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ABSTRACT

We investigate the nonlinear evolution of Alfvén waves in a radially stratified isothermal atmosphere with wind, from the atmospheric base
out to the Alfvénic point. Nonlinear interactions, triggered by wave reflection due to the atmospheric gradients, are assumed to occur mainly
in directions perpendicular to the mean radial magnetic field. The nonlinear coupling between waves propagating in opposite directions is
modeled by a phenomenological term, containing an integral turbulent length scale, which acts as a dissipative coefficient for waves of a given
frequency. Although the wind acceleration profile is not determined self-consistently one may estimate the dissipation rate inside the layer and
follow the evolution of an initial frequency spectrum. Reflection of low frequency waves drives dissipation across the whole spectrum, and
steeper gradients, i.e. lower coronal temperatures, enhance the dissipation rate. Moreover, when reasonable wave amplitudes are considered,
waves of all frequencies damp at the same rate and the spectrum is not modified substantially during propagation. Therefore the sub-Alfvénic
coronal layer acts differently when waves interact nonlinearly, no longer behaving as a frequency dependent filter once reflection-generated
nonlinear interactions are included, at least within the classes of models discussed here.

Key words. magnetohydrodynamics (MHD) – turbulence – waves

1. Introduction

A promising mechanism for heating the open solar corona and
fast solar wind which has been proposed over recent years
(Velli et al. 1989; Matthaeus et al. 1999) is the development
of MHD turbulence driven by the reflection of Alfvén waves.
The presence of MHD waves inside the solar corona has been
proved indirectly by measurements involving Faraday rota-
tion at distances of ≈8 R� from the sun’s surface (Hollweg
et al. 1982), while much farther away “in situ” measurement
of magnetic and velocity field fluctuations from Helios and
Ulysses have revealed a broad developed spectrum for frequen-
cies ranging from 10−4 Hz to 10−2 Hz (for the fast compo-
nent of the solar wind). Typically, a strong correlation between
magnetic field and velocity fluctuations in this distance range
persists (Mangeney et al. 1991; Smith et al. 1995). At inter-
mediate distances (from 10 to 40 solar radii) ground based ra-
dio scintillation measurements using radio sources (Scott et al.
1983) have shown velocity field fluctuations to increase to-
gether with bulk flow speed (both around ≈200 km s−1) but
data on correlated magnetic field fluctuations are still miss-
ing. Moreover, if one assumes the origin of the MHD fluctu-
ations to lie in photospheric motions at the Sun’s surface, one
would expect some signature in the observations of a frequency

� Appendix A is only available in electronic form at
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corresponding to the characteristic timescale of the energy in-
jection at that level, whereas no such signal is observed. One
is then tempted to suppose that strong nonlinear interactions
are at work from the very beginning and that the original wave
spectrum is modified during propagation through the outer at-
mosphere by the development of a turbulent cascade. In this
way the energy is exchanged between modes of different fre-
quencies and transferred toward smaller scales where dissipa-
tion becomes efficient.

The main difficulties one has to face for the development
of such a scenario is the nature of the nonlinear interactions
for the incompressible Alfvén mode. Among the many wave-
modes generated by photospheric oscillations, Alfvén waves
are the most likely to survive into the corona (Hollweg 1978),
although other modes may be generated throughout the atmo-
sphere. Analysis of observed oscillations in coronal structures
may eventually lead to their identification (De Moortel et al.
2002a,b), but we concentrate here on Alfvén waves, since they
are the dominant modes observed in the solar wind. It is well
known that nonlinear terms couple Alfvén waves propagating
in opposite directions. Note, however, that in the fast solar
wind, outwardly propagating modes seem to dominate (Smith
et al. 1995).

The inhomogeneities of the ambient medium suggest a
solution for this apparent contradiction between dominantly
unidirectional propagation and development of nonlinear
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interactions (Velli et al. 1989). Variations of the group veloc-
ity of the wave (the sum of Alfvén and wind speed gradi-
ents) linearly couple the outgoing and ingoing waves produc-
ing one from the other and furnishing the trigger for nonlinear
interactions to take place. Intensive studies of this mechanism
have been carried out in terms of the dynamical time scales
which enter the governing equation, while the anisotropic na-
ture of the problem was handled naturally in the context of a
Reduced Magneto-Hydrodynamics description (RMHD here-
after) which allows a correct treatment of nonlinear terms
(Dmitruk et al. 2001a, 2002; Dmitruk & Matthaeus 2003;
Oughton et al. 2001, 2004). This kind of approach has led to the
understanding of the ordering of the characteristic times which
should effectively favor the development of a turbulent cascade
in planes perpendicular to the direction of wave propagation
(along the magnetic field) and the efficiency of dissipation. Due
to the complexity of the equations describing the propagation
of large amplitude Alfvén waves in an inhomogeneous moving
medium these analyses were developed in a static stratified at-
mosphere where the profiles of the ambient magnetic field and
the density of the medium were imposed in order to produce
the Alfvén velocity gradients which, ultimately, determine the
amount of reflection inside the simulation box.

Other authors (Heinemann & Olbert 1980; Leroy 1980,
1981; Krogulec et al. 1994; Krogulec & Musielak 1998; Lou &
Rosner 1994; Mangeney et al. 1991; Grappin et al. 1991; Velli
et al. 1991; Velli 1993; Moore et al. 1991; Similon & Zargham
1992; Cranmer & van Ballegooijen 2005, but also Dmitruk
et al. 2001b for a phenomenological nonlinear model) have fo-
cused their attention on the linear theory of wave propagation.

Here, three main features have proved to be essential: first,
the geometry of the medium, since the profile of Alfvén speed
is strongly affected by the structure of the flux tubes in which
waves are supposed to propagate; second, the extent of the
atmosphere whose global stratification profile determines the
transmission, since it is the entire profile of the Alfvén speed,
and not simply its local variation, which determines whether or
not a wave at a given frequency is capable of escaping at the
top of the atmosphere; third, the presence of a wind which sep-
arates the atmosphere into two parts. The Alfvén critical point
(the distance from the sun at which the wind speed equals the
Alfvén speed) represents a natural separation between an in-
ternal region where the wind is slow and affects the propaga-
tion of the waves only slightly (at least at high frequencies)
and an outer region, beyond the critical point, where waves
are advected outwards by the wind regardless of their origi-
nal propagation direction. Even if in the very low corona one
might expect the effect of a bulk flow to be negligible, it was
shown (Heinemann & Olbert 1980; Jokipii & Kota 1989; Velli
1993) that the wind speed reduces the reflection inside the at-
mosphere for low frequency waves, carrying them out through
the Alfvénic critical point (beyond which they can not propa-
gate backwards), and hence enhancing their transmission.

The aim of this paper is to investigate nonlinear ef-
fects on wave propagation once the background medium
and the entire (lower) atmosphere are taken into account.
Following Dmitruk et al. (2001b), we choose a constant or
radially expanding transverse dissipative length scale and a

phenomenological nonlinear coupling term. This allows us to
give a preliminary estimate of dissipation caused by the turbu-
lent cascade of counter-propagating Alfvén waves. Introducing
such a term still allows wave propagation to be handled in a
relatively simple way and, despite the roughness of the model,
allows one to gain insight into the relative importance of the
three features listed above when dissipative nonlinear effects
are also present.

The paper is structured as follows. First we review the equa-
tions which describe Alfvén wave propagation in an inhomo-
geneous moving medium, then we briefly review the results
derived from linear propagation and finally we introduce the
phenomenological terms, which split the nonlinear analysis
into two models, one in which interactions take place only
among waves of the same frequency, and the other in which in-
teractions between different frequencies are taken into account.
For parameter space, particular attention is paid to the solar
case. Finally we review these results and discuss the develop-
ment of a more realistic model.

2. The model
The equations describing the propagation of Alfvén waves in a
non-uniform stationary medium can be derived from the MHD
equations under the hypotheses of incompressible adiabatic
transverse fluctuations, and after an appropriate averaging over
the long timescales of the variation of the solar wind structure
(see Velli et al. 1991 for a discussion on the averaging and
timescales). The velocity (u) and magnetic field fluctuations
(b) can be combined to form the Elsässer variables,

z± = u ∓ sign (B0) b√
4πρ

,

which describe Alfvén waves propagating outward (z+) or in-
ward (z−). B0 stands for the average magnetic field (non-
uniform) and the sign is taken with respect to the outward di-
rection on the field line while ρ represents the mass density
(also non-uniform) of the ambient medium. In terms of these
variables the equations for the two fields read (Marsch & Tu
1989; Zhou & Matthaeus 1990; Velli 1993):

∂z±

∂t
+ [(U ± Va) · ∇] z± +

(
z∓ · ∇) (U ∓ Va)

+
1
2

(
z− − z+

) [∇ · Va ∓
1
2

(∇ · U)

]
= −1
ρ
∇ptot

−
[(

z∓ · ∇) z± −
〈(

z∓ · ∇) z±
〉]
+

1
2

(
z∓ · ∇ρ

ρ

)

×
[
Va ±

1
2

(
z− − z+

)]
, (1)

where U is the average wind speed and the average Alfvén
speed is Va = B0/

√
4πρ. On the right hand side we have

grouped the nonlinear terms including total (magnetic plus gas)
pressure, which may be written as the product between z+ and
the gradients of z− and viceversa, and the terms involving cou-
pling of fluctuations with gradients of the mean fields. The
nonlinear terms which don’t average to zero (in angle paren-
thesis) are to be considered part of the background medium
equation, hence must be subtracted in the fluctuation equations.
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When magnetic and gravitational field are collinear, as we as-
sume here throughout, the last terms on the RHS vanishes.
In the linear part of the equation we recognize a propagation
term (II) and two terms accounting for reflection due to the
variation of the properties of the medium, one isotropic (IV)
while the other (III) involves variations along the fluctuations’
polarization.

The isothermal atmosphere is completely defined by setting
the values for temperature, density and magnetic field intensity
at the base, together with the mass and radius of the central
object (M� and R�). The wind speed and Alfvén speed profiles
(and their derivatives) depend on the two parameters α, the non
dimensional scale height, and β0, the plasma parameter at the
base,

α =
GM�
R�c2

s
≈
v2esc

c2
s

and β0 =

(
P

B2/8π

)
0

≈
c2

s

V2
a0

,

where cs is the sound speed and vesc is the escape speed from the
solar surface. This allows one to solve numerically the implicit
equation for the isothermal wind,

1
2

(
U
cs

)2

− log

(
U
cs

)
= 2 log

(
2
α

R
R�

)
+ α

R�
R
− 3

2
, (2)

from which the profile for Alfvén speed (as usual R is the he-
liocentric distance, here γg = cp/cv, while r = R/R�) follows:

Va(r)
cs
=

1
r

√
2
γgβ0

U(r)
U0
≈ β−1/2(r). (3)

The values at the base for mass density and magnetic field
intensity are related by the Alfvén speed definition (ρ0 =

B2
0/4πV

2
a0), so one has to impose only one of the two, while

their profiles are fixed by flux conservation equations,

ρ(r) =
ρ0

r2

U0

U(r)
, B(r) =

B0

r2
·

2.1. Brief review of linear analysis and results

Without the nonlinear terms in Eq. (1) the property of wave
energy flux conservation (for a static atmosphere) generalizes
to conservation of wave action density when a non uniform
moving medium is considered (Heinemann & Olbert 1980;
Barkhudarov 1991; Velli et al. 1991). Assuming a temporal de-
pendence of the form z± ∝ exp[−iωt] one finds:

∇ ·
{
ρ

Va

[
(U + Va) |z+|2 (U + Va)

− (U − Va) |z−|2 (U − Va)
] }
= 0. (4)

The two distinct fluxes, associated with downward (S − → U −
Va) and upward (S + → U + Va) propagation, in the case of
radial propagation reduce to

S ± = F
(U ± Va)2

UVa
|z±|2, (5)

where F = ρUR2 stands for the total mass flux, also conserved
in virtue of the continuity equation; the conservation Eq. (4)
thus reduces to the statement S + − S − = S ∗ = const.

It is natural to define the top of the atmosphere at the
Alfvénic critical point (labeled with c), since only an outward
flux (S +c ≡ S ∗) remains at this point, so that a transmission (T )
and a reflection (R) coefficient may be defined:

T =
S +c
S +0
≡ S ∗

S +0
and R = 1 − T =

S −0
S +0
, (6)

where S +0 , S −0 are the fluxes at the base.
Assuming z±(r, t) = z±(r) exp[−iωt], expressing length in

unit of R�, velocities in units of sound speed, and frequencies
in unit of cs(α)/R�, the non-dimensional form for Eq. (1), lin-
earized and reduced for the spherical symmetry case, finally
becomes:

dz±
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− i

ω
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U ∓ Va

r (U ± Va)
z∓

+
1
2
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U ± Va

[(
2
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r
∓
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)
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d
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(
Va ∓

1
2

U

)]
= 0. (7)

The Alfvén critical point represents a regular singularity for
Eq. (7). The regularity conditions for the solutions at this
boundary,

Re
(
z−c

)
=

µν

µ2 + ω2
|z+c | and Im

(
z−c

)
=

ων

µ2 + ω2
|z+c |, (8)

can be used to integrate backward to the solar surface. The co-
efficients µ and ν are functions of the Alfvén and wind speed
(and their derivatives) calculated at the Alfvénic critical point.
In the spherical symmetry case they can be written as

µ =

(
1
2

dU
dr
+

U
r

)
r=rc

, ν =

(
1
2

dU
dr
− U

r

)
r=rc

, (9)

and their values are of the same order of magnitude. It follows
that the energy per unit mass for a mode at a given frequency is

εc ≡
1
4
ρc

(
|z+c |2 + |z−c |2

)
=

1
4
ρc|z+c |2

(
1 +

ν2

µ2 + ω2

)
· (10)

Finally imposing the same |z+c | for all the waves one obtains an
energy per unit mass which is decreasing with frequency. The
transmission coefficient as a function of frequency and temper-
ature is plotted in Fig. 1, as obtained by Velli (1993); the pro-
files corresponding to α = 4 and α = 10 are plotted with thick-
ened lines. As one can see, for all the temperatures considered
high-frequency waves (ω >∼ 10−3 Hz) are completely transmit-
ted. The behavior at lower frequencies depends on the tempera-
ture considered and can be roughly divided into a high and low
temperature behavior (α ≤ 6 and α > 6 respectively). For high
temperatures the transmission coefficient simply decreases as
frequency is decreased and reflection is almost negligible. For
low temperatures reflection is stronger and the transmission
coefficient reaches a minimum for waves of period around an
hour (20% for α = 15). Lowering the frequency, T increases
and reaches an asymptotic value which is higher for lower tem-
perature. Two main factors produce this behavior in low tem-
perature atmospheres. The first is due to Alfvén speed gradi-
ents which are stronger in the low atmosphere, vanish around
R >∼ α/4 R� and then increase slightly before going asymptot-
ically to zero. This profile produces a tunneling effect for low
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Fig. 1. Transmission coefficient as function of frequency in logarith-
mic scale for isothermal layers of different temperatures. The value
of α ranges from α = 4 ≡ T ≈ 3 × 106 K (hot) to α = 15 ≡ T ≈
8 × 105 K (cold) in integer steps. β0 = 0.08 for all the profiles (from
Velli 1993).

frequencies and it accounts for the increase of T for decreas-
ing frequencies in the range 5 × 10−6 Hz <∼ ω <∼ 5 × 10−4 Hz.
The second factor is the presence of a wind, which alters the
propagation of waves and carries the low frequency modes
(ω <∼ 5 × 10−6 Hz) through the critical point: this is what we
call the wind effect. From these arguments one would expect
low frequency waves to drive the turbulent cascade in hot atmo-
spheres and waves of period of few hours to be the dominant
driver in the low temperature atmospheres. However, as we
shall see later, the transmission coefficient is an integral quan-
tity, depending on the effect of reflection throughout the whole
layer, whereas the local reflection rate plays a more important
role in the context of nonlinear interaction and dissipation.

2.2. A model for nonlinear interaction

In order to account for nonlinear interactions and turbulent phe-
nomenology we need to add terms on the right hand side of
Eq. (7) which contain both of the Elsässer fields and produce
a sort of dissipation of the previous linearly conserved quan-
tity (S ∗). Following Dmitruk et al. (2001b) we choose the fol-
lowing modeling as substitution for the RHS of Eq. (1),

nonlinear terms → − z±|Z∓|
L
,

where L represents an integral turbulent dissipation length
and Z± stands for the total amplitude of the Elsässer field at the
point r. The nonlinear term contains, a priori, various contri-
butions which come from the different frequencies into which
the Alfvén wave packet may be decomposed. The total Elsässer
field amplitude is obtained as the root mean squared value of
the amplitudes corresponding to the frequencies considered,
hence:

|Z∓ (ω1, ω2, .., ωn) | =
√
Σn

i |z∓(ωi)|2. (11)

Assuming such a form we will consider interactions among
waves with the same frequency (self interacting case), or in-
teractions among a set of waves of different frequencies, in
particular we will consider a two frequency case and a three
frequency case. As a result the system of equations describ-
ing the model changes order (respectively forth, eighth and

twelfth). After normalization and time dependence substitu-
tion, this leads to the nonlinear model equations,

dz±

dr
− i

ω

U ± Va
z± +

U ∓ Va

r (U ± Va)
z∓ +

1
2

z− − z+

U ± Va

×
[(

2
Va

r
∓

U
r

)
+

d
dr

(
Va ∓

1
2

U

)]
= −

z±|Z∓|
L (U ± Va)

, (12)

finally used for numerical integration. (Again L is expressed in
units of R�, velocities in units of cs, and ω in units of cs/R�.)

The form of the nonlinear term may be heuristically de-
rived from the following arguments. When Eq. (1) is Fourier
decomposed (z±(r, t) → z±k = uk ∓ bk) nonlinear terms cou-
ple several wave numbers in the k-space. When a strong mag-
netic field (Va in velocity units) is present, the propagation time
of the Alfvén waves τa = (k · Va)−1 is equal or shorter than
the characteristic time-scale for nonlinear interaction τNL =

(kuk)−1 ≈ (kbk)−1 over most of the Fourier space, the nature
of the nonlinear cascade is highly anisotropic, developing pref-
erentially in planes perpendicular to the direction of the mean
field (Shebalin et al. 1983; Oughton et al. 1994; Goldreich &
Sridhar 1995). It is then useful to decompose local wavenumber
in projections along the magnetic field (k||) and in the perpen-
dicular planes (k⊥) because energy transfer occurs only among
the latter, so that Fourier decomposition is exploited only in k⊥.
When small fluctuations are considered (Va � bk ≈ uk) these
arguments lead to the so called RMHD description which can
be derived as an expansion of the usual MHD equations in the
small parameter bk/Va with the restriction εRMHD = τNL/τa <∼ 1
(see Oughton et al. 2004 and reference therein for more de-
tails on RMHD), in which variations along the perpendicular
directions are decoupled from those along the magnetic field
(∇ = ∇⊥ + ∇||, with ∇⊥ � ∇||). We can describe the global
effect of this perpendicular cascade by means of two quanti-
ties at the large scales, namely an integral scale λ0, giving the
dimension of the greatest eddies in which energy is injected,
and the average velocity difference (∆v) among points belong-
ing to the same eddy, which in RMHD turbulence also con-
tains magnetic field fluctuations in velocity units (∆b/

√
4πρ).

Identifying these two quantities with the integral turbulent
length (λ0 = L) and the fluctuations’ amplitude of the Elsässer
fields we can construct a characteristic timescale τ±NL = L/|Z∓|
which accounts for nonlinear turbulent interactions in Eq. (1)
(see Dobrowolny et al. 1980 for a more accurate derivation).

Multiplying the above Eq. (12) by the complex conju-
gate z±∗ one obtains the evolution equations for the Elsässer
energies at a given frequency E± ≡ 1

2 |z
±(ω)|2. On its RHS

one finds −|z±|2|Z∓|/[(U ± Va)L], which acts as a sink for the
energy of a given mode. To quantify the relative importance
of various couplings we first consider only nonlinear interac-
tions between counter-propagating waves with the same fre-
quency. Thereafter we consider the more realistic case of dif-
ferent couplings between a fundamental frequency (a very low
frequency, sometimes called the quasi-2D component, labeled
with index 0) and other higher frequencies labeled as interact-
ing (index i).

In both cases, once nonlinear terms are introduced we loose
the scaling feature of the linearized equation for which given an
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increment of a factor f in the amplitudes at the critical point we
have an equal increment f for the values at the base. Hence, to
get realistic values of velocity and magnetic field fluctuations
at the base of the atmosphere, we have to tune the amplitude of
the outgoing wave imposed at the Alfvénic critical point (since
the equations are still integrated backward) for every frequency
and coupling considered.

3. Results

To quantify dissipation inside the layer one can look at how
wave action density changes with r compared to the linear
case. It is useful to introduce normalized quantities, i.e. S(r) ≡
S ∗(r)/S ∗(r0) and what we define to be the dissipation efficiency
γ ≡ (S ∗0 − S ∗c)/S ∗0 = 1 − S(rc) (S ∗0 ≡ S ∗(r0) and S ∗c ≡ S ∗(rc)).
These quantities do not directly yield the amount of energy dis-
sipated, however, the profile of S(r) shows where the nonlin-
ear dissipative terms have the strongest effect. Further inter-
esting information comes from studying how the values of the
Elsässer variables at the base depend on the value at the criti-
cal point, departure from a linear scaling being entirely due to
nonlinear effects. These amplitudes are constrained by mea-
sures of line broadening which give root mean squared values
approximately between 20 km s−1 and 30 km s−1 (Chae et al.
1998) for coronal temperatures.

In the following we first present the results concerning the
self-interacting case, where only monochromatic waves in-
teract, then we shall consider modification to dissipation in-
duced by different coupling among two or three frequencies.
As model parameters we choose α ∈ [4, 10] corresponding to
temperatures for an isothermal layer above the sun’s surface
ranging from approximately 1 × 106 K (α = 10) to 3 × 106 K
(α = 4), and we fix the value of the plasma parameter at
β0 = 0.08 for every temperature; thus, at the base of the atmo-
sphere the Alfvén speed is always five times the sound speed.
Finally we set the value of the phenomenological turbulent
length L = 0.05 R�, that is about 34 000 km corresponding to
the average size of the supergranules at coronal level which is
maintained at a constant value through the entire atmosphere.

3.1. Self-interacting one frequency model

Consider now nonlinear interactions which couple (only)
counter-propagating waves of the same frequency, with the
nonlinear terms (NL) having the following form:

NL→ − z±(ω)|z∓(ω)|
L (U ± Va)

·

Although this type of interaction is not dominant (this is a non-
resonant interaction unless ω is so small that τNL < τa) it is
nonetheless a useful step in our modelling in order to under-
stand the behavior of the waves evolution. In Fig. 2, S(r) is dis-
played for a high and a low frequency wave (ω = 10−2 Hz and
ω = 10−6 Hz respectively) traveling in α = 4 and α = 10 at-
mospheres, with a reference initial wave amplitude value of
100 km s−1 (see Appendix). For the high temperature case (left
panel), one obtains what is expected from the linear analy-
sis: high-frequency waves are poorly dissipated while at low

Fig. 2. Total wave action density normalized to the base value as a
function of radius in α = 4 and α = 10 atmospheres, for a high
(10−2 Hz, dotted line) and low (10−6 Hz, solid line) frequency wave
with an initial 100 km s−1 wave amplitude. For the cold atmosphere
the profile for the wave having the minimum transmission coefficient
(dashed line) is also plotted.

frequencies dissipation is enhanced, eventually with more effi-
ciency than one expects on the basis of the transmission coeffi-
cient (≈80%). For low temperatures (right panel), one expects
high dissipation for waves with periods of a few hours (trans-
mission ≈20%) and that is what is found (dashed line), but for
the lower frequency waves one finds the same amount of dis-
sipation despite almost perfect linear transmission (T ≈ 95%).
The reason is that when non-negligible amplitudes are consid-
ered, the nonlinear terms dominate over the linear ones where
the gradients are strongest and the local reflection rate deter-
mines the amount of dissipation. In the right panel, at about
r = α/4, dissipation stops and total wave action density re-
mains almost constant. In fact, in this region the reflection rate
is negligible as discussed in the linear analysis (in the left panel
it coincides with the base of the atmosphere) and no dissipation
occurs.

The reflection rate depends both on temperature and wave
frequency and it is higher for cooler atmospheres and lower
frequency waves. Moreover, most of the reflection takes place
in the lower atmosphere, where the Alfvén speed gradients are
stronger. For high enough wave amplitudes, nonlinear terms
dominate over linear ones and the profile of |z−| is determined
uniquely by the local reflection rate, which, for cold atmo-
spheres, is itself dominated by the Alfvén speed gradients.

Ultimately one expects γ (≡ 1 − Sc) to increase with α,
andS to decrease faster with radius in the very low atmosphere.
For a given α this behavior should be more pronounced for low-
frequency waves (those suffering stronger reflection) and con-
sequently high-frequency dissipation should be less sensitive to
temperature variations. Variation of dissipation efficiency with
frequency is shown in Fig. 3 for different initial wave ampli-
tudes (a → 100 km s−1, b → 10 km s−1 and c → 1 km s−1)
and both α = 4 and α = 10 atmospheres (respectively contin-
uous and dotted lines). One can define a critical frequency ω∗

(for which γ is half its maximum) that divides the γ(ω) profiles
into two branches: a constant low-frequency value and a zero
high-frequency one, separated by an intermediate range whose
extent depends slightly on temperature and wave amplitude (it
decreases with α and z+c ). As can be seen in Fig. 3 the value of
the critical frequency (marked with a star) depends very little
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Fig. 3. Dissipation efficiency (γ) as function of frequency for a hot
(α = 4, continuous lines) and a cold (α = 10, dotted lines) corona for
z+c = 100 km s−1 a), z+c = 10 km s−1 b) and z+c = 1 km s−1 c).

Fig. 4. Outgoing and ingoing wave amplitude (solid line) calculated at
the base of the α = 4 atmosphere, as a function of outgoing amplitude
at the critical point. The plots are obtained for ω = 10−6 Hz. Dashed
lines show the values obtained in the linear case (the upper and lower
line refers to z+ and z− respectively).

on temperature while it seems to scale almost linearly with the
value of the amplitude imposed at the top of the atmosphere,
indicating that |z+c | is now a more relevant parameter than tem-
perature. The difference between dissipation efficiency for low
and high frequency (∆γ) depends also on α and the initial wave
amplitude and it obviously increases as either parameter is in-
creased.

To investigate the amplitude dependence of the solutions
we consider the case of a frequency small enough (ω =
10−6 Hz) to remain to the left of ω∗ for all temperatures in-
vestigated. In Fig. 4 the values of the outgoing and ingo-
ing wave amplitudes at the base are plotted as a function of
the outgoing wave amplitude imposed at the critical point, i.e.
the energy. The value at the base for the outward propagat-
ing waves follows a profile similar to the linear case, it is in-
creased by about the same factor as the initial value at the
top of the layer, suggesting that dissipation mostly affects in-
ward propagating waves. As a further indication, their ampli-
tude first grows almost linearly (initial amplitude is not too
high and dissipation acts like a perturbation to the linear prob-
lem). Then, as z+c further increases, z−0 decreases and vanishes
for a particular value (z+p ) imposed at the critical point. Finally
as |z+c | still grows, z−0 reaches a very low constant value (say
|z−0 | ≈ 10 km s−1), indicating a kind of saturation which lim-
its inward wave amplitudes at the base. In Fig. 5 dissipation
efficiency is plotted as function of initial wave amplitude for

Fig. 5. Dissipation efficiency as function of initial outgoing wave am-
plitude for ω = 10−6 Hz. The different plots refer to atmospheres with
α = 4, 6, 8, 10.

ω = 10−6 Hz and α equal to 4, 6, 8 and 10. For low amplitudes
γ is very low and for the highest two temperatures (negligible
reflection) it has the same numerical value. Increasing z+c we
arrive to a saturation value depending on temperature (loga-
rithmic scale on x axis) which corresponds to the saturation of
the z− amplitude at the base of the atmosphere. In the presence
of nonlinear interactions it is interesting to remark that the lack
of an appreciable reflected wave at the base is not a sign of low
dissipation, since as shown above, z− may be generated locally
and dissipated entirely within the atmospheric layer.

3.2. Two frequencies interaction

We use the previous self-interacting analysis in order to iden-
tify the interesting couplings among all possible combinations
in a set of given representative frequencies. In the following we
refer to ω0 as the basic frequency, or fundamental, with which
interactions occurs, while with ωi we refer to the “interacting”
frequencies.

Since in a decaying power law spectrum most of the energy
is retained in the low frequencies we expect nonlinear interac-
tion to be more important when such frequencies are involved,
hence we chooseω0 = 0 (representative of low frequencies, say
ω < ×10−5 Hz) and ωi varying from about 10−5 Hz to 10−2 Hz
increasing by a factor 10 at each step. Specifically, we consider
the four couplings,

– a: ω0 = 0 Hz − ωi = 10−5 Hz;
– b: ω0 = 0 Hz − ωi = 10−4 Hz;
– c: ω0 = 0 Hz − ωi = 10−3 Hz;
– d: ω0 = 0 Hz − ωi = 10−2 Hz.

As top boundary conditions two cases are considered: a flat
spectrum (same energies in the fundamental and interacting
modes) and a Kolmogorov-like spectrum, for which the energy
per unit mass scales as |z+c (ωi)|2 = |z+c (ωref )|2 × (ωi/ωref)−2/3,
where ωref = 10−6 Hz is a reference frequency from where the
power-law scaling begins (ωref ≡ ω0).

Consider first the flat spectrum case shown in Fig. 6 (left
panel). The general dissipation profile as a function of r is sim-
ilar to that formed in Fig. 2 (right panel). The main result here
is that higher frequency waves (b, c ,d) may also dissipate ef-
ficiently thanks to their coupling with the reflected mode of
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Fig. 6. Flat spectrum. Left panel. Total wave action density, normalized to the base value, for the interacting frequencies in different coupling
(labelled with letters, see text), as function of distance from the atmosphere’s base expressed in unit of R�. Temperature is set to α = 6 and
z+c (ωref) = 100 km s−1. Right panel. Dissipation efficiency as function of initial outgoing wave amplitude z+c (ωref). The different plots refer to
atmospheres with α = 4, 6, 8, 10; solid and dotted lines represent respectively γ(ω0) and γ(ωi) with ωi = 10−2 Hz).

Fig. 7. Same as Fig. 6 but for a power-law spectrum at the critical point.

the very low frequency component, so that all profiles show a
significant decrease with distance. This also has an effect on
the decay of the lowest (zero) frequency mode, whose reflected
mode is ultimately the trigger for nonlinear evolution. When
the amplitudes of the higher frequency modes are large (i.e.
of the same order of magnitude of the low frequency mode),
they influence the evolution of the zero frequency reflected
component, which then also affects the zero-frequency outward
component, driving the profiles to convergence as illustrated in
Fig. 6 (right panel): at low amplitudes γ(ωi) differs from γ(ω0)
but at high amplitudes γ(ωi) ≈ γ(ω0), which means a strong
coupling.

Consider now the power-law spectrum illustrated in Fig. 7.
The dissipation profile is the same for all the couplings consid-
ered (left panel). Now the energy in the high-frequency waves
(mainly propagating outwards) is so small that it has a negli-
gible effect on the evolution of the zero-frequency mode (no
back reaction) which, in turn, drives the dissipation of all the
coupled modes. On the other hand, in the right panel, one can
see that the profiles of γ(ω0) and γ(ωi) are similar to the flat
spectrum case and they begin to converge at almost the same
values of z+c (ω0).

The two parameters, α and z+c (ω0), determine how strong
the coupling is, independently of the shape of the spec-
trum. For a given amplitude at the critical point of the zero-
frequency wave, temperature controls the amount of reflection
produced inside the layer, and hence both the linear coupling
among the counter-propagating waves of a given frequency

(i.e. differences in the waves’ evolution due to frequency differ-
ences) and the amplitude of the zero-frequency reflected com-
ponent (the driver). One finds that increasing the temperature
(decreasing α) the coupling becomes weaker for a low |z+c | and
stronger for a high |z+c |, depending on which of the two above
features is dominant. For a given coupling, ω0 − ωi, at a given
temperature, the zero frequency wave amplitude imposed at the
critical point determines the importance of nonlinear terms (see
Fig. 4), and hence the nonlinear coupling among the waves (the
evolution independent of frequencies). Increasing |z+c (ω0)| in-
creases the strength of the coupling.

Two factors determine the rate of dissipation for the cou-
pled waves. The first, as in the self-interacting case, comes
from inward propagating wave generation and dissipation.
Since this mechanism is driven by reflection it is a charac-
teristic feature of low-frequency waves (the fundamental) and
it acts approximately as in the previous analysis, hence it de-
pends most on the low-frequency initial wave amplitude. The
second comes from the form chosen for the coupling where
high-frequency waves can be dissipated too. They are essen-
tially propagating outward and their main effect is to dissipate
the reflected low-frequency wave. The ratio formed with two
coupled wave amplitudes controls the relevance of this second
aspect. For z+c (ωi) ≈ z+c (ω0), reflected waves are suppressed as
soon as they are generated and the dissipation rates of S(ωi)
is increased compared to the self-interacting case but that one
of S(ω0) is reduced. When z+c (ωi) � z+c (ω0) the outward high-
frequency wave has little capability in suppressing the reflected
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waves and both dissipation rates are almost completely deter-
mined by the fundamental mode: no matter what the coupling
is, dissipation efficiency is practically the same for the coupled
waves (strength of the coupling) and also for all the couplings
formed with different interacting frequencies (negligible effect
of the high frequency waves).

3.3. Three frequencies interaction

Including a third frequency in the nonlinear terms represents
not only a simple improvement of the previous two interacting
frequencies model but it allows one also to have a rough guide
for the evolution of the initial spectrum due to wave propaga-
tion. Since the strength of coupling depends both on the tem-
perature of the layer and on the zero-frequency wave ampli-
tude, one expects that modifications of the initial spectrum will
be non-negligible only for very low temperature (high α) or
very low initial amplitude. If in fact dissipation efficiency is
the same for all the frequencies coupled the spectrum should
remain almost unchanged during wave propagation. We shall
consider only the power-law case since it better represents
the condition of a fully developed turbulent spectrum and the
strength of the coupling is not sensitive to the flatness of the
spectrum imposed at the top boundary. The energy distribution
among frequencies can be imposed by simply specifying the
amplitude of the outgoing wave at a given frequency. In fact,
as nonlinear terms are introduced, the frequency dependence
in Eq. (10) is almost completely removed since µ→ µ+ |z+c |/L.
Thus, for high enough initial outgoing amplitude µ � ν and ω
so that the contribution of the “ingoing” energy, ε−, to the total
energy density is negligible.

Supported by these arguments we shall study the behavior
of efficiency and spectra with respect to “initial” wave ampli-
tude variation of two representative couplings:

– a: ω0 = 0 Hz − ω1 = 10−2 Hz − ω2 = 10−1 Hz which
involves high-frequency waves,

– b: ω0 = 0 Hz − ω1 = 10−4 Hz − ω2 = 10−2 Hz which
involves intermediate frequency waves lying in the domain
of the correlations observed at 1 AU.

In the high frequencies coupling (a) the interacting dissipa-
tion efficiencies (γ(ω1), γ(ω2) in the lefthand panel of Fig. 8)
practically coincide for all the initial amplitudes considered,
while the differences with the fundamental one show again
the previously identified dependences: for α = 4 (and 6)
high initial amplitudes (roughly greater than 50 km s−1) pro-
duce strong couplings among the fundamental and interact-
ing modes. However, when we consider cooler atmospheres,
only the very high amplitudes (around 1000 km s−1) are able to
equalize the dissipation of all the modes.

For the intermediate frequency coupling (righthand panel),
the three curves for the coupled waves follow different pro-
files and give evidence of how much coupling strength is fre-
quency dependent: for the “middle” frequency (dotted line) dis-
sipation efficiency soon reaches the fundamental mode regime
even in the coolest atmospheres, while the highest frequency
mode (dashed line) follows almost the same profile as in cou-
pling a. A major difference between cool and hot atmospheres

Fig. 8. Dissipation efficiency as function of initial outgoing wave am-
plitude z+c (ω0) imposed at the top of the layer in the interacting case.
The left panel refers to case a (ω1 = 10−2 Hz and ω2 = 10−1 Hz), and
the right panel to case b (ω1 = 10−4 Hz and ω2 = 10−2 Hz). Initial
wave amplitude is scaled following a power-law spectrum (see text).
The different plots refer to atmospheres with α = 4, 10; solid, dotted
and dashed lines represent respectively γ(ω0), γ(ω1) and γ(ω2).

is the behavior of the middle frequency which, for low enough
initial amplitude shows a more efficient dissipation than the
fundamental mode. This can be attributed to the wind effect
which manifests for cooler atmospheres and weak nonlinear
self-interaction or coupling (low amplitudes). It separates very
low frequency behavior (wave mainly transmitted, poor dissi-
pation) and intermediate frequency behavior (wave mainly re-
flected and strong dissipation).

It is then interesting to track the modifications of the im-
posed (at rc) spectra back to the base of the atmosphere, for
varying “initial” wave amplitudes. Only coupling b will be con-
sidered, for which one expects greater modifications. Figure 9
plots the spectra ε = ρ

(
|z+(ω)|2 + |z−(ω)|2

)
imposed at the top

of the atmosphere (dotted lines) and the spectra obtained by
integration to the base of the atmosphere (solid lines). Results
are shown for two different temperatures (α = 4, 10). Three
representative top-boundary wave amplitudes of the funda-
mental frequency are considered whose values are z+c (ω0) =
1, 100, 1000 km s−1. Since we impose a power-law spectrum at
the top of the layer all dotted lines have slope −5/3 and can be
used as reference to see the modification induced by wave prop-
agation. It is striking how much the spectra remain unchanged
for practically all the temperature and all the initial amplitude
considered and even if couplings with highest frequency waves
are formed (not shown here). With a more accurate inspec-
tion one actually finds that the spectra change slightly (see for
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Fig. 9. Spectra at the top (dotted line) and the bottom (solid line) of the atmosphere for three representative initial values of z+c (ω0) (1 km s−1,
100 km s−1 and 1000 km s−1 marked with crosses, stars and diamonds respectively) and different temperature (α = 4, 10 respectively on the
left and right panel) in coupling b.

Fig. 10. Ratio ξ between the spectra at the top and the bottom of the atmosphere for α = 4, 10 (respectively left and right panel) in the case of
coupling b. The plots are labeled with the initial amplitudes z+c (ω0) imposed at the top of the layer. Also shown is the ratio for the linear case
(dotted line).

example solid the line marked with diamonds in the right
panel). The ratio

ξ(ω) =
εc(ω)
ε0(ω)

=
ρc

(
|z+c (ω)|2 + |z−c (ω)|2

)
ρ0

(
|z+0 (ω)|2 + |z−0 (ω)|2

) (13)

is then introduced to highlight the very small differences among
these cases.

In Fig. 10 we plot such ratios normalized to the value of
the fundamental mode, i.e. ξ(ω1)/ξ(ω0) and ξ(ω2)/ξ(ω0) (the
fundamental being normalized to its value) for the cases shown
in Fig. 9. Since the spectrum at the top is fixed by the initial
condition, a normalized ξ lower (greater) than one means the
spectrum is steepening (flattering).

For low initial amplitudes in hot atmospheres the spectrum
becomes flatter at high frequencies, since the coupling is not
so strong and frequency dependence displays its influence. As
we increase the strength of the coupling, by increasing z+c (ω0),
differences are smoothed and the spectrum first adjusts itself
to the slope imposed at the top of the atmosphere and then fi-
nally steepens. The same behavior is observed for the higher
frequency coupling case a (not shown), so one can attribute
such a general feature to the high temperature atmospheres.

For low temperatures, the picture is more complicated.
Frequency differences are more important and the strength of
the coupling is reduced, the intermediate frequency waves con-
tribute to dissipation with their self-interacting part so that the
spectrum steepens at intermediate frequencies and flattens at
high frequency. To quantify this tendency, we have calculated

the exponent of the resulting power-law scaling at the base
for the low and high frequency branches. In the worst of the
cases (1 km s−1 for α = 10 in Fig. 10) the slopes are 1.61
(spectrum steepening) and 1.76 (spectrum flattening) to com-
pare with 1.667, but generally the slope is 1.65 (steepening)
or 1.67 (flattering). One can then conclude that even if the
spectra evolves during propagation the differences between the
slopes at the top and bottom are always very small or even neg-
ligible.

Note how for lower α and low amplitude the spectrum is
unchanged by propagation, even though consistent differences
in the dissipation efficiencies of the coupled modes are found.
The origin of such discrepancies is to be found in the definition
of γ which involves total wave action density at the bound-
aries of the layer, including a contribution from inward and
outward fluxes at the boundaries which are not simply wave
amplitudes (which indeed determine the spectrum). One can
in fact rewrite γ as follows:

γ(ω) = 1 − S (rc)
S (r0)

= 1 −
ρcUcR2

c

[
(Uc + Vac)2 |z+c |2

]
Uc Vac

× U0 Va0

ρ0U0R2
0

[
(U0 + Va0)2 |z+0 |2 − (U0 − Va0)2 |z−0 |2

]
= 1 − g(α)

|z+c |2

|z+0 |2 − |z
−
0 |2

[
1 − g(α)

] , (14)
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where g(α) = 4U0Va0/(U0+Va0)2. In particular U0/Va0 < 1 for
all temperatures considered and tends to zero as α is increased
(so that g ≈ 4U0/Va0 → 0). Since the contribution of the en-
ergy of the inward waves, ε−, at the top boundary is always
negligible, if |z−0 | � |z

+
0 | (cf. saturation of |z−0 | in Fig. 4), one

can finally write:

γ ≈ 1 − g(α)
|z+c |2

|z+0 |2
×

⎡⎢⎢⎢⎢⎣1 + |z−0 |2|z+0 |2
(1 − g(α))

⎤⎥⎥⎥⎥⎦ ,
ξ ≈ ρc

ρ0

|z+c |2

|z+0 |2
×

⎡⎢⎢⎢⎢⎣1 − |z−0 |2|z+0 |2

⎤⎥⎥⎥⎥⎦ , (15)

with the terms in square brackets approximately equal to one.
For a given temperature, a difference in the γ(ω) signifies a
real difference in the ξ(ω) only if the contribution of the inward
reflected wave amplitude at the base of the layer is negligi-
ble. For low amplitudes (weak coupling) the reflected waves
of the fundamental mode have still a considerable amplitude at
the base (see Fig. 4) and this approximation is no longer valid.
Moreover, for a high temperature atmosphere g(4) ≈ 0.26, and
the difference γ(ω0) − γ(ωi) is enhanced with respect to those
occurring in the lower temperature atmospheres, exaggerating
the differences in the waves evolution.

3.3.1. The effect of a radially expanding turbulent
scale

Up to now we have considered a fixed turbulence scale, L,
in a wind which is spherically expanding. This assumption
produces strong consequences on the dissipation rate in the
higher part of the atmosphere and hence on dissipation effi-
ciency (Zank et al. 1996; Matthaeus et al. 1998). In that region,
in fact, Alfvén speed and wind speed gradients are weaker and
we expect only a small amount of reflection. However, if the
turbulence scale is held constant, the phenomenological gradi-
ent (∼1/L) becomes more and more important as we move into
the outer atmosphere since it is not expanding as the other gra-
dients or length-scales in Eq. (12) are. Hence the nonlinear term
increases and the net result is an enhancement of dissipation,
especially for lower temperature atmospheres which extend up
to about 40 R�. In order to correct such effects and to consider
a consistent spherical expansion, we modify the three frequen-
cies model to use L = L0 × r, with L0 fixed at the coronal level
by the average dimension of the supergranules.

For low z+c (ω0), dissipation efficiency is considerably al-
tered (reduced) with respect to the non-expanding case (com-
pare Figs. 11 and 8). Since nonlinear term influences are now
reduced, we need greater initial amplitudes to efficiently cou-
ple the frequencies considered; as a consequence the profiles
of γ are shifted to the right with respect to the non-expanding
model (by a factor of 3 or 4). For coupling a, the plots of γ show
the same kind of variations as discussed above and the profile
of the interacting frequencies (ωi1 and ωi2) again coincides for
every amplitude and temperature. Their values are identical to
the high frequency one in coupling b (dashed lines in Fig. 11).

If we again construct the ratio ξ, then when we consider
high temperatures we obtain the same features as in the non-
expanding case, but in the “worst cases” (low temperature and

Fig. 11. Same as in Fig. 8 for coupling b and power-law initial spec-
trum except that integrations are performed using a spherically ex-
panding turbulent length L(r) = L0 × r with L0 fixed by the average
dimension of supergranules at coronal level. Results are shown for
α = 4, 10 atmospheres.

low amplitudes) differences in the slopes are more evident sug-
gesting some spectral in such conditions.

4. Conclusions

In this paper we have modeled the nonlinear evolution of
Alfvén waves propagating through the subAlfvénic region of
isothermal stellar winds. Nonlinear interactions occur between
outward propagating and reflected waves, and it is assumed that
a nonlinear cascade develops preferentially in a direction per-
pendicular to that of propagation, which we take to coincide
with the direction of the mean radial magnetic field. The non-
linear term then acts as a dissipative sink for both outward and
inward waves of a given frequency.

As might be expected, lower temperature atmospheres,
with higher gradients, and lower frequency waves allow a
stronger dissipation of outwardly propagating waves. On the
other hand our results seem to imply that a well devel-
oped turbulent spectrum does not change appreciably during
propagation.

The dissipation rate has been studied, varying the tempera-
ture of the layer and the frequency and amplitude (imposed at
the critical point) of the waves. We find that for a given ampli-
tude and frequency, the dissipation rate is stronger in the lower
part of the atmosphere and depends strongly on the tempera-
ture, which ultimately determines the amount of reflection via
the density gradients. As the wave amplitude is increased, the
dissipation rate is enhanced, reaching a saturation value which
depends on temperature and frequency. Saturation is an ef-
fect of nonlinear-dissipative interactions which limit the inward
propagating (reflected) wave amplitude once the outgoing am-
plitude is increased beyond a given value (which also depends
on temperature and frequency). Below a critical frequency
(whose temperature dependence is negligible), dissipation as-
sumes a constant rate all the way down to “zero-frequency”
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fluctuations, while above the critical frequency the dissipation
rate tends to zero as frequency is increased, since the amount of
reflection decreases with frequency (WKB behavior). The local
interaction analysis shows that even if the amplitudes of the in-
ward propagating waves at the base are negligible, continuous
reflection due to wind and Alfvén speed gradients can produce
significant dissipation (see comments in Fig. 5 at the end of
Sect. 3.1); however, only low frequency waves are efficiently
dissipated for reasonable wave amplitudes.

We have also investigated a more realistic calculation, con-
sidering non-local interactions, where an outwardly propagat-
ing Alfvén wave is allowed to interact nonlinearly with the
total rms value of inward fluctuations summed over all frequen-
cies (and vice versa). Our approach differs from what has been
done in a recent paper of Cranmer & van Ballegooijen (2005)
in two related aspects concerning the nonlinear-dissipative in-
teractions. We consider the full expression of the wave action
density, hence including the downward propagating flux, or in
other words, the nonlinear equations of the Elsässer fields are
integrated simultaneously to include the effect of the dissipa-
tion in a consistent way. Nonlinear interactions act on both
types of (counterpropagating) waves, thereby producing the at-
tenuation of the reflected component which affects the driving
of the global dissipation. In our analysis, the description of
the total rms value of the fluctuation is approximated by two
or three representative waves with different frequencies spread
across a spectrum, the “zero frequency” wave for the low fre-
quencies, and the higher frequencies selected from spectra with
different slopes. The strength of the coupling, i.e., the total en-
ergy in the outward modes at the lower frequencies (for which
reflection is efficient) is crucial for the way in which energy
is dissipated along the spectrum. If the amplitude of the low
frequency wave is high enough (say 10 km s−1 at the base for
a 106 K atmosphere) dissipation of all the outward modes is
driven by the low-frequency (quasi-2D) reflected waves: the
coupling may be considered strong. A second important as-
pect is the slope of the spectrum or equivalently the relevant
energy residing in the higher frequency waves. Its effect is to
enable dissipation of the low-frequency reflected component,
since there is little reflected energy at high frequencies, and ul-
timately to reduce the dissipation efficiency of all the waves
coupled. In summary, for a given total outward energy, dissi-
pation is more efficient if the spectra have higher energies at
lower frequencies, i.e. steeper spectral slopes.

Setting the lowest frequency to higher values, say ω0 =

10−5 Hz, produces some differences in the results, but the
global analysis remains unchanged. From Fig. 3 one can guess
how the strength of the coupling is affected and hence how the
spectra change. In fact the higher the frequency is, the lower the
amount of reflected waves; hence the lowest frequency wave is
less efficient in driving the dissipation of all the waves cou-
pled. Imposing the same amplitude at the critical point the
strength of the coupling is lower, linear effects (i.e. differ-
ences in the wave propagation due to different reflection rates)
become more important and the spectra show a somewhat
higher modification. However, increasing the amplitude of the
lowest frequency wave restores the importance of nonlinear
terms (the coupling) which overcome the linear effects. These

considerations remain valid if one chooses the lowest fre-
quency in the low-frequency plateaus of the curves in Fig. 3.
Note that the rightward extension of the plateau increases with
increasing wave amplitude.

We have also considered a spherically expanding length
scale L(r) = L0 × r. In this case, the qualitative features dis-
cussed above remain essentially the same (for high enough ini-
tial amplitudes). The main effect of the expansion is to reduce
the phenomenological gradient 1/L(r) entering the nonlinear
term of Eq. (12) as we move further out in the atmosphere so
that dissipation in the higher part of the layer is greatly reduced.
As a result the amount of energy dissipated is decreased and
one can actually attribute differences in the dissipation rate of
waves at different frequencies almost entirely to differences in
their propagation through the low atmosphere where gradients
are greater and hence where most of reflection takes place.

Of course, to better understand the spectral evolution in
a stratified atmosphere one should also include the chromo-
sphere, the photosphere and the transition region. Here differ-
ent physical conditions are encountered and it is not clear how
the evolution of the waves in these regions affects the develop-
ment of “Alfvénic turbulence”.

Modeling the deeper stratified layers as a set of isother-
mal layer with different temperatures (with a discontinuity
across the transition region) produces changes of the param-
eter β which has been held fixed in our analysis. In our case,
how changes in β affect the result may be discussed qualita-
tively. First note that for a given temperature, the wind solutions
are selected (see Eq. (2)) and hence the wind profile and its
gradients remain the same. As β is increased the Alfvén speed
decreases (still maintaining its characteristic profile, i.e. a max-
imum at α/4), its gradients decrease too and the Alfvén criti-
cal point moves to lower radii. In the linear case the net effect
is an enhanced transmission at low and intermediate frequen-
cies. When nonlinear interactions are taken into account the
amplitudes must be scaled to get the same quantitative results,
i.e. the same amplitude may be regarded as low in a high β
plasma or high in a low β plasma as far as the strength of
the coupling is concerned because, for a given temperature, the
strength depends entirely on the amount of reflection. When
multiple isothermal layers with different temperatures and dif-
ferent thicknesses are considered, other characteristic length
scales and gradients are introduced in the equation describing
the wave propagation. The transmission properties of the entire
atmosphere are altered, as are the properties of wave dissipa-
tion and the spectral slope (we leave this question to a follow-
ing paper).

Our results concern the evolution of a spectrum formed
with only three frequencies which might not capture the whole
shape modification in a complex atmosphere. In our model
atmosphere, even if highly stratified, the density gradients,
change gradually without discontinuities. However, the Alfvén
waves observed in the solar wind do not necessarily origi-
nate at a photospheric level and can be generated directly
in the corona. Moreover coronal structures can produce
localized gradients so that the propagation of the waves
can be dramatically altered with respect to the simple case
studied here. One can then say that many processes, different
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from a turbulent cascade, are able to transform a complex sig-
nal into a simple spectrum as observed in situ in the solar wind.
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Appendix A: Realistic wave amplitudes

As mentioned at the end of Sect. 2.2, non-linear models do not
have a scaling normalization factor as linear ones do, so to have
an idea of the realistic values of wave amplitude to be imposed
at the top of the layer we have calculated, for different tem-
peratures and the different models explored, the outgoing wave
amplitude z+c which results from an rms velocity field fluctua-
tion at the coronal base ranging from 20 km s−1 to 30 km s−1.
Now quantitative differences among the models considered (es-
pecially in the case with turbulent scale length expansion) be-
come important. In Table A.1 we display the amplitudes at the
top of the layer for various frequencies and coupling models
which yield the “realistic” amplitudes at the coronal base. Since
the equations are integrated backward, the energy we impose at
the critical point decreases as the dissipation increases. In the
first box, base values are given for the local wave interaction
model; in the second box base values are given for the global
interaction model with a flat spectrum, and finally in the third
box we display the results obtained when a power-law initial
spectrum is imposed at the top of the atmosphere. Presence of
an expanding turbulent length is specified directly in the table
(labeled with an L(r)).

Note how the differences in the amount of dissipated en-
ergy among different couplings (second box) disappear as the
power-law scaling is introduced in the initial (top) condition
(compare the values relative to cases I, II, III and IV with those
ones in the last box). Generally we can say that for lower tem-
perature and lower frequencies (of the coupled waves) the dis-
sipation is higher. Comparing again the results obtained when
flat or power-law spectra are imposed as the initial (r = rc) con-
dition, we can conclude that in the former dissipation efficiency
is stronger (Fig. 7 right panel) even if the total amount of dissi-
pation is actually reduced (because the flat spectrum contains a
greater amount of energy to start with).
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Table A.1. Values of the outgoing wave amplitude (km s−1) imposed at the top of the atmosphere which, once integrated backward, give rms
velocity field fluctuations values at the base between 20 km s−1 and 30 km s−1. L(r) signifies that an expanding turbulent lengthscale has been
used. Except where indicated a flat spectrum is imposed at the top boundary.

Frequencies or |z+c | (km s−1) giving u0 = [20−30] km s−1 for

couplings α = 4 α = 6 α = 8 α = 10

10−6 Hz 54−80 85−126 131−191 187−272

10−4 Hz 54−80 86−126 131−191 187−272

10−3 Hz 58−83 89−129 135−195 192−278

10−2 Hz 76−110 126−178 215−293 353−464

10−6 Hz–10−2 Hz;→ I 43−63 70−102 114−163 177−248

10−6 Hz–10−1 Hz;→ II 43−64 70−104 118−173 192−280

10−6 Hz–10−2 Hz–10−1 Hz ;→ III 37−55 61−90 104−150 171−242

10−6 Hz–10−4 Hz–10−2 Hz ;→ IV 34−50 54−79 86−125 131−186

10−6 Hz–10−2 Hz–10−1 Hz, L(r);→ V 38−56 63−92 110−160 191−276

10−6 Hz–10−4 Hz–10−2 Hz, L(r);→ VI 35−51 56−82 92−133 146−208

I and II, Power-law 54−80 85−126 130−191 187−272

III and IV, Power-law 54−80 85−126 131−191 187−271

V and VI, Power-law 56−82 89−129 139−200 204−289


