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1. INTRODUCTION

Classical Kloosterman sums arise naturally as part of the Fourier coefficients of Poincaré series for
GL(2) and have numerous applications in number theory. See for example [4]. The same is true of
their generalization to series for GL(n) [6, 7, 2, 3]. In the main these sums are a theoretical tool.
Sums have been presented in dimensions 3 and 4 as rather complicated abstract sums with symbolic
coefficients satisfying constraints which have to be determined. It is the object of this paper to describe
an algorithm, as implemented in the Mathematica package GL(n)pack [1], which will give an explicit
exponential sum for GL(n) when a valid sum exists and indicate when no valid sum exists.

Computing such as sum involves choosing a complete set of matrix representatives in a double coset
space, so the algorithm, as expected, has exponential complexity in one of the natural parameters.
Finding a sub-exponential algorithm is an unsolved problem, but at least this work provides a start
to the algorithmic development of these generalized sums.

In section 1 the definition and preliminary results, mostly from [7], are set out. Then in section 2 the
central object on which the algorithm works, the Plücker relations, are discussed. Since these have
many uses outside of the study of GL(n), the functions provided in the package for their construction
may be of some independent use. The algorithm is described in section 3 and some comments made
about its symbolic-numeric nature. The GL(n)pack implementation is discussed and, finally, some
examples are given.

2. DEFINITIONS

Let U = Un(R) be the subgroup of upper triangular unipotent matrices (i.e. with 1’s down the
leading diagonal) , θ1 a list of n − 1 integers representing a character of Un(R) which is trivial on
Γ = SL(n, Z),Γ∞ = U ∩ Γ, θ2 a list of n− 1 integers representing another character of Un(R), c a list
of n− 1 non-zero integers specifying the diagonal of a matrix. The 1st diagonal element of the matrix
is det(w)/cn−1, the second cn−1/cn−2 and so on down to the last c1. This is the so-called “Friedberg
form”.
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The function implementing the algorithm described here computes the generalized Kloosterman sum
for SL(n, Z) for n ≥ 2. When n = 2 this coincides with the classical Kloosterman sum. More generally
the sum is

S(θ1, θ2, c, w) :=
∑

γ=b1cwb2

θ1(b1)θ2(b2)

where

γ ∈ Γ∞\Γ ∩Gw/Γw

and Γw = tw.tΓ∞.w∩Γ∞ and Gw is the Bruhat cell associated to the permutation matrix w. In other
words, w is an n× n matrix which is zero except for a single 1 in each row and column, representing
an explicit element of the Weyl subroup Wn of GL(n, R).

Let Li be the set of i element ordered subsets of {1, 2, · · · , n} with Li ordered lexically. Given λ ∈ Li

and γ ∈ GL(n) denote by vλ the i× i minor of γ formed from the bottom i rows and from the columns
indexed by the elements of λ in increasing order. Let V ⊂ R2n−2 be an algebraic set of values of
minor vectors v = (vλ) described in detail in [6, Page 3-07] or [8, Chapter XI].

3. PRELIMINARY RESULTS

Lemma 3.1. [6, Equation (2) page 3-03] The Kloosterman sum S(θ1, θ2, c, w) is well defined only
when for all (u ∈ tw.U.w) ∩ U we have θ1(c.w.u.twc−1) = θ2(u).

Lemma 3.2. [8, Proposition 10.3.6] Every γ ∈ GL(n, R) has a Bruhat decomposition γ = u1cwu2

with u1, u2 ∈ Un(R) and c in Friedberg form.

Lemma 3.3. [6, Proposition 1] Let γ in Gw have a Bruhat decomposition γ = b1cwb2 with c a diagonal
matrix in Friedberg form. Then, for 1 ≤ i ≤ n− 1, ci = Mλi

(γ) with λi = {ω(n), ω(n− 1), · · · , ω(n−
i + 1), ω being the permutation with matrix w, and Mλ = 0 whenever λ < λi, the ordering being
lexical.

Lemma 3.4. [7, Proposition 1.4] Let γ ∈ Γ have Bruhat decomposition γ = b1cwb2 with b1, b2 ∈ Un(R)
and c a diagonal matrix. Then c is uniquely determined.

Lemma 3.5. [6, Theorem 2] Let M(γ) = (Mλ(γ)|λ ∈ L1 ∪ · · ·Ln−1). Then the mapping γ → M(γ)
from GL(n, R) to V is onto and induces a bijection from Γ∞\Γ to

V ′ = {v ∈ V |for all λ,vλ ∈ Z, GCD(vλ|λ ∈ Lk) = 1, for all 1 ≤ k ≤ n− 1}.

Lemma 3.6. [6, Theorem 2] If γ, γ′ ∈ Γ∩Gw, then Γ∞γΓw = Γ∞γ′Γw if and only if Mλi(γ) = Mλi(γ
′)

for all i with 1 ≤ i ≤ n− 1 and Mλ(γ) ≡ Mλ(γ′) mod Mλi(γ) for all λ ∈ Li.

Here is a description of the strategy, based on these lemmas, employed to compute the sums: a set
of integer vectors which satisfy the necessary constraints implied by these results is formed. These
are potential Plücker coordinates of elements of SL(n, Z). This set is reduced by retaining only those
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vectors which satisfy all known Plücker relations for that dimension. Then each remaining vector is
inverted, i.e. a matrix γ is found having those Plücker coordinates. Even though a proof is not at
hand, it is the writers belief that the existing set of Plücker relations, for general n, is sufficiently
large to ensure that each set of coordinates arises from an integer matrix. In the event that the set of
relations is not complete then the inversion process will fail and the vector will be discarded. Following
inversion a Bruhat decomposition is applied to derive the unipotent vectors b1 and b2 which solve the
matrix equation γ = b1.w.c.b2. These vectors are then used to form the sum which is returned.

4. PLÜCKER COORDINATES AND RELATIONS

The GL(n)pack function PluckerRelations computes recursively a set of quadratic forms in the
bottom row based minor determinants of any n×n matrix in GL(n, R). These forms have coefficients
±1. They must vanish if the values assigned to symbols representing the minor determinants come
from any square matrix. The number of Plücker relations grows rapidly with n, because each j × j
sub-matrix, with elements chosen from the bottom j rows and any j columns, also gives rise to a set
of relationships of the given type. In dimension 2 there are no relationships and in 3 just one, the
Cramer’s rule relationship v1v23 − v2v13 + v3v12 = 0, denoted P3,1. (Here the Friedberg notation vλ,
where λ is an ordered subset of {1, 2, · · · , n}, is used to represent the minor determinant based on the
bottom |λ| rows and the columns indexed by the elements of λ). In this example ten relationships for
dimension n = 4 are derived and how this is generalized to general n indicated.

1. The simplest relationship is obtained by expanding the matrix using the bottom row based minors
of size n− 1 along the bottom row. By Cramer’s rule the form

(−1)1+1v1v234 + (−1)1+2v2v134 + (−1)1+3v3v124 + (−1)1+4v4v123

necessarily vanishes, i.e.

v1v234 − v2v134 + v3v124 − v4v123 = 0,

(P4,1).

2. Now let the rows of a fixed but arbitrary 4× 4 matrix be represented by the vectors a1, a2, a3, a4,
indexed from the bottom row up. Then because for all vectors v, v ∧ v = 0:

0 = (a2 ∧ a1) ∧ (a2 ∧ a1) = λ e1 ∧ e2 ∧ e3 ∧ e4,

where the ei are the standard unit vectors and λ is a real constant with value v12v34−v24v13 +v14v23,
which is therefore 0. This is P4,2.

3. The relationship

v24v123 + v12v234 − v23v124 = 0

is now derived. First expand the wedge product of the bottom two rows:

a2 ∧ a1 = v12e1 ∧ e2 + v13e1 ∧ e3 + v14e1 ∧ e4

+v23e2 ∧ e3 + v24e2 ∧ e4 + v34e3 ∧ e4.

Then

a2 ∧ a1 = e2 ∧ (−v12e1 + v23e3 + v24e4)
+v13e1 ∧ e3 + v14e1 ∧ e4 + v34e3 ∧ e4

= e2 ∧ ω + η,
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say, where ω is a 1-form and η a 2-form with e2 not appearing. Then

a3 ∧ a2 ∧ a1 = v123e1 ∧ e2 ∧ e3 + v234e2 ∧ e3 ∧ e4 + v124e1 ∧ e2 ∧ e4

so

a3 ∧ a2 ∧ a1 ∧ ω = (v24v123 + v12v234 − v23v124)e1 ∧ e2 ∧ e3 ∧ e4 + 0
= λ e1 ∧ e2 ∧ e3 ∧ e4

say.

Since each term of η has two of {e1, e3, e4} and each term of ω one of this set we can write

η ∧ ω = (v12v34 − v24v13 + v14v23)e1 ∧ e3 ∧ e4 = 0

by the relation P4,2 derived in 2. above.

But then

a3 ∧ a2 ∧ a1 ∧ ω = a3 ∧ (a2 ∧ a1) ∧ ω

= a3 ∧ (e2 ∧ ω + η) ∧ ω

= a3 ∧ (η ∧ ω) = 0

so therefore λ = 0 and we have derived the relation P4,3:

v24v123 + v12v234 − v23v124 = 0.

Three similar relationships P4,4, P4,5, P4,6 are derived by factoring out in turn each of the unit vectors
e1, e3 and e4.

4. The four remaining relations are obtained by applying the dimension 3 relationship to each of the
four subsets of {1, 2, 3, 4} of column numbers of size 3.

5. The approach described in 2.-4. above works also for n = 5. In summary if we let a1 ∧ a2 =
e1 ∧ ω + η then a1 ∧ a2 ∧ ω = 0 because η ∧ ω = 0. This latter equation follows from relations such as
v14v23 + v13v24 + v12v34 = 0, a subset relation for n = 5 following from the n = 4 case.

6. For general n most relations are derived simply by expanding the left hand side of (a1 ∧ · · · ∧ ai)∧
(a1 ∧ · · · aj) = 0 for 1 ≤ i ≤ j with i + j ≤ n and i < j if i = 1, and deriving subset relations for each
m with 2 ≤ m < n.

7. In addition to the above, for each subset S ⊂ {1, 2, · · · , n} of size n − 3 the so called “top-level”
three term relation is derived. Each of these is similar to the following example given for dimension
6 where S = {1, 2, 3}:

v1234 v12356 − v1235 v12346 + v1236 v12345 = 0.

8. As of the date of this paper the GL(n)pack function PluckerRelations derives the following sets of
relations: 0 in dimension 2, 1 in 3, 10 in 4, 57 in 5, 255 in 6 and 969 in 7.
Relation for n = 3:

P3,1 : v1v23 − v2v23 + v3v12 = 0
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Relations for n = 4:

P4,1 : v4v123 − v3v124 + v2v134 − v1v234 = 0,

P4,2 : v14v23 − v13v24 + v12v34 = 0,

P4,3 : v24v123 − v23v124 + v12v234 = 0,

P4,4 : v34v123 − v23v134 + v13v234 = 0,

P4,5 : v34v124 − v24v134 + v14v234 = 0,

P4,6 : v14v123 − v13v124 + v12v134 = 0.

P4,7 : v3v12 − v2v13 + v1v23 = 0,

P4,8 : v4v12 − v2v14 + v1v24 = 0,

P4,9 : v4v13 − v3v14 + v1v34 = 0,

P4,10 : v4v23 − v3v24 + v2v24 = 0.

Relations for n = 5:

P5,1 : v45 v123 − v35 v124 + v34 v125 + v25 v134 − v24 v135

+ v23 v145 − v15 v234 + v14 v235 − v13 v245 + v12 v345 = 0,
P5,2 : v5 v1234 − v4 v1235 + v3 v1245 − v2 v1345 + v1 v2345 = 0,

P5,3 : v345 v1245 − v245 v1345 + v145 v2345,

P5,4 : v345 v1235 − v235 v1345 + v135 v2345,

P5,5 : v345 v1234 − v234 v1,345 + v1,34 v2345,

P5,6 : v245 v123,5 − v235 v1245 + v12,5 v2345,

P5,7 : v2,45 v1234 − v234 v1245 + v124 v2345,

P5,8 : v235 v1234 − v234 v1235 + v123 v2345,

P5,9 : v145 v1235 − v135 v1245 + v125 v1345,

P5,10 : v145 v1234 − v134 v1245 + v124 v1345,

P5,11 : v135 v1234 − v134 v1235 + v123 v1345,

P5,12 : v125 v1234 − v124 v1235 + v123 v1245,

P5,13 : v15 v1234 − v14 v1235 + v13 v1245 − v12 v1345 = 0,

P5,14 : v25 v1234 − v24 v1235 + v23 v1245 − v12 v2345 = 0,

P5,15 : v35 v1234 − v34 v1235 + v23 v1345 − v13 v2345 = 0,

P5,16 : v45 v1234 − v34 v1245 + v24 v1345 − v14 v2345 = 0,

P5,17 : v45 v1235 − v35 v1245 + v25 v1345 − v15 v2345 = 0,

P5,18 : v4 v123 − v3 v124 + v2 v134 − v1 v234 = 0,

P5,19 : v5 v134 − v4 v135 + v3 v145 − v1 v345 = 0,

P5,20 : v5 v234 − v4 v235 + v3 v245 − v2 v345 = 0,

P5,21 : v5 v123 − v3 v125 + v2 v135 − v1 v235 = 0,

P5,22 : v5 v124 − v4 v125 + v2 v145 − v1 v245 = 0,

P5,23 : v14 v123 − v13 v124 + v12 v134 = 0,

P5,24 : v15 v123 − v13 v125 + v12 v135 = 0,

P5,25 : v15 v124 − v14 v125 + v12 v145 = 0,

P5,26 : v15 v134 − v14 v135 + v13 v145 = 0,

P5,27 : v24 v123 − v23 v124 + v12 v234 = 0,

P5,28 : v34 v123 − v23 v134 + v13 v234 = 0,

P5,29 : v34 v124 − v24 v134 + v14 v234 = 0,

P5,30 : v25 v123 − v23 v125 + v12 v235 = 0,

P5,31 : v35 v123 − v23 v135 + v13 v235 = 0,

P5,32 : v35 v125 − v25 v135 + v15 v235 = 0.
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P5,33 : v25 v124 − v24 v125 + v12 v245 = 0,

P5,34 : v45 v124 − v24 v145 + v14 v245 = 0,

P5,35 : v45 v125 − v25 v145 + v15 v245 = 0,

P5,36 : v25 v234 − v24 v235 + v23 v245 = 0,

P5,37 : v35 v134 − v34 v135 + v13 v345 = 0,

P5,38 : v45 v134 − v34 v145 + v14 v345 = 0,

P5,39 : v45 v135 − v35 v145 + v15 v345 = 0,

P5,40 : v35 v234 − v34 v235 + v23 v345 = 0,

P5,41 : v45 v234 − v34 v245 + v24 v345 = 0,

P5,42 : v45 v235 − v35 v245 + v25 v345 = 0,

P5,43 : v15 v24 − v14 v25 + v12 v45 = 0,

P5,44 : v15 v34 − v14 v35 + v13 v45 = 0,

P5,45 : v25 v34 − v24 v35 + v23 v45 = 0,
P5,46 : v14 v23 − v13 v24 + v12 v34 = 0,
P5,47 : v15 v23 − v13 v25 + v12 v35 = 0,
P5,48 : v5 v13 − v3 v15 + v1 v35 = 0,

P5,49 : v5 v23 − v3 v25 + v2 v35 = 0,
P5,50 : v3v12 − v2 v13 + v1 v23 = 0,

P5,51 : v4 v12 − v2 v14 + v1 v24 = 0,
P5,52 : v5 v12 − v2 v15 + v1 v25 = 0,
P5,53 : v4 v13 − v3 v14 + v1 v34 = 0,
P5,54 : v4 v23 − v3 v24 + v2 v34 = 0,
P5,55 : v5 v14 − v4 v15 + v1 v45 = 0,
P5,56 : v5 v24 − v4 v25 + v2 v45 = 0,
P5,57 : v5 v34 − v4 v35 + v3 v45 = 0.

Some remarks: The GL(n)pack function PluckerRelations computes all the known quadratic rela-
tionships between the Plücker coordinates, namely the set of bottom rows based minors of a generic
square n× n matrix. In case n = 2 there are none and for n = 3 one. For n > 3 the number grows
dramatically. No claim is made that this function returns, for any given n, a complete set of indepen-
dent relationships. In dimensions 3,4 and 5 the writer believes the set is complete in the strong sense
that there are no other general quadratic relations between bottom row based minors. The relations
computed for dimension 3 through 7 have been validated by evaluating the relation on a symbolic
matrix and seeing that the left hand side of each one reduces to zero. They include the relations
described in [5].

5. ALGORITHM DESCRIPTION

These are the steps employed in the function KloostermanSum included in GL(n)pack . Here suppose
the arguments are θ1, θ2, c and w where the first two arguments are characters on Un(R), c is a list of
n− 1 non-zero integers and w an n× n permutation matrix.

1. First check the number of arguments, the data types of the arguments and get the dimension n.

2. Get the so called ci constraints, vλi
→ ci, and call these CM. See Lemma 3.2.

3. Get the lexical constraints vλ → 0 for all λ < λi and call these CL. See Lemma 3.2.

4. Form the Plücker relations for dimension n and call these P.

5. Reduce the Plücker relations P by applying the constraints CM and CL to form a new (smaller) set
of relations P ′ which are functions of the ci as well as the vλ.

6. If this reduced set of relations results in the necessary vanishing of minors additional to those found
in 3 reduce the set of relations further by substituting 0 for each such minor and call the resulting
relations P ′′.

7. Using P ′′ and the compatibility relation between characters θ1(c.w.u.w−1.c−1) = θ2(u) for all
u ∈ twtUw ∩ U where U = Un(R) is the upper triangular unipotent matrix group. See [Friedberg,
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1985-86, eqn. (2)]. Then check (a) that the characters are compatible and (b) derive any divisibility
relations between the ci.

These divisibilities are derived as follows: if all of the minors Li at a given level i vanish except for
vλi = ci then the relation gcd(vλ : λ ∈ Li) = 1 (Lemma 3.3) implies ci | 1 so return {ci, 1}. Then,
for each distinct pair of indices i, j extract all of the reduced Plücker relations P ′′ which contain four
terms

±civ1 ± cjv2 = 0.

If any subset S of the v′2s satisfies gcd(cj, v2 : v2 ∈ S) = 1 then necessarily ci | cj so return {ci, cj}.

8. For each i with 1 ≤ i ≤ n− 1, form the set Mi of all vectors of
(
n
i

)
integers mλ with 0 ≤ mλ < ci

with the mλ being the minor representatives with |λ| = i, and such that the constraints CM and CL
are satisfied and the so-called GCD constraints gcd(mλ : λ ∈ Li) = 1 are also satisfied.

9. Form the product V =
∏n−1

i=1 Mi.

10. For each vector v ∈ V, test to see whether it can be identified with the vector of minors of an
element of SL(n,Z) as follows: If each relation in P ′′ vanishes when the corresponding integer values
from v are substituted, retain v, otherwise discard it. Call the reduced set of vectors V ′.

11. For each v ∈ V ′, invert using PluckerInvert (see below) to find a matrix av ∈ SL(n, Z), which has
v as its Plücker coordinates, and which satisfies

av = xv.c.w.yv

for unipotent matrices xv, yv in Un(Q). These are found by applying the GL(n)pack function Bruhat-
Form to av.
A note regarding the technique employed to invert the Plücker coordinates: from a vector v ∈ V ′, a
matrix av = (ai,j) ∈ SL(n, Z), having v as its Plücker coordinates, is derived row by row. First the
top row is computed using the extended GCD algorithm to solve the cofactor expansion equation

1 =
n∑

j=1

(−1)1+ja1,jv
j ,

where vj is the appropriate minor, an element of v. Then for each row i with 2 ≤ i ≤ n− 1, solve the
system of integer equations

vλ =
∑
j∈λ

(−1)i+jai,jv
j , λ ∈ Li.

For row n set an,j = v{j} where λ = {j}.
It is clear that when this stepwise solution process returns a matrix a, its Plücker coordinates must be
v. At row i,

(
n

n−i+1

)
integer equations in n integer unknowns are solved using the built in Mathematica

function Reduce. If Reduce gives no solution for any row then vector v is removed from V ′. Hence
is is essential that Reduce gives a correct integer solution when one exists and no solution when and
only when no solution exists.
The function Reduce was validated in the following manner: 100 random integer matrixes A of
dimension 40 × 25 and random vectors x of dimension 40 were generated. In each case the value
of b was computed and then the matrix equation x.A = b solved over the integers, using Reduce,
successfully. When b was chosen at random in each case with 100 random matrices A the system
failed to solve. Because of this it was decided that a hand crafted function, and presumably slower
because it was written in top-level Mathematica code, using the Hermite Normal Form to solve the
integer system or determine no integer solution existed, was unnecessary.
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12. Finally form and simplify the sum
∑

v∈V′ θ1(xv)θ2(yv).
The proof that this approach the sum works is a direct consequence of the lemmas. 3.2, 3.3 and 3.4.
Since w and c are fixed, only those integer vectors, being potential Plücker coordinates of matrices
in SL(n,Z), are considered in which satisfy the constraints vλi(γ) = ci, vλ(γ) = 0 for λ < λi and
GCD(vλ(γ)|λ ∈ Lk) = 1. A representative is chosen for consideration in each equivalence class
modulo ci. The Plücker relations are used (when complete) to cull this set of vectors to ensure each
set comes from a matrix in SL(n,Z). Since the constraints are satisfied, the matrix will automatically
have the form b1.c.w.b2. When not complete the inversion process fails, leading again to removal of
the vector.

Theorem 5.1. The algorithm gives the correct value for a valid Kloosterman sum.

Proof. 1. Let γ ∈ Γ ∩ Gw have Mλi
(γ) = ci for 1 ≤ i ≤ n − 1. Then, by Lemma 3.2, γ has

the Bruhat decomposition γ = b1cwb2, b1, b2 ∈ Γ∞ and, by Lemma 3.3, Mλ(γ) = 0 for λ < λi,
GCD(Mλ(γ)|λ ∈ Li) = 1 for 1 ≤ i ≤ n− 1, and (Mλ(γ)|λ) satisfies the Plücker relations.
For each λ let vλ ≡ Mλ(γ) mod ci be the least positive residue and let γ′ be the Plücker inverse of v.
This inverse exists because, by Lemma 3.5, the map γ → (Mλ(γ)) is onto.
Then ci = Mλi(γ) = Mλ′

i
(γ) because, by Lemma 3.4 the ci are uniquely determined and γ′ = b′1cwb′2.

Since also Mλ(γ′) = vλ ≡ Mλ(γ) mod ci for λ ∈ Li, by Lemma 3.5, the double cosets Γ∞γΓw =
Γ∞γ′Γw, so γ gives rise to a term in the computed sum.
2. Conversely, let (b1, b2) correspond to a term in the computed sum and let γ = b1cwb2, b1, b2 ∈ Γ∞.
Then, by lemmas 3.3 and 3.5, Mλi(γ) = ci, Mλ(γ) = 0 for λ < λi,GCD(Mλ(γ)|λ ∈ Li) = 1 for
1 ≤ i ≤ n− 1, and, since they are the Plücker coordinates of a matrix, (Mλ(γ)|λ) satisfies the Plücker
relations. Hence there exists a vector v ∈ V ′′ with Mλ(γ) ≡ vλ mod ci which is invertible coming from
a matrix av say, and, by Lemma 3.6, Γ∞avΓw = Γ∞γΓw.
3. That each term in the computed sum corresponds to at most one double coset follows from Lemma

3.6.

6. GL(N)PACK IMPLEMENTATION

The part of the GL(n)pack which treats Kloosterman sums consists of a number of user functions which
can be used independently, as well as the primary function KloostermanSum. The Plücker relations
are essential, and these are available through the function PluckerRelations. See the comments above
and note that the algorithm which derives the sums is not dependent on the set of relations computed
being “complete”. The function PluckerCoordinates simply computes the bottom row based minors
and PluckerInverse finds an integer matrix, when it exists, which has the given Plücker coordinates.
This requires solving a system of linear integer equations for an integer unknown to determine each
matrix row as described above.

Once a matrix is determined then its Bruhat decomposition is required. Even though the function
KloostermanBruhatCell performs this step symbolically, a standard numeric Bruhat decomposition is
performed, since the entries of the matrix a are only available as explicit integers. It is this step which
prevents the algorithm from being fully symbolic. The existing examples in the literature in [2, 6]
present answers in the form of expressions containing of the order of n2 symbolic coefficients obeying
constraints which must be determined to obtain an explicit solution.

Since these sums are only well defined for some particular compatible values of the arguments the
user is advised to first run KloostermanCompatibility with an explicit w to determine those values.
This function gives three types of information: any divisibility relations between the ci’s, constraints
on the character coefficients, and constraints on the minors of the matrix a.
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One thing to notice is the value returned by KloostermanSum. Even through the value is often set
to 0 when the sum is invalid [6] the function returns False in this case. The value 0 is returned when
the sum is well defined but has sum 0.

The complexity of the algorithm is O(
∏

1≤i≤n−1 |ci|n) = O(cn2
) where c = max|ci|, so its quite slow,

especially for large cis.

7. EXAMPLES FOR LOW DIMENSION

In [2] two types of Kloosterman sums appear for dimension n = 3. However, using the strategy
described above, three non-trivial types are revealed: when c1 | 1, when c2 | 1, when c2 | c1 and when
c1 | c2.

Example 7.1. In [6] an example for n = 4 is worked through by hand in some detail. This is for

w =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


and the divisibity relation c1 | c2 is derived. With the algorithm described here, the additional relation
c3 | c2 is computed. Also note that in [6] a Bruhat decomposition a = x.c.w.y is used which was derived
“by hand” and assumed particular zero and non-zero values for some of the matrix elements. The GL
(n)pack function KloostermanBruhatCell gives the following alternative values for the upper triangles
of the unipotent matrixes x and y:

x1,2 → a1,1c1(a3,2a4,4 − a3,4c1) + (−a1,2a4,4 + a1,4c1)c2

c1c3

x1,3 → a1,1c1

c2

x1,4 → a1,2

c1

x2,3 → a2,1c1

c2

x2,4 → a2,2

c1

x3,4 → a3,2

c1

y1,2 → 0

y1,3 → −a3,2a4,3 + a3,3c1

c2

y1,4 → −a3,2a4,4 + a3,4c1

c2

y2,3 → a4,3

c1

y2,4 → a4,4

c1

y3,4 → 0

Note that there is no division by elements of the matrix a, so zero values can be assumed. Verification
that these rules give a correct decomposition (i.e. a = x.c.w.y) is a brute force computation which uses
all of the constraints on the matrix a. It has been done for examples of particular w’s in dimensions
3 and 4. The algorithm underlying this inversion was deduced by observing many cases of the right
hand side and ascertaining their form.
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Example 7.2. In [7, Page 175] an observation of Piatetski-Shapiro is noted that the only non-trivial
sums, with all character coefficents non-zero, are those with corresponding w permutation matrices
having a block structure with copies of the identity down the reverse leading diagonal. This was
completely verified using KloostermanCompatibility in dimensions n = 3 and n = 4.

Example 7.3. Dimension 2: KloostermanSum[{24},{13},{43},LongElement[2]] returned the classi-
cal sum S(24, 13; 43).

Example 7.4. Dimension 4: For the same Weyl group element w as that used in Example 7.1 above
with character indices α = {3, 7, 12}, β = {4, 13, 1} and c values {3, 3, 3} the sum 9e−

2iπ
3 + 8e

2iπ
3 was

derived.

Example 7.5. By [7, Proposition 2.5] the long element sums should be commutative in the charac-
ters. this was verified in dimension 3 with kls[{3,13}, {6,7}, {3,3}, w0] and kls[{6,7}, {3,13}, {3,3}, w0]
both returning 4 + 3e

2iπ
3 + 3e−

2iπ
3 , kls being the abbreviated name for the function KloostermanSum

and w0 the long element in dimension 3.

Example 7.6. By [7, Proposition 2.3] the value of each valid sum depends only on αi mod
cn−i and βi mod ci. This was verified in dimension 3 with both kls[{4,13},{6,7}, {12,31}, w0] and
kls[{35,25},{18,38},{12,31},w0] returning the same 60 term sum.
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