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Abstract 
A novel method of face gender classifier construction is proposed and evaluated. Previously, researchers have assumed that 
a computationally expensive face alignment step (in which the face image is transformed so that facial landmarks such as the 
eyes, nose, chin, etc, are in uniform locations in the image) is required in order to maximize the accuracy of predictions on 
new face images. We, however, argue that this step is not necessary, and that machine learning classifiers can be made 
robust to face misalignments by automatically expanding the training data with examples of faces that have been deliberately 
misaligned (for example, translated or rotated). To test our hypothesis, we evaluate this automatic training dataset expansion 
method with two types of image classifier, the first based on weak features such as Local Binary Pattern histograms, and the 
second based on SIFT keypoints. Using a benchmark face gender classification dataset recently proposed in the literature, 
we obtain a state-of-the-art accuracy of 92.5%, thus validating our approach. 

Keywords: Gender classification, face detection, face alignment, face classification, Spatial Pyramid, Local 
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1 Introduction 
Automatically assigning a gender to faces detected in 
a scene is a challenging pattern recognition problem. 
Whereas face detection can be performed with high 
accuracy [1,2], gender assignment given segmented 
face images is much more difficult. Despite this, 
accurate face gender classification has many useful 
potential applications. For example, in digital video 
libraries, there is a need to detect the current speaker 
and annotate videos with this information [3]. Gender 
classification could be useful here by reducing 
ambiguities, for example matching only female voices 
to female faces. Face gender classification may also 
be useful in more general face recognition systems, 
where an accurate predication of gender could 
eliminate false identifications on the basis of 
mismatched gender. 

An open question, and the main question relevant to 
this paper, is whether automatic face alignment is 
needed for gender classification. Face misalignments 
occur, for example, when the face detection algorithm 
does not perfectly detect the bounding box around a 
face – the face may be shifted a little off centre. 
Misalignments may also occur simply because people 
have different sized faces, or their face is tilted 
slightly. 

Automatic face alignment therefore involves 
searching the detected face image for basic facial 

features such as the eyes, nose, mouth, and chin. The 
face image is then transformed so that the detected 
facial features line up in all images. This, according to 
its proponents, should lead to better gender 
classification performance. 

Mäkinen and Raisamo [2] evaluated the effects of 
face alignment on automatic gender classification 
performance. They used four different methods of 
facial alignments, three of which were based on 
Active Appearance Models (AAMs) [4] and one 
based on profile alignment [2]. These authors also 
built and made available a standard dataset for face 
gender classification experiments, which consists of a 
set of faces detected using Viola & Jones’ face 
detector [1] applied to a subset of images from the 
FERET face recognition database [6,7]. The faces are 
not aligned or registered, and only the bounding box 
around the face as determined by the face detection 
algorithm is available. The face are categorized into 
two classes, male and female, with a training set 
consisting of 304 images (half male, half female) and 
a test set consisting of 107 images (60 male and 47 
female). 

What Mäkinen and Raisamo found was that all 
alignment methods currently lead to either a loss in 
accuracy or no change in accuracy compared to 
classifying detected images without any alignment. 
Their average results were 84.6% without alignment 
compared to 82.1% when alignment was used. 
Manually aligning the faces (i.e. using a human to 
indicate the location off facial features), however, led 978-1-4244-2582-2/08/$25.00 ©2008 IEEE 
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to a slight increase in accuracy – to 87.1% on the test 
data. This prompted the authors to conclude that 
current automatic face alignment methods are of 
insufficient quality to be useful in gender 
classification. 

Besides the apparent drop in performance that 
automatic alignment methods lead to, there is also the 
computational overhead to consider, even if alignment 
methods do improve accuracy eventually. A face 
detector with built-in automatic alignment of faces is 
likely to be much more complex and slower at testing 
time than a straightforward classifier that operates 
directly on the detected face images themselves. Real-
time performance under these conditions therefore 
may be hindered. 

Our main contribution therefore, is to show that 
automatic alignment methods are not needed if the 
machine-learning based gender classification 
approach is made robust to misalignments. Rather 
than attempting to align faces as a preprocessing step 
for classification of new face images, we propose 
instead to artificially extend the training set used to 
build the classifier with examples of deliberately 
misaligned faces. By increasing the diversity of 
images in the training set in this way, a robust 
classifier can be built that can cope with any non-
extreme variation due to misalignment. Effectively, 
the “alignment” step is shifted from testing time to the 
training phase. 

To illustrate our approach, we use two different 
methods of artificially extending the dataset: (i) 
copying the original training images and cropping the 
copies along one border (a different border for each 
copy) and then adding the cropped copies back to the 
dataset (which corresponds to translation 
misalignments); and (ii) adding both cropped and 
rotated copies of original images to the dataset 
(translation and rotation misalignments).  

We also use two different methods of face image 
classification, a “weak” approach and a “strong” 
approach. Weak approaches involve computing many 
low-level statistical features that are chosen a priori 
from the training images, and using these as the basis 
for classification. The features used here are Spatial 
Pyramids and Local Binary Pattern frequency 
histograms 

Strong approaches, on the other hand, involve the 
computation of more sophisticated features. Unlike 
weak features, they cannot be chosen a priori, because 
the features are derived only after analysis of the 
training images. Strong features are therefore 
considered to be more informative features, and fewer 
of them are needed as a result. The strong features we 
consider in this paper are the presence/absence of 
frequently occurring SIFT keypoints [7] in the 
training images. In both cases, Support Vector 
Machines (SVM) [12, 13] and Random Forests [14] 
are used as the classifiers. 

Our results show that our proposed method is highly 
effective: the best accuracy on the gender 
classification dataset achieved is 92.5%, representing 
a new state-of-the-art performance on this dataset. 

2 Face Gender Classification 
Before describing the experiment and analysis, a more 
detailed overview of the features and classification 
methods used in this study is given.  

2.1 Weak Feature-Based 
Classification 

Weak features are low level statistical measures 
derived directly from image pixels. Four simple but 
effective examples of weak features are the mean, 
variance, skew and kurtosis of an image’s intensity 
histogram, all of which are used in this study. 

Another frequently used image feature is the Local 
Binary Pattern (LBP) histogram [8]. Although 
originally used in the domain of texture recognition, 
this feature type has also recently been found to be 
effective for face recognition (e.g. [9]). 

Briefly, a LBP is a property of a pixel. The pixel’s n 
circular neighbours at distance r are examined 
(bilinear interpolation being used if necessary), and a 
binary string of length n is constructed such that the 
ith bit of the string is 1 if the neighbour’s intensity 
exceeds that of the pixel, and 0 otherwise. Neighbours 
must be equally spaced around the perimeter of the 
circle. If, upon a circular transversal of the bit-string, 
there are two or less 0 to 1 or 1 to 0 transitions, then 
the LBP is considered “uniform” and therefore 
assigned to a category specified by the number of 1s 
in the string. 

Figure 1 gives an example of a LBP that is uniform. 
The bit-string for the pixel (starting with topmost 
neighbour and running clockwise) is 11100001, 
yielding a uniform LBP of category 4. On the other 
hand, a pixel with a bit string such as 01100110 is not 
uniform and therefore the pixel would not be 
considered to have a valid LBP. 

 

 
Figure 1: A LBP calculated for a pixel (x,y). 

 

For any given grey scale image, a histogram of 
uniform LBP frequencies can be constructed with n+1 



 

bins. They tend to capture the edges, curves, peaks 
and troughs in an image. 

Low level or weak features can be computed either 
globally or by image region. One effective method 
that captures both global and local variability is the 
spatial pyramid [10]. Spatial pyramids repeatedly 
subdivide an image, computing all features repeatedly 
for all progressively smaller sub-images. 

The first image is always the global image, and then 
the image is divided into 2x2 sub-images, and features 
are computed from each of those. The image may 
then be further subdivided, this time 4x4 regions, and 
so on. For a spatial pyramid with l levels, the 
maximum granularity will be a division of an image 
into 2l-1x2l-1 sub-images. Figure 2 illustrates a 
division of a face image into sub-images for an l=3 
pyramid. 

 

 
Figure 2: Sub-images for a spatial pyramid. 

 

The primary advantage of spatial pyramids is that 
they capture the spatial distribution of features at the 
finer resolutions, while also maintaining the global 
features that are in themselves highly effective 
features for classification. 

We used all of these weak features (i.e. histogram 
statistics, LBPs, and spatial pyramids) as the input to 
our SVM and Random Forest classifiers. 
 

2.2 Strong Feature-Based 
Classification 

The second classification method is a novel approach 
based on local invariant feature descriptors, 
specifically SIFT keypoints [7]. SIFT keypoints are 
computed from image regions that are detected by an 
interest point detection process. Each keypoint 
descriptor contains 128 attributes that describe that 
region in a scale and orientation invariant way. We 
can simply see SIFT keypoints as the fingerprint of 
images, where each fingerprint identifies a unique 
feature of an image and hence enables us to discover 
similar features across different images. 

The basic idea is that the presence or absence of a 
particular keypoint is used as an attribute in the 
feature vector for a face image. And instead of 
building the feature vector from the entire collection 
of keypoints that can be calculated from the training 

data, our approach is to include only keypoints that 
frequently occur in the images – since less frequently 
occurring keypoints are more likely to be irrelevant. 
The primary advantage of this strong approach is that 
many less features should be needed to achieve the 
same levels of accuracy as in the weak case. 

The rule we use for matching two keypoints is to 
compute the χ2 distance between their descriptors. If 
this distance falls below a certain fixed threshold, they 
are considered to be the same keypoint, otherwise 
they are considered different keypoints. The χ2 
distance metric for two keypoints, x and y, is shown in 
equation (1). 
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Although keypoint-based approaches in computer 
vision are most frequently used for object recognition 
in cluttered scenes, we were interested in testing this 
approach in the completely different domain of 
gender classification.  

3 Experiment 
In the experiments we performed, we used the two 
different methods of classification (weak and strong) 
with three different versions of the training dataset, 
the original version used in [2], and two new versions 
created by automatically expanding the original 
training set with the addition of deliberately 
misaligned copies of the original images.  

For weak classification, we used the four intensity 
statistics (i.e., mean, variance, skew, and kurtosis) as 
features, along with a LBP histogram with r=2 and 
n=16. This gave a total of 21 features per image 
region. We then extracted features using spatial 
pyramids of three different sizes, specifically l=2, l=3 
and l=4. This yielded a total feature count per image 
of 106, 442, and 1786 features respectively. 

Two versions of an SVM classifier [12, 13] were used 
to perform the classification, specifically an SVM 
with a linear kernel (SVMlinear) and an SVM with a 
quadratic kernel (SVMquad). A Random Forests 
classifier [14] with 200 random trees (RF200) was also 
used. The implementations of all of these classifiers 
were those available in Weka version 3.5.6 [11], and 
to avoid parameter tuning to the test set, all the other 
parameters were left at default values. 

For the strong classification experiment using 
frequent keypoints, we choose the number of selected 
frequent keypoints to be either 50 or 200. We also 
used the same SVMlinear, SVMquadratic, and RF200 
classifiers as in the weak classification case. 



 

The artificially expanded versions of the datasets were 
generated as follows. First, the original training set 
(Train1), consisting of 304 images, was expanded by 
copying every image four times, and cropping 16 
pixels off each of the four copies along one of the four 
different borders, either top, bottom, left or right. This 
yielded a second version of the training dataset 
(Train2) with 304*5=1,520 unique images. The third 
artificially expanded dataset was constructed by 
duplicating all of the images in Train2 twice, with one 
copy being rotated by 5°, and the other by -5°. This 
yielded a dataset (Train3) with 1,520*3=4,560 unique 
images.  

Consequently, for every original image from Train1, 
Train2 contained four misaligned images in addition 
to the original image; and Train3 contained twelve 
misaligned versions in addition to the original image. 

The only image preprocessing performed prior to 
feature extraction was the application of two 
averaging filters in order to smooth the images. All 
classifiers were tested on the same set of 107 test 
images regardless of which training set or 
classification method they used. 

4 Results 
Using the weak classification method with intensity 
statistics, LBPs, spatial pyramids and SVMs, the best 
accuracy achieved was 92.5%. A more detailed 
breakdown of results by training set, spatial pyramid 
size, and classifier is given in Table 1. 

 

Table 1: Classification accuracy on the test set by 
classifier, training set, and spatial pyramid size 
(number of features). 

  Spatial Pyramid Size 

Classifier Training l=2 
(106) 

l=3 
(442) 

l=4 
(1,786) 

Train1 79.4 84.1 88.7 

Train2 82.2 91.6 91.6 

SVMlinear 

Train3 86.0 90.6 91.6 

Train1 80.4 85.0 89.7 

Train2 82.2 89.7 90.6 

SVMquad 

Train3 81.3 92.5 90.6 

RF200 Train1 84.1 89.7 86.0 

 Train2 84.1 88.7 87.8 

 Train3 78.5 86.9 87.8 

 

An examination of Table 1 reveals that in most cases, 
the addition of deliberately misaligned versions of the 
training images to the original training set for the 
SVM classifiers significantly improves prediction 
accuracy. Furthermore, the improvement is most 
pronounced when the number of features is low. 

For example, when l=2 (only 106 extracted features), 
the performance of SVMlinear jumps from 79.5% given 
the original training set, to 86% after being trained on 
Train3. When more features are extracted, such as the 
l=3 case (where there are 442 features extracted), the 
performance of SVMlinear given Train2 jumps to 
91.6%. 

The most pronounced gain however is for SVMquad 
when l=3, which goes from 85% accuracy given the 
original training set to 92.5% given Train3 as a 
training set – an increase in accuracy of 7.2%, and the 
best recorded accuracy on this dataset. As the number 
of features increases to l=4, the accuracies of the 
classifiers given only the original training images also 
increases, for example to 89.7% for SVMquad, but this 
is at significant additional computational cost 
(specifically, extracting 1,786 features per image 
compared to 442 features when l=3).  

Interestingly, the Random Forest classifier does not 
benefit from artificial data expansion, and actually 
performs consistently worse given Train3 than it does 
given Train1. 

With regards to the strong classification method using 
SIFT keypoints, the results by training set are given in 
Table 2.  

 

Table 2: Classification accuracy on the test set by 
classifier and number of selected keypoints/features. 

  Num. Selected Keypoints 

Classifier Training n=50 n=200 

Train1 68.2 73.8 

Train2 68.1 73.6 

SVMlinear 

Train3 67.5 74.0 

Train1 71.0 72.0 

Train2 70.5 71.5 

SVMquad 

Train3 70.5 72.1 

RF200 Train1 70.1 79.4 

 Train2 69.8 77.6 

 Train3 70.3 78.4 

 



 

As can be observed, there is little difference in the 
performance of the keypoint-based classification 
approach given expansion of the training set, and the 
best accuracy of this method of 79.4% is far below 
that of the weak approach. 

5 Conclusion 
The main focus of this paper is the question of how a 
face gender classifier should cope with misaligned 
face images – are expensive automatic face alignment 
methods needed? Or can classifiers be adapted to cope 
with misalignments? We have argued in this paper 
that it is better to build the classifier to be robust to 
misalignments than it is to add a computationally 
expensive face alignment step to the face 
classification phase. 

Furthermore, we have shown a method by which this 
may be achieved: artificially expanding the training 
data with deliberately misaligned faces. The 
misalignments we choose were translation (via 
cropping) and small rotations, but other possible 
deliberate misalignments may bear even better results, 
for example small random affine transformations. The 
results bear witness to the effectiveness of this 
approach, with an overall best accuracy of 92.5%. 

An unexpected benefit of this research is that 
artificially expanding the training dataset as we have 
described actually makes the features themselves, in 
the weak classification case, much more informative 
and therefore less are needed. For example, only a 
three level spatial pyramid is required to achieve 
accuracies of approximately 90% or above if the 
training set is artificially expanded, whereas a four 
level spatial pyramid is required to get the same 
accuracy if only the original training images are used.  

Overall, this experiment has validated our new 
proposed approach to face gender classification. 
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