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We restrict primes and prime powers to sets H(x) = ∪∞n=1(
x
2n

, x
2n−1

].

Let θH(x) =
∑

p∈H(x) log p. Then the error in θH(x) has, unconditionally,

the expected order of magnitude θH(x) = x log 2 + O
(√

x
)
. However, if

ψH(x) =
∑

pm∈H(x) log p then ψH(x) = x log 2 + O(log x). Some reasons

for and consequences of these sharp results are explored. A proof is given of
the “harmonic prime number theorem”, πH(x)/π(x) → log 2.

1. INTRODUCTION

Using a good estimate for the square full part of the binomial coefficient(
2n
n

)
derived by [4] it was shown in [1] that, if an is the square-free part of n!,

then log an = n log 2+O(
√

n). Of course log an is the sum of the logarithms
of primes which appear to odd powers in the prime factorization of n!, and
includes, according to the given result, more than half of the primes up to
n.

If
√

n < p ≤ n then these primes are easy to describe: p divides the
square-free part of n! if and only if [n/p] is odd, or in other words for some
whole number m

n

2m
< p ≤ n

2m− 1
.

This shows that, at least for primes sufficiently large, dividing the square
free part of n! has an alternative description as membership in the union
of a finite set of half open intervals.

As the primes get smaller the description of the intervals becomes more
complex. For example if n1/3 < p ≤ n1/2, p divides the square-free part of
n! if and only if for some j ∈ N

√
n

j + 1
< p ≤

√
n

j
and [

n

p
] has opposite parity to j.
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(To see this consider pα||n! such that α = [n/p] + [n/p2] with j = [n/p2] ≥
1.)

The next level would be n1/4 < p ≤ n1/3 with an even more complex
description in terms of intervals. So, instead of proceeding in this manner
a restricted sum of logarithms of primes is defined assuming all of the
intervals have the first form leading to the set H(x) = ∪∞n=1(

x
2n , x

2n−1 ] and
restricted sums θH(x) =

∑
p∈H(x) log p, ψH(x) =

∑
m≥1,pm∈H(x) log p, and

πH(x) =
∑

p∈H(x) 1.
By bridging across to log an we derive θH(x) = x log 2 + O(

√
x). After

getting a better expression for log an we are able to obtain a lower bound
πH(x) ≥ x log 2/ log x + O(

√
x/ log x). One suspects this lower bound is

also an upper bound as evidenced by the first approximation πH(x)/π(x) →
log 2 which is proved.

Quite independent of log an, by rewriting

ψH(x) =
∞∑

n=1

(−1)n+1ψ(
x

n
)

and using Chebychev’s result

log([x]!) =
∞∑

n=1

ψ(
x

n
), x 6∈ N

the “natural” error for these sums, ψH(x) = x log 2 + O(log x), is derived.
An explanation for the unexpected regularity of these sums comes from

an integral expression for ψH(x) in terms of the Riemann zeta function:
ψH(x) does not depend on the non-trivial zeros of ζ(s), whereas ψ(x) −
ψH(x) depends on all of them.

A study of arithmetic progressions in the context of the sets H(x) shows
that no restricted analogue of Dirichlet’s theorem (for primes in an arith-
metic progression) can be true.

2. RESTRICTED FORMS OF CHEBYCHEV’S FUNCTIONS

Definition 2.1. Let x > 0 be a real number. Then the harmonic set
with parameter x is defined to be

H(x) = ∪∞n=1(
x

2n
,

x

2n− 1
].
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Definition 2.2. For x ∈ R, x > 0 let

θH (x) =
∑

p∈H(x)

log p =
∑

p,bx/pc odd

log p,

where p is any prime.

Theorem 2.1. As x →∞,

θH (x) = x log 2 + O
(√

x
)
.

Proof. Let x ≥ 4 and N = bxc By [1, Theorem 1] , if aN is the square
free part of N !

(1) log aN = N log 2 + O
(√

N
)

,

where the implied constant is absolute. Let n ∈ N, let k = 2n − 1 be
odd and

√
2N ≤ p ≤ N a rational prime with pk‖N ! . Then k = bN/pc and

k(k + 1) ≤ N . Therefore, by [1, Lemma 1] ,

N

2n
< p ≤ N

2n− 1

Conversely, if p satisfies this inequality for some n ∈ N and
√

2N ≤ p ≤ N ,
k = 2n− 1, then

√
2N ≤ p ≤ N/k which implies

√
2k ≤ √

N so k(k + 1) ≤
N . Hence k is odd and pk‖N ! . Now split the sum which defines θH (x):

θH (x) =
∑

1≤n≤√2N

∑
x
2n <p≤ x

2n−1

log p +
∑

√
2N<n≤N

∑
x
2n <p≤ x

2n−1

log p

=
∑

1 +
∑

2

By what has been shown,

∑
2 = aN + O

(√
2N

)

= N log 2 + O
(√

N
)

= x log 2 + O
(√

x
)

Also
∑

1 = O2≤p≤O(
√

x )(log p) = O
(√

x
)
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so the result follows.

Definition 2.3.

ψH (x) =
∞∑

n=1

∑
x
2n <pm≤ x

2n−1

log p

Since 0 ≤ ψH (x)− θH (x) ≤
√

x log2 x
2 log 2 we can write ψH(x) = log 2 log x +

O(
√

x log2 x). However it is easy to derive a more accurate error estimate.

Theorem 2.2. As x →∞,ψH(x) = log 2 log x + O(log x)

Proof. Let T (x) := log([x]!) when x 6∈ N and T (n) = (T (n+) +
T (n−))/2 for n ∈ N. Then [2, Page 282]

T (x) =
∞∑

n=1

ψ(
x

n
).

From the definition

ψH(x) =
∞∑

n=1

(−1)n+1ψ(
x

n
).

Therefore T (x)−ψH(x) = 2T (x/2). Using Stirling’s approximation T (x) =
x log x− x + O(log x), the given expression for ψH(x) follows directly.

Definition 2.4.

πH (x) =
∞∑

n=1

∑
x
2n <p≤ x

2n−1

1

Since when p ≤ x, log p/ log x ≤ 1 we see

πH(x) ≥ θH(x)
log x

= log 2
x

log x
+ O(

√
x

log x
).

However we have not been able to verify the conjecture that this lower
bound is also an upper bound. This would deliver the expected error
bound in what might be called “the harmonic prime number theorem”.
Below the asymptotic form is derived. Some numerical evidence seems to
indicate that Li(x) log 2 is not as good an approximation to πH(x) as Li(x)
is to π(x). See Figure 1.
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FIG. 1. Comparison of Li(x) log 2 (top), πH(x) (middle), x log 2/ log x (bottom).

Theorem 2.3.

lim inf
x→∞

πH(x)
π(x)

≥ log 2.

Proof. First using Theorem 2.1 write

θH(x)
θ(x)

=
x log 2 + O(

√
x)

x + o(x)
=

log 2 + o(x)

1 + o(x)
x

→ log 2.

Then use the integral formula

π(x) =
θ(x)
log x

+
∫ x

2

θ(t)
t log2 t

dt

and the lower bound for πH(x) given above to write

πH(x)
π(x)

≥ θH(x)/ log x
θ(x)
log x +

∫ x

2
θ(t)

t log2 t
dt

=
θH(x)/θ(x)

1 + log x
θ(x)

∫ x

2
θ(t)

t log2 t
dt

.

and the second term in the denominator tends to zero.
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To derive the asymptotic form of the upper bound for the ratio πH(x)/π(x)
we use the theorem of Heath-Brown [3], namely

π(x)− π(x− y) =
y

log x
+ O(

y

log45/44 x
)

uniformly for x7/12 ≤ y ≤ x.

Theorem 2.4.

lim
x→∞

πH(x)
π(x)

= log 2.

Proof. First we find an upper bound for the ratio in terms of integrals
and error terms, then show that four of the terms in the ratio tend to zero.
Finally we show that lim supπH(x)/π(x) ≤ log 2 so the theorem follows
from this inequality and the previous theorem.

We use the notation I(a, b) :=
∫ b

a
(1/ log t)dt.

(1)

πH(x)
π(x)

=

∑x7/12

n=1 I( x
2n−1 , x

2n ) + O(
∑x7/12

n=1

x
2n(2n−1)

log45/44( x
2n )

) + O(x7/12

log x )

I(2, x) + O( x
log2 x

)

≤
∑x7/12

n=1 I( x
2n−1 , x

2n )

I(2,x) +
O(

∑x7/12
n=1

x
2n(2n−1)

log45/44( x
2n

)
)

I(2,x) + O(x7/12/ log x)
I(2,x)

1 + O(x/ log2 x)
I(2,x)

.

(2) The last term in the denominator:

O( x
log2 x

)

I(2, x)
=

O( 1
log x )

1 + O( 1
log x )

→ 0.

(3) The last term in the numerator:

x7/12

log x

I(2, x)
=

O(x−5/12)
1 + O( 1

log x )
→ 0.

(4) The second term in the numerator:
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x
∑x7/12

n=1

x
2n(2n−1)

log45/44( x
2n )

x
log x + O( x

log2 x
)

≤
log x

∑x7/12

n=1

x
2n(2n−1)

(log x−log
√

x)45/44

1 + O( 1
log x )

¿ log−1/44 x

∑x7/12

n=1
1

2n(2n−1)

1 + O( 1
log x )

→ 0.

(5) Finally we show that

lim sup
x→∞

∑x7/12

n=1 I( x
2n−1 , x

2n )
I(2, x)

≤ log 2 :

Firstly, by L’Hôpital’s rule, for each n ∈ N,

lim
x→∞

I( x
2n , x

2n−1 )
I(2, x)

=
1

2n(2n− 1)
.

Let x > 412/5 and N < x/4. Then

∑x7/12

n=1 I( x
2n , x

2n−1 )
I(2, x)

≤
∑x/4

n=1 I( x
2n , x

2n−1 )
I(2, x)

≤ I(2, x)− I(x
3 , x

2 )− · · · − I( x
2N+1 , x

2N )
I(2, x)

so

lim sup
x→∞

∑x7/12

n=1 I( x
2n , x

2n−1 )
I(2, x)

≤ 1− 1
2.3

− · · · − 1
2N.(2N + 1)

.

But this is true for all N so therefore

lim sup
x→∞

∑x7/12

n=1 I( x
2n , x

2n−1 )
I(2, x)

≤ log 2.

3. ARITHMETIC PROGRESSIONS

Definition 3.1. If x > 0 let K(x) :=
⋃∞

n=1 [(2n− 1)x, 2nx).
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Lemma 3.1. If x, y ∈ R are positive, then y ∈ H(x) ⇔ x ∈ K(y).

Lemma 3.2. Let {q1, . . . , qm} ⊂ N be odd, q = q1 . . . qm, and r =
min{q1, . . . , qm}. Then if

x ∈
∞⋃

n=1

[(2n− 1)q, (2n− 1)q + r)

we have {q1, . . . , qm} ⊂ H(x).

Proof. Let n ∈ N be such that x ∈ [(2n− 1)q, (2n− 1)q + r). Then for
1 ≤ j ≤ m,

(2n− 1)q1 . . . qm

qj
≤ x

qj
<

(2n− 1)q
qj

+
r

qj
≤ (2n− 1)q

qj
+ 1

Hence
⌊

x
qj

⌋
= (2n− 1)q1 . . . q̂j . . . qm is odd so qj ∈ H(x).

Note: This shows, for example, that each finite subset of odd primes
{p1, . . . , pm} ⊂ H(xj) for a sequence xj →∞.

Lemma 3.3. If α ∈ R then as x →∞

#(N+ α) ∩H(x) = x log 2 + O
(√

x
)

where the implied constant is absolute.

Proof. For n ∈ N and x > 0 let In =
(

x
2n , x

2n−1

]
so

H(x) =
∞⋃

n=1

In

and for n ≤ √
x, (N+ α) ∩ In has at most one point. For n >

√
x, #(N+

α) ∩ In =
⌊

x
2n(2n−1)

⌋
and hence

#(N+ α) ∩H(x) =

√
x∑

n=1

⌊
x

2n(2n− 1)

⌋
+ O

(√
x

)

= x log 2 + O
(√

x
)
.
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Lemma 3.4. Let A(h, k) = {mk + h : m = 0, 1, 2, . . .} be an arithmetic
progression with h, k ∈ Z and k > 0. Then, as x →∞

#{A(h, k) ∩H(x)} =
x log 2

k
+ O

(√
x/k

)

where the implied constant is absolute.

Proof. The term km + h ∈ A(h, k) ∩H(x) if and only if for some n

x

2n
< km + h ≤ x

2n− 1
if and only if

x/k

2n
< m +

h

k
≤ x/k

2n− 1

the result follows directly from Lemma 3.3 with α replaced by n/k and x re-
placed by x/k.

Theorem 3.1. Let h ≥ 1 and k ∈ Z be such that (h, k) = 1. Then there
exists a sequence xm →∞ in R such that

#A(h, k) ∩ P ∩H (xm) →∞.

Proof. Number the infinite sequence of distinct primes in A(h,k) as
{p1, p2, . . .}. Then, by Lemma 3.2, there is a number xm ≥ m such that

{p1, . . . , pm} ⊂ A(h, k) ∩ P ∩H (xm) .

It might be thought that with the same notation as in the theorem above,
for all x →∞ #{A(h, k) ∩ P ∩H (x)} → ∞. However if we let

xm = 2p1 . . . pm

ni = p1 . . . p̌i . . . pm then
xm ∈ [2nipi, (2ni + 1) pi)

But this last set has an empty intersection with K(pi), so therefore pi /∈
H (xm) so A(h, k) ∩ P ∩H (xm) = ∅. It follows that

∑

p≡h mod k,p∈H(xm)

log p

p
= 0 6= log 2

φ(k)
log xm + O(1)

so the natural version of Dirichlet’s theorem is false.

4. MORE ACCURATE EXPRESSIONS
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Lemma 4.1. For all n ∈ N let an be the square free part of n!. Let ε > 0
be given. Then for all n ≥ nε,

log a2n = 2n log 2− c
√

n + An

where

|An| ≤ ε
√

n +
1
2

log(
4n

π
) +

1
2n

+
1

115n2
.

Proof. By Stirling’s formula there exists an n1 such that for all n ≥ n1

if

Rn := log n!− (n log n− n +
1
2

log(2πn)), then

|Rn| <
1

144n2
.

If θn is the square free part of n + 1 then log θn ≤ log(n + 1) so for all
n ≥ 1 if

Tn := log θ2n − 2 log(a2n, θ2n), then
|Tn| < log(2n + 1).

It follows from these bounds that, for n ≥ nε,

log a2n = (2n +
1
2
) log 2− c

√
n− 1

2
log(2πn)

+ R2n + Rn + Sn + Tn and

|R2n|+ |Rn|+ |Sn|+ |Tn| < ε
√

n + log(2n + 1) +
1

115n2
, so therefore

log a2n = 2n log 2− c
√

n + An, where

|An| ≤ ε
√

n +
1
2

log(
4n

π
) +

1
2n

+
1

115n2
.

If n is odd then the value of an is the same as that of an−1 except for n
prime in which case an extra error of log n is incurred leading to:

Lemma 4.2. Let ε > 0 be given. Then for all n ≥ nε,

log a2n+1 = 2n log 2− c
√

n + Bn
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where

|Bn| ≤ ε
√

n +
1
2

log(
8n3

π
) +

1
n

+
1

115n2
.

Since these expressions are valid for all ε > 0, by first using, say, ε/2
and adjusting nε, we can make the uniform statement

Theorem 4.1. Let ε > 0 be given. Then for all n ≥ nε,

log an = n log 2− c

√
n

2
+ Cn

where

|Cn| ≤ ε
√

n.

5. CONNECTION WITH THE RIEMANN ZETA FUNCTION

Theorem 5.1. Let Z be the non-trivial zeros of ζ(s). Then

∑

ρ∈Z

xρ

ρ

2
√

x∑
n=1

(−1)n+1

nρ
= O

(
x3/4 log2 x

)
.

Proof. The von Mangoldt formula is

ψ(x) = x−
∑

ρ∈Z

xρ

ρ
− 1

2
log

(
1− 1

x2

)
− log 2π

for x > 0 and where the conditionally convergent sum is taken with in-
creasing | Imρ |. Hence

θ(x) = x−
∑

ρ∈Z

xρ

ρ
+ O

(√
x log2 x

)
.

Write

θH (x) =
∑

1≤n≤√x

θ(
x

2n− 1
)− θ(

x

2n
) + O

(√
x

)
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so, by Theorem 2.1,

x log 2 = x

2
√

x∑
n=1

(−1)n+1

n
−

∑
ρ

xρ

ρ

√
x∑

n=1

[
1

(2n− 1)ρ
− 1

(2n)ρ

]

+ O
(√

x
)

+ O



√

x∑
n=1

√
x√
n

log2
(x

n

)



= x

(
log 2−O

(
1√
x

))
−

∑
ρ

xρ

ρ

√
x∑

n=1

[
1

(2n− 1)ρ
− 1

(2n)ρ

]

+O
(
x3/4 log2 x

)

Therefore

∑
ρ

xρ

ρ

2
√

x∑
n=1

(−1)n+1

nρ
= O

(
x3/4 log2 x

)
.

Theorem 5.2. Let a > 1 and x > 0. Then

ψH(x) =
1

2πi

∫

(a)

(−ζ ′(s))(1− 21−s)xs ds

s
.

Proof. Since [2, Section 3.2]

ψ(x) =
1

2πi

∫

(a)

(−ζ ′(s))
ζ(s)

xs ds

s

it follows that

T (x) =
∞∑

n=1

ψ(
x

n
)

=
1

2πi

∫

(a)

(−ζ ′(s))
ζ(s)

xs[
∞∑

n=1

1
ns

]
ds

s

=
1

2πi

∫

(a)

(−ζ ′(s))xs ds

s
.

(The interchange of integration and summation in the second line is justi-
fied by the finiteness of the sum and vanishing of the integral for all but a
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finite number of terms.) Therefore

ψH(x) = T (x)− 2T (
x

2
)

=
1

2πi

∫

(a)

(−ζ ′(s))(xs − 2(
x

2
)s)

ds

s

=
1

2πi

∫

(a)

(−ζ ′(s))(1− 21−s)xs ds

s
.

This representation shows that ψH(x) depends only on the (double) pole
of ζ ′(s) at s = 1 and the value ζ ′(0). Since

η(s) :=
∞∑

n=1

(−1)n+1

ns
= (1− 21−s)ζ(s),

we can write

ψK(x) :=
∑

pm 6∈H(x)

log p = ψ(x)−ψH(x) =
1

2πi

∫

(a)

(−ζ ′(s)
ζ(s)

)(η(s)−1)xs ds

s
.

This expression shows that the “complimentary” function ψK(x) depends
on (all of) the non-trivial zeros of ζ(s), and this dichotomy thus offers an
explanation for the unexpected regularity of ψH(x).
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