be inclusive, interval subtraction still yields meaningful results with clear
semantics. This table sets out the four possibilities for each of the left and right bounds. The result
reduces to the orthodox interval subtraction formula when both intervals are composed of inclusive
bounds.

depicted in Figure 7.2 proceeds in an analogous fashion to the proof sketched above

in Section 7.2.2 for Extended Interval Addition. Again, we arrive at the simple rule

that if one or more of the bound limits is exclusive, “(” or “)”, then the result of the

subtraction is also exclusive.

We defer descriptions of how we extend interval multiplication and division

until Sections 7.2.5 (page 203) and 7.3.2 (page 210) respectively.

7.2.4 Algorithm for Extended Interval Arithmetic

We now describe a general algorithm forextended interval arithmetic(EIA) on

the Real numbers. We first describe the major innovations of the algorithm. We

then state the algorithm itself in Section 7.2.4.1 (page 199). This is followed in

Section 7.2.4.2 (page 201) by a description of how the algorithm must be restricted

to maintain its validity when, for example, we allowminus infinityandplus infinity

to be one or both of the operands.

The major innovations of this algorithm are:

• We allow arithmetic with intervals that include both inclusive and exclusive

bounds. For example, the following calculation is allowed:

[3,5) + (100,105] = (103,110)

7.2. Interval Arithmetic 199

• We apply the arithmetic operationat the bound level. That is, we never simply

apply the arithmetic operator to the two values. Instead, the limit which is

associated with eachvalue is always included in the calculation.

• We allow a restricted occurrence ofminus infinityandplus infinity, which we

treat as special constants and which, we argue, enhance the expressiveness of

interval arithmetic.

• We allow division by values thatapproachzero. This facilitates calculation

with a wide range of cases that would be disallowed by orthodox interval

division.

For clarity, we first reiterate some helpful definitions fromChapter 3. Table 7.1

lists the various types of numeric bounds which we refer to and their equivalent

definitions in set notation.

Name Bound Set
Inclusive left bound [a {x ∈ R : a ≤ x}

Inclusive right bound b] {x ∈ R : x ≤ b}
Exclusive left bound (a {x ∈ R : a < x}

Exclusive right bound b) {x ∈ R : x < b}
Inclusive zero bound [0 {x ∈ R : 0 ≤ x}
Inclusive zero bound 0] {x ∈ R : x ≤ 0}
Exclusive zero bound (0 {x ∈ R : 0 < x}
Exclusive zero bound 0) {x ∈ R : x < 0}

Inclusive infinite bound
[

−∞ {x ∈ R : −∞ ≤ x}
Inclusive infinite bound +∞

]

{x ∈ R : x ≤ +∞}

Exclusive infinite bound
(

−∞ {x ∈ R : −∞ < x}
Exclusive infinite bound +∞

)

{x ∈ R : x < +∞}

Table 7.1: Some useful numeric boundsdefined over the Real numbers and their equivalent
definitions in set notation.

7.2.4.1 Statement of EIA algorithm

We first give an algorithm to determine if the bound which results from a given cal-

culation is inclusive or exclusive. This algorithm determines only this information;

it does not determine whether the bound is a left bound or a right bound.

Algorithm 7.2.1. Inclusive or Exclusive Bound: Let B1 and B2 be any two bounds,

as we have defined then in Definition 3.4.1 (page 51). Bound B1 comprises a limit

l1 and a value v1 such that B1 = l1v1. Similarly, bound B2 comprises a limit l2 and

a value v2 such that B2 = l2v2 Let “⊗” denote any of the four interval arithmetic

operations:⊗ ∈ {+,−,×,÷}. Then:

If B1 is an inclusive zero bound then

200 Chapter 7. Related Work and Extensions

B1 × B2 is inclusive;

B1 ÷ B2 is inclusive;

else if B2 is an inclusive zero bound then

B1 × B2 is inclusive;

B1 ÷ B2 is undefined;

else if B1 is inclusive and B2 is inclusive then

B1 ⊗ B2 is inclusive;

else B1 ⊗ B2 is exclusive;

In fact it is a little easier in this case to state the algorithm informally: If both

bounds are inclusive then the result is also inclusive, otherwise the result is exclu-

sive. The exceptions are multiplication with an inclusive zero bound, which always

results in an inclusive zero bound and division where the dividend is an inclusive

zero bound, which always results in an inclusive zero bound.

We now state the EIA algorithm itself. When we refer to the “orthodox formu-

lae” for interval arithmetic we mean precisely the formulaewe state in Section 7.2

(page 194) for the four basic arithmetic operations.

Algorithm 7.2.2. Extended Interval Arithmetic: Consider an arbitrary interval

I = Ba, Bb comprising left bound Ba and right bound Bb. Similarly, interval J=

Bc, Bd comprises left bound Bc and right bound Bd. Each bound in turn comprises

a limit and a value: Bi = l ivi where i∈ {a,b, c,d}. Let “⊗” denote any of the four

interval arithmetic operations:⊗ ∈ {+,−,×,÷}. When one of these operators is

applied to intervals I and J, it is always the case that one operand is supplied by

I, which we will indicate with the subscript “i”, while the other issupplied by J,

which we will indicate with the subscript “ j”. Then I⊗ J is calculated as follows:

1. Apply the orthodox formula for interval arithmetic to theappropriate value

pairs: vi ⊗ vj

2. For each pair of operands in 1, apply Algorithm 7.2.1 usinglimits li and lj to

decide if the answer is inclusive or exclusive.

3. In the case of multiplication and division, discard products(quotients) that

are classified asundefined.

4. In the case of multiplication and division, choose the minimum value vmin and

apply the inclusive or exclusive left limit, as dictated by 2. Similarly, choose

the maximum value vmax and apply the inclusive or exclusive right limit, as

dictated by 2.

Point 3 in Algorithm 7.2.2 above foreshadows Figure 7.3 (page 201) and is

explained in Section 7.2.4.2 below. Examples of discardingundefined products and

quotients are given in Sections 7.2.5 and 7.3.2.

7.2. Interval Arithmetic 201

7.2.4.2 Restrictions applied to EIA algorithm

Operator Undefined Operation Result
+, -, x, ÷ either operand [

±
∞] -

÷ B ÷ [0] -

x (0 x (
-
∞ un

-

x (0 x
+
∞) un

+

x 0) x (
-
∞ un

+

x 0) x
+
∞) un

-

÷ (

-
∞ ÷ (

-
∞ un

+

÷ (
-
∞ ÷

+
∞) un

-

÷ +
∞) ÷ (

-
∞ un

-

÷ +
∞) ÷

+
∞)

un

+

÷ (0 ÷ (0 un
+

÷ (0 ÷ 0) un
-

÷ 0) ÷ (0 un
-

÷ 0) ÷ 0) un
+

Figure 7.3:Undefined operations for Extended Interval Arithmetic: The table lists the arith-
metic operations for which are undefined when we carry out extended interval arithmetic (EIA). The
first row prohibits any operations with the inclusive infinities. The second row prohibits any division
by an inclusive zero (“B” denotes any bound). The remaining rows list the exclusive cases involv-
ing zero and infinity which are undefined. For multiplication, the operation with operands reversed
is omitted, since multiplication is commutative. In theResultcolumn, “un+” denotes “undefined
positive”; “un−” denotes “undefined negative”.

We apply the following restrictions to our EIA algorithm.

1. Restrictions across all four arithmetic operations:

• Neither the left nor the right bound of either interval may contain an

inclusive infinity. Therefore the bounds[−∞ , [+∞ , +∞] , −∞] are

all disallowed in arithmetic calculations. This ensures that we do not at-

tempt to calculate with eitherminus infinityor plus infinity itself, which

is undefined (Mũnoz & Lester 2005, Hickey et al. 2001). However, we

do facilitate calculations where the parametersapproachminus infinity

or plus infinity.

• The exclusive bounds−∞) and(+∞ are disallowed since they imply the

existence of values to the left(right) of minus(plus) infinity, a situation

which is logically excluded by the Definitions 3.2.1 and 3.2.2 (page 47).

2. Additional restrictions on addition:

• There are no additional restrictions required for intervaladdition. This

(perhaps counter-intuitive) conclusion arises because wedo not have to

202 Chapter 7. Related Work and Extensions

consider addition between exclusive infinities of oppositesign, such as
+∞) + (−∞ . Although this sum is in fact undefined, it can never arise

since the formula for interval addition sums only left bounds with left

bounds and right bounds with right bounds.

3. Additional restrictions on subtraction:

• There are no additional restrictions required for intervalsubtraction.

This is because subtractions such as(−∞ − (−∞ between exclusive

infinities of the same sign never arise, by virtue of the formula for in-

terval subtraction which only requires subtraction of right bounds from

left bounds and vice versa.

4. Additional restrictions on multiplication:

• Multiplication between exclusive zero bounds and exclusive infinite

bounds is undefined. So(0 × +∞) is undefined, as is(−∞ × 0) . The

most we can say about products with these particular bounds is to pre-

dict their sign. For example,(0× +∞) must yield a positive bound, since

both operands are undeniably positive. We indicate this with the symbol

un+ . Similarly, 0)× +∞) must yield a negative bound since 0) denotes

a negative value while+∞) is positive. We indicate this with the symbol

un− . This is described in more detail below in Section 7.2.5 (page 203).

5. Additional restrictions on division:

• We do not allow division by inclusive zero. However, wedoallow divi-

sion bya bound that approaches zero, that is, the exclusive zero bounds

0) and (0 4. This is described in more detail below in Section 7.3.2

(page 210).

• We do not allow division when both dividend and divisor are exclusive

zero bounds. Therefore(0÷ (0 and 0)÷ (0 are both undefined. Never-

theless, we can predict the sign of these quotients using exactly the same

reasoning as for the undefined multiplications described above. For ex-

ample, 0) ÷ 0) must be positive since both operands are negative. We

use the symbolun− to denote an undefined quotient which neverthe-

less must be negative andun+ to denote an undefined quotient which

nevertheless must be positive.

• We do not allow division between exclusive infinite bounds. For ex-

ample, +∞) ÷ +∞) is undefined, as is(−∞ ÷ +∞) . Nevertheless, we

4provided the dividend is not itself an exclusive zero bound.See next bullet point.

7.2. Interval Arithmetic 203

can predict the sign of these quotients using exactly the same reason-

ing as for the undefined multiplications described above. For example,
+∞) ÷ +∞) must be positive since both operands are positive.

A full list of undefined operations is listed in Figure 7.3 (page 201).

Since there are no extra restrictions needed for interval addition and subtrac-

tion, we can now provide a full definition for these two operations which includes

both inclusive and exclusive bounds and the exclusive infinities. This is shown in

Figure 7.4.

‹a ‹c ‹a+‹c b› d› b›+d›

‹a ‹c ‹ a+c b› d› b+d ›

‹a (
-
∞ (

-
∞ b›

+
∞)

+
∞)

(
-
∞ ‹c (

-
∞

 +
∞) d›

+
∞)

(
-
∞ (

-
∞ (

-
∞

 +
∞)

+
∞)

+
∞)

 (a) Interval addition with
(

−∞ and +∞
)

.

‹a d› ‹a - d› b› ‹c b› - ‹c

‹a d› ‹ a-d b› ‹c b-c ›

‹a
+
∞) (

-
∞ b› (

-
∞

+
∞)

(
-
∞ d› (

-
∞

 +
∞) ‹c

+
∞)

(
-
∞

+
∞) (

-
∞

 +
∞) (

-
∞

+
∞)

 (b) Interval subtraction with
(

−∞ and +∞
)

.

Figure 7.4:Extended interval addition and subtraction with (−∞ and +∞): The tables show
the outcome for interval addition and subtraction, including when one or both of the operands is an
exclusive infinite bound. The left angle bracket “〈” denotes either “(” or “ [”. Similarly, the right
angle bracket “〉” denotes either “)” or “]”. Algorithm 7.2.1 is applied to determine if the bounds
are inclusive or exclusive.

7.2.5 Extending Interval Multiplication

We now show how orthodox interval multiplication can be extended using Algo-

rithm 7.2.2, having regard for the restrictions which we describe above in Sec-

tion 7.2.4.2. We proceed by considering several examples which illustrate how

we resolve difficult cases. We refer to Figure 7.5 (page 204) where we summarise

how we calculate the answer for multiplication of intervals, including the “difficult”

cases which involve the two infinities and zero.

We begin with the following Example 7.2.1 which illustratesthe simple case

where one bound is an exclusive infinity.

Example 7.2.1.Consider Figure 7.6 which shows interval multiplication where the

first right bound is +∞) . Therefore the productsbc and bd have +∞) as one of

their operands. We read the result from Figure 7.5(a) which inboth cases is+∞) .

Algorithm 7.2.1 is then applied to decide if the bound is inclusive (i) or exclusive

(e). We then identify the minimum which, by the interval multiplication formula,

must be the left bound. Similarly, the maximum must be the right bound.

In Example 7.2.2 we show what happens when one of the four products that are

required for interval multiplication is undefined. We explain how the undefined case

204 Chapter 7. Related Work and Extensions

X (
-
∞ ‹

-
a [0 (0 ‹

+
a -

b› 0) 0] +
b›

+
∞)

(
-
∞

+
∞)

+
∞) [0] un

-
 (

-
∞

+
∞) un

+
 [0] (

-
∞ (

-
∞

‹-
c

+
∞) +

‹ac› [0] 0) -
‹ac›

 +
‹bc› (0 [0] -

‹bc› (
-
∞

[0 [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

(0 un
-
 0) [0] (0 (0 0) 0) [0] (0 un

+

‹+
c (

-
∞ -

‹ac› [0] (0 +
‹ac›

 -
‹bc› 0) [0] +

‹bc›
+
∞)

-
d›

+
∞) +

‹ad› [0] 0) -
‹ad›

 +
‹bd› (0 [0] -

‹bd› (
-
∞

0) un
+
 (0 [0] 0) 0) (0 (0 [0] 0) un

-

0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]
+
d› (

-
∞ -

‹ad› [0] (0 +
‹ad›

 -
‹bd› 0) [0] +

‹bd›
+
∞)

+
∞) (

-
∞ (

-
∞ [0] un

+

+
∞)

(

-
∞ un

-
 [0]

+
∞)

+
∞)

BLa BRb

BLc

BRd

(a) Interval multiplication with
(

−∞ , 0 and+∞
)

.

÷ (
-
∞ ‹

-
a [0 (0 ‹

+
a -

b› 0) 0] +
b›

+
∞)

(
-
∞ un

+
 (0 [0] 0) 0) (0 (0 [0] 0) un

-

‹-
c

+
∞) +

‹a/c› [0] 0) -
‹a/c›

 +
‹b/c› (0 [0] -

‹b/c› (
-
∞

[0 un un un un un un un un un un

(0 (
-
∞ (

-
∞ [0] un

+

+
∞) (

-
∞ un

-
 [0]

+
∞)

+
∞)

‹+
c (

-
∞ -

‹a/c› [0] (0 +
‹a/c›

 -
‹b/c› 0) [0] +

‹b/c›
+
∞)

-
d›

+
∞) +

‹a/d› [0] 0) -
‹ad›

 +
‹b/d› (0 [0] -

‹b/d› (
-
∞

0)
+
∞)

+
∞) [0] un

-
 (

-
∞

+
∞) un

+
 [0] (

-
∞ (

-
∞

0] un un un un un un un un un un
+
d› (

-
∞ -

‹a/d› [0] (0 +
‹a/d›

 -
‹b/d› 0) [0] +

‹b/d›
+
∞)

+
∞) un

-
 0) [0] (0 (0

0) 0) [0] (0 un

+

BLa BRb

BLc

BRd

(b) Interval division with
(

−∞ , 0 and+∞
)

.

Figure 7.5: Extended interval multiplication and division with (−∞ , 0 and +∞): The tables
show the outcome for the multiplication and division operations including when one or both of the
operands is an exclusive infinite bound or zero. The left angle bracket “〈” denotes either “(” or
“[”. Similarly, the right angle bracket “〉” denotes either “)” or “]”. “ [0]” denotes the bound is
inclusive zero. “un+” denotes the answer is undefined but positive; “un−” denotes the answer is
undefined but negative; “un” denotes the answer is undefined.Whether the result is a left or right
bound is determined whenever it is chosen to be the minimum ormaximum by the algorithms for
multiplication and division.

can simply be discarded and that the correct answer is still available by choosing

the minimum for the left bound and the maximum for the right bound.

Example 7.2.2.Consider Figure 7.7. When we apply the formula for interval multi-

plication, in this case the productac is (0× (−∞ which, reading from Figure 7.5(a),

yields un− , an undefined negative. Put this result to one side for the time being.

Inspection of the remaining products shows thatbc must be the minimum, since it is

(−∞ . So now we seek the maximum, which must be a right bound. Now consider the

productsad which yields the exclusive bound0) andbd which yields the inclusive

bound bd] . Now, it must be the case that b> 0 since otherwise interval(0,b]

7.2. Interval Arithmetic 205

 ac ad bc bd

 [24 x [2 [24 x 3]
+
∞) x [2

+
∞) x 3]

Product 48 72
+
∞

+
∞

Limit i i e e

Min/Max min max max

d c b a

[24 ,
+
∞) x [2 , 3] = [48 ,

+
∞)

Figure 7.6:Interval multiplication where one bound is an exclusive infinity : The products are
calculated having regard for the special cases listed in Figure 7.5(a). Algorithm 7.2.1 is then applied
to decide if the bound is inclusive (i) or exclusive (e). The minimum is the left bound; the maximum
is the right bound. Refer toExample 7.2.1.

 ac ad bc bd

 (0 x (
-
∞ (0 x d] b] x (

-
∞ b] x d]

Product un
-
 0

-
∞ bd

Limit - e e i

Min/Max - max if d < 0 min max if d ≥ 0

d c b a

(0 , b] x (
-
∞ , d] = (

-
∞ , BR

if d < 0 then BR = 0)

if d ≥ 0 then BR = bd]

Figure 7.7: Interval multiplication where one product is undefined: The undefined product
may be discarded. The correct minimum and maximum occurs in the remaining products. Refer to
Example 7.2.2.

would be null. Therefore:

• if d ≥ 0 then the maximum is bd]

• if d < 0 then the maximum is0)

Finally, reconsider the undefined productac. The most we can say about this prod-

uct is it must be negative. Then it cannot be greater than0) . So in both cases, the

maximum we choose for the right bound is correct.

We give four further examples in Figure 7.8 (page 206). In each case, our objec-

tive is to demonstrate that we can safely discard the undefined products and choose

our minimum (to form the left bound) and our maximum (to form the right bound)

from the remaining products.

206 Chapter 7. Related Work and Extensions

Example 7.2.3.Consider Figure 7.8. In each case we can apply an analogous argu-

ment to the one advanced for Example 7.2.2 above. That is, whenever an undefined

product is formed, we may safely discard it and choose the minimum and maximum

from the remaining products that are defined. The final example in Figure 7.8(d)

shows two productsacandbd yielding an undefined result. In both cases, the most

we can say is that these products are negative. Therefore, they cannot be greater

than 0) . But this is precisely the maximum already identified. Therefore, 0) is the

correct maximum and forms the right bound of the resultant interval.

 ac ad bc bd

 (0 x (5 (0 x
+
∞) 2) x (5 2) x

+
∞)

Product 0 un
+
 10

+
∞

Limit e - e e

Min/Max min - max

d c b a

(0 , 2) x (5 ,
+
∞) = (0 ,

+
∞)

(a)

 ac ad bc bd

 [-4 x (
-
∞ [-4 x 1) 0) x (

-
∞ 0) x 1)

Product
+
∞ -4 un

+
 0

Limit e e - e

Min/Max max min -

d c b a

[-4 , 0) x (
-
∞ , 1) = (-4 ,

+
∞)

(b)

 ac ad bc bd

 [-4 x [-2 [-4 x
+
∞) 0) x [-2 0) x

+
∞)

Product 8
-
∞ 0 un

-

Limit i e e -

Min/Max max min -

d c b a

[-4 , 0) x [-2 ,
+
∞) = (

-
∞ , 8]

(c)

 ac ad bc bd

 (
-
∞ x (0 (

-
∞ x

+
∞) 0) x (0 0) x

+
∞)

Product un
-

-
∞ 0 un

-

Limit - e e -

Min/Max - min max -

d c b a

(
-
∞ , 0) x (0 ,

+
∞) = (

-
∞ , 0)

(d)

Figure 7.8:Extended interval multiplication where a product is undefined: In each case, the
undefined products may be discarded. The correct minimum andmaximum are chosen from the
remaining products to form the left and right bounds respectively of the resultant interval. Refer to
Example 7.2.3.

7.2. Interval Arithmetic 207

7.2.5.1 Summary of Extended Interval Multiplication

We now summarise Extended Interval Multiplication (EIM), the innovative qualities

of our proposed algorithm and how it differs from orthodox interval multiplication

(IM). In the points that follow, the intervals we refer to areall numeric intervals over

the Real numbers. We emphasize our algorithm applies to arithmetic with numeric

intervals, not numeric arithmeticper se. Figure 7.5(a) (page 204), which exhibits

a compelling symmetry, tabulates all the cases that occur inEIM for multiplication

between two bounds.

• EIM allows multiplication between intervals that compriseboth inclusive and

exclusive bounds. IM defines multiplication for intervals comprising inclu-

sive bounds only. EIM therefore allows for a richer set of cases.

• EIM calculates with operands that arebounds, not values; i.e., thelimit is

always included in the calculation. This allows us to distinguish between, for

example, multiplying by[0 and multiplying by (0 . We argue the different

semantics of these two cases is clear. In the first case we are multiplying by

zero which will always yield zero as the answer. In the secondcase we are

multiplying by a positive real number thatapproacheszero.

• EIM disallows multiplication when one of the operands is oneof the inclusive

infinities: +∞] or [−∞ . The smallest numeric bound we allow for the

purposes of arithmetic is(−∞ ; the largest is +∞) 5. This differs from IM

which in general defines products with the infinities and an arbitrary operand

as yielding an infinity of the appropriate sign (Hickey et al.2001, Walster

2000, IEEE 1985).

• EIM allows multiplication when one or both operandsapproachesinfinity;

i.e., when the operands include the bounds+∞) or (−∞ . The values associ-

ated with these bounds are clearly Real numbers and thereforewe argue that

the meaning of products between these bounds and other Real bounds is well

defined. For example, consider the product+∞) × [0 which must yield an

inclusive zero. The corresponding example from orthodox interval multipli-

cation is +∞] × [0 the result of which is undefined (Hickey et al. 2001).

• EIM defines multiplication in the case where one or both operands approaches

zero; i.e., when the operands include the bounds(0 or 0) . At the level of

floating point implementation, these two bounds are analogous to the IEEE

numeric constants 0+ and 0− (IEEE 1985). However, continuing this anal-

ogy, the IEEE rules dictate that products between 0+ and 0− and the two

5See Section 3.4.3 (page 52) for a precise definition of bound order.

208 Chapter 7. Related Work and Extensions

IEEE infinities yield the resultNaN - “not a number” (IEEE 1985). EIM

gives a subtly different result which turns out to be pivotal to the correctness

of the algorithm, namely that while we do not attempt to provide a numeric

answer for such a product, we can nevertheless be sure of its sign. This gives

rise to the notion ofun+ (“undefined positive”) andun− (“undefined nega-

tive”) which we introduced in Section 7.2.4.2 (page 201). This is turn allows

us to safely discard products that are undefined when we pick the minimum

and maximum bounds to form the left and right bounds of our answer. In fact,

products between the exclusive zeros and the exclusive infinities are the only

undefined cases in EIM.

7.3 Interval List Arithmetic

In this section we describe how interval arithmetic can be extended to arithmetic

with interval lists. We firstly define what we mean by arithmetic with interval lists.

We then focus on interval division and show how the need for aninterval list struc-

ture arises as a natural consequence of the need to contain the answer for certain

types of interval division.

7.3.1 Defining Arithmetic with Interval Lists

In this section we define what we mean by arithmetic with interval lists. We intro-

duce this idea with an example involving interval addition.

Example 7.3.1.Consider the interval list L= {(1,2] , [3,4)}. Now consider the

interval I = [5,6]. We wish to add this interval to each interval comprising L:

L + I = {(1,2] , [3,4)} + [5,6]

= {(6,8] , [8,10)}

= {(6,10)}

We arrive at the last line because our definition of an interval list (Definition 3.8.3,

page 71) dictates that the list is the logical disjunction ofeach interval and requires

that all intervals are disjoint. Thus the two intervals that result from the addition:

(6,8] and[8,10) merge into a single interval6.

Algorithmically, arithmetic with an interval list as the first operand and an inter-

val as the second operand seems straightforward. We simply carry out the operation

on each interval comprising the list, forming the disjunction of the answers.

6See Section 3.8 (page 69) for a complete description of the interval list structure.

7.3. Interval List Arithmetic 209

Definition 7.3.1. Interval list, interval arithmetic: Let L =
∑n

i=1 I i be an arbitrary

numeric interval list comprising n disjoint intervals overthe Real numbers (n=

0,1, · · ·)7. Let J be a numeric interval over the Real numbers. Let “⊗” denote any

of the four interval arithmetic operations:⊗ ∈ {+,−,×,÷}. Let “∨” denote the

boolean “or” operator. Then L⊗ J is defined as follows:

L ⊗ J =

n
∑

i=1

I i

⊗ J

= (I1 ∨ I2 ∨ · · · ∨ In) ⊗ J

= (I1 ⊗ J) ∨ (I2 ⊗ J) ∨ · · · ∨ (In ⊗ J)

=

n
∑

i=1

(I i ⊗ J)

In the above definition, we see we are replacing each intervalcomprising inter-

val list L with the result of applying the binary operator⊗with operandJ. We might

equally well consider arithmetic with the operands reversed; i.e., with an interval as

the first operand and an interval list as the second operand. The following example

illustrates this.

Example 7.3.2.Consider the interval I= [−1,3] and an interval list L= {(1,2] , (2,3)}.

We wish to replace each interval comprising list L with the product formed when

we multiply by I:

I × L = [−1,3] × {(1,2] , (3,4)}

= {[−1,3] × (1,2] , [−1,3] × (3,4)}

= {[−2,6] , (−4,12)}

= {(−4,12)}

We arrive at the last line because interval(−4,12) subsumes interval[−2,6] and

our interval list must comprise disjoint intervals.

We now give a definition, analogous to Definition 7.3.1 above,for interval list

arithmetic where an interval as the first operand and an interval list is the second

operand.

Definition 7.3.2. Interval, interval list arithmetic: Let L =
∑m

j=1 Jj be an arbitrary

numeric interval list comprising m disjoint intervals overthe Real numbers (m=

0,1, · · ·) Let I be a numeric interval over the Real numbers. Let “⊗” denote any

of the four interval arithmetic operations:⊗ ∈ {+,−,×,÷}. Let “∨” denote the

7Throughout this chapter we employ the summation notation “
∑

” to denote boolean disjunction.
This was first introduced in Section 3.8.1 (page 70). Wheneverthis is expanded we will use “∨” as
the connector, rather than “+” to avoid confusion with numerical addition.

210 Chapter 7. Related Work and Extensions

boolean “or” operator. Then I⊗ L is defined as follows:

I ⊗ L = I ⊗

m
∑

j=1

Ji

= I ⊗ (J1 ∨ J2 ∨ · · · ∨ Jm)

= (I ⊗ J1) ∨ (I ⊗ J2) ∨ · · · ∨ (I ⊗ Jm)

=

m
∑

j=1

(

I ⊗ J j

)

We now combine Definitions 7.3.1 and 7.3.2 to arrive at a definition for arith-

metic with two interval lists as the operands.

Definition 7.3.3. Interval list, interval list arithmetic: Let L1 =
∑n

i=1 I i and L2 =
∑m

j=1 Jj be two arbitrary numeric interval lists comprising disjointintervals over

the Real numbers. Let “⊗” denote any of the four interval arithmetic operations:

⊗ ∈ {+,−,×,÷}. Let “∨” denote the boolean “or” operator. Then we define L1⊗L2

in the following way:

L1 ⊗ L2 =

n
∑

i=1

I i

⊗

m
∑

j=1

J j

= (I1 ∨ I2 ∨ · · · ∨ In) ⊗ (J1 ∨ J2 ∨ · · · ∨ Jm)

= (I1 ∨ I2 ∨ · · · ∨ In) ⊗ J1

∨ (I1 ∨ I2 ∨ · · · ∨ In) ⊗ J2

...

∨ (I1 ∨ I2 ∨ · · · ∨ In) ⊗ Jm

=

m
∑

j=1

n
∑

i=1

(

I i ⊗ J j

)

Our primary motivation for defining interval list arithmetic is to provide a vehi-

cle to extend interval division. This is described in detailin the following section.

7.3.2 Extending Interval Division

We now focus on interval division and show how the simple restrictions on interval

arithmetic we set out above in Section 7.2.4 (page 198) allowus to derive sensible

and expressive answers to an extended range of interval divisions.

We gave the orthodox formula for interval division in Section 7.2 (page 194)

above as:

A÷ B = [min(S2) ,max(S2)]

7.3. Interval List Arithmetic 211

whereS2 is the set of quotients{a/c,a/d,b/c,b/d}. Interval division is conven-

tionally not defined when the interval divisor (B in the formula above) includes

zero (Mũnoz & Lester 2005, Hickey et al. 2001). However, we propose totreat

these cases in a different way, by splitting interval divisors which include zero into

two disjoint intervals. We begin with some examples of interval division where one

of the operands approaches infinity or zero. This is followedby an example where

the divisor includes zero.

Example 7.3.3.Consider Figure 7.9 (page 212) which illustrates interval division,

including some difficult cases where one of the operands approaches infinity or zero.

In each case we refer to Figure 7.5 (page 204) to provide answerswhich are subject

to the restrictions we impose. We apply the same Algorithm 7.2.2 (page 200) as

for interval multiplication. That is, we apply the orthodox interval division formula

to the values associated with each bound, having regard for the restrictions we

impose in Section 7.2.4.2 (page 201). Then we apply Algorithm7.2.1 (page 199) to

decide if each bound is inclusive or exclusive. Finally, we choose the minimum and

maximum, discarding bounds that are undefined, to form the left and right bounds

respectively of the resultant interval.

Consider Figure 7.9(d) in particular. The maximum bound in this case is clearly
+∞) which is given by quotientb/c and this forms the right bound. The most that

can be said of undefined quotienta/c is that it is positive. So it cannot be less than

(0 . Therefore, it may be safely discarded since the remaining quotients both yield

(0 , which forms the left bound.

Consideration of Figure 7.9(e) leads to a similar argument. Again the undefined

quotient may be safely discarded since in this case it cannotbe greater than 0)

and this is precisely the bound yielded by quotientb/d.

We now consider an example where the divisor includes the point zero.

Example 7.3.4.Consider Figure 7.10 which depicts interval division with a divisor

[−2,1] . Conventionally, this division would be disallowed since the point zero is

included. We propose to treat this case in a different way, by splitting the divisor

into the two disjoint intervals[−2,0) and (0,1] . We now proceed to operate on

the dividend with the intervallist {[−2,0) , (0,1]} . Definition 7.3.2 tells us how to

proceed. The answer is an interval list, rather than a single interval; i.e., the result

of the division is the disjunction of the two intervals comprising the answer list.

We argue that the result of the interval division in Example 7.3.4, expressed as

an interval list, has clear semantics and is more expressiveand useful than simply

disallowing the division. We complete this section with some further examples of

interval division where the divisor includes zero. In each case our objective is to

212 Chapter 7. Related Work and Extensions

 a/c a/d b/c b/d

 [24 / [2 [24 / 3]
+
∞) / [2

+
∞) / 3]

Quotient 12 8
+
∞

+
∞

Limit i i e e

Min/Max min max max

[24 ,
+
∞) ÷ [2 , 3] = [8 ,

+
∞)

d c b a

(a)

 a/c a/d b/c b/d

 [24 / [2 [24 /
+
∞) 30) / [2 30) /

+
∞)

Quotient 12 0 15 0

Limit i e e e

Min/Max min max min

d c b a

[24 , 30) ÷ [2 ,
+
∞) = (0 , 15)

(b)

 a/c a/d b/c b/d

 [24 / [-1 [24 / 0) 30) / [-1 30) / 0)

Quotient -24
-
∞ -30

-
∞

Limit i e e e

Min/Max max min min

d c b a

[24 , 30) ÷ [-1 , 0) = (
-
∞ , -24]

(c)

 a/c a/d b/c b/d

 (0 / (0 (0 /
+
∞) 10) / (0 10) /

+
∞)

Quotient un
+
 0

+
∞ 0

Limit - e e e

Min/Max - min max min

d c b a

(0 , 10) ÷ (0 ,
+
∞) = (0 ,

+
∞)

(d)

 a/c a/d b/c b/d

 (
-
∞ / [5 (

-
∞ /

+
∞) -5] / [5 -5] /

+
∞)

Quotient
-
∞ un

-
 -1 0

Limit e - i e

Min/Max min - max

d c b a

(
-
∞ , -5] ÷ [5 ,

+
∞) = (

-
∞ , 0)

(e)

Figure 7.9: Extended interval division: We refer to Figure 7.5 to provide answers which are
subject to the restrictions we impose on interval division.Algorithm 7.2.1 is then applied to decide
if each bound is inclusive or exclusive. Any undefined divisions may be discarded. The correct
minimum and maximum are chosen from the remaining answers toform the left and right bounds
respectively of the resultant interval. Refer toExample 7.3.3.

demonstrate that the arithmetic we propose is simple to apply and yields answers

which have a clear meaning.

Example 7.3.5.Consider Figure 7.11 (page 214) which shows three further ex-

amples of interval division where the divisor includes zero.The examples of Fig-

ure 7.11(a) and Figure 7.11(b) together with the previous example of Figure 7.10

7.3. Interval List Arithmetic 213

 a/c a/d b/c b/d

 [24 / [-2 [24 / 0) 30) / [-2 30) / 0)

Quotient -12
-
∞ -15

-
∞

Limit i e e e

Min/Max max min min

 [24 / (0 [24 / 1] 30) / (0 30) / 1]

Quotient
+
∞ 24

+
∞ 30

Limit e i e e

Min/Max max min max

[24, 30) ÷ [-2, 1] = [24, 30) ÷ { [-2, 0) , (0, 1] }

= { (-
∞, -12] , [24,

+
∞) }

Figure 7.10:Interval division where the divisor includes the point zero: The divisor is first
split into two disjoint intervals such that the point[0,0] is excluded. We then apply the algorithm
for division with interval lists. Refer toExample 7.3.4.

(page 213) show that when bounds comprising the dividend are of opposite sign

and the divisor includes zero, the answer is always the entire set of Reals. This rule

applies even when the bounds include the exclusive infinites (Figure 7.11(c)).

7.3.2.1 Summary of Extended Interval Division

We now summarise Extended Interval Division (EID), the innovative qualities of

our proposed algorithm and how it differs from orthodox interval division (ID). In

the points that follow, the intervals we refer to are all numeric intervals over the

Real numbers. We emphasize our algorithm applies to arithmetic with numeric

intervals, not numeric arithmetic per se. Figure 7.5(b), which exhibits a compelling

symmetry, tabulates all the cases that occur in EID for division between two bounds.

• EID allows division between intervals that comprise both inclusive and ex-

clusive bounds. ID defines division for intervals comprising inclusive bounds

only. EID therefore allows for a richer set of cases.

• EID calculates with operands that are bounds, not values; i.e., the limit is

always included in the calculation. This allows us to distinguish between, for

example, dividing by[0 which is undefined and dividing by(0 which is

defined.

• EID disallows division when one of the operands is one of the inclusive in-

finities, +∞] or [−∞ , but allows the calculation to proceed with the exclusive

infinities, +∞) or (−∞ , yielding an analogous set of results to those typically

defined for ID (Hickey et al. 2001, Walster 2000, IEEE 1985).

214 Chapter 7. Related Work and Extensions

 a/c a/d b/c b/d

 [-24 / [-2 [-24 / 0) 30) / [-2 30) / 0)

Quotient 12
+
∞ -15

-
∞

Limit i e e e

Min/Max max min

 [-24 / (0 [-24 / 1] 30) / (0 30) / 1]

Quotient
-
∞ -24

+
∞ 30

Limit e i e e

Min/Max min max

[-24 , 30) ÷ [-2 , 1] = [-24 , 30) ÷ { [-2 , 0) , (0 , 1] }

= { (-
∞,

+
∞) , (

-
∞,

+
∞) }

 = { (-
∞,

+
∞) }

(a)

 a/c a/d b/c b/d

 [-10 / (-2 [-10 / 0) -2] / (-2 -2] / 0)

Quotient 5
+
∞ 1

+
∞

Limit e e e e

Min/Max max min max

 [-10 / (0 [-10 / 1] -2] / (0 -2] / 1]

Quotient
-
∞ -10

-
∞ -2

Limit e i e i

Min/Max min min max

[-10 , -2] ÷ (-2 , 1] = [-10 , -2] ÷ { (-2 , 0) , (0 , 1] }

= { (1,
+
∞) , (

-
∞, -2) }

(b)

 a/c a/d b/c b/d

 (
-
∞ / (-5 (

-
∞ / 0) 10) / (-5 10) / 0)

Quotient
+
∞

+
∞ -2

-
∞

Limit e e e e

Min/Max max max min

 (
-
∞ / (0 (

-
∞ /

+
∞) 10) / (0 10) /

+
∞)

Quotient
-
∞ un

-

+
∞ 0

Limit e - e e

Min/Max min - max

(
-
∞, 10) ÷ (-5,

+
∞) = (

-
∞, 10) ÷ { (-5, 0) , (0,

+
∞) }

= { (-
∞,

+
∞) , (

-
∞,

+
∞) }

 = { (-
∞,

+
∞) }

(c)

Figure 7.11:Further examples of extended interval division: Whenever the divisor includes
the point zero, we first split it into the two disjoint intervals on either side of zero. We then apply the
algorithm for division with interval lists. We argue that the result of such interval division, expressed
as an interval list, has clear semantics and is more expressive and useful than simply disallowing the
division. Refer toExample 7.3.5.

• EID defines division in the case where the divisor approacheszero; i.e., when

the divisor is one of the bounds(0 or 0) . The results are analogous to the

IEEE floating point division with the numeric constants 0+ and 0− (IEEE

1985). However, the IEEE rules dictate that divisions whereboth dividend

and divisor are 0+ or 0− and divisions where both dividend and divisor are

one of the two IEEE infinities always yield the resultNaN (“not a number”).

EID gives a subtly different result which turns out to be pivotal to the cor-

7.4. Temporal Intervals 215

rectness of the algorithm, namely that while we do not attempt to provide a

numeric answer for such a division, we can nevertheless be sure of its sign.

This gives rise to the notion ofun+ (“undefined positive”) andun− (“un-

defined negative”) which we introduced in Section 7.2.4.2 (page 201). This

is turn allows us to safely discard divisions that are undefined when we pick

the minimum and maximum bounds to form the left and right bounds of our

answer.

• ID conventionally disallows division when the interval divisor includes the

point zero (Mũnoz & Lester 2005, Hickey et al. 2001). However, we argue

that such cases can be handled by rewriting the divisor as twodisjoint inter-

vals on either side of the point zero. We utilise the intervallist data structure

first defined in Section 3.8 (page 69) to contain this rewritten divisor and then

proceed to carry out the computation with an interval dividend and interval

list divisor.

7.4 Temporal Intervals

In this section we examine temporal intervals where the intervals are conceived to

specifically represent periods of time. We begin by describing how simple date

arithmetic, as implemented in commercial RDBMS, can be easilyextended to date

intervals. This is followed by a brief description of how Allen’s interval alge-

bra (Allen 1983) can be implemented within our own interval algebra without mod-

ification. We then examine how Allen’s interval algebra can be extended by our

implementation.

One of our objectives in describing these extensions is to demonstrate the ease

with which they can be implemented utilising the interval algebra we already have

in place. Our implementation is sufficiently general to allow, for example, numeric

interval arithmetic (Section 7.2, page 194), date intervalarithmetic (Section 7.4.1,

page 215) and Allen’s interval algebra (Section 7.4.2, page217) to be implemented

with very little extension or modification to the functionality described in Chapter 3.

7.4.1 Extending Date Arithmetic to Intervals

Our interval implementation allows a numeric interval to beadded to or subtracted

from a date interval. We employ the same semantics as the Oracle RDBMS in this

regard in that anynumericquantity added or subtracted from a date is interpreted as

a quantity of days (Ashdown 2005b). For example8, the following calculation adds

8In the date arithmetic examples that follow in this chapter,for clarity we simplify the syntax by
omitting the quotes and format masks that would be required in the real RDBMS environment.

216 Chapter 7. Related Work and Extensions

4 days to the date “23 June 2006”:

23-JUNE-2006 + 4 = 27-JUNE-2006

This convention is easily extended by replacing the date in the above calculation

with a dateintervaland the number with a numericinterval. It is helpful to consider

temporal intervals as expressions of the form “[StartTime,EndTime]”.

Example 7.4.1. In this example we add the numeric intervalI = [-3,2] to the

date intervalD = [23-JUNE-2006,24-JUNE-2006].

D + I = [23-JUNE-2006,24-JUNE-2006] + [-3,2]

= [20-JUNE-2006,26-JUNE-2006]

Consider the semantics of Example 7.4.1 above. The resultantinterval includes

all the dates from three days before the the original start time until two days after the

original end time. These semantics are clear and unambiguous. We must however

be careful to note that we have overloaded the “+” operator because in the above

example the operation requires one operand to be of typedateand the other operand

to be of typenumberand the numeric operand to be understood to refer to an interval

of days.

We allow subtraction of dateintervals. Again we employ the same semantics

as the Oracle RDBMS: two dates can be subtracted to yield the difference in days

between them (Ashdown 2005b). In the following example we employ intervals to

express an uncertainty in the actual value of a date.

Example 7.4.2.A conservation exercise to assure the survival of a rare birdrecords

the hatch date of an individual to be between 01 June 2006 and 02June 2006. Later

the hatchling is found dead on 30 June 2006 and autopsy is onlyable to determine

time of death to within 10 days. What was the age of the hatchlingat death? LetH

be the hatch date interval andD be the death date interval.

H = [01-JUNE-2006,02-JUNE-2006]

D = [20-JUNE-2006,30-JUNE-2006]

D - H = [20-JUNE-2006,30-JUNE-2006] -

[01-JUNE-2006,02-JUNE-2006]

= [18,29]

The hatchling was between 18 and 29 days old at death.

In Example 7.4.2 above we have again overloaded the operator. Subtraction in

this case means subtraction of date intervals, not subtraction of a numeric interval

from a date. In our implementation of date interval arithmetic in the object-oriented

Oracle PL/SQL environment, this overloading is performed transparently and the

compiler infers the correct method to invoke from the data type of the parameters.

7.4. Temporal Intervals 217

7.4.2 Allen’s Interval Algebra

We now turn our attention to the interval algebra first proposed by Allen in (Allen

1983) and subsequently utilised by many researchers, for example (Gao, Jensen,

Snodgrass & Soo 2005, Mani, Pustejovsky & Sundheim 2004, Krokhin, Jeavons

& Jonsson 2003, Kriegel, P̈otke & Seidl 2001, Nebel & B̈urckert 1995,Özsoyoglu

& Snodgrass 1995, Kim & Chakravarthy 1992, Maiocchi, Pernici& Barbic 1992).

Allen’s interval algebra is most often invoked in the context of temporal intervals

andtemporal reasoning. While temporal reasoningper seis beyond the scope of this

thesis, we briefly focus on Allen’s interval algebra because, as we have described

in Chapter 3, our interval algebra was conceived to reason about generalintervals.

Our description is based around the three atomic data types:numeric, string and

date, conventionally employed by RDBMS. In fact our algebra requires only that

the data type concerned has a well defined total ordering9. We should therefore be

well placed to represent Allen’s temporal intervals withinour own implementation.

We demonstrated above in Section 7.4.1 that our interval algebra is easily adapted

to perform date interval arithmetic. The objective of this current section is to demon-

strate that, similarly, we can easily incorporate Allen’s interval algebra into our own

interval algebra. We begin with a brief description of Allen’s interval algebra and

then show how the13 basic interval relationsdefined by Allen are directly imple-

mented without modification by our own interval implementation. We then propose

an extension to the 13 basic interval relations and suggest how this extension might

be utilised.

7.4.2.1 The 13 Allen Interval Relations

Allen’s interval algebra is based on the possible relationships between pairs of

temporal intervals10. Allen intervals are always inclusive and of non-zero dura-

tion (Krokhin et al. 2003, Allen 1983)11. This observation leads to the following

definition.

Definition 7.4.1. Allen Interval: An Allen Interval, A, is a numeric interval with

the following properties.

A = [a,b] where a< b, a,b ∈ R

9See Section 3.2 (page 45) for a precise description of the assumptions we invoke as axioms for
the development of our interval algebra.

10For clarity, we will call theseAllen intervals to distinguish them from our own interval repre-
sentation which is more general than Allen’s.

11We use the term “duration” to mean precisely the difference in time between the left and right
endpoints of a temporal interval. IfA = [a,b] is an Allen interval, then its durationd = b− a. Allen
intervals therefore require thatd > 0.

218 Chapter 7. Related Work and Extensions

Consider Figure 7.12. The 13 basic interval relations can be deduced from first

principles by imagining an Allen intervalA sliding from the left over another Allen

interval B. Six of the relations have obvious inverses. For example, “A before B”

 Relation Function

 A before B

B after A

b < c

 A meets B

B met-by A

b = c

 A overlaps B

B overlapped-by A

(a < c)·(c < b)·(b < d)

 A starts B

B started-by A

(a > c)·(b < d)

 A during B

B contains A

(a = c)·(b < d)

 A finishes B

B finished-by A

(b = d)·(a > c)

A

A

A

A

A

B A

B

A

A equals B

(a = c)·(b = d)

Figure 7.12:The 13 Allen interval relations: Interval A = [a,b]. Interval B = [c,d]. The
Relationcolumn lists the first six basic relations and their inverses. TheFunctioncolumn expresses
the relation as a boolean function of the endpointsa,b, c,d ∈ R. The symbol “·” denotes the boolean
“and” operator. The “equals” relation, depicted on the left, brings the total to 13. The basic relations
are all mutually exclusive; i.e., any two given Allen intervals are related by exactly one of the above
basic relations.

immediately implies “B after A”. These six plus their inverses supply 12 of the

relations, plus the “equals” relation gives a total of 13 (Mani et al. 2004, Krokhin

et al. 2003, Nebel & B̈urckert 1995, Allen 1983).

The ability to reasonabout temporal intervals using the 13 basic relations is

facilitated by considering the transitive relations that can exist between any three

Allen intervals. Consider three arbitrary Allen intervals:A, B andC which are

related in the following way:

A r1 B

B r2 C

where relationsr1 and r2 are chosen from the 13 listed in Figure 7.12. Then the

transitive relationsthat can exist betweenA and C are all the relations (chosen

from the set of 13) that are logically possible, givenr1 and r2. One of the main

contributions of Allen’s original paper (Allen 1983) was totabulate all the 13×13=

169 possible transitive relations that arise for “(A r1 B) · (B r2 C)”.12 The following

is a simple example of this type of inference and illustratesthe usual sense of the

term “transitivity”.

12The symbol “·” denotes the boolean “and” operator.

7.4. Temporal Intervals 219

Example 7.4.3.Suppose intervals A and B are related by “A after B” and intervals

B and C are related by “B after C”. Then we may infer “A after C”.

The next example illustrates a more complex temporal inference13.

Example 7.4.4.Suppose “A overlaps B” and “B during C”. Then we may write:

(A overlaps B) · (B during C)⇒ (A overlaps C) ∨ (A during C) ∨ (A starts C)

7.4.2.2 Implementing The 13 Allen Interval Relations

We now show how we implement the 13 basic Allen interval relations using our

own interval algebra. The objective of this section is not the details of the imple-

mentation, but to demonstrate that Allen’s algebra is able to be directly implemented

without modification. We are able to do this because our interval algebra is more

general:

• We can represent intervals composed of bounds whose values are of type

numeric, string or date. Therefore, temporal intervals can be represented

using thedatedata type.

• We can represent intervals composed of bounds whose limits are inclusive

or exclusive. Therefore, Allen intervals, which are alwaysinclusive, can be

represented.

• We can represent intervals that are null, represent a singlepoint (i.e., a dura-

tion of zero), or have a positive duration. Therefore, Allenintervals, which

must have a positive duration, can be represented.

Therefore, all that remains is to implement the 13 basic relations. These are em-

bedded into the reasoning engine which forms the foundationof our semantic query

optimizer.

7.4.2.3 Extending The 13 Allen Interval Relations

In this section we propose an extension to the 13 basic Allen interval relations and

suggest how this extension might be utilised. Our proposed extension is based on

the fact that intervals in our own algebra can be inclusive orexclusive whereas

Allen intervals are always inclusive. Yet inspection of howthe basic relations are

defined in terms of their endpoints (the “Function” column in Figure 7.12, page 218)

suggests the following extension:

13The symbol “∨” denotes the boolean “or” operator. The symbol “⇒” denotes logical implica-
tion.

220 Chapter 7. Related Work and Extensions

• Replace the endpoints “a,b, c,d” with their corresponding bounds

“La,Rb, Lc,Rd” where “La,Rb” are the left and right bounds respectively of

interval A and “Lc,Rd” are the left and right bounds respectively of interval

B.

• Replace the boolean operators “<, >,=” with their overloaded versions which

comparebounds(as opposed to comparing Real numbers), as defined in Sec-

tion 3.4.3 (page 52).

The substitutions we suggest above are a continuation of thetechnique we have

employed throughout this thesis; i.e., we manipulate and comparebounds, rather

than values. The benefit that results in the case of the Allen relations is that the

relations still hold but for both inclusive and exclusive intervals. Figure 7.13 sets

out the basic Allen relations expressed first in their orthodox form in terms of the

endpoints of the Allen intervals and second in their bound form where the bounds

form the intervals, inclusive or exclusive, of our own algebra.

Allen Relation Allen endpoint definition Bound definition

A before B

b < c

Rb < Lc

A meets B

b = c

Rb = Lc

A overlaps B

(a < c)·(c < b)·(b < d)

(La < Lc)·(Lc <Rb)·(Rb < Rd)

A starts B

(a = c)·(b < d)

(La = Lc)·(Rb < Rd)

A during B

(a > c)·(b < d)

(La > Lc)·(Rb < Rd)

A finishes B

(b = d)·(a > c)

(Rb = Rd)·(La > Lc)

A equals B

(a = c)·(b = d)

(La = Lc)·(Rb = Rd)

Figure 7.13:Extending the 13 Allen interval relations: A = 〈a,b〉 is the interval consisting of
left and right boundsLa,Rb where La = 〈a and Rb = b〉 . B = 〈c,d〉 is the interval consisting
of left and right boundsLc,Rd where Lc = 〈c and Rd = d〉 . The symbol “〈” denotes either
“ (” or “ [”. The symbol “〉” denotes either “)” or “]”. The symbol “·” denotes the boolean “and”
operator. We replace each endpoint “a,b, c,d” in the orthodox Allen relation with the corresponding
bound “La,Rb, Lc,Rd”. The operators “<, >,=” are overloaded such that in the “Allen endpoint
definition” column they compare Real numbers, whereas in the “Bound definition” column they
compare bounds. The Allen relations still hold in this new formulation but now can be applied to
both inclusive and exclusive intervals.

We complete this section by suggesting how our extended Allen interval rela-

tions might be utilised. The application we have in mind is inspired by the ob-

7.5. Summary 221

servation thattime (and thereforetemporalintervals) is represented in a variety of

ways which often have subtly different semantics (Mani et al. 2004,Özsoyoglu &

Snodgrass 1995, Snodgrass & Ahn 1985). For example, the factthat Allen intervals

are required to have a non-zero duration and are always inclusive, strongly suggests

the endpoints represent the “ticks” of some arbitrary clock, a timestamp, which is

inherently limited to a precision of one tick. The followingexample concerns time

representation in the Oracle RDBMS and illustrates why the ability to represent

time within an exclusive interval allows a more accurate representation of time.

Example 7.4.5.The Oracle RDBMS implementation of thedate data type allows a

precision of 1 second. However, atimestamp data type is also implemented which

records system time14 with a precision of up to10−9 seconds (Agrawal 2005). Times

may be readily converted between the two data types. For example, when converting

fromtimestamp todate, the fractional seconds part is truncated. When converting

fromdate to timestamp, the fractional seconds part is set to zero.

Consider an application where the duration of a significant event is recorded by

notingSTART TIME andEND TIME. Initially these times are recorded with data type

date. Later it is decided to upgrade the precision and use data type timestamp.

Suppose a particular tuple records D1 and D2 respectively as the start and end

times in the olddate data type. However, in the newtimestamp data type, the

most accurate way of representing this information is to include the uncertainties:

D1 becomes the interval I1 =
[

D1,D′1
)

where D′1 = D1 + 1s

D2 becomes the interval I2 =
[

D2,D′2
)

where D′2 = D2 + 1s

Therefore the duration of this particular event is given by applying the extended

interval subtraction formula from Section 7.2.3:

Duration= I2 − I1

=
[

D2,D
′
2

)

−
[

D1,D
′
1

)

=
(

D2 − D′1, D′2 − D1

)

7.5 Summary

In this chapter we highlight the versatility of the intervalalgebra we have imple-

mented and how it can be utilised in a variety of areas with very little extension or

modification. We focus firstly oninterval arithmeticand show how the four basic

arithmetic operations with intervals can be extended usingour own interval alge-

bra. We then focus ontemporal intervalsand show how the interval algebra of

14We use the term “system time” to mean the time as measured by the internal clock of the
processor.

222 Chapter 7. Related Work and Extensions

Allen (Allen 1983) can be extended using our own interval algebra. The main ob-

jective of this chapter is to highlight the versatility of the interval algebra we have

implemented, that it is more general than the orthodox interval algebras of interval

arithmetic (Hickey et al. 2001) and temporal intervals (Krokhin et al. 2003) and how

it can be utilised in a variety of areas with very little extension or modification.

We now summarise the main contributions of this chapter.

• We begin by highlighting the principle differences in our interval algebra

compared to orthodox treatments of intervals, namely our treatment of the

two infinities and the treatment of limits (Section 7.2.1).

• We show how interval addition (Section 7.2.2) and interval subtraction (Sec-

tion 7.2.3) can be generalised to include both inclusive andexclusive intervals

while retaining sound semantics.

• We give a general algorithm for Extended Interval Arithmetic (EIA) (Sec-

tion 7.2.4) showing first how inclusive and exclusive limitscan be processed

separately (Section 7.2.4.1) and then describing how the orthodox formulae

for interval arithmetic can be extended to encompass both inclusive and ex-

clusive bounds and the two exclusive infinities (Section 7.2.4.1). We then

tabulate and review all the restrictions we apply to EIA and show how EIA

allows a wider range of intervals to be treated compared withorthodox IA

(Section 7.2.4.2).

• We give a detailed description of how we propose to extend interval multi-

plication (Section 7.2.5), highlighting the different way we treat the two in-

finities and how our restrictions introduce a subtly different semantics which

turns out to be pivotal to the correct functioning of the algorithm for Extended

Interval Multiplication. We tabulate the full range of cases for which the Ex-

tended Interval Multiplication is valid (Figure 7.5).

• We show how interval arithmetic is easily extended to arithmetic with interval

lists, as we have defined them (Section 7.3.1) and sketch by way of examples

how this extension might be utilised.

• We give a detailed description of how we propose to extend interval division

(Section 7.3.2), highlighting the different way we treat the two infinities and

how our restrictions introduce a subtly different semantics which turns out to

be pivotal to the correct functioning of the algorithm for Extended Interval

Division. We tabulate the full range of cases for which the Extended Interval

Division is valid (Figure 7.5). We utilise our new definitions of arithmetic

7.5. Summary 223

with interval lists to show how we propose to treat interval division where the

divisor includes the pointzero.

• We examine the special case of temporal intervals. We first show how date

arithmetic, as it is typically defined in RDBMS, can be easily extended to

arithmetic with date intervals (Section 7.4.1).

• We focus on the seminal work of Allen (Section 7.4.2) and showhow Allen’s

interval algebra is completely expressible within our own interval algebra

(Section 7.4.2.2). We then show how the 13 basic Allen interval relations

can be extended by our own interval algebra while retaining their validity

(Section 7.4.2.3).

Chapter 8

Conclusion And Future Work

225

226 Chapter 8. Conclusion And Future Work

8.1 Review

The primary aim of this thesis is to answer the question “Is semantic query opti-

mization worthwhile?” in the context of relational database management systems.

To address this question we have firstly summarised the conclusions of other

researchers in this field, describing the main types of semantic query optimization

proposed so far and identifying the sources of semantic information which can be

used to recast an SQL query into another form which can be answered more ef-

ficiently, while producing the same answer as the original query. Semanticquery

optimization is distinctly different from the optimization carried out by conventional

SQL language optimizers, which ultimately rely on the rulesof relational algebra to

syntacticallyrewrite an SQL query such that it can be executed with near-optimal

efficiency. Semantic information can be harvested from

• the schema meta-data (such as table and view definitions);

• constraints stored and maintained by the DBMS (such ascheckconstraints);

• human domain experts;

• discovered rules identifying relationships between tabular data.

With regard to schema constraints stored and maintained by the DBMS, while these

may be used to constrain data at insert and update time, otherthan a small pro-

portion, they are ignored at query time by all current commercial SQL language

optimizers.

The fact that current SQL language optimizers largely ignore semantic informa-

tion is not due to an inherent failure or inefficiency but due to the nature of their

design. These optimizers are primarily syntactic and they do not in general take

even simple semantic information into account. For example, even if a particular

column is declared within its table definition to be “not null”, a query against this

table which asks for null values in this column will still be submitted to the database,

invoking all the normal database activity, even though the answer set must logically

be empty.

All semantic optimizers require areasoning engineto deduceconclusions using

premises which incorporate the semantic information harvested from the schema

under consideration. We introduce aninterval algebrawhich we use in a novel way

and which forms the basis of our reasoning engine. The interval algebra is built

using a small number of well established axioms; namely, we accept theBoolean

Algebra and the existence of a deterministictotal orderingfor the data types we

employ. We define our basic data structure, theinterval list, as a set of disjoint in-

tervals. We show that all the reasoning functionality we require can be built using

8.1. Review 227

our interval algebra to operate on interval lists in conjunction with our basic axioms.

The main result we draw from our step by step theoretical development is the abil-

ity to perform a form ofconjunction, disjunctionandnegationusing interval lists.

These results form the foundation of our reasoning engine implementation.

We describe in detail the design of a practical semantic query optimizer. Our

semantic optimizer sits in front of the normal SQL optimizerand pre-processes the

SQL queries before passing them to the normal SQL optimizer.An important fea-

ture of our design is that it employs meta-data already held as part of the RDBMS

but which is typically only utilised to a very limited extentfor the purposes of query

optimization by current SQL optimzers. For example, our semantic optimizer har-

vests the various schema constraints such ascheck, primary keyand foreign key

constraints. We argue for the collection of aquery profile, which is a high level de-

scription of what tables are actually queried, plus the columns that are actually cited

in the restriction and join clauses. This knowledge can thenbe used to tightly focus

a more extensive knowledge discovery exercise, thus avoiding the exponentially in-

creasing expense of performing an exhaustive search for relationships within tabular

data. To some extent, activity of this sort is already part ofnormal Database Ad-

ministrator duties and leads, for example, to the creation of auxiliary data structures

such as indexes and clusters which increase query efficiency. It is straightforward

to collect such a query profile with existing commercial RDBMS.

We reiterate the conclusion of other researchers that the detection of unsatis-

fiable queries can form an important part of semantic query optimization. This is

because unsatisfiable queries need not be submitted to the database at all, potentially

saving the usual computational costs associated with such aquery. Recognising the

potential value of detecting unsatisfiable queries, we describe a simple but highly

effective algorithm for enhancing the semantic information that leads to the detec-

tion of unsatisfiability. We show how the detection of “data holes” can proceed

across all relevant dimensions (i.e., across all columns that are actually cited in

query restrictions and join clauses) without impacting on database usability. This

information is then incorporated into existing meta-data,increasing the probability

that unsatisfiable queries will be detected before the queryis actually submitted.

We highlight an inherent limitation in the effectiveness of much of the method-

ology of SQO. This limitation arises naturally from the factthat SQO depends in

part on the existence ofanomalousqueries. For example, unsatisfiable queries or

“out of range” queries in general might arise because of an incomplete or inaccu-

rate knowledge of schema semantics. But if anomalous queriesare never (or hardly

ever) submitted, perhaps the effort of semantically optimizing queries is not worth-

while. On the other hand, the potential impact of a naı̈ve user query on database

usability might make the effort of semantically optimizing all queries worthwhile.

228 Chapter 8. Conclusion And Future Work

It might also be the case that queries are automatically generated, for example, by a

GUI based tool which generates queries in response to a non-technical user’s “point

and click” actions. Therefore, SQO might be seen as a valuable technique in any

situation where queries may not reflect an accurate knowledge of the actual schema

semantics.

An important part of this thesis is its empirical component.We set out to

discover if the efficiencies claimed for SQO would be confirmed in practice. To

this end, we highlight the difficulties of obtaining consistent, repeatable results in

RDBMS where automatic maintenance processes may execute at times outside of

the control of the experimenter and where large query and data caches are available.

Our goal is realism. We explain why it can be misleading to usetotal elapsed time

only as the true measure of query cost. Instead we argue for a combined metric

which incorporates the three metrics:elapsed time, disk i/o andCPU time. The

optimizations we report have two crucial properties:

1. they are theratio of optimized to unoptimized cost;

2. they are theaveragecost for batches consisting of many similar queries.

The first property serves to minimize the random experimental error and to minimise

the number of variables we need to consider. The second property allows us to

infer the likely efficiency gain from a whole class of similar queries, rather than

individual, manually optimized queries.

Very few researchers in SQO report empirical results for queries against tables

which are realistically sized and indexed. Our experimentsare designed around

tables which approximate conditions found in actual data warehouses. Crucially,

our target tables are sensibly indexed. This is important because it is most unlikely

in practice that tables of the size and nature we query in our experiments would

not be indexed with normal B-tree indexes. We report results for both queries and

equi-joins.

With regard to unsatisfiable queries and joins, taken as a whole our empiri-

cal results strongly support the hypothesis that detectingunsatisfiable queries is

worthwhile. However, we show unequivocally, both with our cost model and our

empirical results, that detection of unsatisfiable queriesis not costless. Our cost

model foreshadows and our empirical results confirm that there is an upper bound

to the amount of optimization we can expect from detecting unsatisfiable queries

and that the cost of detecting such queries can rapidly become comparable to and

exceed the normal cost of processing the SQL query. This preprocessing cost is

approximately four times higher for equi-joins than for queries and increases with

increasing query difficulty. The key factor required to “break even” in this context

is a sufficiently high probability of an unsatisfiable query occurring. In the case of

8.1. Review 229

queries, our prototype optimizer manages to break even withprobabilities of ap-

proximately 5% to 10%, across a wide range of table sizes and query difficulty. In

the case of equi-joins, our prototype optimizer manages to break even with proba-

bilities of approximately 10% to 20%, across a wide range of table sizes and query

difficulty.

Our empirical results also report the effect of removing two key phrases when

they are redundant:

• Removing the “distinct” from “ select distinct” when it can be de-

duceda priori that all rows returned will be distinct.

• Removing the restriction “COL is not null” when it can be deduceda pri-

ori that “COL” cannot be null.

These disarmingly simple textual changes can give rise to dramatically different

execution costs, aspredictedby the SQL optimizer. However, our results strongly

suggest that the actual efficiency gain that results from removing these redundancies

is, when averaged out over many queries, significantly less than what is suggested

by the SQL optimizer’s prediction. In the case of “distinct”removal, we obtained

a useful 20% and 60% efficiency gain for queries and joins respectively. However,

in the case of “not null” removal, we obtained only insignificant efficiency gains

across a broad range of query difficulties and table sizes.

An important part of SQO identified by all researchers is the discovery of se-

mantic rules1 which relate tabular data in some way such that extra restrictions can

be inferred (restriction introduction) or redundant restrictions removed (restriction

removal). In the context of relational databases, a reasonable heuristic is to look for

correlations between indexed and unindexed columns. For example, if a query re-

striction cites an unindexed column we might look for a rule which allows us to infer

a restriction on an indexed column and introduce this extra restriction to the query.

The objective of restriction introduction is to efficiently reduce the cardinality of the

result set. The objective of restriction removal is to eliminate the redundant filtering

of the result set.

The interval algebra we develop to form the basis of our reasoning engine is

very general. Its innovative features include the following:

• Intervals may be both inclusive or exclusive.

• The four limits we use “(,) , [,]” are conceived to beoperatorswhich operate

onvaluesto produce left and rightbounds.

1In this thesis we do not consider in detail the problems of actually discovering such rules.

230 Chapter 8. Conclusion And Future Work

• The values we enclose in our intervals may be any data type, provided only

that the data type has adeterministic total ordering. For example, we may

havenumeric intervals, string intervalsanddate intervals.

We use the generality of our interval algebra to extend the four operations ofinterval

arithmetic. We show that the subtly different semantics introduced by allowing both

inclusive and exclusive intervals over the Real numbers allows minus infinity and

plus infinity to be represented and incorporated meaningfully into arithmetic calcu-

lations with intervals. We further show how our extensions can be used to calculate

with a wider set of cases which, for example, include division by intervals that in-

clude the point zero. We show it is straightforward to extendinterval arithmetic to

arithmetic with intervallists; i.e., sets of disjoint intervals.

We again highlight the versatility of our interval algebra by showing that it sub-

sumesAllen’s interval algebra. This interval algebra is conceived to operate specif-

ically with temporal intervals. We show that the Allen algebra is a special case of

our own interval algebra where we restrict the values to the temporal domain and

where all limits are inclusive (i.e., we use only the limits “[,]”). However, when

the restriction to inclusive limits is relaxed, we show the wider semantics that result

are meaningful and useful for modeling certain temporal scenarios which cannot be

captured by the Allen algebra.

We complete this review by returning to the central question“Is semantic query

optimization worthwhile”?

• With regard to the detection of unsatisfiable queries, whichfeatures promi-

nently in the research into SQO, we have shown the effectiveness depends on

the probability of unsatisfiable queries actually occurring. If this probability

is vanishingly small then other factors must be considered such as the impact

on database usability of a naı̈ve user query. Detection of unsatisfiable queries

is not costless. However, if this cost is comparable to the computational costs

incurred by the SQL optimizer, then we argue this optimization is worthwhile.

• With regard to the removal of redundant phrases from SQL query text, we

have presented strong evidence that these simple textual changes can have

an important positive impact. Viewing the question the other way around,

there seems little reasonnot to implement these textual changes, provided

the redundancy can be detected with a cost comparable to the computational

costs already incurred by the SQL optimizer.

• With regard to restriction introduction and removal, our empirical results in-

dicate restrictionremovalis likely to be the more successful strategy. This

form of SQO is facilitated by the discovery of rules which correlate a highly

8.2. Contributions 231

selective indexed column with an unselective non-indexed column. In the

case of restriction introduction, optimization was worthwhile only for queries

returning a very small percentage of total table rows. In thecase of restric-

tion removal, optimization was worthwhile for a much wider range of query

cardinalities. In general, our results suggest searching for rules which allow

query restrictions on unselective columns to be eliminated.

8.2 Contributions

We now list the main contributions of this thesis.

• We present a thorough analysis of research in SQO. We introduce definitions

that clarify and simplify the terminology used by other researchers. In addi-

tion, further definitions are introduced that enable a more detailed discussion

(Chapter 2).

• We develop a sound theoretical base for our study using aninterval algebra

which we show may be built using only a small number of well understood

and researched axioms. We extend the interval algebra by defining aninterval

list data structure which we subsequently utilize as the basic data structure of

our implementation. To our knowledge, this is the first report of an interval

algebra used in the way we describe and generalised to operate with any data

type that has a deterministic total ordering (Chapter 3).

• We show how a practical semantic query optimizer may be builtutilising

readily available semantic information, much of it alreadycaptured by meta-

data typically stored in commercial RDBMS. We describe how SQOmay

proceed as a series of pre-processing steps which may be switched in and out

as changing database conditions make different forms of SQO worthwhile.

While other researchers have suggested the basic techniqueswe describe, we

focus on the fact that certain types of SQO, such as the detection of unsatisfi-

able queries, are likely to be worthwhilegiven a particular query profile. We

describe an extension to the detection of unsatisfiable queries which enables

“data holes” to be discovered separately across all relevant dimensions (i.e.,

across all table columns that areactuallycited in query restrictions) and incor-

porated incrementally into the semantic information utilised by the semantic

optimizer with little or no impact on database usability. Inaddition, we de-

velop a cost model which accurately predicts the amount of optimization we

can expect and which sets a clear upper bound to this optimization. To our

knowledge, this is the first report to explicitly highlight an inherent limitation

on the effectiveness of detecting unsatisfiable queries and joins (Chapter 4).

232 Chapter 8. Conclusion And Future Work

• We describe an empirical methodology which overcomes problems of re-

peatability and consistency which typically arise in experiments with RDBMS

where automatic maintenance processes may be invoked outside of the con-

trol of the experimenter and where large query and data caches are available.

We do not report results for individual queries but instead report statisticalav-

eragesthat arise from large batches of similar queries. Our results therefore

inform us as to what we can expect from whole classes of queries rather than

individual queries specific to particular databases (Chapter 5).

• We present a series of empirical results arising from experiments to confirm

the effectiveness or otherwise of various types of SQO. Our experiments are

performed with tables which realistically reflect the conditions likely to be

encountered in data warehouses. Crucially, we report results for tables that

are realistically indexed. To our knowledge, this is the first report of empirical

results for queries and equi-joins against tables that are indexed in this way

and where the results are a statistical average for batches of many similar

queries (Chapter 6).

• We describe several important extensions which utilise theinterval algebra

we describe in Chapter 3. Firstly, we show how our interval algebra can be

used to implement a novel type ofinterval arithmetic. Our interval arith-

metic is more general than traditional implementations in that we allow both

inclusive and exclusive upper and lower bounds for the numeric intervals.

Furthermore, we show how the subtly different semantics of our implementa-

tion elegantly capture notions such as plus and minus infinity while allowing

arithmetic calculation to proceed across a greater set of cases than allowed

for by traditional interval arithmetic. Secondly, we show how our interval

algebra subsumes the temporal algebra of Allen (Allen 1983)and how the13

Allen interval relationscan be meaningfully extended (Chapter 7).

8.3 Future Work

We now briefly list some of the future research which this thesis anticipates.

• Currently our semantic reasoning engine operates as a preprocessor sitting as

a separate module in front of the normal SQL language optimizer. It is imple-

mented in PL/SQL which is incorporated into the Oracle RDBMS. However,

this is a software layer above the level at which SQL languageoptimization

occurs2. We speculate the efficiency of the semantic optimizer could be im-

2The kernel of the Oracle RDBMS is implemented in C, as is the SQL language optimizer.

8.3. Future Work 233

proved by a more intimate association with the SQL language optimizer. One

impediment to this is that the Oracle SQL optimizer (in common with other

commercial RDBMS) is not available for public scrutiny. However, other

comparable “open source” RDBMS such asMySQL3 andPostgreSQL4 do

publish the source code of their optimizers, making this a viable avenue for

investigation.

• One feature of the algorithms we develop in Chapter 3 is that there are clear

opportunities for parallelism. We speculate that a parallel implementation of

the algorithms for conjunction and disjunction of intervallists would result

in a significant speed up. For conjunctive queries in particular, the semantic

preprocessing of all restrictions in parallel could resultin a dramatic “short

circuiting” in comparison to sequential processing, if just one of the restric-

tions is unsatisfiable.

• In Section 4.2, we describe how much of semantic query optimization, by its

very nature, is limited in its effectiveness by the fact that it depends on the

detection of queries which are, in some sense, anomalous. This raises the

question as to how frequently anomalous queries occurin practice. We have

not attempted to answer this question in this thesis. Empirical studies of a

selection of real world database applications would provide quantitative data

to address this question.

• In Section 4.4.2, we describe how we collect information about data holes

which we subsequently utilise in our semantic optimizer. Although we ex-

plain how we constrain the complexity of the search for data holes, we make

the assumption that the information is discovered off line and does not affect

the efficiency of the semantic optimizer at run time. While this is a reasonable

simplifying assumption, a quantitative analysis of data hole discovery would

enhance the practical application of SQO.

• In this thesis we have focussed on databases with static schemas where data

updates occur infrequently. This specifically excludes transactional databases

where data updates typically occur frequently, possibly concurrently via mul-

tiple users. We pointed out in Chapter 2 that when data updatesdo occur,

these might invalidate any rules that have been discovered through the anal-

ysis of data. However, if re-validation of this type of semantic rule can be

accomplished in a time comparable to the mean period betweenqueries, it

could be practical to apply the techniques of SQO to transactional databases.

3Seehttp://www.mysql.com
4Seehttp://www.postgresql.org

234 Chapter 8. Conclusion And Future Work

• The implementation of interval arithmetic described in Chapter 7 is at an

early stage. We wish to investigate its usability in particular with regard to

the incorporation of techniques to deal with calculation with the two infinities

and values that approach zero.

• Currently we are able to reason about intervals of typenumeric, stringor date.

However,any data type which may be deterministically ordered can be im-

plemented. The main practical requirement is a suitable “compare” function

which unambiguously ranks the data type5. For example, the potential exists

to reason about complex data types such as might be found in object-oriented

databases where the same semantic optimization techniqueswe describe in

this thesis might be applied.

• We have not studiedtemporal databasesin this thesis. However, the sub-

sumption of theAllen algebrawhich we describe in Chapter 7 leads naturally

to the consideration of how the extended semantics of our proposed temporal

algebra might facilitate reasoning intemporal databases.

5See Section 3.2

Appendix A

Supporting Empirical Results

235

236 Chapter A. Supporting Empirical Results

A.1 Introduction

This Appendix presents detailed results for all experiments described in Chapter 6

“Empirical Results” for Sections 6.3 to 6.9. In Chapter 6, for clarity we included

in the main text only summary results. This Appendix supplements these results

with the experimental outcomes that lead to those summaries. Each section in this

Appendix covers one complete experiment.

We do not report absolute cost metrics. Rather, we report theratio of the op-

timized versusunoptimizedcost metric. We judge the cost of a query by using

three different cost metrics. These metrics are described in detail inSection 5.2.4.

For clarity, Table 5.1 from Chapter 5 describing these metrics is repeated here in

Table A.1.

Metric Meaning Rcost =
COSTopt

COSTnorm

CPU Total CPU time in seconds for all Rcpu

parse, execute, or fetch calls for
the statement.

ELAPSED Total elapsed time in seconds for all Relpsd

parse, execute, or fetch calls for
the statement.

DISK Total number of data blocks physically Rdsk

read from the datafiles on disk for all
parse, execute, or fetch calls.

COMBINED The average of the other three metrics. Rcom

This metric is only ever reported as aratio.

Table A.1:Query cost metrics and their meaning.

Two levels of detail are presented within each section.

• In the first subsection we present one full set of results showing the relative

costs of optimized versus unoptimized queries for the combined cost metric

ratio Rcom. This includes a sample set of individual result graphs thatled

to the construction of the summary results, which are also displayed here.

Refer to Figure A.1. The X-axis (independent variable) is theprobability

of anunsatisfiable queryoccurring in a given batch. The Y-axis (dependent

variable) is the cost metric ratio; i.e., the ratio of the optimized cost versus the

A.1. Introduction 237

unoptimized cost. For example,Rcomwhich denotes thecombined cost metric

ratio (see Table 5.1). This category of graph always includes the following

features.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 450000

Figure A.1:Typical two dimensional result graph: The X-axis (independent variable) is proba-
bility of an unsatisfiable queryoccurring in a given batch of queries. The Y-axis (dependentvariable)
is the cost metric ratio; i.e., the ratio of the optimized cost versus the unoptimized cost.

– Experimental data points, marked asbluecrosses.

– Least Squares Regression Line: The best linear fit for the experimen-

tal data points is computed and plotted as apink line. We calculate

the regression linefor each result set using an implementation of the

nonlinear least-squares (NLLS)Marquardt-Levenberg algorithm(Press

et al. 1992) as implemented byGnuplot (Broeker et al. 2006, Drakos &

Moore 2006)1.

– Standard Error Lines: Two standard error lines (plotted as ablackdotted

line) appear with the regression line to provide an indication of exper-

imental uncertainty. These errors are typically known as “asymptotic

standard errors” and represent the standard deviation of each parame-

ter (Press et al. 1992).

– Idealised Cost Model Line: This is the graph of the function “f (x) =

1 − x” and represents the line predicted by the cost model developed

1Gnuplot is a portable command-line driven interactive data and function plotting utility. See
http://www.gnuplot.info.

238 Chapter A. Supporting Empirical Results

in Section 5.4where the time taken by the extra semantic optimizing

step is negligible. Therefore, in the absence of any other optimization,

we cannot reasonably expect the cost metric ratio to be belowthis line.

This is plotted as ared line.

– Break Even Line: This line marks a cost metric ratio of 1, representing

equal costs for both optimized and normal batches. Therefore, any re-

sults below this line represent apositiveoptimization; i.e., the semanti-

cally optimized cost is less than the normal cost. Conversely, any results

above this line represent anegativeoptimization; i.e., the semantically

optimized cost is actually more than the normal cost. This isplotted as

agreenline.

• In the second subsection we present summary results across all three cost

metric ratios defined in Table A.1. We omit individual plots for these individ-

ual metric ratios. The summary graphs are all presented as three dimensional

projections of the dependent variable versus the two independent variables.

We calculate aregression surfacefor each result set using an implementation

of the nonlinear least-squares (NLLS)Marquardt-Levenberg algorithm(Press

et al. 1992) as implemented byGnuplot (Drakos & Moore 2006). The form

of the regression surface is given by the following:

f (x, y) = A+ Bx+Cx2 + Dy+ Ey2

wheref (x, y) is the dependent variable,x andy are the independent variables,

A,B,C,D,E are constants determined by the regression analysis.

A.2 Unsatisfiable Queries – No Indexing

This section contains a full analysis of the results reported in Section 6.3. The ob-

jective of these experiments is to establish a baseline withregard to the dependence

of thegain in query efficiencyon theprobability of an unsatisfiable queryandrel-

ative table size. It is most unlikely in practice that tables of the size and makeup

we query in our experiments wouldnot be indexed. However, we are motivated to

query a set of unindexed tables:

• to set a baseline against which our other experiments with tables thatare

realistically indexed may be compared;

• to relate our work with other published research that typically cite results for

unindexed tables (Gryz et al. 1999, Cheng et al. 1999).

A.2. Unsatisfiable Queries – No Indexing 239

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. Each query consists of a single restriction defined by one interval.

None of the columns cited in query restrictions is indexed.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andRows

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears

A.2.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.2 plotsRcom vs Probability of Unsatisfiable QueryP and shows how

consistently this ratio varies with increasing table size across four orders of magni-

tude. The results conform closely to the cost model for tablerowsRows= 1,000 to

500,000. Figure A.2(h) combines all results into a single graph and clearly shows

the optimization achieved by recognising the unsatisfiablequeries is independent of

table size.

Figure A.3(a) plotsRcom vs Probability of Unsatisfiable QueryP vs Relative

Table SizeRowsand summarises the results as aRcom surface. Figure A.3(b) shows

the same surface along with the regression surface. Figure A.3(c) compares the

idealised regression, “cost model” and the “break even” surfaces. Figure A.3(d) is

exactly the same projection, but viewed by looking directlyinto the XZ plane. This

clearly shows theRcom surface sits just above the “cost model surface”, indicating

results deviate very little from the predicted, with positive optimization occurring

whenP > 5%. We have positive optimization across four orders of magnitude of

table size.

240 Chapter A. Supporting Empirical Results

A.2.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.2.

Figure Results Presented
A.4 Rcpu vs Probability of Unsatisfiable QueryP vs RowsN
A.5 Rdsk vs Probability of Unsatisfiable QueryP vs RowsN
A.6 Relpsdvs Probability of Unsatisfiable QueryP vs RowsN

Table A.2: Location of summary results for the three individual cost metric ratios displaying
Rcost vs Probability of Unsatisfiable QueryP vs RowsN .

The individual cost metric ratios show more variation than the combined cost

metric ratioRcom results displayed in Section A.2.1. This is described in detail in

Chapter 5. We note however that the results show a consistent efficiency gain for the

semantically optimized queries and a close correspondenceto the results predicted

from our cost model.

A.2. Unsatisfiable Queries – No Indexing 241

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 1000

(a) Table rowsN = 1,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 10000

(b) Table rowsN = 10,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 110000

(c) Table rowsN = 110,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 200000

(d) Table rowsN = 200,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 300000

(e) Table rowsN = 300,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 400000

(f) Table rowsN = 400,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 500000

(g) Table rowsN = 500,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 1000 - 500,000

(h) Table rowsN = 1,000 to 500,000

Figure A.2:Ratio Rcom vs Probability of Unsatisfiable QueryP (no indexing): Figures A.2(a)
to A.2(h) show how consistent ratioRcom is as table size increases fromRows= 100 to 500,000.
The results conform closely to the cost model. Figure A.2(h)combines all results into a single graph.
ThecombinedratioRcom is the average of the other three cost metric ratios which we interpret as the
overall query cost.

242 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(a) Rcom surface for100 to 500,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.3: Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table SizeRows
(no indexing): These figures summarise the results presented above in Figure A.2 as aRcom surface.
Figures A.3(b) and A.3(c) showRcom surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size, with the optimization cost rising slightly as table size becomes very large
(Rows> 400,000).

A.2. Unsatisfiable Queries – No Indexing 243

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(a) Rcpu surface for100 to 500,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.4:Ratio Rcpu vs Probability of Unsatisfiable QueryPvs Relative Table SizeRows(no
indexing): TheRcpu surface sits just above the “cost model surface”, indicating results deviate very
little from the predicted. Figure A.4(c) provides compelling visual confirmation thatRcpu scarcely
rises above 1 indicating we have positive optimization across four orders of magnitude of table size.

244 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(a) Rdsk surface for100 to 500,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.5:Ratio Rdskvs Probability of Unsatisfiable QueryP vs Relative Table SizeRows(no
indexing): TheRdsk surface sits just above the “cost model surface”, indicating results deviate very
little from the predicted. Figure A.5(c) provides compelling visual confirmation thatRdsk scarcely
rises above 1 indicating we have positive optimization across four orders of magnitude of table size.

A.2. Unsatisfiable Queries – No Indexing 245

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(a) Relpsd surface for100 to 500,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

100000

200000

300000

400000

500000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.6:Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Relative Table SizeRows
(no indexing): TheRelpsd surface sits just above the “cost model surface”, indicating results deviate
very little from the predicted. Figures A.6(c) and A.6(d) suggest optimization is degraded slightly
with respect to elapsed time for very large table sizes (Rows> 400,000).

246 Chapter A. Supporting Empirical Results

A.3 Indexed Unsatisfiable Queries

This section contains a full analysis of the results reported in Section 6.4. The

objective of these experiments is to establish the dependence of thegain in query

efficiencyon theprobability of an unsatisfiable queryandrelative table size. The

methodology is identical to the experiments reported abovein Appendix A.2, with

the key difference that all columns cited in query restrictions are indexed with a

“normal” B-tree index (Chan 2005a).

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. Each query consists of a single restriction defined by one interval.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andRows

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears

A.3.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.7 plotsRcom vs Probability of Unsatisfiable QueryP and shows how

consistently this ratio varies with increasing table size across four orders of magni-

tude. The results conform closely to the cost model for tablerowsRows= 100 to

1,000,000.

Figure A.8(a) plotsRcom vs Probability of Unsatisfiable QueryP vs Relative

Table SizeRowsand summarises the results as aRcom surface. Figure A.8(b) shows

the same surface along with the regression surface. Figure A.8(c) compares the

A.3. Indexed Unsatisfiable Queries 247

idealised regression, “cost model” and the “break even” surfaces. Figure A.8(d) is

exactly the same projection, but viewed by looking directlyinto the XZ plane. This

clearly shows theRcom surface sits just above the “cost model surface”, indicating

results deviate very little from the predicted, with positive optimization occurring

whenP > 10%, across four orders of magnitude of table size.

A.3.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.3.

Figure Results Presented
A.9 Rcpu vs Probability of Unsatisfiable QueryP vs RowsN
A.10 Rdsk vs Probability of Unsatisfiable QueryP vs RowsN
A.11 Relpsdvs Probability of Unsatisfiable QueryP vs RowsN

Table A.3: Location of summary results for the three individual cost metric ratios displaying
Rcnt vs Probability of Unsatisfiable QueryP vs RowsN .

The individual cost metric ratios show more variation than the combined cost

metric ratioRcom results displayed in Section A.3.1. This is described in detail in

Chapter 5. We note however that the results show a consistent efficiency gain for the

semantically optimized queries and a close correspondenceto the results predicted

from our cost model.

248 Chapter A. Supporting Empirical Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 100

(a) Table rowsN = 100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 1000

(b) Table rowsN = 1,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 10000

(c) Table rowsN = 10,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 100000

(d) Table rowsN = 100,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 250000

(e) Table rowsN = 250,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 500000

(f) Table rowsN = 500,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 1000000

(g) Table rowsN = 1,000,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

N = 100 - 1,000,000

(h) Table rowsN = 100 to 1,000,000

Figure A.7: Ratio Rcom vs Probability of Unsatisfiable Query P (indexed): Figures A.7(a)
to A.7(h) show how consistently this ratio varies with increasing table size across four orders of
magnitude. The results conform closely to the cost model fortable rowsRows= 100 to 1,000,000.
Figure A.7(h) combines all results into a single graph. ThecombinedratioRcom is the average of the
other three cost metric ratios which we interpret as the overall query cost.

A.3. Indexed Unsatisfiable Queries 249

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(a) Rcom surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.8: Ratio Rcom vs Probability of Unsatisfiable Query P vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.7 as aRcom surface.
Figures A.8(b) and A.8(c) show theRcom surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size whenP > 0.1.

250 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(a) Rcpu surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.9: Ratio Rcpu vs Probability of Unsatisfiable Query P vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.7 as aRcpu surface.
Figures A.9(b) and A.9(c) showRcpu surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size whenP > 0.15.

A.3. Indexed Unsatisfiable Queries 251

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(a) Rdsk surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.10:Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Relative Table SizeRows
(indexed): TheRdsk surface sits just above the “cost model surface”, indicating results deviate very
little from the predicted. Figure A.10(c) provides compelling visual confirmation thatRdsk scarcely
rises above 1 indicating we have positive optimization across four orders of magnitude of table size.

252 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(a) Relpsd surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.11:Ratio Relpsdvs Probability of Unsatisfiable QueryP vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.7 as aRelpsd surface.
Figures A.11(b) and A.11(c) showRelpsd surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size whenP > 0.05.

A.4. Indexed Unsatisfiable Queries – Varying Restrictions per Query 253

A.4 Indexed Unsatisfiable Queries – Varying Restric-

tions per Query

This section contains a full analysis of the results reported in Section 6.5. The

objective of these experiments is to establish the dependence of thegain in query

efficiencyon theprobability of an unsatisfiable queryand thenumber of restrictions

per query. In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Number of restrictions per queryR/Q. Each restriction is defined by a single

interval.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. All results are for tables with number of rowsRows= 1,000,000.

All columns cited in query restrictions are indexed with a “normal” B-tree index.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andR/Q

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (restrictions per queryR/Q) disappears

A.4.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.12 plotsRcom vs Probability of Unsatisfiable QueryP and shows how

this ratio varies with increasing numbers of restrictions per query (R/Q). Each

restriction is defined by a single interval. The results showRcom increases asR/Q

increases. This is what we expect since the cost of semantically pre-processing the

query rises with increasing query complexity.

Figure A.13 plotsRcom vs Probability of Unsatisfiable QueryP vs Restrictions

per QueryR/Q and summarises the results as aRcomsurface. For lowR/Q, semantic

254 Chapter A. Supporting Empirical Results

pre-processing incurs little overhead and theRcom surface sits just above the “cost

model surface”. However asR/Q rises, the pre-processing cost becomes signifi-

cant and we require a greater proportion of unsatisfiable queries to make semantic

optimization worthwhile.

A.4.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.4.

Figure Results Presented
A.14 Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
A.15 Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
A.16 Relpsdvs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q

Table A.4: Location of summary results for the three individual cost metric ratios displaying
Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q.

A.4. Indexed Unsatisfiable Queries – Varying Restrictions per Query 255

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 1

(a) Restrictions per QueryR/Q = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 2

(b) Restrictions per QueryR/Q = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 3

(c) Restrictions per QueryR/Q = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 5

(d) Restrictions per QueryR/Q = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 8

(e) Restrictions per QueryR/Q = 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 12

(f) Restrictions per QueryR/Q = 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 17

(g) Restrictions per QueryR/Q = 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

R/Q = 25

(h) Restrictions per QueryR/Q = 25

Figure A.12:Ratio Rcom vs Probability of Unsatisfiable Query P (indexed): Figures A.12(a)
to A.12(h) show the increasing penalty paid by the semantic optimizer as query complexity in-
creases. As the number of restrictions per query (R/Q) increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

256 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface forR/Q = 1 to 25.

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.13:Ratio Rcom vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.12 as aRcom sur-
face. As the number of Restrictions per QueryR/Q increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. For P = 10%, positive optimization
is achieved when there is up to five restrictions per query; i.e., R/Q ≤ 5. Number of table rows
Rows= 1,000,000.

A.4. Indexed Unsatisfiable Queries – Varying Restrictions per Query 257

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(a) Rcpu surface forR/Q = 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.14: Ratio Rcpu vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.12 as aRcpu sur-
face. As the number of restrictions per query (R/Q) increases from 1 to 25, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

258 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(a) Rdsk surface forR/Q = 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.15: Ratio Rdsk vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.12 as aRdsk sur-
face. As the number of restrictions per query (R/Q) increases from 1 to 25, positive optimization is
maintained up to anR/Q ≈ 20. Number of table rowsRows= 1,000,000.

A.4. Indexed Unsatisfiable Queries – Varying Restrictions per Query 259

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(a) Relpsd surface forR/Q = 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

R/Q
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.16:Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.12 as aRelpsd

surface. As the number of restrictions per query (R/Q) increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

260 Chapter A. Supporting Empirical Results

A.5 Indexed Unsatisfiable Queries – Varying Inter-

vals per Restriction

This section contains a full analysis of the results reported in Section 6.6. The

objective of these experiments is to establish the dependence of thegain in query

efficiencyon theprobability of an unsatisfiable queryand thenumber of intervals

per restriction. In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable queryP

• Number of intervals per restrictionI/R. Each query has a single restriction.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. All results are for tables with number of rowsRows= 1,000,000.

All columns cited in query restrictions are indexed with a “normal” B-tree index.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andI/R

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (intervals per restrictionI/R) disappears

A.5.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.17 plotsRcom vs Probability of Unsatisfiable QueryP and shows the

penalty paid by the semantic optimizer, as the number of intervals comprising the

single restriction increases, is balanced by the increasedprocessing time required

by the normal SQL optimizer. Therefore the ratioRcom rises only slowly asI/R

increases from 1 to 25.

Figure A.18 plotsRcom vs Probability of Unsatisfiable QueryP vs Intervals per

RestrictionI/Rand summarises the results as aRcom surface. For lowI/R, semantic

pre-processing incurs little overhead and theRcom surface sits just above the “cost

A.5. Indexed Unsatisfiable Queries – Varying Intervals per Restriction 261

model surface”. AsI/R rises, while the pre-processing cost becomes significant,

this is balanced by the increased processing time required by the normal SQL opti-

mizer. The net result is that the combined ratioRcom hardly varies with increasing

I/R.

A.5.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.5.

Figure Results Presented
A.19 Rcpu vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R
A.20 Rdsk vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R
A.21 Relpsdvs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R

Table A.5: Location of summary results for the three individual cost metric ratios displaying
Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R.

262 Chapter A. Supporting Empirical Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 1

(a) Intervals per RestrictionI/R= 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 3

(b) Intervals per RestrictionI/R= 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 4

(c) Intervals per RestrictionI/R= 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 6

(d) Intervals per RestrictionI/R= 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 10

(e) Intervals per RestrictionI/R= 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 15

(f) Intervals per RestrictionI/R= 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 20

(g) Intervals per RestrictionI/R= 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Query)

Cost model
Break even line

I/R = 25

(h) Intervals per RestrictionI/R= 25

Figure A.17:Ratio Rcom vs Probability of Unsatisfiable QueryP (indexed): As the number of
Intervals per RestrictionI/R increases from 1 to 25, ratioRcom increases slowly. ForP > 0.15, posi-
tive optimization is achieved throughout the whole range. Number of table rowsRows= 1,000,000.

A.5. Indexed Unsatisfiable Queries – Varying Intervals per Restriction 263

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.18:Ratio Rcom vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R(indexed): These figures summarise the results presented above in Figure A.17 as aRcomsurface.
As the number of Intervals per RestrictionI/R increases from 1 to 25, ratioRcom hardly increases.
For P = 5%, positive optimization is achieved throughout the wholerange. Number of table rows
Rows= 1,000,000.

264 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(a) Rcpu surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.19:Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.17 as aRcpu sur-
face. As the number of restrictions per query (I/R) increases from 1 to 25, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

A.5. Indexed Unsatisfiable Queries – Varying Intervals per Restriction 265

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(a) Rdsk surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.20:Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.17 as aRdsk sur-
face. As the number of restrictions per query (I/R) increases from 1 to 25, positive optimization is
maintained up to anI/R ≈ 25. Results for disk i/o typically exhibit more variation than the other
metric ratios. Number of table rowsRows= 1,000,000.

266 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(a) Relpsd surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Query) 0

5

10

15

20

25

I/R
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” sur-

faces, looking directly into the XZ plane.

Figure A.21:Ratio Relpsdvs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.17 as aRelpsd

surface. As the number of restrictions per query (I/R) increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. Results for elapsed time typically exhibit
more variation than the other metric ratios. Number of tablerowsRows= 1,000,000.

A.6. Indexed Unsatisfiable Joins 267

A.6 Indexed Unsatisfiable Joins

This section contains a full analysis of the results reported in Section 6.4. The

objective of these experiments is to establish the dependence of thegain in join

efficiency on theprobability of an unsatisfiable joinand relative table size. The

methodology is identical to the experiments reported abovein Appendix A.3, except

that we submit batches of equi-joins between two tables rather than simple queries

against a single table.

In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

• Relative table size, denoted by the number of table rowsRows.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. Each join consists of a single join clause citing the equi-join columns

plus a single restriction defined by one interval.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andRows

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (relative table sizeRows) disappears

A.6.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.22 plotsRcom vs Probability of Unsatisfiable JoinP and shows how the

Rcom ratio stays relatively consistent as table size increases from Rows= 1,000 to

1,000,000. The results conform quite closely to the cost model, butnot as closely

as for the equivalent experiments with simple queries (see Figure A.7).

Figure A.23(a) plotsRcom vs Probability of Unsatisfiable JoinP vs Relative Ta-

ble SizeRowsand summarises the results as aRcom surface. Figure A.23(b) shows

268 Chapter A. Supporting Empirical Results

the same surface along with the regression surface. Figure A.23(c) compares the

idealised regression, “cost model” and the “break even” surfaces. Figure A.23(d) is

exactly the same projection, but viewed by looking directlyinto the XZ plane. This

clearly shows theRcom surface sits just above the “cost model surface”, indicating

results deviate very little from the predicted, with positive optimization occurring

whenP > 20%, across four orders of magnitude of table size.

A.6.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.6.

Figure Results Presented
A.24 Rcpu vs Probability of Unsatisfiable JoinP vs RowsN
A.25 Rdsk vs Probability of Unsatisfiable JoinP vs RowsN
A.26 Relpsdvs Probability of Unsatisfiable JoinP vs RowsN

Table A.6: Location of summary results for the three individual cost metric ratios displaying
Rcnt vs Probability of Unsatisfiable JoinP vs RowsN .

The individual cost metric ratios show more variation than the combined cost

metric ratioRcom results displayed in Section A.6.1. This is described in detail in

Chapter 5. We note however that the results show a consistent efficiency gain for the

semantically optimized queries and a close correspondenceto the results predicted

from our cost model.

A.6. Indexed Unsatisfiable Joins 269

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 1000

(a) Table rowsN = 1,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 10000

(b) Table rowsN = 10,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 100000

(c) Table rowsN = 100,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 300000

(d) Table rowsN = 300,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 500000

(e) Table rowsN = 500,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 700000

(f) Table rowsN = 700,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 1000000

(g) Table rowsN = 1,000,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

N = 1,000 - 1,000,000

(h) Table rowsN = 100 to 1,000,000

Figure A.22: Ratio Rcom vs Probability of Unsatisfiable Join P (indexed): Figures A.22(a)
to A.22(h) show theRcom ratio stays relatively consistent as table size increases fromRows= 1,000
to 1,000,000. The results conform quite closely to the cost model, butnot as closely as for the
equivalent experiments with simple queries (see Figure A.7). Figure A.22(h) combines all results
into a single graph and this highlights the greater spread ofresults than for the equivalent experiments
with simple queries. Thecombinedratio Rcom is the average of the other three cost metric ratios
which we interpret as the overall join cost.

270 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(a) Rcom surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.23: Ratio Rcom vs Probability of Unsatisfiable Join P vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.22 as aRcom surface.
Figures A.23(b) and A.23(c) showRcom surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size whenP > 0.2.

A.6. Indexed Unsatisfiable Joins 271

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(a) Rcpu surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.24: Ratio Rcpu vs Probability of Unsatisfiable Join P vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.22 as aRcpu surface.
Figures A.24(b) and A.24(c) showRcpu surface sits just above the “cost model surface”, indicating
results deviate very little from the predicted. We have positive optimization across four orders of
magnitude of table size whenP > 0.15.

272 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(a) Rdsk surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.25: Ratio Rdsk vs Probability of Unsatisfiable Join P vs Relative Table SizeRows
(indexed): The Rdsk surface sits just above the “cost model surface” and is clearly influenced by
relative table size. With regrad to disk i/o, we requireP > 0.2 in order to break even. In compar-
ison with the equivalent results for simple queries (see Figure A.10), optimization is significantly
degraded by disk i/o for joins.

A.6. Indexed Unsatisfiable Joins 273

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(a) Relpsd surface for100 to 1,000,000 rows

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

200000

400000

600000

800000

1000000

Rows
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.26:Ratio Relpsd vs Probability of Unsatisfiable Join P vs Relative Table SizeRows
(indexed): These figures summarise the results presented above in Figure A.22 as aRelpsd surface.
Figures A.26(b) and A.26(c) showRelpsdsurface sits just above the “cost model surface” and is little
influenced by increasing table size. We have positive optimization across four orders of magnitude
of table size whenP > 0.2.

274 Chapter A. Supporting Empirical Results

A.7 Indexed Unsatisfiable Joins – Varying Restric-

tions per Join

This section contains a full analysis of the results reported in Section 6.5. The

objective of these experiments is to establish the dependence of thegain in join

efficiencyon theprobability of an unsatisfiable joinand thenumber of restrictions

per join. In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

• Number of restrictions per joinR/Q. Each restriction is defined by a single

interval.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. All results are for tables with number of rowsRows= 1,000,000.

All columns cited in join restrictions are indexed with a “normal” B-tree index.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andR/Q

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (restrictions per queryR/Q) disappears

A.7.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.27 plotsRcom vs Probability of Unsatisfiable QueryP and shows how

this ratio varies with increasing numbers of restrictions per join (R/Q). Each re-

striction is defined by a single interval. The results showRcom increases asR/Q

increases. This is what we expect since the cost of semantically pre-processing the

join rises with increasing join complexity.

Figure A.28 plotsRcom vs Probability of Unsatisfiable QueryP vs Restrictions

per QueryR/Q and summarises the results as aRcomsurface. For lowR/Q, semantic

A.7. Indexed Unsatisfiable Joins – Varying Restrictions perJoin 275

pre-processing incurs little overhead and theRcom surface sits just above the “cost

model surface”. However asR/Q rises, the pre-processing cost becomes signifi-

cant and we require a greater proportion of unsatisfiable queries to make semantic

optimization worthwhile.

A.7.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.7.

Figure Results Presented
A.29 Rcpu vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
A.30 Rdsk vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q
A.31 Relpsdvs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q

Table A.7: Location of summary results for the three individual cost metric ratios displaying
Rcost vs Probability of Unsatisfiable QueryP vs Restrictions per QueryR/Q.

276 Chapter A. Supporting Empirical Results

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 1

(a) Restrictions per QueryR/Q = 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 3

(b) Restrictions per QueryR/Q = 3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 6

(c) Restrictions per QueryR/Q = 6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 9

(d) Restrictions per QueryR/Q = 9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 12

(e) Restrictions per QueryR/Q = 12

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 18

(f) Restrictions per QueryR/Q = 18

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 30

(g) Restrictions per QueryR/Q = 30

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

R/Q = 40

(h) Restrictions per QueryR/Q = 40

Figure A.27:Ratio Rcom vs Probability of Unsatisfiable Query P (indexed): Figures A.27(a)
to A.27(h) show the increasing penalty paid by the semantic optimizer as join complexity increases.
As the number of restrictions per join (R/Q) increases from 1 to 40, a greater proportion of unsatis-
fiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

A.7. Indexed Unsatisfiable Joins – Varying Restrictions perJoin 277

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(a) Rcom surface forR/Q = 1 to 40.

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

 2.5

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.28:Ratio Rcom vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.27 as aRcom sur-
face. As the number of Restrictions per QueryR/Q increases from 1 to 40, a greater proportion of
unsatisfiable queries is required in order to break even. ForP = 0.2, positive optimization is achieved
when there is up to five restrictions per join; i.e.,R/Q ≤ 5. Number of table rowsRows= 1,000,000.

278 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcpu

(a) Rcpu surface forR/Q = 1 to 40

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

 2.5

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.29: Ratio Rcpu vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.27 as aRcpu sur-
face. As the number of restrictions per join (R/Q) increases from 1 to 40, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

A.7. Indexed Unsatisfiable Joins – Varying Restrictions perJoin 279

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rdsk

(a) Rdsk surface forR/Q = 1 to 40

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

 2.5

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.30: Ratio Rdsk vs Probability of Unsatisfiable Query P vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.27 as aRdsk sur-
face. As the number of restrictions per join (R/Q) increases from 1 to 40, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.
Number of table rowsRows= 1,000,000.

280 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Relpsd

(a) Relpsd surface forR/Q = 1 to 40

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5
10

15
20

25
30

35
40

R/Q
 0

 0.5

 1

 1.5

 2

 2.5

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

 2.5

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.31:Ratio Relpsd vs Probability of Unsatisfiable QueryP vs Restrictions per Query
R/Q (indexed): These figures summarise the results presented above in Figure A.27 as aRelpsd

surface. As the number of restrictions per join (R/Q) increases from 1 to 40, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

A.8. Indexed Unsatisfiable Joins – Varying Intervals per Restriction 281

A.8 Indexed Unsatisfiable Joins – Varying Intervals

per Restriction

This section contains a full analysis of the results reported in Section 6.6. The

objective of these experiments is to establish the dependence of thegain in join

efficiencyon theprobability of an unsatisfiable joinand thenumber of intervals per

restriction. In this series of experiments, we have two independent variables:

• Probability of an unsatisfiable joinP

• Number of intervals per restrictionI/R. Each join has a single restriction.

The dependent variable is the cost ratioRcost whereRcost is one of the ratios defined

in Table A.1. All results are for tables with number of rowsRows= 1,000,000.

All columns cited in join restrictions are indexed with a “normal” B-tree index.

We begin with a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results. This is followed by summary

results for the three individual cost metric ratios. In the case of summary graphs,

we present the same four variations depicting:

• The cost metric ratio surfaceRcost plotted against the two independent vari-

ablesP andI/R

• The cost metric ratio surfaceRcost with the regression surface superimposed

• The regression surface with “cost model” and “break even” surfaces

• The cost metric ratio surfaceRcost, regression surface, “cost model” and “break

even” surfaces viewed by looking directly into the XZ plane such that the Y

axis (intervals per restrictionI/R) disappears

A.8.1 Combined Ratio:Rcom

The following is a detailed analysis of the combined metric ratio Rcom, presenting

both individual result graphs and summary results.

Figure A.32 plotsRcom vs Probability of Unsatisfiable QueryP and shows the

penalty paid by the semantic optimizer, as the number of intervals comprising the

single restriction increases, is balanced by the increasedprocessing time required

by the normal SQL optimizer. Therefore the ratioRcom rises only modestly asI/R

increases from 1 to 25.

Figure A.33 plotsRcom vs Probability of Unsatisfiable QueryP vs Intervals per

RestrictionI/Rand summarises the results as aRcom surface. For lowI/R, semantic

pre-processing incurs little overhead and theRcom surface sits just above the “cost

282 Chapter A. Supporting Empirical Results

model surface”. AsI/R rises, while the pre-processing cost becomes significant,

this is balanced by the increased processing time required by the normal SQL opti-

mizer. The net result is that the combined ratioRcom hardly varies with increasing

I/R.

A.8.2 Individual Cost Metric Ratios

The remaining graphs in this section show summary results for the three individual

cost metric ratios, located as set out in Table A.8.

Figure Results Presented
A.34 Rcpu vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R
A.35 Rdsk vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R
A.36 Relpsdvs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R

Table A.8: Location of summary results for the three individual cost metric ratios displaying
Rcost vs Probability of Unsatisfiable QueryP vs Intervals per RestrictionI/R.

A.8. Indexed Unsatisfiable Joins – Varying Intervals per Restriction 283

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 1

(a) Intervals per RestrictionI/R= 1

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 2

(b) Intervals per RestrictionI/R= 2

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 4

(c) Intervals per RestrictionI/R= 4

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 6

(d) Intervals per RestrictionI/R= 6

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 9

(e) Intervals per RestrictionI/R= 9

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 13

(f) Intervals per RestrictionI/R= 13

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 19

(g) Intervals per RestrictionI/R= 19

 0
 0.1

 0.2
 0.3
 0.4

 0.5
 0.6

 0.7
 0.8
 0.9

 1
 1.1
 1.2

 1.3
 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

 2

 2.1
 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
co

m

P(Unsatisfiable Join)

Cost model
Break even line

I/R = 25

(h) Intervals per RestrictionI/R= 25

Figure A.32:Ratio Rcom vs Probability of Unsatisfiable Query P (indexed): Figures A.32(a)
to A.32(h) show the increasing penalty paid by the semantic optimizer as join complexity increases.
As the number of intervals per restriction (I/R) increases from 1 to 40, a greater proportion of
unsatisfiable queries is required in order to break even. Number of table rowsRows= 1,000,000.

284 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(a) Rcom surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(b) Rcom surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcom

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

Rcom

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcom

(d) Rcom, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.33:Ratio Rcom vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.32 as aRcom sur-
face. As the number of intervals per restrictionI/R increases from 1 to 25, a greater proportion of
unsatisfiable queries is required in order to break even. ForI/R ≤ 5, we require just onP = 0.3 to
achieve positive optimization. Number of table rowsRows= 1,000,000.

A.8. Indexed Unsatisfiable Joins – Varying Intervals per Restriction 285

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcpu

(a) Rcpu surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcpu

(b) Rcpu surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rcpu

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

Rcpu

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rcpu

(d) Rcpu, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.34:Ratio Rcpu vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.32 as aRcpu sur-
face. As the number of intervals per restrictionI/R increases from 1 to 25, a greater proportion of
unsatisfiable queries is required in order to break even. ForI/R≤ 5, we require just onP = 0.25 to
achieve positive optimization. Number of table rowsRows= 1,000,000.

286 Chapter A. Supporting Empirical Results

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rdsk

(a) Rdsk surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rdsk

(b) Rdsk surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Rdsk

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

Rdsk

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Rdsk

(d) Rdsk, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.35:Ratio Rdsk vs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.32 as aRdsk sur-
face. As the number of intervals per restrictionI/R increases from 1 to 25, a greater proportion of
unsatisfiable queries is required in order to break even. ForI/R ≤ 5, we require just onP = 0.3 to
achieve positive optimization. Number of table rowsRows= 1,000,000.

A.8. Indexed Unsatisfiable Joins – Varying Intervals per Restriction 287

Results

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Relpsd

(a) Relpsd surface forI/R= 1 to 25

Results
Regression

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Relpsd

(b) Relpsd surface with regression surface.

Regression
Cost model

Break even surface

 0
 0.2

 0.4
 0.6

 0.8
 1P(Unsatisfiable Join) 0

5

10

15

20

25

I/R
 0

 0.5

 1

 1.5

 2

Relpsd

(c) Regression, “cost model” and “break even”surfaces.

0.0 0.2 0.4 0.6 0.8 1.0
 0

 0.5

 1

 1.5

 2

Relpsd

Results
Regression
Cost model

Break even surface

P(Unsatisfiable Join)

Relpsd

(d) Relpsd, regression, “cost model” and “break even” surfaces,

looking directly into the XZ plane.

Figure A.36:Ratio Relpsdvs Probability of Unsatisfiable QueryP vs Intervals per Restriction
I/R (indexed): These figures summarise the results presented above in Figure A.32 as aRelpsd

surface. As the number of intervals per restrictionI/R increases from 1 to 25, a greater proportion
of unsatisfiable queries is required in order to break even. For I/R ≤ 5, we require just onP = 0.2
to achieve positive optimization. Number of table rowsRows= 1,000,000.

Appendix B

Table Rows To Size Conversion

289

290 Chapter B. Table Rows To Size Conversion

B.1 Mapping From Relative To Absolute Table Size

Throughout our experiments with relational tables, whenever we have spoken of “ta-

ble size”, we have used the number of rows comprising the table to denoterelative

size. The absolute size of a relational table in the Oracle RDBMS is proportional to

(average row size)×(number of rows). Theaverage row sizein turn is determined

by the number of columns and the data types of those columns. Our experimental

tables each comprise 20 columns, of which the first five columns arenumericand

are the targets of our optimization and the remainder are a mix of string anddate

data types. Figure B.1 below allows the absolute size of the experimental tables

to be determined from the number of rows. The physical space occupied by a ta-

ble is calculated by adding up the number of bytes occupied ofall data segments,

including index segments.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

S
iz

e
(M

b)

Table Rows

Rows to Size Conversion

Figure B.1:Table Rows to Size Conversion

Appendix C

Software and Hardware Description

291

292 Chapter C. Software and Hardware Description

C.1 Software Description

The following describes the software employed throughout the experiments re-

ported in this thesis.

C.1.1 Experiments with queries

All experiments were performed using 32 bit Oracle 10.2 running on 32 bit Linux.

Software Description Details

Operating System Fedora Core 4 2.6 Linux kernel 32 bit

Database Oracle 10.2 RDBMS 32 bit Bytes
Total system global area 1,174,405,120
Fixed size 1,219,040
Variable size 134,219,296
Database buffers 1,023,410,176
Redo buffers 15,556,608

Table C.1:Software employed for experiments with queries.

C.1.2 Experiments with equi-joins

All experiments were performed using 64 bit Oracle 10.2 running on 64 bit Linux.

Software Description Details

Operating System Fedora Core 4 2.6 Linux kernel 64 bit

Database Oracle 10.2 RDBMS 64 bit Bytes
Total system global area 1,174,405,120
Fixed size 2,020,288
Variable size 201,329,728
Database buffers 956,301,312
Redo buffers 14,753,792

Table C.2:Software employed for experiments with equi-joins.

C.2 Hardware Description

The following describes the hardware employed throughout the experiments re-

ported in this thesis.

C.2. Hardware Description 293

C.2.1 Experiments with queries

All experiments were performed on a 1.9GHz AMD Athlon™XP 2600 PC with

2Gb of RAM and standard ATA disk. The Oracle RDBMS was allowed to utilise as

much disk space as required.

C.2.2 Experiments with equi-joins

All experiments were performed on a 1.0GHzAMD Athlon™64 3200PC with 2Gb

of RAM and SATA disk. The Oracle RDBMS was allowed to utilise as much disk

space as required.

Bibliography

Aberer, K. & Fischer, G. (1995), Semantic query optimization for methods in

object-oriented database systems,in ‘ICDE ’95: Proceedings of the Eleventh

International Conference on Data Engineering’, IEEE Computer Society,

Washington, DC, USA, pp. 70–79.

Agrawal, R., Imielínski, T. & Swami, A. (1993), Mining association rules be-

tween sets of items in large databases,in ‘SIGMOD ’93: Proceedings of the

1993 ACM SIGMOD international conference on management of data’, ACM

Press, New York, NY, USA, pp. 207–216.

Agrawal, S. (2005), ‘Timestamp datatype — Oracle database PL/SQL user’s guide

and reference 10g release 2 (10.2)’. [Online; accessed 25-August-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

appdev.102/b14261/datatypes.htm#sthref798

Albrecht, J., Ḧummer, W., Lehner, W. & Schlesinger, L. (2000), Query optimiza-

tion by using derivability in a data warehouse environment,in ‘DOLAP ’00:

Proceedings of the 3rd ACM international workshop on Data warehousing and

OLAP’, ACM Press, New York, NY, USA, pp. 49–56.

Allen, J. F. (1983), ‘Maintaining knowledge about temporalintervals’, Commun.

ACM 26(11), 832–843.

Anton, H. (1984),Calculus with analytic geometry, 2 edn, John Wiley and Sons.

Ashdown, L. (2005a), ‘Enabling and disabling integrity constraints — Oracle

database application developer’s guide - fundamentals, 10g release 2 (10.2)’.

[Online; accessed 26-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

appdev.102/b14251/adfns_constraints.htm#i1006697

Ashdown, L. (2005b), ‘Performing date arithmetic — Oracle database application

developer’s guide - fundamentals 10g release 2 (10.2)’. [Online; accessed

08-August-2006].

295

296 BIBLIOGRAPHY

URL: http://download-west.oracle.com/docs/cd/B19306_01/

appdev.102/b14251/adfns_sqltypes.htm#sthref452

Babcock, B. & Chaudhuri, S. (2005), Towards a robust query optimizer: a princi-

pled and practical approach,in ‘SIGMOD ’05: Proceedings of the 2005 ACM

SIGMOD international conference on Management of data’, ACMPress, New

York, NY, USA, pp. 119–130.

Bell, S. (1996), Deciding distinctness of query result by discovered constraints,in

‘Practical Application of Constraint Technology’, Practical Application Com-

pany, pp. 399–416.

Bloesch, A. C. & Halpin, T. A. (1997), Conceptual queries using conquer-ii, in

D. Embley & R. Goldstein, eds, ‘Proc. ER’97: 16 Int. Conf. on conceptual

modeling’, Vol. 1331, Springer LNCS, Los Angeles, USA, pp. 113–126.

Broeker, H., Campbell, J., Cunningham, R. & Denholm, D. (2006), ‘Gnuplot docu-

mentation — gnuplot 4.0’. [Online; accessed 14-September-2006].

URL: http://www.gnuplot.info/docs/gnuplot.html#fit

Burleson, D. (1994),Practical Application of Object-Oriented Techniques to Rela-

tional Databases, 1 edn, John Wiley & Sons Inc.

Chakravarthy, U. S., Grant, J. & Minker, J. (1990), ‘Logic-based approach to se-

mantic query optimization’,ACM Trans. Database Syst.15(2), 162–207.

Chamberlin, D. & Boyce, R. (1974), Sequel: A structured englishquery language,

in ‘SIGFIDET ’74: Proceedings of the 1974 ACM SIGFIDET Conference’,

ACM Press, New York, NY, USA.

Chan, I. (2005a), ‘B-tree indexes — Oracle database performance tuning guide,

10g release 2 (10.2)’. [Online; accessed 14-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/design.htm#sthref140

Chan, I. (2005b), ‘Choosing composite indexes — Oracle database performance

tuning guide, 10g release 2 (10.2)’. [Online; accessed 23-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/data_acc.htm#sthref1541

Chan, I. (2005c), ‘Choosing data block size — Oracle database performance tuning

guide, 10g release 2 (10.2)’. [Online; accessed 20-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/iodesign.htm#sthref736

BIBLIOGRAPHY 297

Chan, I. (2005d), ‘Managing optimizer statistics — Oracle database performance

tuning guide 10g release 2 (10.2)’. [Online; accessed 31-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/stats.htm#PFGRF003

Chan, I. (2005e), ‘Shared cursors — Oracle database performance tuning guide,

10g release 2 (10.2)’. [Online; accessed 20-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/memory.htm#i45402

Chan, I. (2005f), ‘Using bitmap indexes for performance — Oracle database

performance tuning guide, 10g release 2 (10.2)’. [Online; accessed 21-

September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/data_acc.htm#sthref1587

Chan, I. (2006a), ‘Memory configuration and use — Oracle database performance

tuning guide 10g release 2 (10.2)’. [Online; accessed 04-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/memory.htm#sthref649

Chan, I. (2006b), ‘SQL tuning overview — Oracle database performance tuning

guide 10g release 2 (10.2)’. [Online; accessed 06-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/sql_1016.htm#i26072

Chan, I. (2006c), ‘Using application tracing tools — Oracle database performance

tuning guide 10g release 2 (10.2)’. [Online; accessed 06-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/sqltrace.htm#PFGRF01020

Chan, I. (2006d), ‘Using explain plan — Oracle database performance tuningguide

10g release 2 (10.2)’. [Online; accessed 25-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14211/ex_plan.htm#PFGRF009

Chen, I.-M. A. (1996), Query answering using discovered rules, in ‘ICDE ’96: Pro-

ceedings of the Twelfth International Conference on Data Engineering’, IEEE

Computer Society, Washington, DC, USA, pp. 402–411.

Cheng, Q., Gryz, J., Koo, F., Leung, T. Y. C., Liu, L., Qian, X. & Schiefer, K. B.

(1999), Implementation of two semantic query optimizationtechniques in

DB2 universal database,in ‘VLDB ’99: Proceedings of the 25th International

298 BIBLIOGRAPHY

Conference on Very Large Data Bases’, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, pp. 687–698.

Cherniack, M. & Zdonik, S. (1998), Changing the rules: transformations for rule-

based optimizers,in ‘SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD

international conference on Management of data’, ACM Press,New York, NY,

USA, pp. 61–72.

Cherniack, M. & Zdonik, S. B. (1996), Rule languages and internal algebras for

rule-based optimizers,in ‘SIGMOD ’96: Proceedings of the 1996 ACM SIG-

MOD international conference on Management of data’, ACM Press, New

York, NY, USA, pp. 401–412.

Chomicki, J. (2002), Querying with intrinsic preferences,in ‘EDBT ’02: Proceed-

ings of the 8th International Conference on Extending Database Technology’,

Springer-Verlag, London, UK, pp. 34–51.

Clemmesen, M. (1984), ‘Interval arithmetic implementations: using floating point

arithmetic’,SIGNUM Newsl.19(4), 2–8.

Cyran, M. & Lane, P. (2003), ‘Advantages of b–tree structure —Oracle database

concepts, 10g release 1 (10.1)’. [Online; accessed 21-September-2006].

URL: http://download-west.oracle.com/docs/cd/B14117_01/

server.101/b10743/schema.htm#sthref971

Cyran, M., Lane, P. & Polk, J. (2005a), ‘Database buffer cache — Oracle database

concepts, 10g release 2 (10.2)’. [Online; accessed 20-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14220/memory.htm#sthref1271

Cyran, M., Lane, P. & Polk, J. (2005b), ‘Memory architecture — Oracle database

concepts, 10g release 2 (10.2)’. [Online; accessed 31-August-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14220/memory.htm#sthref1257

Cyran, M., Lane, P. & Polk, J. (2005c), ‘Overview of bitmap indexes in data

warehousing — Oracle database concepts, 10g release 2 (10.2)’. [Online;

accessed 22-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14220/bus_intl.htm#sthref2481

Cyran, M., Lane, P. & Polk, J. (2005d), ‘Overview of the system global area

— Oracle database concepts, 10g release 2 (10.2)’. [Online;accessed

BIBLIOGRAPHY 299

31-August-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14220/memory.htm#sthref1257

Cyran, M., Lane, P. & Polk, J. (2005e), ‘Segment space management in locally

managed tablespaces — Oracle database concepts, 10g release 2 (10.2)’.

[Online; accessed 20-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14220/physical.htm#sthref523

D’Andrea, A. & Janus, P. (1996), ‘UniSQL’s next-generationobject-relational

database management system’,SIGMOD Rec.25(3), 70–76.

Date, C. J. (1995),An introduction to database systems — Chapter 3, 6 edn,

Addison-Wesley.

Date, C. J. (2003a), ‘Edgar F. Codd: a tribute and personal memoir’,SIGMOD Rec.

32(4), 4–13.

Date, C. J. (2003b), An introduction to database systems — Chapter 18, 8 edn,

Addison-Wesley.

DeHaan, D., Larson, P.-A. & Zhou, J. (2005), Stacked indexedviews in microsoft

SQL server,in ‘SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD in-

ternational conference on management of data’, ACM Press, New York, NY,

USA, pp. 179–190.

Doke, E. R., Satzinger, J. W., Williams, S. R. & Douglas, D. E. (2003), Object-

Oriented Application Development using Visual Basic .NET, 1 edn, Thomson

Course Technology.

Drakos, N. & Moore, R. (2006), ‘Gnuplot faq — gnuplot 4.0’. [Online; accessed

14-September-2006].

URL: http://www.gnuplot.info/faq

Eisenberg, A. & Melton, J. (2000), ‘SQL standardization: the next steps’,SIGMOD

Rec.29(1), 63–67.

Fogel, S. & Lane, P. (2006a), ‘Creating a locally managed tablespace — Oracle

database administrator’s guide, 10g release 2 (10.2)’. [Online; accessed

20-September-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14231/tspaces.htm#sthref1153

300 BIBLIOGRAPHY

Fogel, S. & Lane, P. (2006b), ‘Developing applications for a distributed database

system — Oracle database administrator’s guide 10g release2 (10.2)’.

[Online; accessed 12-July-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14231/ds_appdev.htm#sthref4330

Gao, D., Jensen, S., Snodgrass, T. & Soo, D. (2005), ‘Join operations in temporal

databases’,The VLDB Journal14(1), 2–29.

Gemignani, M. C. (1990),Elementary Topology, 2 edn, Courier Dover Publications.

Genet, B. & Dobbie, G. (1998), Is semantic optimisation worthwhile?,in ‘Proceed-

ings of the 21st Australasian Computer Science Conference’.

Godfrey, P., Grant, J., Gryz, J. & Minker, J. (1998), Integrity constraints: semantics

and applications,in ‘Logics for databases and information systems’, Kluwer

Academic Publishers, Norwell, MA, USA, pp. 265–306.

Godfrey, P. & Gryz, J. (1996), A framework for intensional query optimization,in

D. Boulanger, U. Geske, F. Giannotti & D. Seipel, eds, ‘DDLP ’96: Workshop

on Deductive Databases and Logic Programming’, pp. 57–68.

Godfrey, P., Gryz, J. & Minker, J. (1996), Semantic query optimization for bottom-

up evaluation,in Z. W. Rás & M. Michalewicz, eds, ‘Proceedings of the Ninth

International Symposium on Foundations of Intelligent Systems’, Vol. 1079

of LNAI, Berlin, pp. 561–571.

Godfrey, P., Gryz, J. & Zuzarte, C. (2001), Exploiting constraint-like data char-

acterizations in query optimization,in ‘SIGMOD ’01: Proceedings of the

2001 ACM SIGMOD international conference on management of data’, ACM

Press, New York, NY, USA, pp. 582–592.

Grant, J., Gryz, J., Minker, J. & Raschid, L. (1997), Semanticquery optimization

for object databases,in ‘ICDE ’97: Thirteenth International Conference on

Data Engineering’, IEEE Computer Science Press, Los Amitos,California,

USA, pp. 444–453.

Gryz, J., Liu, L. & Qian, X. (1999), Semantic query optimization in IBM DB2: Ini-

tial results, Technical Report CS-1999-01, Department of Computer Science,

York University, 4700 Keele Street, North York, Ontario M3J1P3, Canada.

Gryz, J., Schiefer, K. B., Zheng, J. & Zuzarte, C. (2001), Discovery and application

of check constraints in DB2,in ‘Proceedings of the 17th International Confer-

BIBLIOGRAPHY 301

ence on Data Engineering’, IEEE Computer Society, Washington, DC, USA,

pp. 551–556.

Haas, L. M., Carey, M. J., Livny, M. & Shukla, A. (1997), ‘Sing the truth about ad

hoc join costs’,The VLDB Journal6(3), 241–256.

Hammer, M. & Zdonik, S. B. (1980), Knowledge based query processing, in

‘VLDB ’80: Proceedings of the 6th International Conference Very Large Data

Bases’, Morgan-Kaufman, pp. 137–147.

Han, J., Cai, Y. & Cercone, N. (1993), ‘Data-driven discovery of quantitative rules

in relational databases’,IEEE Transactions on Knowledge and Data Engineer-

ing 5(1), 29–40.

Han, J. W., Huang, Y., Cercone, N. & Fu, Y. J. (1996), ‘Intelligent query answering

by knowledge discovery techniques’,IEEE Transactions on Knowledge and

Data Engineering8, 373–390.

Hickey, T., Ju, Q. & Emden, M. H. V. (2001), ‘Interval arithmetic: From principles

to implementation’,J. ACM48(5), 1038–1068.

Hobbs, L., Hillson, S., Lawande, S. & Smith, P. (2004),Oracle 10g Data Ware-

housing, 1 edn, Digital Press.

Hsu, C. & Knoblock, C. A. (2000), ‘Semantic query optimizationfor query plans of

heterogeneous multidatabase systems’,IEEE Transactions on Knowledge and

Data Engineering12(6), 959–978.

Hsu, C.-N. & Knoblock, C. A. (1994), Rule induction for semanticquery optimiza-

tion, in ‘ML ’94: Proc. 11th International Conference on Machine Learning’,

Morgan Kaufmann, pp. 112–120.

Hsu, C.-N. & Knoblock, C. A. (1996), Using inductive learning to generate rules for

semantic query optimization,in G. Piatetsky-Shapiro, U. Fayyad, P. Symyth

& R. Uthurusamy, eds, ‘Advances in knowledge discovery and data min-

ing’, American Association for Artificial Intelligence, Menlo Park, CA, USA,

pp. 425–445.

Hsu, C.-N. & Knoblock, C. A. (1998), ‘Discovering robust knowledge from

databases that change’,Data Min. Knowl. Discov.2(1), 69–95.

IEEE (1985), IEEE standard for binary floating point arithmetic, Technical Report

754-1985, IEEE Standards Board, Los Alamitos, California, USA.

302 BIBLIOGRAPHY

Illarramendi, A., Blanco, J. M. & Goni, A. (1994), ‘Making knowledge base sys-

tems more efficient: a method to detect inconsistent queries’,IEEE Transac-

tions on Knowledge and Data Engineering6(4), 634–639.

Jarke, M. & Koch, J. (1984), ‘Query optimization in databasesystems’,ACM Com-

puting Surveys16(2), 111–152.

Kim, S.-K. & Chakravarthy, S. (1992), A retrospective analysis of time concepts

in temporal databases, Technical Report UF-CIS-TR-92-044, University of

Florida, FL, USA.

King, J. J. (1981), QUIST: A system for semantic query optimization in relational

databases,in ‘VLDB ’81: Proceedings of the 7th International Conference on

Very Large Databases’, IEEE Computer Society Press, pp. 510–517.

Kriegel, H.-P., P̈otke, M. & Seidl, T. (2001), Object-relational indexing forgen-

eral interval relationships,in ‘SSTD ’01: Proceedings of the 7th Interna-

tional Symposium on Advances in Spatial and Temporal Databases’, Springer-

Verlag, London, UK, pp. 522–542.

Krokhin, A., Jeavons, P. & Jonsson, P. (2003), ‘Reasoning about temporal relations:

The tractable sub-algebras of Allen’s interval algebra’,J. ACM 50(5), 591–

640.

Lane, P. & Schupmann, V. (2002), ‘Overview of extraction, transformation, and

loading — Oracle9i data warehousing guide, release 2 (9.2)’. [Online;

accessed 25-September-2006].

URL: http://www.lc.leidenuniv.nl/awcourse/oracle/server.

920/a96520/ettoverv.htm#1020

Larsen, R. & Marx, M. (1981),An Introduction to Mathematical Statistics and its

Applications, 1 edn, Prentice-Hall, Inc, Englewood Cliffs, New Jersey, USA.

Lee, M. L., Bressan, S., Goh, C. H. & Ramakrishnan, R. (1999), Integration of

disparate information sources: A short survey,in ‘Workshop on Logic Pro-

gramming and Distributed Knowledge Management’, UK.

Lowden, B. G. T. & Robinson, J. (1999), A statistical approach to rule selection

in semantic query optimisation,in ‘ISMIS ’99: Proceedings of the 11th Inter-

national Symposium on Foundations of Intelligent Systems’, Springer-Verlag,

London, UK, pp. 330–339.

BIBLIOGRAPHY 303

Lowden, B. G. T. & Robinson, J. (2002), Constructing inter-relational rules for

semantic query optimisation,in ‘DEXA ’02: Proceedings of the 13th Interna-

tional Conference on Database and Expert Systems Applications’, Springer-

Verlag, London, UK, pp. 587–596.

Lowden, B. G. T. & Robinson, J. (2004), Improved data retrievalusing semantic

transformation,in ‘DEXA ’04 : Proceedings of the 15th International Con-

ference on Database and Expert Systems Applications’, Springer, Berlin, Ger-

many, pp. 391–400.

Luscher, L. & Green, C. D. (2002), ‘Using the rule-based optimizer — Oracle9i

database performance tuning guide and reference release 2 (9.2)’. [Online;

accessed 21-September-2006].

URL: http://www.lc.leidenuniv.nl/awcourse/oracle/server.

920/a96533/toc.htm

Maiocchi, R., Pernici, B. & Barbic, F. (1992), ‘Automatic deduction of temporal

information’,ACM Trans. Database Syst.17(4), 647–688.

Mani, I., Pustejovsky, J. & Sundheim, B. (2004), ‘Introduction to the special issue

on temporal information processing’,ACM Transactions on Asian Language

Information Processing (TALIP)3(1), 1–10.

Mannila, H., Toivonen, H. & Verkamo, A. I. (1994), Efficient algorithms for dis-

covering association rules,in ‘KDD-94: AAAI Workshop on Knowledge Dis-

covery in Databases’, pp. 181–192.

Maurer, S. B. (2004),Discrete Algorithmic Mathematics, 1 edn, A K Peters, Ltd.

Miller, R. J. & Yang, Y. (1997), Association rules over interval data,in ‘SIGMOD

’97: Proceedings of the 1997 ACM SIGMOD international conference on

management of data’, ACM Press, New York, NY, USA, pp. 452–461.

Muñoz, C. & Lester, D. (2005), Real number calculations and theorem proving,in

J. Hurd & T. Melham, eds, ‘TPHOLs ’05: Proceedings of the 18thInterna-

tional Conference on Theorem Proving in Higher Order Logics’, Vol. 3603,

Springer-Verlag, Oxford, UK, pp. 195–210.

Nebel, B. & Bürckert, H.-J. (1995), ‘Reasoning about temporal relations: a maximal

tractable subclass of Allen’s interval algebra’,J. ACM42(1), 43–66.

Özsoyoglu, G. & Snodgrass, R. T. (1995), ‘Temporal and real-time databases: A

survey’, IEEE Transactions on Knowledge and Data Engineering7(4), 513–

532.

304 BIBLIOGRAPHY

Pang, H. H., Lu, H. J. & Ooi, B. C. (1991), An efficient semantic query optimization

algorithm,in ‘ICDE ’91: Proceedings of the IEEE International Conference on

Data Engineering’, IEEE Computer Society Press, Los Alamitos, Ca., USA,

pp. 326–335.

Park, J. S., Chen, M.-S. & Yu, P. S. (1995), An effective hash-based algorithm for

mining association rules,in ‘SIGMOD ’95: Proceedings of the 1995 ACM

SIGMOD international conference on management of data’, ACMPress, New

York, NY, USA, pp. 175–186.

Piatetsky-Shapiro, G. (1991), Discovery, analysis and presentation of strong

rules, in G. Piatetsky-Shapiro & W. Frawley, eds, ‘Knowledge Discovery in

Databases’, AAAI/MIT Press, pp. 229–248.

Pohl, I. & Shaw, A. (1986),The Nature of Computation: An Introduction to

Computer Science, 6 edn, Computer Science Press Inc, Rockville, Maryland

20850, USA.

Poole, D. (2005),Linear Algebra - A Modern Introduction, 2 edn, Thomson

Brookes/Cole.

Press, W., Flannery, B., Teukolsky, S. & Vetterling, W. (1992), Numerical Recipes

in C: The Art of Scientific Computing, 2 edn, Cambridge University Press,

Cambridge, UK.

Rich, K. (2005), ‘Uses of initialization parameters — Oracledatabase reference,

10g release 2 (10.2)’. [Online; accessed 31-August-2006].

URL: http://download-west.oracle.com/docs/cd/B19306_01/

server.102/b14237/initparams001.htm#i1124342

Rishe, N., Sun, W. & Barton, D. (1995), ‘Florida internationaluniversity high per-

formance database research center’,SIGMOD Rec.24(3), 71–76.

Rishe, N., Sun, W. & Barton, D. (2003), ‘Mining for empty spacesin large data

sets’,Theoretical Computer Science296(3), 435–452.

Savasere, A., Omiecinski, E. & Navathe, S. B. (1995), An efficient algorithm for

mining association rules in large databases,in ‘VLDB ’95: Proceedings of the

21th International Conference on Very Large Data Bases’, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp. 432–444.

Sayli, A. & Lowden, B. (1996), The use of statistics in semantic query optimisa-

tion, in ‘Proc. 13th. European Meeting on Cybernetics and Systems Research’,

pp. 991–996.

BIBLIOGRAPHY 305

Sciore, E. & Siegel, M. (1990), Heuristic-based semantic query optimization,in

‘JCIT ’90: Proceedings of the fifth Jerusalem conference on information tech-

nology’, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 541–

550.

Shekhar, S., Hamidzadeh, B., Kohli, A. & Coyle, M. (1993), ‘Learning transfor-

mation rules for semantic query optimization: A data-driven approach’,IEEE

Transactions on Knowledge and Data Engineering5(6), 950–964.

Shekhar, S., Srivastava, J. & Dutta, S. (1992), ‘A formal model of trade-off between

optimization and execution costs in semantic query optimization’, Data and

Knowledge Engineering8(2), 131–151.

Shenoy, S. T. & Ozsoyoglu, Z. M. (1987), A system for semanticquery optimiza-

tion, in ‘SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international

conference on management of data’, ACM Press, New York, USA, pp. 181–

195.

Shenoy, S. T. & Ozsoyoglu, Z. M. (1989), ‘Design and implementation of a seman-

tic query optimizer’,IEEE Transactions on Knowledge and Data Engineering

1(3), 344–361.

Siegel, M., Sciore, E. & Salveter, S. (1992), ‘A method for automatic rule deriva-

tion to support semantic query optimisation’,ACM Transactions on Database

Systems17(4), 563–600.

Snodgrass, R. & Ahn, I. (1985), A taxonomy of time databases,in ‘SIGMOD ’85:

Proceedings of the 1985 ACM SIGMOD international conferenceon manage-

ment of data’, ACM Press, New York, USA, pp. 236–246.

Srikant, R. & Agrawal, R. (1996), Mining quantitative association rules in large

relational tables,in ‘SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD

international conference on management of data’, ACM Press,New York, NY,

USA, pp. 1–12.

Sun, W. & Yu, C. (1994), ‘Semantic query optimization for treeand chain queries’,

IEEE Transactions on Knowledge and Data Engineering6(1), 136–151.

Waas, F. & Galindo-Legaria, C. (2000), Counting, enumerating, and sampling of

execution plans in a cost-based query optimizer,in ‘SIGMOD ’00: Proceed-

ings of the 2000 ACM SIGMOD international conference on management of

data’, ACM Press, New York, NY, USA, pp. 499–509.

306 BIBLIOGRAPHY

Walster, G. W. (2000), ‘The use and implementation of interval data types in For-

tran’, SIGPLAN Fortran Forum19(2), 2–15.

Warshaw, L. B. & Miranker, D. P. (1999), Rule-based query optimization, revis-

ited, in ‘CIKM ’99: Proceedings of the eighth international conference on

Information and knowledge management’, ACM Press, New York,NY, USA,

pp. 267–275.

Yoon, S., Henschen, L. J., Park, E. K. & Makki, S. (1999), Using domain knowledge

in knowledge discovery,in ‘CIKM ’99: Proceedings of the eighth international

conference on information and knowledge management’, ACM Press, New

York, USA, pp. 243–250.

Yu, C. T. & Sun, W. (1989), ‘Automatic knowledge acquisition and maintenance

for semantic query optimization’,IEEE Transactions on Knowledge and Data

Engineering1(3), 362–375.

Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H. & Urata, M. (2000),

Answering complex SQL queries using automatic summary tables, in ‘SIG-

MOD ’00: Proceedings of the 2000 ACM SIGMOD international conference

on management of data’, ACM Press, New York, NY, USA, pp. 105–116.

Zhang, X. & Ozsoyoglu, Z. M. (1997), ‘Implication and referential constraints: A

new formal reasoning’,IEEE Transactions on Knowledge and Data Engineer-

ing 9(6), 894–910.

Zhu, Q. (1992), Query optimization in multidatabase systems, in ‘CASCON ’92:

Proceedings of the 1992 conference of the Centre for AdvancedStudies on

Collaborative research’, IBM Press, pp. 111–127.

