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Summary. Rank-1 lattice rules based on a weighted star discrepancy with weights
of a product form have been previously constructed under the assumption that the
number of points is prime. Here, we extend these results to the non-prime case. We
show that if the weights are summable, there exist lattice rules whose weighted star
discrepancy is O(n−1+δ), for any δ > 0, with the implied constant independent of
the dimension and the number of lattice points, but dependent on δ and the weights.
Then we show that the generating vector of such a rule can be constructed using
a component-by-component (CBC) technique. The cost of the CBC construction is
analysed in the final part of the paper.
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1 Introduction

We consider rank-1 lattice rules for the approximation of integrals over the
d-dimensional unit cube given by

Id(f) =

∫

[0,1]d
f(x) dx.

These rank-1 lattice rules are quadrature rules of the form

Qn,d(f) =
1

n

n−1
∑

k=0

f

({

kz

n

})

,

where z ∈ Z
d is the generating vector having all the components conveniently

assumed to be relatively prime with n, while the braces around a vector indi-
cate that we take the fractional part of each component of the vector.
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In this paper we are looking to extend the recent results in [Joe06] by
constructing rank-1 lattice rules with a composite number of points. Hence,
the same assumptions as in [Joe06] will be used here with the main difference
that n is assumed to be just a positive integer. The vast majority of earlier
research papers have assumed that n was a prime number; an assumption
which simplifies the analysis of the problem.

However there are some known results in the non-prime case. For instance,
it has been proven in [Dis90], [Nie78], or [Nie92, Chapter 5] that good lattice
rules with a non-prime number of points do exist. Several measures of goodness
were used in those works, but under the assumptions that variables are equally
important. Here, we assume that variables are arranged in the decreasing
order of their importance and we employ a weighted star discrepancy as a
criterion of goodness. An unweighted star discrepancy (corresponding to an
L∞ maximum error) has been previously used in [Joe04] and in more general
works such as [Nie92] or [SJ94], while the weighted star discrepancy has been
used in [HN03], [Joe06], and [SJ07].

A constructive approach in the non-prime case has been proposed in
[KJ02], where the integrands were assumed to belong to certain reproducing
kernel Hilbert spaces such as weighted Korobov spaces of periodic functions or
weighted Sobolev spaces with square-integrable mixed first derivatives. Here
we require the integrands to have the weaker requirement of integrable mixed
first derivatives. Let us remark that in [Kuo03] it was proven that in the
reproducing kernel Hilbert spaces of [KJ02], the component-by-component
construction (used also here) achieves the optimal rate of convergence. In
[Dic04], the results in [Kuo03] were further improved and then extended to
the non-prime case.

Let us also mention that lattice rules with a composite number of points
have become more interesting since the introduction of extensible lattice rules
in [HH97]. Later, in [HN03], it was shown that extensible lattice rules in num-
ber of points with a low weighted star discrepancy do exist, but the proof was
non-constructive. More recently, in [DPW07], a possible way of constructing
extensible lattice rules was proposed. Therein, it was assumed that n is of
the form pm with p ≥ 2 an arbitrary prime. For such a case, it has been
shown that lattice rules extensible in number of points based on the weighted
star discrepancy can be constructed, but the results were not generalised to
arbitrary integers as we propose here.

2 Weighted Star Discrepancy

As mentioned in the previous section, throughout this paper we make similar
assumptions as in [Joe06] and we start by recalling some of those results and
assumptions.

In order to introduce the general weighted star discrepancy, let us con-
sider first the point set Pn(z) := {{kz/n}, 0 ≤ k ≤ n − 1}. Then the local
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discrepancy of the point set Pn(z) at x ∈ [0, 1]d is defined by

discr(x, Pn) :=
A([0, x), Pn)

n
−

d
∏

j=1

xj .

Here A([0, x), Pn) represents the counting function, namely the number of
points in Pn(z) which lie in [0, x) with x = (x1, x2, . . . , xd).

Let now u be an arbitrary non-empty subset of D := {1, 2, . . . , d − 1, d}
and denote its cardinality by |u|. For the vector x ∈ [0, 1]d, let xu denote the
vector from [0, 1]|u| containing the components of x whose indices belong to
u. By (xu,1) we mean the vector from [0, 1]d whose j-th component is xj if
j ∈ u and 1 if j 6∈ u. From Zaremba’s identity (see for instance [SW98] or
[Zar68]), we obtain

Qn,d(f) − Id(f) =
∑

u⊆D

(−1)|u|
∫

[0,1]|u|

discr((xu,1), Pn)
∂|u|f((xu,1))

∂xu

dxu.

(1)
Now let us introduce a sequence of positive weights {γj}

∞
j=1, which describe

the decreasing importance of the successive coordinates xj and consider γ
u

as the weight associated with the set u. In this paper, we assume that the
weights {γ

u
} are “product”, that is

γ
u

=
∏

j∈u

γj ,

for any subset u ⊆ D. Such assumptions on the weights have been made in
[HN03], [Joe06], [SW98] and in other research papers. Using (1) we see that
we can write

Qn,d(f) − Id(f)

=
∑

u⊆D

(−1)|u|γ
u

∫

[0,1]|u|

discr((xu,1), Pn)γ−1
u

∂|u|f((xu,1))

∂xu

dxu.

Applying Hölder’s inequality for integrals and sums, we obtain

|Qn,d(f) − Id(f)| ≤





∑

u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr((xu,1), Pn)|





×

(

max
u⊆D

γ−1
u

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f((xu,1))

∣

∣

∣

∣

dxu

)

.

Thus we can define a weighted star discrepancy D∗
n,γ(z) by

D∗
n,γ(z) :=

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr((xu,1), Pn)| . (2)
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From [Nie92, Theorem 3.10 and Theorem 5.6], we obtain the following in-
equality:

sup
xu∈[0,1]|u|

|discr((xu,1), Pn)| ≤ 1 − (1 − 1/n)|u| +
Rn(z, u)

2
,

where

Rn(z, u) =
∑

h·zu≡0 ( mod n)
h∈E∗

n,|u|

∏

j∈u

1

max(1, |hj |)
.

Here zu denotes the vector consisting of the components of z whose indices
belong to u, while

E∗
n,m = {h ∈ Z

m, h 6= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ m}.

This result, together with (2) shows that the general weighted star discrepancy
satisfies the inequality

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u| +
Rn(z, u)

2

)

. (3)

For calculation purposes, the theory of lattice rules, (for example, see
[Nie92] or [SJ94]) shows that we may write Rn(z, u) as

Rn(z, u) =
1

n

n−1
∑

k=0

∏

j∈u



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



− 1,

where the ′ in the sum indicates we omit the h = 0 term. It is easy to see that
Rn(z, u) represents the quadrature error produced by applying the lattice rule
to the integrand

∏

j∈u



1 +
∑′

−n/2<h≤n/2

e2πihxj

|h|



 .

It is also easy to check that if |u| = 1, then the corresponding error Rn(z, u) =
0 for each subset of D with only one element.

3 Bounds on the Weighted Star Discrepancy

To obtain bounds on D∗
n,γ(z), we see from (3) that we need to bound the

quantity
∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

and the quantity
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e2
n,d(z) :=

∑

u⊆D

γ
u
Rn(z, u). (4)

Under the assumption that the weights are summable, that is
∑∞

j=1 γj < ∞,
it follows from [Joe06, Lemma 1] that

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

= O(n−1), (5)

with the implied constant depending on the weights, but independent of d
and n.

We now consider e2
n,d(z) in more detail and by expanding the quadrature

error defined by (4) as in [Joe06], we obtain

e2
n,d(z) =

1

n

n−1
∑

k=0

d
∏

j=1

(1 + γj + γjCk(zj)) −
d
∏

j=1

(1 + γj) ,

where

Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h|
.

By setting βj = 1 + γj , we obtain

e2
n,d(z) =

1

n

n−1
∑

k=0

d
∏

j=1

(βj + γjCk(zj)) −
d
∏

j=1

βj . (6)

We can obtain a bound on e2
n,d(z) by obtaining a bound on a certain mean

value of e2
n,d(z). The mean Mn,d,γ is defined by

Mn,d,γ :=
1

ϕ(n)d

∑

z∈Zd
n

e2
n,d(z),

where ϕ is Euler’s totient function and

Zn = {z : z ∈ {1, 2, . . . , n − 1}, (z, n) = 1}

has cardinality ϕ(n). Here (z, n) = gcd(z, n). A bound on the mean Mn,d,γ is
given next.

Theorem 1. Let n ≥ 2 be an integer and let

Sn =
∑′

−n/2<h≤n/2

1

|h|
.

If the weights {γj}
∞
j=1 are summable, then
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Mn,d,γ ≤
1

n

d
∏

j=1

(βj + γjSn) + O

(

ln ln(n + 1)

n

)

,

where the implied constant depends on the weights, but is independent of the

dimension.

Proof. We have

Mn,d,γ =
1

ϕ(n)d

∑

z∈Zd
n





1

n

n−1
∑

k=0

d
∏

j=1

(βj + γjCk(zj)) −
d
∏

j=1

βj





=
1

n

n−1
∑

k=0

d
∏

j=1





1

ϕ(n)

∑

zj∈Zn

(βj + γjCk(zj))



−

d
∏

j=1

βj

=
1

n

d
∏

j=1

(βj + γjSn) +
1

n

n−1
∑

k=1

d
∏

j=1



βj +
γj

ϕ(n)

∑

zj∈Zn

Ck(zj)



−

d
∏

j=1

βj ,

where in the last step the k = 0 term has been separated out and we have
used the fact that C0(z) = Sn. If we denote

Tn(k) =
∑

z∈Zn

Ck(z) =
∑

z∈Zn

∑′

−n/2<h≤n/2

e2πihkz/n

|h|
, (7)

then we see that the mean can be written as

Mn,d,γ =
1

n

d
∏

j=1

(βj + γjSn) + Ln,d,γ −

d
∏

j=1

βj , (8)

where

Ln,d,γ =
1

n

n−1
∑

k=1

d
∏

j=1

(

βj +
γj

ϕ(n)
Tn(k)

)

. (9)

The rest of this proof follows many of the arguments used in the proof of
[Nie92, Theorem 5.10] (see also [Dis90]). Firstly, it may be shown that

Tn(k) =
∑

a|n

µ(a)
(n

a
, k
)

Sa( n
a

,k) =
∑

a|n

µ
(n

a

)

(a, k)Sn(a,k)
a

, (10)

where µ denotes the well-known Möbius function from number theory. If n is
prime, then we obtain Tn(k) = −Sn for any 1 ≤ k ≤ n− 1, which leads to the
results obtained in [Joe06]. From [Nie78, Lemmas 1 and 2], we have

Sm = 2 ln m + 2ω − ln 4 + ε (m) , (11)

where ω is the Euler-Mascheroni constant given by
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ω = lim
`→∞

(

∑̀

k=1

1

k
− ln `

)

,

while
|ε(m)| < 4m−2. (12)

Using (10), we now obtain

Tn(k) = (2 ln n + 2ω − ln 4)Bn(k) − 2Hn(k) + Vn(k), (13)

where
Bn(k) =

∑

a|n

µ
(n

a

)

(a, k),

Hn(k) =
∑

a|n

µ
(n

a

)

(a, k) ln
a

(a, k)
,

and

Vn(k) =
∑

a|n

µ
(n

a

)

(a, k)ε

(

n(a, k)

a

)

. (14)

From the proof of [Nie92, Theorem 5.10], we have Bn(k) = 0 for any 1 ≤ k ≤
n − 1. Using this result in (13), we get

Tn(k) = −2Hn(k) + Vn(k). (15)

By combining (9) with (15), we obtain

Ln,d,γ =
1

n

n−1
∑

k=1

d
∏

j=1

(

βj + γj

(

−2Jn(k) +
Vn(k)

ϕ(n)

))

, (16)

where

Jn(k) =
Hn(k)

ϕ(n)
.

The proof of Theorem 5.10 in [Nie92] yields Vn(k) = O(1) with an abso-
lute implied constant. Hence we have Vn(k)/ϕ(n) = O(1/ϕ(n)). This result
together with (16) and βj = 1 + γj yields

Ln,d,γ =
1

n

n−1
∑

k=1

d
∏

j=1

(

1 + γj(1 − 2Jn(k)) + γjO

(

1

ϕ(n)

))

. (17)

Let us denote by p a prime number and by ep(n) the largest exponent such
that pep(n) divides n. Then, from the proof of [Nie92, Theorem 5.10], we obtain

Hn(k) =

{

pep(k)ϕ(n/pep(n)) ln p, if p is the unique prime with ep(n) > ep(k),
0, otherwise.
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If such a p exists, then by the definition of ep(n), we have n/pep(n) relatively
prime with pep(n) and hence ϕ(n/pep(n))ϕ(pep(n)) = ϕ(n). We then obtain

Jn(k) =
pep(k)ϕ(n/pep(n)) ln p

ϕ(n)
=

pep(k) ln p

ϕ(pep(n))
=

ln p

pαk (p − 1)
, (18)

where we put αk = ep(n)−ep(k)−1, for 1 ≤ k ≤ n−1. For each 1 ≤ k ≤ n−1,
it is not difficult to check from (18) that −1 < 1−2 ln(p)/(pαk(p−1)) < 1 for
any prime p ≥ 2 and for any αk ≥ 0. Hence, 1 + γj(1− 2Jn(k)) ≤ 1 + γj = βj

for any 1 ≤ j ≤ d. The product in (17) can then be bounded by

d
∏

j=1

(

1 + γj(1 − 2Jn(k)) + γjO

(

1

ϕ(n)

))

≤
d
∏

j=1

(

βj + γjO

(

1

ϕ(n)

))

=

d
∏

j=1

βj +
∑

u⊆D
|u|≥1

(

O

(

1

ϕ(n)

))|u|
∏

j∈u

γj

∏

j 6∈u

βj

=

d
∏

j=1

βj + O

(

1

ϕ(n)

)

, (19)

where the implied constant depends on the quantity

∑

u⊆D
|u|≥1

∏

j∈u

γj

∏

j 6∈u

βj ≤

d
∏

j=1

(βj + γj) .

Next, let us consider

d
∏

j=1

(βj + γj) = exp





d
∑

j=1

ln (βj + γj)



 ≤ exp



2

d
∑

j=1

γj



 ,

where we used that βj = 1 + γj and ln(1 + x) ≤ x for any x > −1. Recalling
that the weights were assumed to be summable, by denoting Γ :=

∑∞
j=1 γj ,

it follows that
d
∏

j=1

(βj + γj) ≤ e2Γ ,

which shows that the implied constant of (19) is independent of the dimension,
but dependent on the weights. From (17), (19) and using that 1/ϕ(n) =
O(n−1 ln ln(n + 1)), we now obtain
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Ln,d,γ ≤
n − 1

n

d
∏

j=1

βj + O

(

ln ln(n + 1)

n

)

.

By combining the last inequality with (8), we obtain

Mn,d,γ ≤
1

n

d
∏

j=1

(βj + γjSn) + O

(

ln ln(n + 1)

n

)

. �

Corollary 1. Let n ≥ 2 be an integer. If the weights {γj}
∞
j=1 are summable,

then there exists a vector z ∈ Zd
n such that

e2
n,d(z) ≤

1

n

d
∏

j=1

(βj + γjSn) + O

(

ln ln(n + 1)

n

)

,

where the implied constant depends on the weights, but is independent of the

dimension.

Proof. Clearly, there must be a vector z ∈ Zd
n such that e2

n,d(z) ≤ Mn,d,γ and
the result then follows from Theorem 1. �

It is known from [Nie78] or [Nie92] that in an unweighted setting there
exist d-dimensional lattice rules having O(n−1(ln n)d) star discrepancy with
the implied constant depending only on d. Such a bound is widely believed
to be the best possible (see [Lar87] or [Nie92] for details). In our situation,
from (3), (5) and Corollary 1, together with the observation that Sn ≤ 2 ln n
for any n ≥ 2 (this follows from (11) for n ≥ 3 and a direct calculation for
n = 2), it will follow that there exists a vector z ∈ Zd

n such that

D∗
n,γ(z) = O(n−1(ln n)d),

but with the implied constant independent of d. A bound that does not involve
ln n is possible by making use of [HN03, Lemma 3]. This result leads to the
conclusion that if the weights are summable, then there exists a generating
vector z such that the weighted star discrepancy achieves the error bound

D∗
n,γ(z) = O(n−1+δ),

for any δ > 0, where the implied constant depends on δ and the weights but
is independent of n and d.

Let us also remark that corresponding results for a weighted Lp star dis-
crepancy can be deduced, since such a discrepancy is bounded by the discrep-
ancy introduced in (2). Further details can be found in [Joe06].
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4 A Component-by-Component Construction

Before presenting the main result regarding the CBC construction, we need
the following:

Lemma 1. There exists a positive constant c independent of n such that

n−1
∑

k=1

|Tn(k)|

ϕ(n)
≤ c ln n,

where Tn(k) has been defined by (7).

Proof. Since Jn(k) = Hn(k)/ϕ(n) ≥ 0, then from (15), we obtain:

n−1
∑

k=1

|Tn(k)|

ϕ(n)
≤

n−1
∑

k=1

(

2Jn(k) +
|Vn(k)|

ϕ(n)

)

. (20)

From the proof of [Nie92, Theorem 5.10], we obtain:

n−1
∑

k=1

Jn(k) = ln n. (21)

In order to analyse the second quantity of (20), we see from (14) that

|Vn(k)| ≤
∑

a|n

∣

∣

∣µ
(n

a

)∣

∣

∣ (a, k)

∣

∣

∣

∣

ε

(

n(a, k)

a

)∣

∣

∣

∣

.

By using (12), we next obtain:

|Vn(k)| ≤ 4
∑

a|n

∣

∣

∣µ
(n

a

)∣

∣

∣

(a

n

)2

= 4
∑

a|n

1

a2
≤

2π2

3
.

Recalling that 1/ϕ(n) = O(ln ln(n+1)/n) with an absolute implied constant,
we now deduce that there exists a constant c1 > 0 independent of n such that

n−1
∑

k=1

|Vn(k)|

ϕ(n)
≤ (n − 1)

2π2c1

3

ln ln(n + 1)

n
≤

2π2c1 ln n

3
.

From this inequality combined with (20) and (21), we obtain:

n−1
∑

k=1

|Tn(k)|

ϕ(n)
≤

(

2 +
2π2c1

3

)

ln n,

which leads to the desired result by taking c = 2 + 2π2c1/3. �
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In order to construct the generating vector, we use a component-by-
component (CBC) technique, which is essentially a “greedy”-type algorithm,
based on finding each component one at a time. This technique has been
successfully used in several research papers, for instance [Joe04], [Joe06] or
[KJ02]. Here, we are looking to prove that the CBC algorithm produces a gen-
erating vector whose corresponding weighted star discrepancy has the same
order of magnitude as the bound given in Corollary 1. The CBC algorithm is
presented below:

Component-by-component (CBC) algorithm
Assume that n ≥ 2 is an integer, d is the dimension and all the weights

are known. Then the generating vector z = (z1, z2, . . . , zd) can be constructed
as follows:

1. Set the value for the first component of the vector, say z1 := 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2
n,m(z1, z2, . . . , zm) is

minimised.
In the above, we have

e2
n,m(z1, z2, . . . , zm) =

1

n

n−1
∑

k=0

m
∏

j=1

(βj + γjCk(zj)) −

m
∏

j=1

βj .

The following theorem and corollary will justify the use of the CBC algorithm.

Theorem 2. Let n ≥ 2 be an integer and suppose that the weights {γj}
∞
j=1

are summable. If there exists a z ∈ Zd
n such that

e2
n,d(z) ≤

1

n

d
∏

j=1

(βj + αγj ln n) ,

where α = 2 + c with c defined by Lemma 1, then there exists zd+1 ∈ Zn such

that

e2
n,d+1(z, zd+1) ≤

1

n

d+1
∏

j=1

(βj + αγj ln n) .

Such a zd+1 can be found by minimising e2
n,d+1(z, zd+1) over the set Zn.

Proof. For any zd+1 ∈ Zn, we see from (6) that

e2
n,d+1(z, zd+1) =

1

n

n−1
∑

k=0

d
∏

j=1

(βj + γjCk(zj)) (βd+1 + γd+1Ck(zd+1)) − βd+1

d
∏

j=1

βj

= βd+1e
2
n,d(z) +

γd+1

n

n−1
∑

k=0

d
∏

j=1

(βj + γjCk(zj)) Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d
∏

j=1

(βj + γjSn)
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+
γd+1

n

n−1
∑

k=1

d
∏

j=1

(βj + γjCk(zj)) Ck(zd+1),

where in the last step the k = 0 term has been separated out. Next we average
e2

n,d+1(z, zd+1) over all the possible values of zd+1 to form

Avg(e2
n,d+1(z, zd+1)) =

1

ϕ(n)

∑

zd+1∈Zn

e2
n,d+1(z, zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d
∏

j=1

(βj + γjSn)

+
γd+1

nϕ(n)

∑

zd+1∈Zn

n−1
∑

k=1

d
∏

j=1

(βj + γjCk(zj)) Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d
∏

j=1

(βj + γjSn)

+
γd+1

n

n−1
∑

k=1





1

ϕ(n)

∑

zd+1∈Zn

Ck(zd+1)





d
∏

j=1

(βj + γjCk(zj))

≤ βd+1e
2
n,d(z) +

γd+1Sn

n

d
∏

j=1

(βj + γjSn)

+
γd+1

n

n−1
∑

k=1

|Tn(k)|

ϕ(n)

d
∏

j=1

(βj + γjSn).

Using Lemma 1 and Sn ≤ 2 lnn, we next obtain

Avg(e2
n,d+1(z, zd+1)) ≤ βd+1e

2
n,d(z) +

γd+1Sn

n

d
∏

j=1

(βj + γjSn)

+
cγd+1 ln n

n

d
∏

j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

(2 + c)γd+1 ln n

n

d
∏

j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

αγd+1 ln n

n

d
∏

j=1

(βj + αγj ln n) .

By making use of the hypothesis, we finally obtain

Avg(e2
n,d+1(z, zd+1)) ≤

βd+1

n

d
∏

j=1

(βj + αγj ln n) +
αγd+1 ln n

n

d
∏

j=1

(βj + αγj ln n)



Rank-1 Lattice Rules with a Nonprime Number of Points 13

=
1

n

d+1
∏

j=1

(βj + αγj ln n) .

It is obvious that the zd+1 ∈ Zn chosen to minimise e2
n,d+1(z, zd+1) will satisfy

e2
n,d+1(z, zd+1) ≤ Avg(e2

n,d+1(z, zd+1)).

This, together with the previous inequality completes the proof. �

Corollary 2. Let n ≥ 2 be an integer. If the weights {γj}
∞
j=1 are summable,

then for any m = 1, 2, . . . , d, there exists a z ∈ Zm
n such that

e2
n,m(z1, z2, . . . , zm) ≤

1

n

m
∏

j=1

(βj + αγjSn) .

We can set z1 = 1 and for every 2 ≤ m ≤ d, zm can be chosen by minimising

e2
n,m(z1, z2, . . . , zm) over the set Zn.

Proof. Recall from Section 2 that Rn(z, u) = 0 for any subset u ⊆ D with
|u| = 1. Hence for m = 1 it follows that e2

n,1(z1) = 0. The result then follows
immediately from Theorem 2.�

In order to evaluate the complexity of the CBC construction, we observe
first that each e2

n,m(z1, z2, . . . , zm) can be evaluated in O(n2m) operations.
This cost can be reduced to O(nm) by using asymptotic techniques as pre-
sented in [JS92] (see also [Joe06, Appendix A]) and consequently, the total
complexity of the algorithm will be O(n2d2). This can be reduced to O(n2d)
if we store the products during the construction at an extra expense of O(n).
However, this order of magnitude can be further reduced to O(nd log n) with
an approach similar to the one used by Nuyens and Cools in [NC05]. Their ap-
proach is essentially based on a fast matrix-vector multiplication and consists
of minimising a function of the form

1

n

n−1
∑

k=0

d
∏

j=1

(

1 + γjω

({

kzj

n

}))

− 1,

where ω is some function. In our situation we can take

ω(x) =
∑′

−n
2 <h≤n

2

e2πihx

|h|
, x ∈ [0, 1].

Thus, with some modifications, the techniques used in [NC05] will also work
here.
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