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PERSONAL EXPERIENCES AND BELIEFS IN PROBABILISTIC REASONING:
IMPLICATIONS FOR RESEARCH

Sashi Sharma

.

INTRODUCTION

Over the past years, there has been a movement in many countries to include statistics
and probability at every level in the mathematics curricula. In western countries such as Australia
(Australian Education Council, 1991), New Zealand (Ministry of Education, 1992) the United
Kingdom (Holmes, 1994) and the United States (Shaughnessy and Zawojewski, 1999) these
developments are reflected in official documents and in resources produced for teachers. In line
with these moves, Fiji has also produced a new mathematics prescription at the primary level that
places a stronger emphasis on statistics at this level (Fijian Ministry of Education, 1994). 

Lajoie and Romberg (1998) note that in spite of its decade-long presence in curricular
reform in elementary mathematics education, statistics is an area still in its infancy. Research
shows that many students find probability difficult to learn and understand in both formal and
everyday contexts and that we need to better understand how learning and understanding may be
influenced by ideas and intuitions developed in early years (Amir and Williams. 1999; Barnes,
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1998; Fischbein and Schnarch, 1997; Garfield, 1995; ). Shaughnessy and Zawojewski (1999)
report that even when secondary students were successful on such items as identifying the
probability of a simple event on the National Assessment of Educational Progress (NAEP) study,
they experienced difficulty applying this information in problem-solving situations. 

Recently there has been evidence pointing to an influence of social settings and culture
on mathematics thinking in general. Literature on ethno-mathematics (Barton, 1996) show
strong influences of culture on mathematical thinking of adults. Carraher and Schliemann (2002)
were intrigued by the ways Brazilian street vendors who seemed to be unskilled in mathematics
in school settings could solve problems with no difficulty in non-school settings. The vendors
often did not see school mathematics as connected to the real world, and as a result they often
did not employ school taught procedures but used alternative flexible strategies to solve the
problems. However, research illuminating the influence of culture on probabilistic thinking is
sparse. Most of the research in probability has been done in just a very few western countries.  It
needs to be determined how culture influences conceptions of probability, whether biases and
misconceptions are artifacts of western culture, or whether they vary across cultures. For
instance Watson and Callingham (2003) argue that students in ‘other cultural settings’ may
respond differently to their Australian counterparts, particularly to context-based items used in
their studies.

Concerns about the importance of statistics in everyday life and in schools, a lack of
research in this area and students' difficulties in statistical reasoning, determined the focus of my
study. Overall, the study was designed to investigate the ideas form five students have about
statistics (probability, descriptive statistics, graphical representations), and how they construct
them. This paper presents and discusses data obtained from the probability tasks. Prior to
discussing the details of my own research, I will briefly mention the theoretical framework and
some examples of work on probability by students.

THEORETICAL FRAMEWORK

Much recent research suggests that constructivist models of knowledge provide a useful
model of how students learn mathematics. Constructivism in its various forms, is based on the
principle that learners actively construct ways of knowing as they strive to reconcile present
experiences with already existing knowledge (von Glasersfeld, 1993). Students are no longer
viewed as passive absorbers of mathematical knowledge conveyed by adults; rather they are
considered to construct their own meanings internally by transforming, organising and
reorganising previous knowledge (Cobb, 1994) as well as externally, through environmental and
social factors that are influenced by culture, language and interactions with others (Mills, 2003).
The constructions, based on beliefs and past experiences, appear to be the foundation for most
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learning. This active construction process results in misconceptions and alternative views as well
as the student learning the concepts intended by the teacher. The research on student's
misconceptions in probability (Amir and Williams, 1999, 1994; Fischbein and Schnarch, 1997;
Nicolson, 2005; Shaughnessy,1997) provides evidence of the constructive process. Fischbein
and Schnarch report that students use a variety of intuitive strategies to solve probabilistic
problems. The researchers speculated that students are likely to have intuitions which are at
variance with the commonly accepted reasoning.

Constructivism provides the theoretical basis for understanding how students learn in
this study. This research was therefore designed to identify students' ideas, and to examine how
they construct them. Although I conducted the study within a constructivist framework, in that
the students learning was seen as building their own constructions, the teaching which occurred
during the study was, not unexpectedly, based on a transmissive view of teaching. There was
mostly teacher telling, followed by text-book based students’ practice. Group work, problem
solving and other desirable teaching/learning activities such as use of relevant contexts were not
picked up by the teacher even though he appeared to be familiar with these ideas. 

PREVIOUS RESEARCH

A number of research studies from different theoretical perspectives seem to show that
students tend to have intuitions which impede their learning of probability concepts. Some
prevalent ways of thinking which inhibit the learning of probability are: 

• Representativeness: According to this strategy students make decisions about the
likelihood of an event based upon how similar the event is to the population from which
it is drawn or how similar the event is to the process by which the outcome is generated
(Tversky and Kahneman, 1974). For instance, a long string of heads does not appear to
be representative of the random process of flipping a coin, and so those who are
employing representativeness would expect tails to be more likely on subsequent tosses
until things evened out. Of course, the belief violates independence construct which is
a fundamental property of true random sampling.

• Equiprobability bias: Students who use this bias tend to assume that random events are
equiprobable by nature. Hence, the chances of getting different outcomes, for instance,
three fives or one five on three rolls of a die are viewed as equally likely events
(Lecoutre, 1992). 

• Beliefs: Research shows that a number of children think that their results depend on a
force, beyond their control, which determines the eventual outcome of an event.
Sometimes this force is God or some other force such as wind, other times wishing or
pleasing (Truran, 1994). 
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• Human Control: Research designed to explore children’s ability to generalise the
behaviour of random generators such as dice and spinners show that a number of
children think that their results depend on how one throws or handles these different
devices (Nicolson, 2005). 

Representativeness; To illustrate the undue confidence that people put in the reliability
of small samples, Tversky and Kahneman (1974) presented the following problem to tertiary
students:

Most subjects in Tversky and Kahneman's study (1974) judged the probability of
obtaining more than 60% boys to be the same in the small and in the large hospital. However,
the sampling theory entails that the expected number of days on which more than 60% of the
babies are boys is much more likely to occur in a small hospital because a large sample is less
likely to stray from 50%. According to Tversky and Kahneman (1974) the representativeness
heuristic underlies this misconception. 

Shaughnessy (1997) provides evidence that students may actually superimpose a
sampling setting on a question where none is there to begin with, in order to establish a centre
from which to predict. For instance, consider the following task given to a sample of tertiary
students at the beginning of a class in statistics: 

Below are some typical responses. The responses indicate a great variety of conceptions,
and interpretations of the problem.

The notion of a representative sample that is so helpful in the Tversky and Kahneman
(1974) survey can cause problems when applied in the above context. There is no sample in the
above question, there is just the sample space and yet some of the students appeared to
superimpose a sampling context on the original question inorder to employ the
representativeness strategy in their responses. 

I would go with (a) only because it more closely approximates the ratio 50-50, but in such a small sample

anything is possible.

I would say both are equally likely on any particular instance, although the long term results would

gravitate to a result more like (a). 

More likely to have a series of two of the same, than to have five of the same.

A fair coin is flipped 5 times in succession. Which do you feel is more likely to occur for the five flips?

(a)    HTTHT       (b)     HHHHH   (c)     they have the same chance of happening.

Assume that the chance of having a boy or girl baby is the same. Over the course of a year, in which type

of hospital would you expect there to be more days on which at least 60% of the babies born were boys?

(a) In a large hospital

(b) In a small hospital

(c) It makes no difference
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Equiprobability: Lecoutre (1992) used the following question in an experimental study
of 1000 students with various backgrounds in probability:

Two dice are simultaneously thrown, and the following two results are obtained:
R1: 5 and 6 are obtained

R2: a 6 is obtained twice

Do you think the chance of obtaining each of these results is equal?

Or is there more chance of obtaining one of them, and if so, which, R1 or R2?

Or is it impossible for you to give an answer, and if so, why?

Lecoutre reports that most of the subjects answered incorrectly, that the two events have
the same probability. From a systematic analysis of the justifications provided by students, it
appeared that the most frequent cognitive model (65%) was based on the following type of
argument: The two results are equiprobable because it is a matter of chance. Lecoutre also found
that the equiprobability bias was highly resistant to change. For instance, it was found that
increasing age, greater experience and experimental context (combinatorial information,
frequency information) had little or no impact on this bias. 

Beliefs: Amir and Williams (1994) propose that beliefs appear to be the elements of
culture with the most influence on probabilistic thinking. They interviewed thirty-eight 11 to 12-
year- old children about their concepts of chance and luck, their beliefs and attributions, their
relevant experiences and their probabilistic thinking. Some pupils thought God controls
everything that happens in the world while others thought God chooses to control, or does not
control anything in the world. Several pupils believed in superstitions, such as walking under a
ladder, breaking a mirror and lucky and unlucky numbers. There were also beliefs directly
related to coins and dice; for instance, when throwing a coin tails is luckier. A majority of
children in the Amir and William study concluded that it is harder to get a 6 than other numbers
(17 out of 21 interviewees). The children remembered from their experience of beginning board
games waiting a long time for a 6 on the die. 

Human control: Fischbein and Schnarch (1997) asked 139 junior high school students
(prior to instruction) to compare the probability of obtaining three fives by rolling one die three
times versus rolling three dice simultaneously. Two main types of unequal probabilities were
mentioned by about forty percent of the students. Of these students, about three-fifths considered
that, by successively throwing the die, they had a higher chance of obtaining the expected result,
and about two-fifths considered that by throwing three dice simultaneously they would have a
higher chance of obtaining the expected results. Some of the justifications provided by the
students for successive trials were:

By rolling one die at a time, one may use the same type of rolling because the coins do not knock against

each other and therefore do not follow diverse paths
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The opposite solution, that is, there was a greater chance of getting three heads by
tossing the coins simultaneously also had its proponents. Reasons given included: 

Because the same force is imparted.

One can launch in the same way. 

The explanations indicate a belief that the outcomes can be controlled by the individual. 

In the Truran study (1994), many different methods of tossing coins and dice were
described by children in order to get the result they wanted. For example, for tossing three dice
together, some children thought that it is better to throw the dice one at a time because (when
tossed together) dice can bump into each other and change the numbers which would otherwise
have come up. Even if their carefully explained and demonstrated method did not work, children
were still convinced that if they did everything right, it would work the next time. 

Shaughnessy and Zawojewski (1999) documented similar statements among twelfth
graders on probability tasks. Rather than using the sample space or multiplication principle, the
students attributed to some sort of physical property of the spinners such as the rate at which the
spinners were spun, the initial position of the arrows, or even some external influence, for
instance, the wind.  

Whether one explains the misconceptions in probabilistic thinking by using naive
strategies such as representativeness and equiprobability or by deterministic belief systems such
outcomes can be controlled, the fact remains that students seem very susceptible to using these
types of judgements. In some sense, all of these general claims seem to be valid. That is, a
student has knowledge about a variety of uncertain situations. Different problems address
different pieces of this knowledge. Hence, in one problem, a student may reason according to the
representativeness model, whereas in another, the same person may reason according to the
control strategy. 

The belief that outcomes can be controlled by the individual is not generally false. We
can imagine throwing the die in a way that we can predict the outcome (pushing them smoothly
from a height of 1 cm). It depends on the situation and the context. Even with a fair die, the side
that it lands on is virtually completely determined by a number of factors such as which way up
it started and the degree of spin. If we knew all this then with sufficient expertise in physics we
could write down some equations which are thought to govern the motion of the die and use
these to work out which way up the die should land. 

Moreover, some of the misconceptions addressed in the research literature may actually
be due to misinterpretation of the questions. Given the subtleties of interpretations that have been
reported, it is unlikely that the research items used in the research described in this section would
have discriminated finely enough. Some of these misconceptions may actually be due to
misinterpretation of the questions. The study by Amir and Williams (1994) is one of the few that
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has used individual interviews to explore probabilistic reasoning in any depth. Interviews have
provided the researchers with much detailed information as to how pupils' knowledge and
misconceptions are constructed. Additionally, mathematics educators should realise that the
students they teach are not new slates waiting to have the formal theories of probability written
upon them. The students already have their own built-in heuristics, biases and beliefs about
probability and these cannot, as it were, be simply wiped away. If student conceptions are to be
addressed in the process of instruction, then it is important for teachers of probability to become
familiar with the alternative conceptions that students bring to classes. Moreover, the research
discussed in this section has been done in a very few western countries, it is important to
investigate how culture influences conceptions of probability, whether intuitive strategies and
preconceptions such as representativeness, equiprobability are artifacts of western culture or
whether they vary across cultures. Fischbein and Schnarch (1997) and Metz (1997) argue that to
adequately understand students’ cognitive constructions and beliefs, we need to consider the
culture in which students participate. In order to help inform teachers and curriculum designers,
it appears to be crucial to carry out investigations at the secondary level. Such information may
help teachers plan learning activities and students overcome their difficulties. In the current
interview-based study, open-ended tasks were used to determine specific student conceptions
and the factors that contribute to these constructs. An overview of the research design follows,
after which I will discuss the results of my study. 

OVERVIEW OF THE STUDY

In Fiji, selected topics in statistics are taught in schools from class 8 to form 7 (grades 8
to 13) as part of the mathematics curriculum (see Appendix 1). Primary schools in Fiji are classes
1 to 8 (in some cases 6) and cater for children aged 6 to 13 (or 11). Secondary schools start at
Form 1 (class 7) or Form 3 and go to Form 4 or Form 7. The new mathematics prescription for
classes 1 to 6 (Fijian Ministry of Education, Women, Culture, Science and Technology, 1994)
gives greater emphasis to statistics at these age levels (6 to 11-year-olds). Statistics has been
added into mathematics at these lower levels probably because it appears in the New Zealand
Mathematics Curriculum document and Fiji had followed the New Zealand curriculum up to
1988. However, probability is not taught until the senior years of high school. 

Sample

The study took place in a co-educational private secondary school in Fiji. The school roll
was about 400, the majority being Indians. The school draws students mainly from rural
contributing schools; the students' families came from a farming community. It was an average
high school, and the staff were interested in being involved in the research project. The study
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focused on form 5 students, for two main reasons. Firstly, this was the age group that I had taught
frequently during my teaching career and therefore felt very comfortable with. Secondly, since
form five students in Fiji do not sit any external examinations, it was felt that the class teacher
would be free of external constraints and more willing to be involved in the project.  

The class consisted of 29 students aged 14 to 16 years. Fourteen students were chosen
from the class and this constituted the research sample. The students were from different
religious backgrounds (Sanatani, Samaji, Muslims and Christians). According to the teacher,
none of the students in the sample had previously received any in-depth instruction on statistics.
The sample was selected by the researcher in consultation with the class teacher. The criteria for
selection included gender and achievement. 

Tasks

The investigation dealt with a number of probability concepts (equally likely,
independence, compound events, proportional reasoning) in different contexts. The
appropriateness of these interview tasks for Fijian students was established by checking them
with the class teacher and the HOD mathematics at the school. In the present paper, findings
relating to equally likely items are discussed.

The single die question (Item 1A) was used to elicit students’ ideas about theoretical
probabilities embedded in chance generating devices. In explaining their answers, students could
consider the sample space or symmetrical properties of the die. The advertisement regarding the
sex of a baby (Item 1B) and the Fiji Sixes item (Item 1C) in Figure 1 attempted to explore
students’ understanding of theoretical and experimental probabilities in social contexts. In
contrast to Item 1A, these questions require engagement with probabilistic and contextual
knowledge. Responses demanded both numerical and qualitative descriptions. In all these
questions, the students had to consider equally likely assumption related to the events, hence this
is the central notion to which I refer in these questions. 

Item 1A: Single die problem

Manoj feels that a six is harder to throw than any other score on a die. 

What do you think about this belief? Why do you think so?

Item 1B: Advertisement involving sex of a baby

Expecting a baby? Wondering whether to buy pink or blue?

I can GUARANTEE to predict the sex of your baby correctly.

Just send $20 and a sample of your recent handwriting.

Money-back guarantee if wrong! 

Write to…...............................................

What is your opinion about this advertisement?
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Figure 1: Item 1C, Fiji Sixes task (Fiji Sixes is a lotto game. At a cost of 50 cents, a player can purchase a “board”

from The Fiji Times which allows him or her to choose 6 different numbers between 1 and 45. Players then post their

entries to the Fiji Sixes office. A sampling machine draws six balls at random without replacement. Prizes are awarded

according to how many of the winning numbers the player has picked. Winners are announced in the Fiji Times.)

Interviews

Each student was interviewed individually by myself in a room away from the rest of the
class.  The interviews were audio taped for analysis, and each interview lasted about 40 to 50
minutes.  Paper, pencil and a calculator were provided for the student if he or she needed it. I
believed that this qualitative approach would allow students to demonstrate statistical
understanding and questioning which would not have been possible in a survey format.  

ANALYSIS OF DATA

The data analysis was conducted using the transcripts which were read and re-read by
myself and common themes identified. The data revealed that many of the students held beliefs
and used strategies based on prior knowledge. I created a simple four category rubric that could
be helpful for describing research results relating to students’ statistical conceptions, planning
instruction and dissemination of findings to mathematics educators. The four categories in the
rubric are: non response, non-statistical, partial-statistical and statistical. These are described in
Table I. The non-statistical responses were based on beliefs and experiences while the students
using the partial-statistical responses applied rules and procedures inappropriately or refered to
intuitive strategies. The term statistical is used in this paper for the appropriate responses.
However, I am aware that such a term is not an absolute one. Students possess interpretations
and representations which may be situation specific and hence these ideas have to be considered
in their own right. This category has been used mainly to present and discuss the results.
Statistical simply means what is usually accepted in standard mathematics text-books in Fiji. 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45
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Table 1. Characteristics of the Four Categories of Responses

RESULTS

This section describes the patterns of thinking identified in response to the equal chance
Item. The types of responses are summarised and the ways that the students have constructed
these ideas is described. Extracts from typical individual interviews are used for illustrative
purposes. Throughout the discussion, I is used for the interviewer and Sn for the nth student. The
responses to the three questions (Items 1A, 1B and 1C) are summarised in Table II.

Response Type Descriptor Item

Non-response Complete silence, I don’t know, I have forgotten the rule, I just
guessed Items 1B, 1C

Non-statistical responses

Refereed to everyday experiences

Made inappropriate connections with learning in other areas 

Language difficulties 

Refer to beliefs-luck, lucky numbers 

Refer to religious beliefs 

Hold the pervasive belief that they can control outcomes of

random generators

Item 1A, 1B, 1C 

Items 1B, 1C 

Items1A, 1C 

Item 1B 

Items 1A

Partial-statistical responses

Adapted the rules or applied them inappropriately. 

Refer to representativeness, 

Refer to unpredictability bias, 

Could not explain reasoning

Items 1A

Items 1C

Items 1A, 1B 

Item 1B

Statistical responses

Able to justify reasoning by using classical or frequentist
interpretation  

Refer to symmetries of dice and coins 

Used correct numerical probabilities to justify reasoning. 

Refereed to complete  sample space

All items

Items 1A 

Item 1A, 1B 

Item 1A
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Table II. Response types Item 1 (n = 14)

Statistical responses: Table II data reveal that six students showed some grasp of
probability theory underlying equal chance on the single die task (Item 1A) and two did so on
the Fiji Sixes card (Item 1C). The students not only reasoned that all the outcomes had the same
theoretical probability but provided correct explanations. For example, student 2 said that she did
not believe that a six is hardest to get because there is only one face with six dots and there are
six faces and so the probability will be only one upon six. In addition, student 25 not only
believed that the chance of getting a six on one roll of a die was one-sixth, but was also able to
provide a reason why some people believe that a six is hardest to throw. He explained that it is
often the side which one needs and so one's attention is focussed on the chance of a six coming
up, rather than with seeing how often the six comes up compared with each of the other
outcomes. Two students (S12, S22) listed the sample space and explained that all numbers had
the same chance of occurring. For instance, student 12 said that she did not agree with Manoj
because there are six outcomes and only one of them is a 6 and so the chance of getting a six is
one-sixth. Two students (S5, S29) calculated the correct probability by using the n(E)/n(S) rule. 

We can’t increase our chance of winning a prize in the Fiji Sixes card (Item 1C) because
any set of six numbers is just as likely to be chosen as another, although we can increase the
amount we will win if we win the jackpot by avoiding numbers that others are likely to choose.
Two students (S12, S22) based their responses on the equally likely concept. For instance,
student 12 said: All combinations of numbers are equally likely and it doesn’t really matter which
numbers she chooses.

Anyone can expect to be right in half the number of cases just by guessing (Item 1B).
Even if predictions are made incorrectly, some will not bother to complain anyway. Even if they
did, a clear profit can be made on 50% of all the $20 payments sent in. None of the students were
considered statistical on this item. One possible explanation for this could be a lack of emphasis
in Fiji classrooms on experimental probability. Since the students lacked experiences in
interpreting chance from this perspective, they were more likely to use the other categories. The

Response type Single die ask Ad for baby task Fiji Sixes task [All tasks]

Non-response
– 2

(S6, S9)
1

(S9)
–

Non-statistical 6
(S3, S9, S17, S20, S21, S26)

7
(S2, S3, S5, S14, S17, S21, S25)

6
(S3, S14,S20, S25, S26)

[2]

Partial-statistical 2
(S6, S14)

5
(S12, S20, S22, S26, S29)

5
(S2, S5, S6, S17, S29)

–

Statistical 6
(S2, S5, S12, S22, S25, S29)

–
2

(S12, S22)

–
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other reason could be that students experienced difficulties in communicating their ideas or they
did not interpret the question in the way intended by myself. 

Non-statistical responses: The non-statistical category consisted of students' responses
which related the data to their beliefs and everyday experiences. The results of this study provide
information that beliefs about random generators sometimes cause students to see these common
random devices in a non-statistical way. Two students whose responses were classified as non-
statistical on the single die task (Item 1A), believed that outcomes can be controlled by
individuals. This is revealed in the following interview:

S26: It is not harder. It depends on how you throw it. 

I: How do you throw so that you get a six?

S26: If you put six down and then throw you can get a six. 

I: Can you try that?

S26: [Throws and gets a five].

When asked if he still could get a six, the response was ‘Yes.’ Clearly Student 26’s
responses show that he is used to finding rational explanations for random experiments. Hence,
his thoughts about rolling dice are based on deterministic rather than probabilistic reasoning.
Student 17 did not believe in Manoj's claims because the same force is applied when throwing a
die. 

Luck formed an important component of some of these students' explanations. Two of
the pupils (S9, S20) responded on the basis of good luck on Item 1A. For example, student 20
responded:

S20: Eh ... because six is a number that starts a game eh, so if you put a six the game starts and this is
luck eh. You would be lucky and you will be able to throw a six.

I: What do you mean by lucky?

S20: Like when you playing cards eh so if your luck is not there, you can lose. So if you get a six you
are lucky.

Three of the pupils (S14, S20, S21) responded on the basis of lucky and unlucky
numbers on the Fiji Sixes task (Item 1C). The students thought that a person can increase his/her
chance of winning in the Fiji Sixes by selecting lucky or birthday numbers. Manifestations of the
lucky number aspect are reflected in the following interview:

S14: She should have followed some other methods like I have followed, the members of the family or
her lucky number.

I: What do you mean by lucky numbers?

S14: Like for me the lucky number is 18.

I: Why is 18 your lucky number?

S14: Because it is my birthday.
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In addition to basing their thinking on beliefs such as luck and lucky numbers, three
students based their reasoning on their religious beliefs and everyday experiences. Strong
influences of religious beliefs were apparent when students were asked to comment on the
advertisement regarding the sex of a baby (Item 1B). Even when challenged about how the
people placing the advertisement could make money, the students could not see that roughly half
the babies born would be girls and half would be boys. The powerful nature of their religious
beliefs is reflected in the response of student 17:

As I have told you before that God creates all human beings. He is the one who decides whether a boy is
born or a girl is born. Unless and until like now they have made a machine if one is pregnant and they can
go there and they tell you whether the baby is a girl or a boy. But they can’t tell until the baby is 8 months
old. So that it means that the God created like that before we can’t tell that the baby is a male or a female.

Two students referred to previous experience on Item 1A; they tended to think that it is
harder to throw a six with a single die than any other score. The explanations provided by student
3 seemed to indicate that she remembered from her experience with chance games waiting a long
time for a 6 on the die, often needed to begin a game. Student 21 thought that since six is a bigger
number, it is difficult to get and one would be lucky to get a six. 

Three students referred to previous experience when commenting on the advertisement
regarding the sex of the baby. Two said that the advertisement was placed just to earn money,
while student 25 offered the following explanations: 

Sometimes ... my sister is a nurse, she tells this is the time only for boys to be born. She came at our place.
She said that this time only boys are being born. My aunt, she was expecting a baby; she said it will be a
boy because it is the season. My aunt had a boy.

Three students referred to previous experience when picking numbers from a Fiji Sixes
card. For every Fiji Sixes game in the Fiji Times, there is always a sample which shows people
how to play the game. In the sample, a number is crossed from each row. It seems that student
26 thought this is how numbers should be crossed, one number from each row, and experience
seemed to confirm this. 

S26: You have to select one number from each row.

I: Why do you say that?

S26: Because it is written in the Fiji Times example; they cross the numbers from each row. I have also
seen people who play Fiji Sixes; they put numbers from each line.

Student 25 had considerable faith in the numbers 3 and 9. 
I: Why is 3 your favourite number?

S25: When I was in class three, there was a Women’s Club eh. They raffle tickets. Every time I bought
tickets 9, 3 and 13. Once I bought the tickets, I won both the prizes. So every time I buy tickets, I check
those numbers.

Student 3 referred to previous experience of how numbers have appeared in the past
draws. For Item IB, student 3 thought that this problem was really to do with a doctor charging
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a $20 consulting fee to inform the parents of the sex of their unborn baby. Even when challenged
about how the people placing the advertisement could make money, the student could not see
that roughly half the babies born would be girls and half would be boys. The powerful nature of
their everyday reading strategies of skimming and using the context or knowledge of the world
to support comprehension are reflected in the following interview:

S3: The doctor may be charging $20……No. 

I: What do you mean by "No"? 

S3: Because it’s a bad thing. They change the sex. 

I: They are not changing the sex, they are just predicting the sex of the baby by looking at the hand
writing. So what’s your opinion about it now?

S3: That when anything goes wrong then they must know the hand writing of the person.

Student 3 had an idea that the problem was to do with determining the sex of the baby
but then seemed to associate it with notions of childbirth difficulties. 

Partial-statistical responses: Students who displayed partially statistical responses on
the three items showed some understanding of chance. The procedures and intuitive strategies
(representativeness) they used do not appear to be really statistical because they work only in
some settings. I believe that an unpredictability bias needs to be added to the list of intuitive
strategies suggested in literature. Students who base their explanations on the unpredictability
bias tend to assume random events to be unpredictable by nature and over-respond to it on
various contexts. More details of this unpredictability bias is given in part 2.

Four students (S2, S5, S6, S17) who used the representativeness strategy for the Fiji
Sixes item thought that the chance of getting six consecutive numbers out of 45 in a Fiji Sixes
card was less than getting other numbers because it did not represent a random process of
generating these numbers. The students thought that they should choose numbers that are
distributed throughout the range of choices. They did not realise that any set of six numbers is
just as likely to be chosen as another. The following justification is indicative of this argument:

Yeah … Like she doesn't have much chance. It is really very unlikely to happen. More likely to be from all
over the place. She should choose one from each line, one from 1-10.

Two students displayed the unpredictability bias with the single die task, three with the
prediction task and one with the Fiji Sixes problem. For example, student 29 explained that he
did not believe in the advertisement because one can not predict the sex of a baby. For the Fiji
Sixes item, the student offered the following justification:

We don't know what will happen in future. The numbers that people will pick, they can pick any number.

Two students said the two outcomes on Item 1B were equiprobable. However, they did
not realise that probability could be constructed in different ways. For example, student 12 said
that the two outcomes were equally likely but she could not explain how the advertisers could
make money. 
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DISCUSSION

This section first discusses the results in a broader context. Then limitations of the study
are discussed and suggestions made for directions for further research. 

Probability: A broader Context

Human Control: The results show that quite a number of students think that outcomes
on random generators such as dice (Item 1A) can be controlled by individuals.  The general
belief is that results depend on how one throws or handles these different devices. Even if their
carefully explained and demonstrated method did not work, students were still convinced that if
they did everything right, or if luck was with them, it would work the next time. The finding
concurs with the results of studies by Amir and Williams (1994), Fischbein et al. (1991),
Shaughnessy and Zawojewski (1999) and Truran (1994). For instance, Shaughnessy and
Zawojewski (1999) reported that rather than using the sample space or multiplication principle,
the students in the NAEP attributed to some sort of physical property of the spinners such as the
rate at which the spinners were spun. It must be noted that the students using the control strategy
in my study were boys. One explanation for this could be that boys are more likely to play sports
and chance games that involve flipping coins and rolling dice to start these games. 

Although this study provides evidence that reliance upon control assumption can result
in biased, non-statistical responses, in some cases this strategy may provide useful information
for other purposes. For example, student 20’s knowledge of physics may have been reasonable.
The students using this approach have drawn on relevant common sense information. The
responses raise further questions. Is there a weakness in the wording of this task in that it is
completely open-ended and does not focus the students to draw on other relevant knowledge?
Perhaps, including cues such as “fair” in the item would have aided in the interpretation of this
question. Are the students aware of the differences in probabilistic reasoning compared with
reasoning in other curriculum areas? Although we consider the flip of a coin and the throw of a
die as random, deterministic physical laws govern what happens during these trials. It does not
make sense to say that the die has a probability of one-sixth to be sixes because the outcome can
be completely determined by the manner in which it is thrown. Additionally, a good Bayesian
statistician might not give 50/50 heads/tails as the likely outcome after a run of heads with a
particular coin. Such a person might start looking at prior experience to inform a particular
situation. 

Beliefs and Experiences: With respect to students' beliefs, experiences and learning, it is
evident that other researchers have encountered similar factors. Amir and Williams (1994) note
that children's reasoning appeared to be related to their religious, superstitious and causal beliefs.
In some respects, the findings of the present investigation go beyond those discussed above. The
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findings demonstrate how students' other school experiences also influence their construction of
statistical ideas. At times the in-school experiences appear to have had a negative effect on the
students. An example of negative effect that arose from other school experiences was the student
who was deeply convinced that he could control the outcomes on a die. 

Intuitive Strategies: In the present study, the use of representativeness and
equiprobability bias was not as common as that discussed in the literature. One reason for this
could be that Shaughnessy (1997) and Tversky and Kahneman's (1974) items are significantly
different and students may have responded differently to these situations. The research studies
discussed in the literature review have mostly been carried out with tertiary students who would
have had more cognitive experiences than the students in my study. Consequently, they would
be more likely to use intuitive strategies such as representativeness and equiprobability bias. The
students in my study had some rules-based teaching in probability. Their ideas of probability
seemed to have been distorted and influenced by rote learning, so they tended to resort to
incorrect rules and previous experiences. Another explanation for this discrepancy could be that
these researchers only surveyed students’ understanding in a few contexts using multiple-choice
format which are too narrow to provide adequate information about student thinking. In the
present study, students' understanding in both school and out-of-school contexts were explored.
Hence students were more likely to use approaches other than naive strategies. 

There are two major interpretations of probabilities, theoretical assumption and
empirical data. One of the keys to understanding a probability model is balancing the ideas of
theoretical and empirical probability. It is true that individual events are unpredictable, however
long run frequencies are predictable. However, because they are contradictory when considered
separately, students appear to over-respond to one or the other on various contexts. Over-reliance
on theoretical probability is likely to lead to the belief that all outcomes are unpredictable.
Students who base their explanations on the unpredictability bias tend to assume random events
to be unpredictable by nature. The results concur with the findings of Nicolson (2005) who
claims that predicting the unpredictable is a major challenge for anyone studying probability. 

Relevant Contexts: It appears that background knowledge can be used helpfully and
unhelpfully in tackling a problem in probability. The background knowledge as it were obscured
the mathematical core of the problem. In the study described here, background knowledge, that
is often invoked to support a student’s mathematical understanding, is getting in the way of
efficient problem solving. Given how statistics is often taught through examples drawn from
“real life” teachers need to exercise care in ensuring that this intended support apparatus is not
counterproductive. This is particularly important in light of current curricula calls for pervasive
use of contexts (Meyer, Dekker, and Querelle, 2001; Ministry of Education, 1992) and research
showing the effects of contexts on student’ ability to solve open ended tasks (Cooper and Dunne,
1997; Sullivan, Zevenbergen, and Mousley, 2002). 
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Cultural Context: The students' beliefs and experiences can be understood in the context
of the Indian culture. Some of these are discussed in this section and are based mainly on my
own knowledge, as a Fiji Indian, of schooling and the way of life in Fiji. In many respects,
students' attitudes and beliefs about luck and lucky numbers are consistent with the way Fijian
Indian people view cultural conviction, such as one's fate being pre-determined and there always
being a guiding force influencing the outcome of events. People often use phrases such as
takdeer ki baat hai [it depends on fate] suggesting they feel these people are particularly helpless,
and the events outside their control. Indeed, almost all events in real life can be explained in
terms of the causality perspective. Perhaps believing that some outside factor influences one's
behaviour means one does not feel so responsible when things go wrong. 

The prominence of the view that God decides the sex of the baby could be attributed to
certain aspects of the Indian culture. For instance, the sex of a baby is considered to be
determined by God. Thus, in everyday life, children hear phrases like Bhagwan ki upaar hai, chai
ladki dei yeh ladka dei, which literally means God decides the sex of the baby. Thus in everyday
life, parents might pray at home or even go to a mandir  [temple] in order to have a boy or a girl.
It appears that there are certain aspects of the culture that are at odds with the probabilistic
thinking that is aimed at in the statistics curriculum. 

Limitations

The findings reveal that many of the students used beliefs and personal and social
experiences to explain their thinking. It must be acknowledged that the open-ended nature of the
tasks and the lack of guidance given to students regarding what was required of them certainly
influenced how students explained their understanding. The students may not have been
particularly interested in these types of questions as they are not used to having to describe their
reasoning in the classroom. Some students in this sample clearly had difficulty explaining
explicitly about their thinking. Students who realised that it costs money to put an advertisement
in the newspaper (Item 1B) had a difficult time articulating exactly how people would make
money in such situations. Although the study provides some valuable insights into the kind of
thinking that high school students use, the conclusions cannot claim generality because of a
small sample. Additionally, the study was qualitative in emphasis and the results rely heavily on
my skills to collect information from students. Some directions for future research are implied
by the limitations of this study. 

Implications for Further Research 

One direction for further research could be to replicate the present study and include a
larger sample of students from different backgrounds (Fijian Indian and Indigenous Fijian).
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Secondly, this small scale investigation into identifying and describing students’ reasoning from
constructivism has opened up possibilities to do further research at a macro-level on students’
thinking and to develop more explicit categories for each level of the framework. Such research
would validate the framework of response levels described in the current study and raise more
awareness of the levels of thinking that need to be considered when planning instruction and
developing students’ statistical thinking. The place of statistics has changed in the revised
mathematics prescription. Statistics appears for the first time at all grade levels (Fijian Ministry
of Education, Women, Culture, Science and Technology, 1994). Like the secondary school
students, primary school students are likely to resort to non-statistical or deterministic
explanations. Research efforts at this level are crucial in order to inform teachers, teacher
educators and curriculum writers.

CONCLUDING THOUGHTS

Although subjective types of thinking permeate our students’ lives, statistical curricula
in Fiji presumes the "correctness" of the theoretical model and ignores beliefs and experiences
that do exist in real life situations. This presents a real dilemma which needs to be resolved if
statistics education is to flourish in Fiji. For example, if students come to the class with the
religious view that God decides the sex of a baby and the teacher is trying to teach the
mathematical view that chance is blind and not controlled by prior knowledge, then how this can
be done in a way that does not denigrate the first two views needs to be investigated. It is not
adequate to consider this just as a "misconception", the students, after all, require the
mathematical view to pass examinations. We as teachers can convince them by data and by
theoretical argument that the birth can be modelled by a random experiment. Perhaps, it is also
important to point out to students that there are alternative points of view. It is hoped that the
findings of this study will generate more interest in research with respect to subjective ideas that
students possess and teaching approaches. Teachers, curriculum developers and researchers need
to work together to find better ways to help students learn this topic.
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APPENDIX 1

MATHEMATICS EDUCATION IN FIJI SCHOOLS

BACKGROUND

Primary schools teach classes 1 to 8 (in some cases classes 1 to 6) whereas secondary schools
teach Forms III to VII, and Junior secondary schools teach Forms I to IV. The following external
examinations involving maths are taken by pupils while at school: 

Class 6 Fiji Intermediate Examination in which mathematics is compulsory.
Form II Fiji Secondary Schools' Entrance Examination in which mathematics is compulsory
Form IV Fiji Junior Certificate Examination in which mathematics is compulsory
Form VI Fiji School Leaving Certificate Examination in which mathematics is not compulsory
Form VII    Fiji Seventh Form Certificate Examination in which mathematics is not compulsory

STATISTICS

Statistics is taught as one of the topics in the mathematics syllabus and is first introduced in Form
11 (Class 8) where the average age of a pupil is 13 years. Statistics is then taught in bits and
pieces right up to Form VII. A brief summary of statistics taught at different levels is given
below:

Form II (Class 8)
Collecting information, representing information, interpreting representations, average (mean), pictograms, frequency
tables, bar graphs, pie charts.

Form III
Representing statistical data in graphical or chart form, computing sample mean, mode, median and range, organising
data from a sample into a frequency distribution and representing this by a frequency line graph or a histogram.

Form IV
Computing statistics: mean, median, upper and lower quartiles, interquartile range. Representing data: frequency
polygon, cumulative frequency table, cumulative frequency graph. Elementary ideas in probability. 

Form V
Classification of data, statistical graphs, including frequency and cumulative frequency curves, median and mean as
measures of central tendency, ideas of spread, including standard deviation, simple probability and relative frequency. 

Form VI
Probability: sample space, mutually exclusive events, independent events. Populations and samples: mean, median,
standard deviation and range as examples of population parameters, samples, random samples, frequency
distributions. sample statistics. Distributions: the binomial; distribution taken as an example of a discrete distribution,
mean of binomial distribution. The normal distribution as an example of a continuous distribution, z score. 

Form VII
Probability, Statistics and Computing
Choose only one of the options
Option A: Probability and Statistics
Option B: Probability and Computing
Option C: Statistics and Computing
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