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We study the problem of constructing good intermediate-rank lattice rules in

the sense of having a low weighted star discrepancy. The intermediate-rank

rules considered here are obtained by “copying” rank-1 lattice rules. We show

that such rules can be constructed using a component-by-component technique

and prove that the bound for the weighted star discrepancy achieves the opti-

mal convergence rate.
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1. Introduction

Integrals over the d-dimensional unit cube given by

Id(f) =

∫

[0,1]d
f(x) dx

may be approximated by rank-1 lattice rules. These are quadrature rules

defined by

1

n

n−1
∑

k=0

f

({

kz

n

})

. (1)

Here, z ∈ Z
d is the generating vector having all the components conve-

niently assumed to be relatively prime with n, while the braces around the

vector indicate that we take the fractional part of each component of the

vector.

In general terms, the “rank” of a lattice rule represents the minimum

number of generating vectors required to produce the quadrature points.

For d-dimensional integrals, lattice rules may have rank up to d. Further
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details on the definition and the representation of lattice rules can be found

in [13] and [14].

In some practical applications, the first variables are the most impor-

tant. Hence, it seems natural to consider lattice rules obtained by “copying”

rank-1 lattice rules. If ` ≥ 1 is an integer satisfying gcd(`, n) = 1 and r is

a fixed integer taken from the set {0, 1, . . . , d}, then we can define the fol-

lowing lattice rule:

QN,d(f) =
1

`rn

`−1
∑

mr=0

. . .
`−1
∑

m1=0

n−1
∑

k=0

f

({

kz

n
+

(m1, . . . , mr, 0, . . . , 0)

`

})

.

(2)

For r ≥ 1, this lattice rule is a rank-r lattice rule or “intermediate-rank

lattice rule”. Let’s remark that the lattice rule (2) has N = `rn distinct

points and is obtained by copying the rank-1 lattice rule (1) ` times in each

of the first r dimensions. It is easy to observe that when r = 0 or ` = 1,

the lattice rule (2) is reduced to the rank-1 lattice rule (1).

Such intermediate-rank lattice rules have been previously studied in [5],

[7], and [13]. Here, in order to construct these intermediate-rank lattice

rules, we employ the “weighted star discrepancy” as a measure of “good-

ness”. An unweighted star discrepancy (corresponding to an L∞ maximum

error) has been previously used in [3] and in more general works such as

[10] or [13], while the weighted star discrepancy has been used in [1], [4],

and [12].

2. Bounds for the weighted star discrepancy

Let’s observe first that the quadrature points of the lattice rule (2) can be

rewritten as:
{

kz

n
+

(m1, . . . , mr, 0, . . . , 0)

`

}

=
yt

N
,

where yt/N , 0 ≤ t ≤ N − 1, are in [0, 1)d. Of course, these points are a

reordering of the N -points of the rank-r lattice rule defined by (2). Hence

the lattice rule (2) may be rewritten as

QN,d(f) =
1

N

N−1
∑

t=0

f
(

yt

N

)

.

In order to introduce the weighted star discrepancy, let the set of quadrature

points {yt/N, 0 ≤ t ≤ N−1} be denoted by PN . Then the star discrepancy
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of PN is defined by

D∗
N(PN ) := sup

x∈[0,1)d

|discr(x, PN )| ,

where discr(x, PN ) is the local discrepancy given by

discr(x, PN ) :=
A([0, x), PN )

N
−

d
∏

j=1

xj .

Here A([0, x), PN ) represents the counting function, namely the number

of points in PN which lie in [0, x) with x = (x1, x2, . . . , xd). The star

discrepancy gives a measure of the uniformity of the distribution of the

quadrature points.

Let now u be an arbitrary subset of D := {1, 2, . . . , d− 1, d} and denote

its cardinality by |u|. For the vector x ∈ [0, 1]d, let xu denote the vector

from [0, 1]|u| containing the components of x whose indices belong to u.

By (xu,1) we mean the vector from [0, 1]d whose j-th component is xj if

j ∈ u and 1 if j 6∈ u. Now let us introduce a set of non-increasing positive

weights {γj}
∞
j=1 which describes the decreasing importance of the successive

coordinates xj and set

γ
u

=
∏

j∈u

γj .

From Zaremba’s identity (see for instance [15] or [16]) and by applying

Hölder’s inequality for integrals and sums, we obtain

|QN,d(f) − Id(f)| ≤





∑

u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr((xu,1), PN )|





× sup
u⊆D

γ
−1
u

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f((xu,1))

∣

∣

∣

∣

dxu.

Thus we can define a weighted star discrepancy D∗
N,γ(PN ) by

D∗
N,γ(PN ) :=

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr((xu,1), PN )| . (3)

From [10], we make use of Theorem 3.10 and Lemma 5.21, together with

the arguments leading to Theorem 5.6, to obtain the following inequality:

sup
xu∈[0,1]|u|

|discr((xu,1), PN )| ≤ 1 − (1 − 1/N)|u| +
RN (PN , u)

2
, (4)
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where

RN (PN , u) =
1

N

N−1
∑

t=0

∏

j∈u



1 +
∑′

−N
2

<h≤N
2

e2πihyt,j/N

|h|



 − 1.

In the above yt,j is the j-th coordinate of yt, while the ′ in the sum indicates

we omit the h = 0 term.

Let us mention here that from the general theory on lattice rules (for

example, see [10] or [13]), it will follow that RN (PN , u) ≥ 0 for any u ⊆ D.

From (3) and (4), we see that the general weighted star discrepancy satisfies

the inequality

D∗
N,γ(PN ) ≤

∑

u⊆D

γ
u

(

1 − (1 − 1/N)|u| +
RN (PN , u)

2

)

. (5)

Further bounds on the weighted star discrepancy may be obtained by mak-

ing use of (5). If the weights γj are summable, that is,

∞
∑

j=1

γj < ∞,

then from [4, Lemma 1], we obtain:

∑

u⊆D

γ
u

(

1 − (1 − 1/N)|u|
)

≤
max(1, Γ)

N

∞
∏

j=1

(1 + γj) ≤
max(1, Γ)

`rn
e

P∞
j=1

γj ,

where

Γ :=

∞
∑

j=1

γj

1 + γj
< ∞.

The complete proof of this result may be found in [4]. Thus we obtain
∑

u⊆D

γ
u

(

1 − (1 − 1/N)|u|
)

= O(n−1), (6)

where the implied constant depends on `, r and the weights.

We have from [4] that

∑

u⊆D

γ
u
RN (PN , u) =

1

N

N−1
∑

t=0

d
∏

j=1



βj + γj

∑′

−N
2

<h≤N
2

e2πihyt,j/N

|h|



 −

d
∏

j=1

βj ,

where βj = 1 + γj . If we set

e2
N,d(z) =

∑

u⊆D

γ
u
RN (PN , u),
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then we see that we have

e2
N,d(z) =

1

N

N−1
∑

t=0

d
∏

j=1



βj + γj

∑′

−N
2

<h≤N
2

e2πihyt,j/N

|h|



 −
d

∏

j=1

βj . (7)

Let’s remark that the dependency on z in e2
N,d(z) makes sense as the vectors

yt actually depend on z.

In research papers such as [2] or [5], it was proved that when n is prime,

the quantity (7) is identical to a quadrature error obtained from applying

a rank-1 lattice rule to a certain integrand. Working with such a quadra-

ture error simplifies in general the analysis of the problem and also has

some computational advantages. Using the techniques from the mentioned

papers, it is relatively easy to prove that

e2
N,d(z) =

1

n

n−1
∑

k=0

d
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|






−

d
∏

j=1

βj . (8)

In the above, the following notations have been introduced:

γ̃j =

{

γj/`, 1 ≤ j ≤ r,

γj , r + 1 ≤ j ≤ d.

Next,

Ñj =

{

N/` = `r−1n, 1 ≤ j ≤ r,

N, r + 1 ≤ j ≤ d.

Finally, ẑ = (ẑ1, ẑ2, . . . , ẑd), with

ẑj =

{

`zj , 1 ≤ j ≤ r,

zj , r + 1 ≤ j ≤ d.

Then by denoting

fN (x) =

d
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihxj

|h|






,

it is easy to observe that

e2
N,d(z) =

1

n

n−1
∑

k=0

fN

(

k

n
ẑ

)

−

d
∏

j=1

βj .

Now it is clear that e2
N,d(z) (which is based on a rank-r lattice rule with

N = `rn points) can be obtained from applying a modified n-point rank-1

lattice rule to fN .
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Next, we are looking to obtain a result for the mean of the quantities

e2
N,d. Such a result, together with (5) and (6), will allow us to deduce a

certain bound for the weighted star discrepancy. This mean will be taken

over all possible values of ẑ. Because ẑ is known when z is known, the mean

will be actually considered for all possible values for z. Each component

zj , 1 ≤ j ≤ d, of the vector z can be taken from the set Zn := {1, 2, . . . , n−

1} because we only take the fractional part of each component of the vector.

Thus, for prime n, the mean MN,d,γ is defined by

MN,d,γ :=
1

(n − 1)d

∑

z∈Zd
n

e2
N,d(z).

An expression for MN,d,γ is given in the next theorem.

Theorem 2.1. If n is prime, ` is a positive integer such that gcd(`, n) = 1

and r is an integer chosen such that 1 ≤ r ≤ d, then

MN,d,γ =
1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

+
n − 1

n

d
∏

j=1

(

βj −
γ̃j

n − 1

(

SÑj
− SÑj/n

)

)

−

d
∏

j=1

βj , (9)

where

Sn =
∑′

−n
2
≤h< n

2

1

|h|
.

Proof. Using the definition of the mean and separating out the k = 0 term

in (8), we obtain:

MN,d,γ =
1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

+ ΘN,γ −
d

∏

j=1

βj , (10)

where

ΘN,γ =
1

n(n − 1)d

∑

z∈Zd
n

n−1
∑

k=1

fN

(

k

n
ẑ

)

=
1

n

n−1
∑

k=1

d
∏

j=1







1

n − 1

n−1
∑

zj=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|












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=
1

n

n−1
∑

k=1

d
∏

j=1






βj +

γ̃j

n − 1

n−1
∑

zj=1

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|






.

For 1 ≤ k ≤ n − 1 and for any j ≥ 1, consider now

Tn(k, j) =

n−1
∑

zj=1

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|
. (11)

By separating out the terms for which h ≡ 0 (mod n) and replacing h by

nq, we obtain

Tn(k, j) =

n−1
∑

zj=1

∑′

−
Ñj

2
<h≤

Ñj

2

h≡0 ( mod n)

1

|h|
+

n−1
∑

zj=1

∑′

−
Ñj

2
<h≤

Ñj

2

h6≡0 ( mod n)

e2πihkẑj/n

|h|

=
n−1
∑

zj=1

∑′

−
Ñj

2
<nq≤

Ñj

2

1

n|q|
+

∑′

−
Ñj

2
<h≤

Ñj

2

h6≡0 ( mod n)

1

|h|

n−1
∑

zj=1

(

e2πihk/n
)ẑj

.

If ẑj = `zj , then

n−1
∑

zj=1

(

e2πihk/n
)ẑj

=

n−1
∑

zj=1

(

e2πihk`/n
)zj

.

Since n is prime and gcd(`, n) = 1, then when h 6≡ 0 (modn), it follows

that hk` 6≡ 0 (mod n). It is then easy to check that

n−1
∑

zj=1

(

e2πihk`/n
)zj

= −1.

When ẑj = zj , the sum is the above with ` = 1 and has the same value of

−1. Replacing in the expression of Tn(k, j) we obtain:

Tn(k, j) =
n − 1

n
SÑj/n −

∑′

−
Ñj

2
<h≤

Ñj

2

h6≡0 ( mod n)

1

|h|
.

The last term of the sum may be written as:

∑′

−
Ñj

2
<h≤

Ñj

2

h6≡0 ( mod n)

1

|h|
=

∑′

−
Ñj

2
<h≤

Ñj

2

1

|h|
−

∑′

−
Ñj

2
<nq≤

Ñj

2

1

n|q|
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= SÑj
−

1

n

∑′

−
Ñj

2n
<q≤

Ñj

2n

1

|q|
= SÑj

−
1

n
SÑj/n.

Thus we obtain:

Tn(k, j) =
n − 1

n
SÑj/n − SÑj

+
1

n
SÑj/n = SÑj/n − SÑj

. (12)

Using now (12), we see that

ΘN,γ =
1

n

n−1
∑

k=1

d
∏

j=1

(

βj +
γ̃j

n − 1

(

SÑj/n − SÑj

)

)

,

and by replacing in (10), we obtain the desired result.

From this theorem, we can deduce the following:

Corollary 2.1. If n is a prime number, ` is a positive integer such that

gcd(`, n) = 1 and r satisfies 1 ≤ r ≤ d, then there exists a z ∈ Zd
n such that

e2
N,d(z) ≤

1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

≤
1

n

d
∏

j=1

(

βj + 2γ̃j ln Ñj

)

.

Proof. Since βj = 1+γj for any 1 ≤ j ≤ d, it will follow from [9, Lemmas 1

and 2] and the arguments used in [4] that

n − 1

n

d
∏

j=1

(

βj −
γ̃j

n − 1

(

SÑj
− SÑj/n

)

)

−

d
∏

j=1

βj ≤ 0.

Using this in (9) together with the fact that SÑj
≤ 2 ln Ñj for any Ñj ≥ 2

(see also [4] and [9]), we obtain

MN,d,γ ≤
1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

≤
1

n

d
∏

j=1

(

βj + 2γ̃j ln Ñj

)

.

Clearly there must be a vector z ∈ Zd
n such that

e2
N,d(z) ≤ MN,d,γ.

This, together with the previous inequalities completes the proof.

From (5), (6) and Corollary 2.1, it follows that there exists a generating

vector z such that

D∗
N,γ(z) ≤ O(n−1) +

1

2n

d
∏

j=1

(

βj + 2γ̃j ln Ñj

)

,
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with the implied constant depending on `, r and the weights, but inde-

pendent of the dimension. As the above bound has a ln n dependency, it

would appear that the weighted star discrepancy has the order of mag-

nitude of O(n−1(ln n)d), a result which is widely believed to be the best

possible in an unweighted setting (see [8] or [10] for details). However, in

our case, under the assumption that the weights are summable, it follows

from [1, Lemma 3] or [4, Lemma 2] that there exists a generating vector

z such that the weighted star discrepancy achieves the strong tractability

error bound

D∗
N,γ(z) = O(n−1+δ),

for any δ > 0, where the implied constant depends on δ, `, r and the weights

but is independent of n and d.

3. Component-By-Component Construction Of The

Generating Vector

In this section we show that intermediate-rank lattice rules of the form

(2) that have good bounds for the weighted star discrepancy, can be ob-

tained by making use of the so-named “component-by-component”(CBC)

construction of the vector z. This idea has been successfully used in several

research papers such as [3], [4], [7], and [12] and is based on finding each

component one at a time. The result is based on the following:

Theorem 3.1. Consider n a prime number, ` a positive integer such that

gcd(`, n) = 1 and r chosen such that 1 ≤ r ≤ d. Assume there exists a

vector z in Zd
n such that

e2
N,d(z) ≤

1

n − 1

d
∏

j=1

(

βj + γ̃jSÑj

)

.

Then there exists a zd+1 ∈ Zn such that:

e2
N,d+1(z, zd+1) ≤

1

n − 1

d+1
∏

j=1

(

βj + γ̃jSÑj

)

.

Such a zd+1 can be found by minimizing e2
N,d+1(z, zd+1) over Zn.

Proof. When we add a new component, we obtain from (8) that

e2
N,d+1(z, zd+1) =

1

n

n−1
∑

k=0

d+1
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|






−

d+1
∏

j=1

βj
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=
1

n

n−1
∑

k=0

d
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|







×






βd+1 + γ̃d+1

∑′

−
Ñd+1

2
<h≤

Ñd+1

2

e2πihkẑd+1/n

|h|






−

d+1
∏

j=1

βj .

From (8) and by separating out the k = 0 term in the above, we see that

we can write

e2
N,d+1(z, zd+1) = βd+1e

2
N,d(z) +

γ̃d+1SÑd+1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

+
γ̃d+1

n

n−1
∑

k=1

d
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|







×







∑′

−
Ñd+1

2
<h≤

Ñd+1

2

e2πihkẑd+1/n

|h|






.

We next average e2
N,d+1(z, zd+1) over all possible values of zd+1 ∈ Zn and

consider:

Avg(e2
N,d+1(z, zd+1)) =

1

n − 1

n−1
∑

zd+1=1

e2
N,d+1(z, zd+1).

As the other terms that occur in the expression of the average are indepen-

dent of zd+1, we next focus on the quantity

1

n − 1

n−1
∑

zd+1=1

∑′

−
Ñd+1

2
<h≤

Ñd+1

2

e2πihkẑd+1/n

|h|
=

1

n − 1

(

SÑd+1/n − SÑd+1

)

,

where we made use of (11) and (12). By replacing this equality in the

expression of the average, we see that Avg(e2
N,d+1(z, zd+1)) is given by:

βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

+
γ̃d+1(SÑd+1

− SÑd+1/n)

n(n − 1)
×






−

n−1
∑

k=1

d
∏

j=1






βj + γ̃j

∑′

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|












.
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Next,

−
1

n

n−1
∑

k=1

d
∏

j=1






βj + γ̃j

∑

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|







= −
1

n

n−1
∑

k=0

d
∏

j=1






βj + γ̃j

∑

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|






+

1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

= −e2
N,d(z) −

d
∏

j=1

βj +
1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

≤
1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

.

In the last step we used e2
N,d(z) ≥ 0, as RN (PN , u) ≥ 0 for any u ⊆ D (see

the previous section). Using also that SÑd+1
− SÑd+1/n ≤ SÑd+1

and the

hypothesis, we now obtain:

Avg(e2
N,d+1(z, zd+1))

≤ βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

+
γ̃d+1SÑd+1

n(n − 1)

d
∏

j=1

(

βj + γ̃jSÑj

)

= βd+1e
2
N,d(z) +

γ̃d+1SÑd+1

n

d
∏

j=1

(

βj + γ̃jSÑj

)

(

1 +
1

n − 1

)

≤
βd+1

n − 1

d
∏

j=1

(

βj + γ̃jSÑj

)

+
γ̃d+1SÑd+1

n − 1

d
∏

j=1

(

βj + γ̃jSÑj

)

=
1

n − 1

d
∏

j=1

(

βj + γ̃jSÑj

)(

βd+1 + γ̃d+1SÑd+1

)

.

Clearly, the zd+1 ∈ Zn chosen to minimize e2
N,d+1(z, zd+1) will satisfy

e2
N,d+1(z, zd+1) ≤ Avg(e2

N,d+1(z, zd+1)).

This, together with the previous inequality completes the proof.

From this theorem we can deduce the following:

Corollary 3.1. Consider n a prime number, ` a positive integer such that

gcd(`, n) = 1 and r chosen such that 1 ≤ r ≤ d. Then for any m =
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1, 2, . . . , d, there exists a z ∈ Zm
n such that

e2
N,m(z1, z2, . . . , zm) ≤

1

n − 1

m
∏

j=1

(

βj + γ̃jSÑj

)

,

where

e2
N,m(z1, z2, . . . , zm) =

1

n

n−1
∑

k=0

m
∏

j=1






βj + γ̃j

∑

−
Ñj

2
<h≤

Ñj

2

e2πihkẑj/n

|h|






−

m
∏

j=1

βj .

We can set z1 = 1 and for every 2 ≤ m ≤ d, zm can be chosen by minimizing

e2
N,m(z1, z2, . . . , zm) over the set Zn.

Proof. If m = 1, then by expanding the expression of e2
N,1(z1) and using

well-known results for geometrical series, we obtain that e2
N,1(z1) = 0 for

any z1 ∈ Zn. The result then follows straight from Theorem 3.1.

Component-by-component (CBC) algorithm

The generating vector z = (z1, z2, . . . , zd) of a lattice rule (2) that satisfies

the bound from Corollary 3.1 can be constructed as follows:

1. Set the value for the first component of the vector, say z1 := 1.

2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2
N,m(z1, z2, . . . , zm) is

minimized.

Clearly each e2
N,m(z1, z2, . . . , zm) can be evaluated in O(n2m) opera-

tions with a constant depending also on ` and r. This cost can be re-

duced to O(nm) by using asymptotic techniques as presented in [6] (see

also [4, Appendix A]). Thus the total complexity of the algorithm will be

O(n2d2). This can be reduced to O(n2d) if we store the products during

the construction at an extra expense of O(n) storage. In fact, this order of

complexity can be further reduced to O(nd log n) by making use of the fast

CBC algorithm proposed by Nuyens and Cools in [11]. Their approach was

based on minimizing a function of the form

1

n

n−1
∑

k=0

d
∏

j=1

(

1 + γjω

({

kzj

n

}))

− 1.

From (8), we know that e2
N,d(z) is obtained by applying a rank-1 lattice

rule to a modified function, so the techniques used in [11] will also work

here with some modifications.
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