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Summary. The ‘goodness’ of a set of quadrature points in [0, 1]d may be measured
by the weighted star discrepancy. If the weights for the weighted star discrepancy are
summable, then we show that for n prime there exist n-point rank-1 lattice rules
whose weighted star discrepancy is O

`

n−1+δ
´

for any δ > 0, where the implied
constant depends on δ and the weights, but is independent of d and n. Further, we
show that the generating vector z for such lattice rules may be obtained using a
component-by-component construction. The results given here for the weighted star
discrepancy are used to derive corresponding results for a weighted Lp discrepancy.

1 Introduction

Integrals over the d-dimensional unit cube given by

Id(f) =

∫

[0,1]d
f(x) dx

may be approximated using n-point rank-1 lattice rules. These are quadrature
rules of the form

Qn,d(f) =
1

n

n−1
∑

k=0

f

({

kz

n

})

,

where z ∈ Z
d is the ‘generating vector’ with no factor in common with n, and

the braces around a vector indicate that we take the fractional part of each
component of the vector. For our purposes, it is convenient to assume that
gcd(zj , n) = 1 for 1 ≤ j ≤ d, where zj is the j-th component of z.

The star discrepancy of the point set Pn(z) := {{kz/n}, 0 ≤ k ≤ n − 1}
is defined by

D∗(Pn(z)) = D∗
n(z) := sup

x∈[0,1)d

|discr(x, Pn)| ,

where discr(x, Pn) is the ‘local discrepancy’ defined by
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discr(x, Pn) :=
|Pn(z) ∩ [0,x)|

n
− Vol([0,x)) . (1)

The star discrepancy occurs in the well-known Koksma-Hlawka inequality.
Further details may be found in [3] and [19] or in more general works such
as [11].

It is known (see [10] or [11]) that there exist d-dimensional rank-1 lattice
rules whose star discrepancy is O(n−1(ln(n))d) with the implied constant de-
pending on only d. For n prime it was shown in [4] that such rules may be
obtained by constructing their generating vectors component-by-component.
In this paper we extend these results to the case of a weighted star discrepancy.

Such component-by-component constructions first appeared in [16], but
there the integrands were in a periodic setting. Since then, there has been
much work done in the L2 case both in the periodic setting of weighted Ko-
robov spaces and in the non-periodic setting of weighted Sobolev spaces (for
example, see [7], [8], [9], [14], and [15]). Here we consider the weighted star
discrepancy, since, as we shall see later, we are able to derive corresponding
results for the weighted Lp discrepancy.

In order to introduce the weighted star discrepancy, let u be any subset of
D := {1, 2, . . . , d − 1, d} with cardinality |u|. For the vector x ∈ [0, 1]d, let xu

denote the vector from [0, 1]|u| containing the components of x whose indices
belong to u. By (xu,1) we mean the vector from [0, 1]d whose j-th component
is xj if j ∈ u and 1 if j 6∈ u. From Zaremba’s identity (see [17] or [19]) we have

Qn,d(f) − Id(f) =
∑

∅6=u⊆D

(−1)|u|
∫

[0,1]|u|

discr ((xu,1), Pn)
∂|u|

∂xu

f(xu,1) dxu .

(2)
Now let us introduce a sequence of positive weights {γj}

∞
j=1 and set

γ
u

=
∏

j∈u

γj with γ∅ := 1 . (3)

Then we can write

Qn,d(f) − Id(f)

=
∑

∅6=u⊆D

(−1)|u|γ
u

∫

[0,1]|u|

discr ((xu,1), Pn) γ−1
u

∂|u|

∂xu

f(xu,1) dxu .

Applying Hölder’s inequality for integrals and sums we obtain

|Qn,d(f) − Id(f)| ≤

(

sup
∅6=u⊆D

sup
xu∈[0,1]|u|

γ
u
|discr ((xu,1), Pn)|

)

×





∑

u⊆D

γ−1
u

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f(xu,1)

∣

∣

∣

∣

dxu



 .
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Then we can define a weighted star discrepancy D∗
n,γ(z) by

D∗
n,γ(z) := sup

∅6=u⊆D
γ

u
sup

xu∈[0,1]|u|

|discr ((xu,1), Pn)| . (4)

In Section 2 we use an averaging argument to show that if the weights γj are
summable, there exist rank-1 lattice rules whose weighted star discrepancy
is O(n−1+δ) for any δ > 0, where the implied constant depends on δ and
the weights. A more specific averaging argument is applied to lattice rules
of the Korobov form, namely those for which z = (1, a, . . . , ad−1) (modn),
1 ≤ a ≤ n − 1, to show there exist lattice rules of the Korobov form having
O(n−1+δ) weighted star discrepancy.

Besides existence results we are interested in how to find such lattice rules.
One way, of course, is to find an appropriate a in the Korobov form. However,
such rules are not extensible in dimension; a value of a that is good for one
value of the dimension d may not be good for a different value of the dimension.
In Section 3 we present results showing that, alternatively, the generating
vectors z for such lattice rules may be constructed a component at a time
resulting in a z which is extensible in dimension. The cost of this component-
by-component construction is O(n2d2) operations, but it may be reduced to
O(n2d) operations at the extra cost of O(n) storage. It may be reduced even
further to O(n ln(n)d) operations by making use of the approach proposed by
Nuyens and Cools in [12]. We remark that constructions for polynomial lattice
rules having small weighted star discrepancy have recently been proposed
in [1]. As here, they consider a Korobov construction and a component-by-
component construction.

The weighted star discrepancy considered here may be viewed as the
L∞ version of a weighted Lp discrepancy for p ≥ 1. Weighted Lp discrep-
ancies have been considered in works such as [2] and [17]. In Section 4 we
use the results obtained in Sections 2 and 3 for the weighted star discrepancy
to derive corresponding results for the weighted Lp discrepancy. Unlike the
earlier results in the L2 setting, the results presented here do not require the
lattice points to be shifted.

2 Rank-1 Lattice Rules Having Certain Weighted Star
Discrepancy Bounds

It follows from (4) that the weighted star discrepancy satisfies

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

sup
xu∈[0,1]|u|

|discr ((xu,1), Pn)| . (5)

Moreover, it follows from [11, Theorem 3.10 and Theorem 5.6] (see also [2])
that

sup
xu∈[0,1]|u|

|discr ((xu,1), Pn)| ≤ 1 − (1 − 1/n)|u| +
Rn(z, u)

2
,
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where

Rn(z, u) =
∑

h·zu≡0 (mod n)
h∈C∗

n,|u|

|u|
∏

j=1

1

max(1, |hj |)
.

Here zu is the vector consisting of the components of z whose indices belong
to u and

C∗
n,|u| = {h ∈ Z

|u|, h 6= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ |u|} .

We then obtain

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u| +
Rn(z, u)

2

)

. (6)

Under the assumption that gcd(zj , n) = 1 for 1 ≤ j ≤ d, then zu is the
generating vector for a |u|-dimensional rank-1 lattice rule having n points.
It then follows from the error theory of lattice rules (for example, see [11,
Chapter 5] or [13, Chapter 4]) that we may write Rn(z, u) as

Rn(z, u) =
1

n

n−1
∑

k=0

∏

j∈u



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



− 1 , (7)

where the ′ on the sum indicates that we omit the h = 0 term.
Bounds on the weighted star discrepancy D∗

n,γ(z) may be obtained by

making use of (6). We first consider
∑

u⊆D
γ

u

(

1 − (1 − 1/n)|u|
)

.

Lemma 1. Suppose the weights γj are summable, that is,
∞
∑

j=1

γj < ∞. Then

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

≤
max (1, Γ )

n

∞
∏

j=1

(1 + γj) ≤
max (1, Γ ) e

P∞
j=1

γj

n
,

where Γ :=
∞
∑

j=1

γj/(1 + γj) < ∞.

Proof. We may write

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

=

d
∏

j=1

(1 + γj) −

d
∏

j=1

(1 + γj(1 − 1/n))

=
d
∏

j=1

(1 + γj)



1 −
d
∏

j=1

(

1−
γj

n(1 + γj)

)



 .
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According to [2] we have

ln





d
∏

j=1

(

1 −
γj

n(1 + γj)

)



 ≥ ln(1 − 1/n)

d
∑

j=1

γj

1 + γj
,

which leads to

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

≤

d
∏

j=1

(1 + γj)

[

1 −

(

1 −
1

n

)

Pd
j=1

γj/(1+γj)
]

. (8)

Since 0 < γj/(1 + γj) < γj , we see that since the γj are summable, then
so are the γj/(1 + γj), that is, Γ < ∞.

If Γ ≤ 1, then we have (1 − 1/n)Γ ≥ 1 − 1/n and hence

1 −

(

1 −
1

n

)Γ

≤
1

n
.

Now suppose Γ > 1 and set v(x) = (1 + x)Γ − Γx − 1 for x > −1. Then it is
easily verified that v′(0) = 0. Moreover, v′′(0) = Γ 2 − Γ which is positive for
Γ > 1. Since v′(x) < 0 for −1 < x < 0 and v′(x) > 0 for x > 0, we deduce
that if Γ > 1, then v(x) ≥ v(0) = 0 or (1 + x)Γ ≥ Γx + 1 for x > −1. With
x = −1/n we thus obtain

(

1 −
1

n

)Γ

≥ −
Γ

n
+ 1 and so 1 −

(

1 −
1

n

)Γ

≤
Γ

n
.

It then follows from (8) that

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

≤

d
∏

j=1

(1 + γj)

[

1 −

(

1 −
1

n

)Γ
]

≤
max (1, Γ )

n

d
∏

j=1

(1 + γj) ≤
max (1, Γ )

n

∞
∏

j=1

(1 + γj)

=
max (1, Γ )

n
e

P∞
j=1

ln(1+γj) ≤
max (1, Γ ) e

P∞
j=1

γj

n
,

where we have used ln(1 + x) ≤ x for x ≥ 0. ut

With γ∅ = 1, we make use of (3) and (7) to next consider

Rn,γ(z) :=
∑

u⊆D

γ
u
Rn(z, u)

=
∑

u⊆D

γ
u





1

n

n−1
∑

k=0

∏

j∈u



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



− 1
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=
∑

u⊆D





1

n

n−1
∑

k=0

∏

j∈u

γj



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−
∏

j∈u

γj





=
∑

u⊆D

1

n

n−1
∑

k=0

∏

j∈u

γj



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−

d
∏

j=1

(1 + γj) .

By interchanging the first two sums, we obtain

Rn,γ(z) =
1

n

n−1
∑

k=0

∑

u⊆D

∏

j∈u

γj



1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−

d
∏

j=1

(1 + γj)

=
1

n

n−1
∑

k=0

d
∏

j=1



1 + γj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−

d
∏

j=1

(1 + γj) .

Setting βj = 1 + γj , we then see that

Rn,γ(z) =
1

n

n−1
∑

k=0

d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−

d
∏

j=1

βj . (9)

In the case d = 1, it is not hard to verify that Rn,γ(z) = 0. We also see from
this expression that for given dimension d, calculation of Rn,γ(z) would require
O(n2d) operations. However, the asymptotic expansion techniques found in [5]
may be used to reduce this to O(nd) operations. Further details may be found
in Appendix A.

We shall obtain bounds on Rn,γ(z) for the case in which n is prime by
obtaining an expression for the mean value of Rn,γ(z) taken over all integer
vectors z ∈ Zd

n, where Zn = {1, 2, . . . , n−1}. Thus the mean Mn,d,γ is defined
by

Mn,d,γ :=
1

(n − 1)d

∑

z∈Zd
n

Rn,γ(z) .

Theorem 1. Let n be a prime number. Then

Mn,d,γ =
1

n

d
∏

j=1

(βj + γjSn) +
n − 1

n

d
∏

j=1

(

βj − γj
Sn

n − 1

)

−

d
∏

j=1

βj ,

where

Sn =
∑′

−n/2<h≤n/2

1

|h|
.

Proof. In (9) we can take out the k = 0 term which is independent of z to
obtain
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Mn,d,γ

=
1

n

d
∏

j=1

(βj + γjSn)

+
1

n

n−1
∑

k=1

d
∏

j=1





1

n − 1

n−1
∑

zj=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|







−

d
∏

j=1

βj .

Now define

Tn(k) :=
1

n − 1

n−1
∑

z=1

∑′

−n/2<h≤n/2

e2πihkz/n

|h|
, 0 ≤ k ≤ n − 1 . (10)

When k = 0, Tn(0) is simply Sn. For n prime and 1 ≤ k ≤ n−1 we see that k
cannot be a multiple of n, and nor can h in the situation when −n/2 < h ≤ n/2
with h 6= 0. Hence hk 6≡ 0 (mod n) and we have

Tn(k) =
1

n − 1

∑′

−n/2<h≤n/2

n−1
∑

z=1

e2πihkz/n

|h|

=
1

n − 1

∑′

−n/2<h≤n/2

1

|h|

(

n−1
∑

z=0

(

e2πihk/n
)z

− 1

)

=
−Sn

n − 1
, (11)

which we note is independent of k. It then follows that

Mn,d,γ =
1

n

d
∏

j=1

(βj + γjSn) +
1

n

n−1
∑

k=1

d
∏

j=1

(

βj + γj
−Sn

n − 1

)

−

d
∏

j=1

βj ,

which leads to the desired result. ut

In the case d = 1, the expression for Mn,1,γ1
simplifies to 0, which is as

expected, since for d = 1 the values of Rn,γ1
(z1) are all zero.

Since βj = 1+γj > γj and Sn ≤ n−1, we have βj > βj −γjSn/(n−1) ≥ 1
and so

n − 1

n

d
∏

j=1

(

βj − γj
Sn

n − 1

)

−
d
∏

j=1

βj < 0 .

Moreover, we have from [10, Lemmas 1 and 2] that Sn < 2 ln(n) + 1/n2 −
0.2319. So for n ≥ 3 we have

Sn < 2 ln(n) (12)

and direct calculation shows this holds for n = 2 also. We then obtain the
following corollary.
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Corollary 1. Let n be a prime number. Then there exists a generating vec-

tor z such that

Rn,γ(z) ≤
1

n

d
∏

j=1

(1 + γj + γjSn) ≤
1

n

d
∏

j=1

(1 + γj + 2γj ln(n)) .

Now recall from (6) and the definition of Rn,γ(z) that

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

+
Rn,γ(z)

2
. (13)

This equation together with Lemma 1 and Corollary 1 show that if the γj are
summable, then there exists a generating vector z such that

D∗
n,γ(z) ≤ O

(

n−1
)

+
1

2n

d
∏

j=1

(1 + γj + 2γj ln(n)) ,

where the implied constant depends on the weights, but is independent of d.
This bound for D∗

n,γ(z) has a ln(n) dependency. In order to obtain a bound
without this ln(n) dependency, we can make use of the next lemma (stated
and proved in [2]) and conclude that there exists a generating vector z such
that

D∗
n,γ(z) = O

(

n−1+δ
)

,

for any δ > 0, where the implied constant depends on δ and the weights, but
is independent of d and n.

Lemma 2. Let γ̃j = 2γj/(1 + γj) and suppose that the γj are summable so

that
∞
∑

j=1

γ̃j < ∞ .

Then for any δ > 0, there exists C(γ̃, δ), independent of d and n, such that

d
∏

j=1

(1 + γj + 2γj ln(n)) ≤ C(γ̃, δ)nδ
∞
∏

j=1

(1 + γj) ≤ C(γ̃, δ)nδe
P∞

j=1
γj .

We recall from Section 1 that lattice rules of the Korobov form are those
for which z = (1, a, . . . , ad−1) (mod n) for some a satisfying 1 ≤ a ≤ n − 1.
Writing such generating vectors as z(a), we now define the mean

µn,d,γ :=
1

n − 1

n−1
∑

a=1

Rn,γ(z(a)) .

The next result shows that µn,d,γ satisfies a bound of the same order as the
one given in Corollary 1. Hence there exist lattice rules of the Korobov form
which have O

(

n−1+δ
)

weighted star discrepancy.
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Theorem 2. Let n be a prime number. Then

µn,d,γ ≤
d

n − 1

d
∏

j=1

(1 + γj + γjSn) .

Proof. The proof we present is similar to the proof of Theorem 1 in [18]. We
see from (9) that Rn,γ(z(a)) is the error from applying the lattice rule to the
function

f(x) =
∑

h∈C∗
n,d

∪{0}

e2πih·x

∏d
j=1 r(γj , hj)

,

where

r(γ, h) =

{

1 + γ, h = 0 ,

|h|/γ, h 6= 0 .

It then follows from the theory of lattice rules that we may write

Rn,γ(z(a)) =
∑

h∈C∗
n,d

δn(h · z(a))
∏d

j=1 r(γj , hj)
,

where δn(m) denotes one or zero depending on whether m ≡ 0 (modn) or
not.

From the definition of µn,d,γ , it follows that we have

µn,d,γ =
1

n − 1

∑

h∈C∗
n,d

d
∏

j=1

1

r(γj , hj)

n−1
∑

a=1

δn(h · z(a)) . (14)

Since h · z(a) = h1 + h2a + · · · + hda
d−1, we see this last sum is just the

number of solutions of the congruence h1 + h2a + · · · + hda
d−1 ≡ 0 (mod n).

Now because n is prime and h ∈ C∗
n,d, then the greatest common divisor of

the numbers h1, h2, . . . , hd cannot be a multiple of n. It then follows from a
well-known result in number theory (for example, see [6]) that the last sum
in (14) is bounded by d − 1. We then have

µn,d,γ ≤
d

n − 1

∑

h∈C∗
n,d

d
∏

j=1

1

r(γj , hj)

<
d

n − 1

d
∏

j=1



1 + γj + γj

∑′

−n/2<h≤n/2

1

|h|



 ,

which leads to the desired bound. ut
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3 A Component-By-Component Construction

We shall now prove that for n prime we can construct z component-by-
component such that

Rn,γ(z) ≤
1

n − 1

d
∏

j=1

(βj + γjSn) ,

where we recall that βj = 1 + γj .

Theorem 3. Let n be a prime number. Suppose there exists a z ∈ Zd
n such

that

Rn,γ(z) ≤
1

n − 1

d
∏

j=1

(βj + γjSn) , where Sn =
∑′

−n/2<h≤n/2

1

|h|
.

Then there exists zd+1 ∈ Zn such that

Rn,γ(z, zd+1) ≤
1

n − 1

d+1
∏

j=1

(βj + γjSn) .

Such a zd+1 can be found by minimizing Rn,γ(z, zd+1) over the set Zn.

Proof. For any zd+1 ∈ Zn we have from (9) that

Rn,γ(z, zd+1) = βd+1Rn,γ(z)

+
γd+1

n

n−1
∑

k=0





d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|









×





∑′

−n/2<h≤n/2

e2πihkzd+1/n

|h|



 . (15)

Next we average over the possible n−1 values of zd+1 in the last term to form

1

n − 1

n−1
∑

zd+1=1

∑′

−n/2<h≤n/2

e2πihkzd+1/n

|h|
, 0 ≤ k ≤ n − 1 .

However, this is just the quantity Tn(k) defined previously in (10).
It then follows from (15) by separating out the k = 0 term that there

exists a zd+1 ∈ Zn such that
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Rn,γ(z, zd+1) ≤ βd+1Rn,γ(z) +
γd+1

n

d
∏

j=1

(βj + γjSn) Sn

+
γd+1

n

n−1
∑

k=1

d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



Tn(k)

= βd+1Rn,γ(z) +
γd+1

n

d
∏

j=1

(βj + γjSn) Sn

+
γd+1

n

n−1
∑

k=1

d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|





(

−Sn

n − 1

)

= βd+1Rn,γ(z) +
γd+1

n

d
∏

j=1

(βj + γjSn) Sn

+
γd+1Sn

n − 1



−
1

n

n−1
∑

k=0

d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|





+
1

n

d
∏

j=1

(βj + γjSn)



 ,

where we have made use of (11) and in the last equation, subtracted and
added in the k = 0 term. By using (9) we find that for this zd+1 we have

Rn,γ(z, zd+1) ≤ βd+1Rn,γ(z) +
γd+1

n

d
∏

j=1

(βj + γjSn) Sn

+
γd+1Sn

n − 1



−Rn,γ(z) −

d
∏

j=1

βj +
1

n

d
∏

j=1

(βj + γjSn)





≤ βd+1Rn,γ(z) +
γd+1Sn

n





d
∏

j=1

(βj + γjSn)





(

1 +
1

n − 1

)

= βd+1Rn,γ(z) +
γd+1Sn

n − 1

d
∏

j=1

(βj + γjSn)

≤
1

n − 1





d
∏

j=1

(βj + γjSn)



 (βd+1 + γd+1Sn)

=
1

n − 1

d+1
∏

j=1

(βj + γjSn) ,



12 Stephen Joe

where we have made use of the fact that Rn,γ(z) satisfies the assumed bound.
This completes the proof. ut

Recalling that for d = 1 we have Rn,γ1
(z1) = 0, the previous theorem leads

to the following corollary.

Corollary 2. Let n be a prime number. We can construct z ∈ Zd
n component-

by-component such that for all s = 1, . . . , d,

Rn,γ(z1, . . . , zs) ≤
1

n − 1

s
∏

j=1

(βj + γjSn) .

We can set z1 = 1, and for 2 ≤ s ≤ d, each zs can be found by minimizing

Rn,γ(z1, . . . , zs) over the set Zn.

Since 1/(n−1) ≤ 2/n for n ≥ 2, this corollary together with (12) and (13)
show that for n a prime number, we can construct z component-by-component
such that

D∗
n,γ(z) ≤

∑

u⊆D

γ
u

(

1 − (1 − 1/n)|u|
)

+
1

n

d
∏

j=1

(1 + γj + 2γj ln(n)) .

If the γj are summable we then see from Lemma 1 and Lemma 2 that the
rank-1 lattice rule constructed in this manner is such that

D∗
n,γ(z) = O(n−1+δ) , δ > 0 ,

where the implied constant depends on δ and the weights, but is independent
of d and n.

Appendix A shows that Rn,γ(z) may be calculated using asymptotic ex-
pansion techniques in O(nd) operations. This together with Corollary 2 then
shows that the cost of constructing the integer vector z up to dimension d
is O(n2d2) operations. This can be reduced to O(n2d) operations if we store
the products during the construction, but this would be at the expense of
O(n) storage. We remark that in [12], Nuyens and Cools proposed a more
efficient implementation of the component-by-component construction. Their
construction of z was based on minimizing a function of the form

1

n

n−1
∑

k=0

d
∏

j=1

(

1 + γjω

({

kzj

n

}))

− 1 ,

where ω was a certain function. Now we see from (9) that Rn,γ(z) may be
written in a similar form since

Rn,γ(z) =
1

n

n−1
∑

k=0

d
∏

j=1

(

βj + γjω

({

kzj

n

}))

−
d
∏

j=1

βj ,
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where

ω(x) =
∑′

−n/2<h≤n/2

e2πihx

|h|
, x ∈ [0, 1] .

With some minor modifications, the approach of Nuyens and Cools may then
be used to similarly speed up the component-by-component construction pro-
posed here so that only O(n ln(n)d) operations are required.

4 Results For The Weighted Lp Discrepancy

In this section we apply the results of the previous two sections to obtain
corresponding results for the weighted Lp discrepancy which we define below.
From Zaremba’s identity given in (2) one can apply Hölder’s inequality for
integrals and sums to obtain

|Qn,d(f) − Id(f)| ≤ Dn,γ,p(z)





∑

u⊆D

γ−q
u

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f(xu,1)

∣

∣

∣

∣

q

dxu





1/q

,

where Dn,γ,p(z), the weighted Lp discrepancy, is defined by

Dn,γ,p(z) :=





∑

∅6=u⊆D

γp
u

∫

[0,1]|u|

|discr ((xu,1), Pn)|
p

dxu





1/p

,

with the local discrepancy discr (x, Pn) for any x ∈ [0, 1]d being defined in (1)
and 1/p + 1/q = 1, p, q ≥ 1. Then we see that we have

Dn,γ,p(z) ≤





∑

u⊆D

(

γ
u

sup
xu∈[0,1]|u|

|discr ((xu,1), Pn)|

)p




1/p

.

Now Jensen’s inequality shows that for λ ≥ 1,

(

∑

aλ
i

)1/λ

≤
∑

ai ,

where the ai are arbitrary non-negative numbers. So for p ≥ 1 we can take
λ = p and hence obtain

Dn,γ,p(z) ≤
∑

u⊆D

γ
u

sup
x∈[0,1]|u|

|discr ((xu,1), Pn)| .

The bound on the right-hand side of this expression is the bound analyzed in
Section 2 (for example, see (5) and (6)). Hence the results from that section
and Section 3 hold. Suppose we apply the component-by-component algorithm



14 Stephen Joe

implied in Corollary 2. Then, under the assumption that the weights are
summable, the generating vector z constructed yields a point set that not
only has a weighted star discrepancy of O(n−1+δ), δ > 0, but also has a
weighted Lp discrepancy of the same order.

In the case p = 2, Kuo [7] showed that the component-by-component algo-
rithm achieves the optimal O(n−1+δ) rate for the weighted L2 discrepancy if
the sum of the square roots of the weights is finite. Since the weights used in [7]
are the squares of the weights considered in this paper, the condition in [7]
is equivalent to the condition here that the weights are summable. Moreover,
the proof of the result in [7] was in a randomized setting, that is, it applied
only to randomly shifted lattice rules. In contrast, the previous paragraph
indicates that under the same condition on the weights, the component-by-
component contruction presented here yields a purely deterministic point set
whose weighted L2 discrepancy is O(n−1+δ).

A Calculation of Rn,γ(z)

Here we provide details of how

Rn,γ(z) =
1

n

n−1
∑

k=0

d
∏

j=1



βj + γj

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|



−

d
∏

j=1

βj

may be calculated in O(nd) operations. We see that because {kzj/n} = m/n
for some m satisfying 0 ≤ m ≤ n − 1, then to calculate Rn,γ(z) we need to
have the values of

βj + γj

∑′

−n/2<h≤n/2

e2πihm/n

|h|
, 0 ≤ m ≤ n − 1 .

However, if

fn(x) = 1 +
∑′

−n/2<h≤n/2

e2πihx

|h|
, x ∈ [0, 1] , (16)

then

βj + γj

∑′

−n/2<h≤n/2

e2πihm/n

|h|
= βj + γj(fn(m/n) − 1) .

Since fn(1 − x) = fn(x) for x ∈ [0, 1], then to calculate Rn,γ(z) we need to
have the values of fn(m/n) for 0 ≤ m ≤ bn/2c. These bn/2c + 1 values may
be calculated once and then stored.

Suppose we wish to calculate fn(m/n) with an absolute error of at most ε.
Then the results in [5] show that if ` and L are positive integers satisfying

2 ≤ ` ≤

(

6n2

π2

)1/3

and
4(L + 1)!

(` − 1)L+2πL+2
≤ ε , (17)
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then we should calculate fn(m/n) directly using (16) for 0 ≤ m < `. For
` ≤ m ≤ bn/2c we use the approximation G(m/n), where for n odd,

G(x) = 1 − 2 ln(2| sin(πx)|) − 2

L
∑

i=0

bi(x) cos(π[(n + i)x + (i + 1)/2]) .

In this expression, b0(x) = 1/ [(n + 1)| sin(πx)|] and

bi+1(x) =
−(i + 1)

(n + 2i + 3)| sin(πx)|
bi(x) .

Similar expressions for G and the bi are available when n is an even number.
When ε = 2.0× 10−16, then for n ≥ 115, (17) is satisfied with the choices

` = 20 and L = 14. As another example, if ε = 1.0× 10−18, then for n ≥ 161,
we can take ` = 25 and L = 15. So we see that the bn/2c + 1 values of
fn(m/n) required may be obtained with an absolute error of at most ε in
O(`n) + O(L) × (bn/2c+ 1 − `) = O(n) operations which means that even if
n is large, Rn,γ(z) may be calculated in O(nd) operations.
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