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Abstract

We consider a generalisation of the Kurosh-Amitsur radical theory for rings (and more

generally multi-operator groups) which applies to 0-regular varieties in which all operations

preserve 0. We obtain results for subvarieties, quasivarieties and element-wise equationally

defined classes. A number of examples of radical and semisimple classes in particular varieties

are given, including hoops, loops and similar structures. In the first section, we introduce

0-normal varieties (0-regular varieties in which all operations preserve 0), and show that a key

isomorphism theorem holds in a 0-normal variety if it is subtractive, a property more general

than congruence permutability. We then define our notion of a radical class in the second

section. A number of basic results and characterisations of radical and semisimple classes

are then obtained, largely based on the more general categorical framework of L. Márki, R.

Mlitz and R. Wiegandt as in [13]. We consider the subtractive case separately. In the third

section, we obtain results concerning subvarieties and quasivarieties based on the results of the

previous section, and also generalise to subtractive varieties some results for multi-operator

group radicals defined by simple equational rules. Several examples of radical and semisimple

classes are given for a range of fairly natural 0-normal varieties of algebras, most of which are

subtractive.
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1 Generalities

We are interested in 0-regular varieties in which {0} is always a subalgebra; this includes of course

all varieties of multi-operator groups, but also loops, hoops and various other fairly natural exam-

ples, which we return to later. 0-regularity of a variety can be described in terms of a so-called

Malcev condition: that there exist finitely many binary terms di(x, y) such that di(x, x) = 0 for

all i, and if di(x, y) = 0 for all i then x = y.

Thus let V be a variety of algebras with nullary operation the distinguished zero element 0. If

for each congruence ρ on each A ∈ V, the ρ-class containing 0 determines ρ then V is a 0-regular

variety. If also σ(0, 0, . . . , 0) = 0 is an identity for each operation σ in the signature of V, then we

call V a 0-normal variety.
1Key words and phrases: radical class, 0-regular variety, subtractive variety.
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Let V be a 0-normal variety. We shall call those subsets of algebras in V which are the congru-

ence classes containing 0 normals; they are the kernels of homomorphisms in the obvious sense, and

are subalgebras. The normals of an algebra evidently form a lattice in which meet is intersection,

isomorphic to the lattice of congruences. We write N /A if N is a normal in A ∈ V, and we denote

by 0 the normal {0} in any A. For N / A, let ρN denote the corresponding congruence, and for ρ

a congruence on A let Nρ denote the corresponding normal. Then for any N /A and congruence ρ

on A, ρNρ
= ρ and NρN

= N ; we write A/N rather than A/ρN , in keeping with the tradition for

groups, rings and so on.

The usual facts of universal algebra hold in 0-normal varieties, and some of those from group

and ring theory. Thus, if f : A → B is a homomorphism between algebras in a 0-normal variety,

then ker(f) = {a ∈ A | f(a) = 0} / A. Moreover, A/ker(f) ∼= Im(f). It follows easily that if

N /A and B is a subalgebra of A with N ⊆ B, then N /B. Generally, we shall deal with universal

classes within 0-normal varieties, that is, classes closed under taking normals and homomorphic

images.

Let V be a variety. If all congruences on any A ∈ V permute, then V is a Malcev variety.

Malcev’s well-known theorem says that a variety is Malcev if and only if there is a ternary term

w(x, y, z) for which w(x, x, y) = y and w(x, y, y) = x. A less well-known result, indirectly shown

in [10], and later demonstrated explicitly in [1] (see Theorem 2.4), concerns varieties V with

distinguished nullary 0. Two congruences ρ, θ on A permute at zero if (a, 0) ∈ ρ ◦ θ implies

(a, 0) ∈ θ ◦ ρ and vice versa; equivalently, (a, 0) ∈ ρ ∨ θ implies the existence of b ∈ A for which

(b, 0) ∈ ρ and (a, b) ∈ θ. The result then says that all algebras in a variety have congruences

permuting at zero if and only if there is a binary term s(x, y) in the variety for which s(x, x) = 0

and s(x, 0) = x. Such varieties are called subtractive in [18].

Any variety of multi-operator groups is of course a subtractive variety; normals are normal

subgroups in varieties of groups, ideals in varieties of rings, submodules in varieties of modules,

and so on. Other examples of subtractive varieties include loops and hoops, among others which

we return to later. Note that in the current 0-normal setting, subtractive varieties are exactly ideal

determined varieties, in the sense of [10].

The following statement and its corollary may be known to people working with these notions

but we have not seen them in print and therefore present them for the sake of completeness.

PROPOSITION 1 For A ∈ V, a 0-normal variety, if M,N / A and ρM , ρN permute at zero,

then M/(M ∩N) ∼= (M ∨N)/N .

PROOF. First note that both sides of the isomorphism are well-defined. Define f : M → (M ∨

N)/N by setting f(a) = aN , where aN is the congruence class containing a in (M ∨ N)/N .

This is easily seen to be a homomorphism with kernel M ∩ N . It remains to prove surjectivity.

We must show that for any b ∈ M ∨ N , there is a ∈ M such that (a, b) ∈ ρN ; that is, for any

(b, 0) ∈ ρM∨N = ρM ∨ ρN , there is (a, 0) ∈ ρM such that (a, b) ∈ ρN . This is immediate from the
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fact that ρM , ρN permute at zero. 2

Note that the homomorphism f in the above proof exists whether or not ρM and ρN permute

at zero, but is surjective if and only if they do. It therefore seems likely that permutability at

zero is equivalent to the above isomorphism holding, if not for specific pairs of normals M,N then

for whole algebras, or perhaps at least for varieties. However, each of these conjectures is open at

present. In any case, we have the following immediate corollary.

COROLLARY 1 In a subtractive variety V, the isomorphism theorem M/(M∩N) ∼= (M∨N)/N

holds for normals M,N of any A ∈ V.

We generally deal with universal classes in what follows. We shall say that any universal class

in a subtractive variety is a subtractive universal class.

2 Radical and semisimple classes

Throughout this section, let A be a universal class contained in some 0-normal variety of algebras.

2.1 Radical classes

The definition to follow is in part by analogy with the usual definition for rings and multi-operator

groups, but also in part inspired by the definition of a radical class of idempotent algebras appearing

in [9]. We say a subclass R of A is a radical class if the following conditions hold.

• (R1) If I, J / A with I ∈ R, then there exists K / A/J for which (I ∨ J)/J ⊆ K ∈ R.

• (R2) For each A ∈ A, there exists R(A) / A (the radical of A) such that R(A) ∈ R and for

J / A such that J ∈ R, J ⊆ R(A).

• (R3) R (A/R(A)) = 0 for any A.

Note the strengthening of the first axiom compared to the usual homomorphic closure:

• (H) I / A and A ∈ R imply A/I ∈ R.

It is easy to see that a class satisfying (R1) must satisfy (H) also: simply let I = A and then

necessarily K = A/J . (R1) is in fact equivalent to (H) in the subtractive universal class setting as

we show shortly, but (R1) seems to be needed in the more general case in order to prove results of

any strength. Still, we so far have no examples to show the simpler axiom (H) is insufficient. (In

the idempotent algebras case discussed in [9], examples are given).

Our definition is in fact a special case of a much more general categorical definition given by

Márki, Mlitz and Wiegandt in [13]. Not wishing to spend time on the detail here, the reader is

invited to consult this paper where appropriate. Proposition 3.4 in [13] establishes that the radical

classes considered here are approximable, and all consequences of this fact then follow immediately.
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If R is a radical class, A ∈ A is said to be R-radical if R(A) = A (equivalently, if A ∈ R) and

R-semisimple if R(A) = 0. An ideal I of A is an R-ideal if I ∈ R.

PROPOSITION 2 The class R is a radical class if and only if it satisfies (R2), (R3), and for

every a ∈ A and I / A, (R(A) ∨ I)/I ⊆ R(A/I), where R(A) is as for (R2) above.

PROOF. Suppose R is a radical class. If I / A then by (R1) there exists K /A/I with K ∈ R for

which (R(A) ∨ I)/I ⊆ K. Since K ⊆ R(A/I) by (R2), the result follows.

Conversely, suppose R is a class for which (R2) and (R3) hold, and that for every A ∈ A

and I / A, (R(A) ∨ I)/I ⊆ R(A/I). Then if I, J / A with I ∈ R, let K = R(A/J). Then

(I ∨ J)/J ⊆ R(A/J) = K ∈ R. 2

In a 0-normal variety, this proposition shows that (R1) is needed to ensure radicals are radical

in the sense of Hoehnke, [11]: if ρA is the induced congruence in A ∈ U associated with R as

in (R2), the property in the proposition says that f(ρA) ⊆ ρB for all surjective homomorphisms

f : A→ B.

Aside from (H) above, some further properties that a class R in A may or may not satisfy are:

• (E) If I / A and both I and A/I are in R, then A ∈ R.

• (C) If {Iθ | θ ∈ Ω} is a chain of ideals of a such that Iθ ∈ R for all θ, then
∨
Iθ ∈ R.

THEOREM 1 R is a radical class if and only if it satisfies (R1), (E) and (C).

PROOF. This follows from results in [13]: in particular regarding p.284, the M-systems in the

current case (basically normals) are inductive, and trivially satisfy the “special congruence exten-

sion property”. The characterization given there is precisely the one wanted here (when easily

translated). 2

PROPOSITION 3 Suppose A is subtractive and X is a class in A. Then X satisfies (R1) if

and only if X satisfies (H).

PROOF. Suppose X satisfies (H), with I, J / A for which I ∈ X . Then by assumption, K =

(I ∨ J)/J ∼= I/(I ∩ J) ∈ X by (H), and (R1) is clearly satisfied. 2

Hence in a subtractive universal class, a class is a radical class if and only if it satisfies (H), (E)

and (C), and we recover the familiar definition for associative rings. Note also that in this case

we have radical classes in the sense of [16]; hence all Puczy lowski’s results apply (though many of

these are also special cases of results in [13]). Note also that the subtractive case corresponds to

assuming the “M-relation” (in the sense of [13]) is homomorphically closed, so all relevant results

apply.

4



2.2 Semisimple classes

As usual in general algebra, we say A is a subdirect product of A/Iλ, where the Iλ, λ ∈ Λ are

normals of A for which
∧
Iλ = 0. A class X in A is closed under subdirect products if the existence

of normals Iλ, λ ∈ Λ of A ∈ A for which
∧
Iλ = 0 and each A/Iλ ∈ X implies that A ∈ X also.

S is a semisimple class in A if there is a radical class R such that A ∈ S if and only if R(A) = 0.

Hence by Theorem 2.6 of [13], semisimple classes can be characterised by the definition given on

p.265 of that paper, and they are subdirectly closed by Proposition 2.3.

For a class X containing 0 in V and for any A ∈ V, associate the ideal A(X ) =
∧
{I /A | A/I ∈

X}.

THEOREM 2 S is a semisimple class if and only if

• (S0) 0 ∈ S;

• (S1) I / A and A/I ∈ S imply that for all J / A for which J 6⊆ I, J has a proper ideal K

such that J/K ∈ S;

• (S2) S is closed under subdirect products; and

• (S3) A(S)(S) = A(S) for every A.

PROOF. Suppose R is a radical class, with S = {A | R(A) = 0}. That (S2) holds follows from

Proposition 2.3 of [13].

For any A, A/R(A) ∈ S, so A(S) ⊆ R(A). Because it is a subdirect product of A/I’s which

are in S, A/A(S) ∈ S by (S2). So by Proposition 2, (R(A) ∨ A(S))/A(S) ⊆ R(A/A(S)) = 0, so

R(A) = A(S).

Proposition 2.10 of [13] immediately gives us that S satisfies (S1).

Finally, A(S)(S) = R(R(A)) = R(A) = A(S). So (S3) holds.

To the converse, suppose the non-empty class S satisfies (S0) to (S3). Let R = {A | A/I ∈

S implies I = A} = {A | A(S) = A}. By (S3), A(S) ∈ R for all A, and Ā = A/A(S) ∈ S by (S2),

so S(Ā) = 0. So (A/A(S))(S) = 0.

Let I / A, I ∈ R. So I has no non-zero factor in S. By (S1), I ⊆ J for each J / A such that

A/J ∈ S. So I ⊆
⋂
{J | A/J ∈ S} = A(S). So setting R(A) = A(S), (R2) is clearly satisfied. But

so is (R3) since (A/A(S))(S) = 0 as just shown.

Finally, if J / A with A/J ∈ S, then J ⊇ A(S), and if J ⊇ I / A, then J ⊇ A(S) ∨ I. Hence

(A(S) ∨ I)/I ⊆ J/I / A/I, with J/I a typical ideal of A/I for which (A/I)/(J/I) ∼= A/J ∈ S.

Hence (A(S)∨ I)/I ⊆ (A/I)(S), so (R1) is satisfied. Thus R is a radical class, with R(A) = A(S).

The semisimple class corresponding to R is {A | R(A) = 0} = {A | A(S) = 0}. But this is S; for

if A ∈ S then obviously A(S) =
⋂
{I | A/I ∈ S} = 0, and if A(S) =

⋂
{I | A/I ∈ S} = 0 then A

is a subdirect product of the A/I’s in S and hence is itself in S by (S2). 2
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There is an inclusion-reversing bijection between the collections of radical and semisimple classes

in U , as follows from Theorem 2.6 of [13] essentially.

THEOREM 3 S is a semisimple class in the subtractive universal class A if and only if (S2),

(S3) and

(S1’) a ∈ S implies that every non-zero I / A is such that there is a proper ideal J / I such that

I/J ∈ S.

PROOF. We must show (S1’) implies (S1). Suppose A/I ∈ S, with J / A such that J 6⊆ I.

Then I 6⊆ J ∨ I and (J ∨ I)/I 6= 0 so J/(J ∩ I) ∼= (J ∨ I)/I / A/I has a proper ideal K such that

(J/(J ∩I))/K ∈ S by (S1’). It now follows easily that J itself has a proper ideal M with J/M ∈ S.

2

The condition (S3) is necessary in general: although it can be replaced by (E) in the case of

associative rings, for non-associative rings it cannot.

3 Classes defined by equations and implications

In this section we consider further results and examples involving varieties and quasivarieties as

well as element-wise defined classes.

3.1 Varieties

Let V be a variety in the universal class U of 0-normal algebras (itself contained in some 0-normal

variety). Letting A(V) =
⋂
{I | A/I ∈ V}, as before, it is clear that A/A(V) is a subdirect product

of algebras in V and hence is itself in V. We say V has attainable identities if A(V)(V) = A(V)

for all A ∈ V, that is, if V satisfies (S3) in the characterisation of semisimple classes given in

Theorem 2. It is easy to see that if V has attainable identities then it satisfies (E), since if I / A

and I,A/I ∈ V, then A(V) ⊆ I, so A(V) ∈ V and so A(V) = A(V)(V) = 0, and so A ∈ V.

PROPOSITION 4 A variety W in the universal class U is a radical class if and only if it satisfies

(R1) and (E).

PROOF. Let W be a variety. Let {Iσ | σ ∈ Λ} be a chain of W-ideals in some A. Then the

directed join I =
∨
{Iσ | σ ∈ Λ} ∈ V since varieties are closed under directed unions, so (C) is

satisfied. The result now follows from Proposition 1. 2

Because radical classes are characterised by (H), (E) and (C) in the subtractive case, we obtain

the following corollary to this proof.

COROLLARY 2 A variety V in the subtractive universal class U is a radical class if and only

if it satisfies (E).
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PROPOSITION 5 A semisimple class satisfying (H) is a variety.

PROOF. Suppose S is semisimple and satisfies (H). Then by Theorem 2, it is closed under subdirect

products, so S is a variety by Kogalovskii’s Theorem [12]; see also Theorem IV.3.5 (attributed to

Hall) in [5]. 2

LEMMA 1 (S1) holds in any variety.

PROOF. Let V be a variety in U . Let I / A have no proper ideal J for which I/J ∈ V, that is, no

non-zero homomorphic image in V. Then the canonical homomorphism ψ : A → A/A(V) takes I

to S, which, though not necessarily a normal, is a subalgebra of A/A(V) since I is a subalgebra of

A. Since A/A(V) ∈ V, so is S. However, S is a homomorphic image of I in V which by assumption

must be 0. Hence I ⊆ A(V). But if K / A with A/K ∈ V, then A(V) ⊆ K of course, so I ⊆ K,

and (S1) is shown. 2

Note that an analogous result appears to hold for idempotent algebras as in [9]: attainability

of identities is not needed there either, although the author’s proof seems to make use of it.

THEOREM 4 A variety V is a semisimple class if and only if it has attainable identities.

PROOF. Suppose the variety V has attainable identities. By the previous result it satisfies (S1),

and (S0) and (S2) are immediate. The converse direction is immediate from Theorem 2. 2

A semisimple radical class, or SSR class, is a class which is both a semisimple and a radical

class.

THEOREM 5 A semisimple class is an SSR class if and only if it satisfies (R1).

PROOF. Suppose S is semisimple and satisfies (R1). By Proposition 5, S is a variety and so it

has attainable identities by Theorem 4. Now if A/I and I are in S, I / A, then A(S) ⊆ I, so

A(S) ∈ V also, and so A(S)(S) = 0, so A(S) = 0 by attainability. But A/A(S) ∈ S since A/A(S)

is a subdirect product of things in S, a semisimple class. Hence A ∼= A/0 ∈ S and so satisfies (E).

Thus S is a radical class by Proposition 4. The converse is immediate. 2

THEOREM 6 Let U be a subtractive universal class.

1. S is an SSR class if and only if it is a subvariety with attainable identities.

2. A semisimple class S is an SSR class if and only if it satisfies (H).

PROOF.

1. By Proposition 5 any SSR class is a variety, and by Theorem 2 any semisimple class has at-

tainable identities. Conversely, a variety with attainable identities is semisimple by Theorem

4, and satisfies (E) and hence is radical by Corollary 2.
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2. If S is semisimple and satisfies (H), then by Proposition 5 it is a variety and so satisfies (S3)

by Theorem 4, that is, it has attainable identities, and thus satisfies (E); hence it is a radical

class by Corollary 2. 2

As we have seen, in any variety of 0-normal algebras, the implication “attainable identities

implies (E)” holds. In many subtractive varieties, the reverse implication holds for subvarieties,

for instance in associative rings. The following sufficient conditions can be useful, and generalise

results cited in [7]. (The proof of the theorem is very similar but we include it for completeness.)

THEOREM 7 Let V be a variety in the subtractive universal class U , with V satisfying (E). Then

for every A ∈ U , A(V) is the normal of A generated by A(V)(V).

PROOF. Let I be the normal generated by A(V)(V). Now A/(A(V) ∨ I) ∈ V since it is a

homomorphic image of A/A(V) ∈ V. Thus V 3 A/(A(V) ∨ I) ∼= (A/I)/((A(V) ∨ I)/I) with

(A(V)∨ I)/I ∼= A(V)/(A(V)∩ I). But A(V)(V) is a subset of both A(V) and I, so A(V)/(A(V)∩ I)

is a homomorphic image of A(V)/A(V)(V) and hence is in V. It follows from (E) that A/I ∈ V, so

A(V) ⊆ I. But A(V)(V) / A(V) / A, so I ⊆ A(V) also, and the result follows. 2

COROLLARY 3 If normals are transitive in the subtractive universal class U , then any variety

in U satisfying (E) has attainable identities and hence is an SSR class.

Such varieties are therefore radical if and only if they are semisimple, if and only if (E) holds.

3.2 Quasivarieties

Let V be a 0-normal variety throughout this section, with U a contained universal class, and let

FrΩ be the free algebra in V on the generators x1, x2, . . .. For f ∈ FrΩ, we write f(xi) as shorthand

for f(x1, x2, . . . , xk) (where k is the largest index of any variable occurring in f), and similarly

f(ai) is the result of evaluating f with xi replaced by ai ∈ A, A ∈ V.

Recall that a quasivariety in U is a subclass defined by implications of the form

f1 = g1 & f2 = g2 & . . . & fk = gk ⇒ f = g

where the fi = gi and f = g are equations in V, so that all fi, gi as well as f, g are in FrΩ. Varieties

are quasivarieties: f = g is equivalent to x = x ⇒ f = g.

Quasivarieties are closed under subalgebras, direct products (and filtered products), so to be

radical classes, they must be varieties; more interesting then are semisimple classes.

Suppose W is a quasivariety in U . Then as for varieties, letting A(W) =
⋂
{I | A/I ∈ W},

A/A(W) is itself in W. Again, if W satisfies (S3) in Theorem 2, that is if A(W)(W) = A(W) for

all A ∈ V, then W satisfies (E).

Because Lemma 1 holds for quasivarieties (the proof is identical), the relevant version of The-

orem 4 follows easily too.
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THEOREM 8 A quasivariety W is a semisimple class if and only if (S3) in the characterisation

of a semisimple class holds: A(W)(W) = A(W) for all A ∈ U .

In many universal classes, (E) is sufficient in place of (S3), as for varieties; for instance associa-

tive and alternative rings, as well as groups and modules. The following result is shown for rings

and groups in [7], although the proof given there goes across to any universal class of algebras in

a 0-normal variety without modification.

PROPOSITION 6 Any quasivariety with defining implications of the following form satisfies

(E):

f(xi) = g(xi) ⇒ xi = 0 for all i.

It turns out that having transitive normals is sufficient for any such quasivariety to satisfy (S3)

and hence be a semisimple class. This provides a rich source of examples of semisimple classes,

even in the non-subtractive case (see the final section).

THEOREM 9 In a universal class in which normals are transitive, any quasivariety W with

defining implications as in Proposition 6 satisfies (S3), A(W)(W) = A(W) for all A ∈ U , and

hence is a semisimple class.

PROOF. If W is such a quasivariety, suppose A ∈ U . Then clearly

A(W) = ∩{I | I / A, f(ai)ρIg(ai) implies all ai ∈ I}.

Now by transitivity, A(W)(W) / A. Suppose ai ∈ A are such that f(ai)ρA(W)(W)g(ai). Then

certainly f(ai)ρA(W)g(ai), since A(W)(W) ⊆ A(W), so all ai ∈ A(W) with f(ai)ρA(W)(W)g(ai),

so also each ai ∈ A(W)(W). Hence A(W)(W) is a normal I of A for which f(ai)ρIg(ai) implies

all ai ∈ I, and so contains A(W); hence they are equal. 2

3.3 Element-wise equationally defined radical classes

Another fertile source of radical classes, similar in spirit to the previous two, is via element-wise

equational definitions of the form “for all x ∈ A there is y ∈ A for which f(x, y) = 0”. The idea

generalises readily to more than one f and more than one y (or even none). In the subtractive

case, such a class is guaranteed to be radical by a relatively simple condition on the terms used to

define it. The Jacobson, regular and nil radicals of ring theory are then special cases, as are many

others. See [14] for the multi-operator group special case of this concept.

Again let V be a 0-normal variety throughout this section, with U a contained universal class.

Here let FrΩ be the free algebra in V on the generators x, y1, y2, . . .. For any F ⊆ FrΩ, let RF

be the class of algebras in V, defined as follows: R is in RF providing that, for every r ∈ R there

exist f ∈ F and si ∈ R such that f(r, si) = 0.

If V is the variety of associative rings, the classes of quasiregular and von Neumann regular

rings have the form R{f} for some f ∈ Ω: in the former case, we may let f = x + y + xy; in the
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latter, f = x− xyx. Similarly the class of nil rings is RF where F = {xn | n > 0}. This idea can

be generalised to give a method for generating radical classes in subtractive varieties. Again, in

the subtractive case, the characterisation of radical classes as satisfying (H), (E) and (C) gives the

following result.

PROPOSITION 7 For F ⊆ FrΩ, RF satisfies (H) and (C) and hence if V is subtractive, is a

radical class if and only if it is closed under extensions.

We next give a useful sufficiency condition on the set F to ensure RF is closed under extensions.

Let FrΩ1 be the free algebra in V on the generators x, y1, z1, y2, z2, . . .. We view FrΩ as a subset

of FrΩ1 . Then F ⊆ FrΩ is said to be U–associating (or just associating when no confusion

arises) if and only if for all A ∈ U , whenever there are g, h ∈ F , r, ai ∈ A and bj ∈ A for which

g(h(r, ai), bj) = 0, there are also f ∈ F and ck ∈ A such that f(r, ck) = 0. (Note that ai here

refers to n− 1 elements of A where n is the number of generators involved in h, etc.) This notion

is defined in greater generality but restricted to multioperator groups in [14].

We say F ⊆ FrΩ as above is strongly associating if for all f, g ∈ F there exist h ∈ F and

gi ∈ FrΩ1 such that

f(g(x, yi), zi) = h(x, gi(x, yj , zj)).

It is easy to establish that if F is strongly associating, then it is associating.

Two special cases arise frequently. If f lies in the free algebra on one generator only, the

associating condition for {f} asserts that for all A ∈ U , if f(f(a)) = 0 for some a ∈ A then

f(a) = 0 also; {f} is strongly associating if and only if f(f(x)) = f(x). If F = {f} in the free

algebra on two generators x, y, the associating condition says that for any A ∈ U , if f(f(a, b), c) = 0

for any a, b, c ∈ A, then there exists d ∈ A for which f(a, d) = 0; the strongly associating condition

says that there is g(x, y, z) for which f(f(x, y), z) = f(x, g(x, y, z)).

THEOREM 10 For F ⊆ FrΩ, RF satisfies (E) in U if F is associating.

PROOF. Suppose A/N,N ∈ RF , N normal in A ∈ U . Suppose r ∈ A. Then there exist ai ∈ A and

f ∈ F for which f(r, ai)ρN0, that is, f(r, ai) ∈ N , so there exists g ∈ F for which g(f(r, ai), bj) = 0.

Hence there exists h ∈ F for which h(r, ck) = 0. Hence A ∈ RF and (E) is established. 2

From Proposition 7, we obtain the following.

COROLLARY 4 Let U be a universal class in V, F ⊆ FrΩ associating. Then RF satisfies (H),

(E) and (C), and so if V is subtractive, RF is a radical class.

The three ring examples have F strongly associating, but the radical class of Boolean rings,

which is R{f} where f(x) = x2 − x, does not (and indeed {f} is not even associating).

A wide variety of examples arises in the following way. Suppose V is a 0-normal variety with ∗

a (possibly derived) binary associative operation in the variety. Let f(x, y) = x ∗ y and F = {f}.

10



Trivially F is strongly associating, with g(x, y, z) = f(y, z) in f(f(x, y), z) = f(x, g(x, y, z)). By

analogy with the Jacobson radical of ring theory we call this class JV,∗ in general, or simply J∗ if

the context is clear. Note that J∗ consists of those algebras in V for which ∗ is a group operation

only if 0 is an identity for ∗ (in the sense that 0 ∗ x = x ∗ 0 = x holds in the variety).

With V and ∗ as above, one can also define f(x, y, z) = y ∗ x ∗ z, again inducing a strongly

associating {f} since f(f(x, y, z), u, v) = u∗y∗x∗z∗v = f(x, u∗y, z∗v), and we define KV,∗ = R{f};

again we write K∗ if the context is clear. Evidently J∗ ⊆ K∗. If 0 is an identity for ∗, the condition

of membership of this class is that the monoid under ∗ is simple, meaning there are no proper

ideals of the associated semigroup. In ring theory, the class K of all rings R for which (R, ◦, 0) is

a simple monoid was considered in [15], where it was shown to properly contain J .

4 Examples

EXAMPLE 1 Hoops

The variety of hoops (see for example [2] for an excellent introduction) provides our most

satisfying examples, with some of the most fundamental classes of hoops turning out to be radical.

Some of the key results used in this section and referred to in [2] originally appeared in [3] and [4]

in a more general setting.

Hoops are commutative monoids equipped with an additional binary operation → satisfying

the three identities:

1. x→ (y → z) = (xy) → z,

2. x→ x = 1 and

3. (x→ y)x = (y → x)y.

There is a natural partial order on a hoop given by x ≤ y when x → y = 1. Indeed hoops

can be characterised as ordered commutative monoids S with the property that x ≤ y if and

only if x = yz for some z ∈ S, and for which x → y = max{z ∈ S | xz ≤ y} exists for all

x, y ∈ S. It is readily shown that 1 is the largest element under the ordering. The ideals of

a Dedekind domain R, under ideal product, with the partial order being inclusion, provide an

example: I → J = {x ∈ R | xI ⊆ J}. Every Heyting algebra is a hoop in which x2 = x,

if one neglects the join. Another example is the free monoid on one generator < a >, with

an → am = amax(m−n,0); this hoop is called C∞ in [2].

Hoops form a 0-normal variety: {1} is a subhoop of any hoop, and letting d(x, y) = (x →

y)(y → x), it is easily seen that d(x, y) = 1 if and only if x = y. The variety is even Malcev

and hence subtractive; see [2]. The normals are exactly filters: N is a filter if 1 ∈ N , N is

closed under multiplication, and b ≥ a ∈ N implies b ∈ N . Because filters are transitive in hoops
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(F / G / H ⇒ F / H), it is immediate that the universal class of hoops is normal in the sense of

[16], and so all of the consequences of this important property follow.

Two useful simple facts in what follows are: (i) for any two elements a, b of a hoop, ab = b if

and only if a→ ab = 1; and (ii) ab→ b = 1 for all a, b in a hoop.

Let k be a positive integer. In [2], a hoop is called k-potent if it satisfies the identity xk+1 = xk.

PROPOSITION 8 The variety of k-potent hoops is an SSR class.

PROOF. Let f(x) = xk → xk+1 in the free hoop on a single generator. Obviously, R{f} is the

class of k-potent hoops.

Now if f(f(a)) = 1 for any a ∈ H, a hoop, letting b = f(a) = ak → ak+1, this says that

bk = bk+1. But bak ≤ ak+1, with b maximal with this property, so b ≥ a, and so a = bw for some

w ∈ H, but also bak = ak+1 (since aak = ak+1 and b ≥ a). Hence ak+1 = b(bw)k = bk+1wk =

bkwk = (bw)k = ak, that is, f(a) = 1. Hence {f} is associating and so satisfies (E) by Corollary

4. Since the k-potent hoops form a variety and filters are transitive in hoops, they have attainable

identities and hence form an SSR class by Corollary 3. 2

The implicative semilattices (subreducts of Heyting algebras to (∧,→, 1)) are exactly the 1-

potent hoops. By comparison, the analogous F = {x2− x} for rings is not associating, though the

class of Boolean rings satisfies (E) and so is an SSR class. Note that C∞ is evidently not k-potent

for any k, and indeed has no k-potent filters for any k, and so is semisimple with respect to every

k-potent radical.

Define the class M of hoops to consist of those hoops S such that for all x ∈ S there exists

y ∈ S such that xy = y. If a hoop is k-potent for some k, then it is in M. On the other hand, C∞

is obviously not in M.

PROPOSITION 9 M is a radical class.

PROOF. Letting f = y → xy, it is clear that M = R{f}. Suppose a, b, c ∈ H, a hoop, satisfy

f(f(a, b), c) = 1, that is, (b → ab)c = c. Then bc = b(b → ab)c = ab(ab → b)c = abc, so

(bc) → a(bc) = 1, or f(a, bc) = 1, so {f} is associating. 2

It is not hard to see that C∞ has no regular filters and so is semisimple: M(C∞) = 0. Note

that {f} above is not strongly associating, as easy examples show.

Because hoops have transitive normals, by Theorem 9, the anti-k-potent hoops for some k

(those for which the implication xk+1 = xk ⇒ x = 1 holds), constitute a semisimple quasivariety

of hoops. An example is C∞. Obviously any such hoop is semisimple relative to the k-potent

radical, but the converse fails in general. For instance, the hoop {1, a, b}, with an = b for all n > 1

and 1 > a > b, is not 1-potent-semisimple but b2 = b.

EXAMPLE 2 Simploids
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Now obviously hoops are never groups (unless they are {1}), so J× = K× is trivial (where ×

is the monoid product). Next we consider a variety where the opposite behaviour occurs.

We say the algebra A equipped with monoid structure (A,×, 1), with × usually denoted by

juxtaposition, and two additional binary operations ↑ and ↓, is a simploid if it satisfies the following

identities:

1. x ↑ x = x ↓ x = 1; and

2. (x ↑ y)x(x ↓ y) = y.

Obviously every simploid is simple as a semigroup; hence the name given to these algebras.

The variety of simploids is 0-normal: {1} is a subalgebra, and x ↑ y = x ↓ y = 1 if and only

if x = y. Moreover, the variety has permuting congruences, as is shown by the existence of the

term ρ(x, y, z) = (y ↑ x)(y ↑ z)y(y ↓ z)(y ↓ x); then ρ(x, x, z) = z, and ρ(x, z, z) = x. Hence it

is certainly subtractive and so both J× and K× are radical classes. Indeed K× is the class of all

simploids since the monoid part of a simploid is simple as a semigroup.

Any group G is a simploid if one defines x ↑ y = yx−1 and x ↓ y = 1, so J× is non-trivial. For

an example which is not in J×, consider the bicyclic semigroup S on generators a, b, which is the

monoid freely generated by a, b subject to the relation ba = 1, and consists of elements of the form

anbm (where we define a0 = b0 = 1), all of which are distinct. Products (anbm)(arbs) are computed

by using ba = 1 as much as possible on the inner product bmar. Define (anbm) ↑ (arbs) = ar−n if

r ≥ n and bn−r if n > r, and (anbm) ↓ (arbs) = bs−m if s ≥ m and am−s if m > s. Checking the

simploid laws is routine, yet S is not a group under multiplication. Hence S ∈ K×\J×.

EXAMPLE 3 EQ-monoids

A commutative EQ-monoid A is a commutative monoid having a distinguished submonoid LA

which is a semilattice, such that (a ./ b) = max{α ∈ LA | aα = bα} exists for all a, b ∈ A. These

are defined in greater generality in [17], where the monoid is not required to be commutative. They

are also considered in [6], where additional operations are also possible.

It is possible to characterise commutative EQ-monoids equationally as follows: they are com-

mutative monoids equipped with an additional binary operation ./ such that

1. (a ./ a) = 1 (reflexive rule); and

2. f(a)(a ./ b) = f(b)(a ./ b) for each derived unary EQ-monoid operation f (the replacement

rule).

The replacement rule is in fact an axiom scheme. It is the basis of algebraic reasoning inside

commutative EQ-monoids. For example, it lets us show that a(a ./ b) = b(a ./ b), obtained by

setting f(x) = x in the replacement rule (this is immediate from the definition of an EQ-monoid

anyway). Likewise, the law (a ./ b)(db ./ c) = (a ./ b)(da ./ c) follows on letting f(x) = (dx ./ c),
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and so on. We use these and various other easy corollaries of the replacement rule freely in what

follows.

We should give some examples. If (B,∨,∧, 0, 1,′ ) is a Boolean algebra, then (B,∧, 1) is a

monoid, and is an EQ-monoid if LB = B; in this case (a ./ b) is a ↔ b = (a ∧ b) ∨ (a′ ∧ b′), the

“if-and-only-if” connective, as is easily checked. If M is a monoid with zero element 0, then it is

an EQ-monoid if one lets LM = {0, 1}: then (a ./ a) = 1 for all a ∈ M , and (a ./ b) = 0 for

all unequal a, b ∈ M . Let {Mx|x ∈ X} be a family of such monoids, with M = Πx∈XMx the

direct product of the Mx. Then M is an EQ-monoid if LM consists of the elements of M whose

entries are 1 on a fixed subset of X and 0 elsewhere. This kind of example can be characterised

equationally (at least if 0 is admitted as an additional nullary operation); see [17].

Letting d(x, y) = (x ./ y) easily shows the variety of EQ-monoids is 0-normal since (x ./ x) = 1

and x(x ./ y) = y(x ./ y).

We now summarise some of the most important properties of EQ-monoids. Each of these facts

is shown in [17] (Proposition 1.9, Theorem 2.2 and Proposition 2.6).

THEOREM 11 Let A be an EQ-monoid.

1. The operation ∧ given by a∧b = a(a ./ b) for all a, b ∈ A is a semilattice operation extending

that on LA, with a ≤ b (the semilattice ordering) if and only if a = bα for some α ∈ LA.

2. a normal N is a filter of (A,∧) containing 1 (and we call N a normal filter of A in this

case).

3. If p is an additional n-ary operation defined on A and satisfies

p(a1, a2, . . . , an)α = p(a1, a2, . . . , ajα, . . . , an)α

for all ai ∈ A, all j, and all α ∈ LA, then all EQ-monoid congruences on A also respect p.

It follows easily that principal normal filters can be written as < α >= {a | a ≥ α}, α ∈ LA,

and that normals are transitive in this variety. (If a ∈ N , a normal filter, then so is (a ./ 1) = a∧1.)

The condition on p in the third part above says that p is regular as defined in [6], which is the

case if and only if the replacement rule extends to expressions involving p also, as is shown in [6].

Both the monoid product and ./ satisfy this condition in the current commutative setting.

The isomorphism theorem (I ∨ J)/J ∼= I/(I ∩ J) is not satisfied in the variety of commuta-

tive EQ-monoids, as is shown in [17]. Hence from Corollary 1, and despite the simple internal

description of normals similar to that for hoops, the variety of commutative EQ-monoids is not

subtractive.

Still, normal filters are transitive in EQ-monoids, so Theorem 9 applies. For any n, the semisim-

ple quasivariety given by xn = 1 ⇒ x = 1 is non-trivial, containing all EQ-monoids which are

semilattices (and there are many such – see [6]). However it will not contain the example {0, a, 1},

0, 1 a zero and an identity respectively, with a2 = 1 and (x ./ y) = 1 if x = y and 0 otherwise. Note

14



that this is a non-trivial semisimple class in a non-subtractive universal class. Many interesting

semisimple quasivarieties arise in this way, for example that consisting of all EQ-monoids with no

non-trivial left or right invertible elements (given by the implication xy = 1 ⇒ x = y = 1). In all

cases the radical is the smallest filter F for which f(ai) ∈ F implies each ai ∈ F , as in the proof

of Theorem 9.

Let V be the variety of EQ-monoids A equipped with an additional associative and commutative

binary operation ∨ satisfying x(α∨ β) = xα∨ xβ and α∨ 1 = 1 (where x ∈ A and α, β ∈ LA), the

variety of distributive EQ-monoids. (These were first defined in [6], where the definition allowed

∨ as well as × to be non-commutative, unnecessary here.) This variety is Malcev (as is shown in

[6]) by consideration of the term ρ(x, y, z) = x(y ./ z) ∨ z(x ./ y), and hence is subtractive. Note

that any Heyting algebra is a distributive EQ-monoid in which (a ./ b) = (a → b)(b → a), the

monoid product is meet and ∨ is join, with 1 the top element. Moreover any Heyting algebra H

is in J∨, since a ∨ 1 = 1 for all a ∈ H. (If we also require (a ∨ b)α = aα ∨ bα for all a, b ∈ A and

α ∈ LA – clearly satisfied by the Heyting algebra examples – then ∨ is regular, and so congruences

of the underlying EQ-monoid also respect ∨ by Theorem 11, so normals are still filters containing

1, which satisfy the transitivity property, and so the results for normal classes in [16] apply.)

To show J∨ is not all distributive EQ-monoids, consider the EQ-monoid of natural numbers

(including zero) N under multiplication, with (m ./ n) = 1 if m = n and 0 if m 6= n. Define

m ∨ n = max(m,n), making N a distributive EQ-monoid, in which LN = {0, 1}, the two-element

distributive lattice under ∨ and ·. Obviously this example is not in J∨; indeed because N is simple

(its only filter containing 1 is itself), it is semisimple. (Note that ∨ satisfies (a ∨ b)α = aα ∨ bα in

this example.)

In ring theory it is occasionally possible to define the radical of a ring to be all elements satisfying

some particular property. For example, for commutative (associative) rings, the nil radical of R is

N (R) = {a ∈ R | an = 0 for some n > 0}, and then R is nil-semisimple if and only if it satisfies

each of the implications xn = 0 ⇒ x = 0, n > 0. We now give an example of this form in a

variety of EQ-monoids with an additional unary operation I. All of the ideas of this section are

brought together in this example.

We say A is an interior EQ-monoid if it possesses a unary operation I for which I(I(a)) = I(a),

I(1) = 1, I(a∧ b) = I(a)∧ I(b) and I(a)α = I(aα)α, for all a, b ∈ A and α ∈ LA. The last identity

is simply regularity of I, so normal filters of the EQ-monoid induce congruences which I also

respects, by Theorem 11: aρb implies I(a)ρI(b).

This class of interior EQ-monoids contains all EQ-monoids: define I(a) = 1 for all a; hence it is

not subtractive. On the other hand, let I(a) = a in any EQ-monoid, giving an interior EQ-monoid

in which I(a) = 1 only if a = 1.

Note that f(x) = I(x) is (strongly) associating, so the equation I(x) = 1 defines a variety

which satisfies (E), and restricting to a subtractive subvariety or enrichment (for instance Heyting
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semilattices given by x = (x ./ 1), or distributive EQ-monoids), it would be a radical class simply

by Corollary 4. Nonetheless we have the following result.

THEOREM 12 The variety R of all interior EQ-monoids satisfying I(x) = 1 is a radical class

with R(A) = {a ∈ A | I(a) = 1} for any A. The corresponding semisimple class is the quasivariety

satisfying I(x) = 1 ⇒ x = 1.

PROOF. Because of transitive normals, the quasivariety of interior EQ-monoids satisfying I(x) =

1 ⇒ x = 1 is a semisimple class by Theorem 9. From the proof of Theorem 2, the radical of

A is the smallest normal filter which when factored out gives something in this quasivariety. In

any interior EQ-monoid A, this obviously includes the set I(A) = {a ∈ A | I(a) = 1}. However,

noting that 1 ∈ I(A), I(A) is a normal filter of A, and that A/I(A) has no such elements b for

which I(b) = 1 – if it did then A would have an element c 6∈ I(A) for which I(c) ∈ I(A), so

I(c) = I(I(c)) = 1, a contradiction. Hence R(A) = I(A), and obviously the radical class is the

variety satisfying I(x) = 1. 2

Defining I(a) = a for all a in any EQ-monoid gives a semisimple example, while defining

I(a) = 1 for all a gives a radical example.

EXAMPLE 4 Loops

We close with a non-associative example. In [8], Gardner briefly alludes to the possibility of

doing radical theory at the level of loop theory, but decides to draw the line of algebraic generality

at (multi-operator) groups. Recall that a loop is an algebra with three binary operations ·, \ and

/ and one nullary 1 satisfying

1. x\(x · y) = y, (x · y)/y = x;

2. x · (x\y) = y, (x/y) · y = x;

3. x · 1 = 1 · x = x.

Thus an associative loop is a group. The variety of loops is 0-normal since {1} is a subloop

of any loop and d(x, y) = x/y is an appropriate term for 0-regularity. It is Malcev also, hence

subtractive.

Let f(x) be an element of the free loop on one generator x. Define the class Tf to be all

loops A such that for all a ∈ A, fn(a) = 1 for some n > 0. Then f i(f j(x)) = f i+j(x), so

F = {fi | i = 1, 2, . . .} is associating and so Tf = RF is a radical class by Corollary 4. Note that

f(x) = xm for squarefree m reduces for abelian groups to those groups for which every element

has order a product of primes dividing m, so these f provide non-trivial loop radicals too.

Similarly, the divisible radical for abelian groups can be generalised as follows. Let f be as

before and let D be the class of all loops A for which, for all x ∈ A there is n > 0 and y ∈ A for

which x = fn(y). Then F = {fn | n > 0} is again associating and so RF is a radical class. Letting

f(x) = xm as above gives various divisible radicals.
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5 Concluding remarks

Our main motivation for this article was the hope that much of Kurosh-Amitsur radical theory

for rings (and more generally multi-operator groups) would make sense for 0-regular varieties in

which all operations preserve 0. To some extent based on the work of Gardner on radicals of

idempotent algebras [9], we developed a theory of radicals in this context. As in [9], the theory

worked moderately well in full generality (although the usual homomorphic closure axiom needed

to be altered), but worked better if the isomorphism theorem (I ∨ J)/J ∼= I/(I ∩ J) was assumed

to hold.

Soon after completing this work on radicals in 0-regular varieties, we discovered that Puczy lowski

[16] had already defined a lattice-based notion of universal class in which Kurosh-Amitsur radicals

could be defined. The special case of subtractive 0-regular varieties in which all operations preserve

0 provided examples of his universal classes, and our definition of a radical class coincided with his

in this case. It became clear that much of the work on 0-regular varieties generalised to a setting

similar to Puczy lowski’s but a little more general; this corresponded to moving from subtractive

to general universal classes (in some ambient 0-normal variety).

Since then, thanks to the comments of the anonymous referee, we became aware that a far-

reaching generalisation of radical theory, applying in general categories, had already been devel-

oped in the work of Márki, Mlitz and Wiegandt, [13]. In particular, the desired generalisation

of Puczy lowski’s lattice approach proved to be a special case. So our original arguments in that

setting could be eliminated, with the corresponding facts simply stated as special cases of results

holding in [13].

In the present setting, it remains a task of further work to discover more non-subtractive

examples, notably non-quasivariety examples. There is also interest in resolving some other issues,

such as whether (R1) is implied by (H) in the presence of (R2) and (R3); in the idempotent algebras

case considered by Gardner in [9], this question is resolved in the negative, and the cost of using

(H) instead of (R1) is, among other things, that “semisimple classes” need no longer be subdirectly

closed.

Deciding when semisimple classes admit a simpler characterisation, along the lines of the famil-

iar one for associative rings, would also be of interest. Finally, the non-radical theoretic question

as to whether the isomorphism theorem (I ∨ J)/J ∼= I/(I ∩ J) holding in a 0-normal variety is

equivalent to it being subtractive should be resolvable.
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