
CONFLICTS AND PROJECTIONS

Robi Malik ∗, Hugo Flordal ∗∗, Patŕıcia N. Pena ∗∗∗

∗ The University of Waikato, Hamilton, New Zealand
∗∗ Chalmers University of Technology, Göteborg, Sweden

∗∗∗Federal University of Santa Catarina, Florianópolis, Brazil

Abstract: This paper studies abstraction methods suitable to verify very large
models of discrete-event systems to be nonconflicting. It compares the observer

property to methods known from process algebra, namely to conflict equivalence

and observation equivalence. The observer property is shown to be the property
that corresponds to conflict equivalence in the case where natural projection is used
for abstraction. In this case, the observer property turns out to be the least restric-
tive condition that can be imposed on natural projection to enable compositional
reasoning about conflicts. The observer property is also shown to be closely related
to observation equivalence. Several examples and propositions are presented to
relate different aspects of these methods of abstraction. Copyright

�
2007 IFAC

Keywords: Discrete-event systems, large-scale systems, formal verification.

1. INTRODUCTION

Since discrete-event systems are used to model
complex safety-critical systems, tools to detect
blocking and conflicts in very large discrete-event
models are needed. Yet, the automatic detection
of conflicts remains difficult because of the state-

space explosion problem. Compositional or mod-

ular verification offers a promising solution to
this problem: significant advances have been made
using abstraction to simplify intermediate results
before composing too many components.

Natural projection is a simple and common way of
calculating abstractions of finite-state automata.
However, it is not guaranteed to preserve the
potential of conflict with other automata. To over-
come this problem, additional constraints on the
projection can be imposed. The observer prop-

erty (Wong and Wonham, 1996) ensures that nat-
ural projection preserves conflicts and, together
with constraints on the subset of events kept by
the projection, has recently been applied for com-
positional nonblocking verification (Pena et al.,

2006b). The observer property is also used, among
other conditions, for modular synthesis (Feng and
Wonham, 2006; Hill and Tilbury, 2006).

Independently of this, an approach based on con-

flict equivalence has been investigated (Malik et

al., 2006). Here, the complete branching struc-
tures of nondeterministic automata is analysed us-
ing process-algebraic testing theory. An algorithm
for nonblocking verification based on this frame-
work is proposed in (Flordal and Malik, 2006).

Both methods have been used to verify large
modular systems to be nonconflicting. This pa-
per establishes a relationship between them. It
shows that the observer property is related to
conflict equivalence, and that conflict equivalence
has a greater potential of abstraction if one does
not rely on projection. To put the results in a
wider context, the observer property is also com-
pared to the well established observation equiva-

lence (Milner, 1989), to which it is closely related.

Section 2 provides formal notation and definitions
for the observer property, conflict equivalence,



and observation equivalence. Section 3 discusses
the close relationship between projections based
on the observer property on the one hand, and
conflict and observation equivalence on the other
hand. Section 4 points out some fundamental dif-
ferences between abstractions obtained by projec-
tion and process equivalence, followed by conclud-
ing remarks in section 5.

2. PRELIMINARIES

2.1 Languages and Automata

Event sequences and languages are a simple means
to describe discrete system behaviours. Their ba-
sic building blocks are events, taken from a finite
alphabet Σ. Then, Σ∗ denotes the set of all finite
strings of the form σ1σ2 · · ·σk of events from Σ,
including the empty string ε. The catenation of
two strings s, t ∈ Σ∗ is written as st.

The special event ω ∈ Σ is used to indicate
successful termination. Another special event τ /∈
Σ denotes silent transitions. In contrast to ω, the
event τ is assumed not to be included in Σ; if it
is to be included, Στ = Σ ∪ {τ} is used instead.

A language over Σ is any subset L ⊆ Σ∗. A
language L is called prefix-closed if for all s, t ∈
Σ∗, it holds that st ∈ L implies s ∈ L.

This paper considers models expressed as nonde-

terministic automata G = 〈Q,Σ,→, qi〉 where Q
is the set of states, Σ is the alphabet, → ⊆ Q ×
Στ × Q is the transition relation, and qi ∈ Q is
the initial state. G is called deterministic if it does
not contain any τ transitions, and the transition
relation can be written as a function, i.e., if p

σ
→ q1

and p
σ
→ q2 always implies q1 = q2.

The transition relation is extended in the natural
way to accept strings s ∈ Σ∗

τ . Also, Q
s
→ Q′

denotes the existence of states q ∈ Q and q′ ∈ Q′

such that q
s
→ q′. The expression q

s
→ denotes the

existence of q′ ∈ Q such that q
s
→ q′.

The transition relation of an automaton must
satisfy the additional requirement that, whenever
p

ω
→ q, there does not exist any outgoing tran-

sition from q. That is, the termination event ω
marks states as terminal states. The traditional
set of marked states of G can be defined as

Qω = { q ∈ Q | q
ω
→} . (1)

For the sake of graphical simplicity, states in Qω

are shaded in the figures of this paper instead of
explicitly showing ω transitions.

Another transition relation ⇒ is introduced that
includes possible interleavings with τ events. For
example, q

σ1σ2=⇒ q′ denotes the existence of a string
s ∈ τ∗σ1τ

∗σ2τ
∗ such that q

s
→ q′. Furthermore,

G
s
⇒ q is a shorthand for qi s

⇒ q.

Given this notation, the language or visible be-

haviour of a nondeterministic automaton is de-
fined as L(G) = { s ∈ Σ∗ | G

s
⇒}. This prefix-

closed language does not include any τ events, but
it may include strings ending with ω.

It is possible to construct a minimal automaton
from a given language. To this end, two strings
s1, s2 ∈ Σ∗ are said to be Nerode equivalent with
respect to L ⊆ Σ∗, denoted s1 ≡L s2, if they have
the same continuations in L. Formally, s1 ≡L s2 if,
for every t ∈ Σ∗, it holds that s1t ∈ L if and only if
s2t ∈ L. Nerode equivalence is a right congruence

with respect to string catenation, i.e., s1 ≡L s2

implies s1t ≡L s2t for any t ∈ Σ∗.

Clearly, ≡L is an equivalence relation on the
strings in Σ∗. Furthermore, L can be partitioned
into the set of equivalence classes imposed by ≡L,

[s]L = { s′ ∈ Σ∗ | s′ ≡L s } . (2)

Given a prefix-closed language L ⊆ Σ∗, a minimal
deterministic automaton GL recognising L can be
constructed as GL = 〈L/≡L ,Σ,→, [ε]L〉 where

L/≡L = { [s]L | s ∈ L } . (3)

and [s]
σ
→ [sσ] whenever sσ ∈ L.

When two automata are running in parallel, lock-
step synchronisation in the style of (Hoare, 1985)
is used. The synchronous composition of G1 =
〈Q1,Σ,→1, q

i
1〉 and G2 = 〈Q2,Σ,→2, q

i
2〉 is

G1 ‖ G2 = 〈Q1 × Q2,Σ,→, (qi

1, q
i

2)〉 (4)

where

(p, q)
σ
→ (p′, q′) if σ 6= τ, p

σ
→1 p′, and q

σ
→2 q′ ;

(p, q)
τ
→ (p′, q) if p

τ
→1 p′ ;

(p, q)
τ
→ (p, q′) if q

τ
→2 q′ .

In synchronous composition, shared events (in-
cluding ω) must be executed by all automata
together, while silent (i.e., τ) transitions are ex-
ecuted independently. The marking defined by ω
works just like “ordinary” marking: a state in a
composition is marked if all composed automata
are marked in their respective states.

The notion of conflict is extended to nondetermin-
istic automata as follows. A state q is nonblocking

if q
sω
⇒ for some s ∈ Σ∗. An automaton G is

nonblocking if every reachable state, i.e., every
state q such that G

s
⇒ q for some s ∈ (Σ\{ω})∗,

is nonblocking. Otherwise G is blocking. Two au-
tomata G1 and G2 are nonconflicting if G1 ‖ G2

is nonblocking.

2.2 Projection and Hiding

In large systems composed of several automata,
there typically exist some events that are used
exclusively by only one automaton or can be
abstracted away for other reasons.



To this end, the alphabet Σ is partitioned into
the set Υ of events to be abstracted away and
the set Ω of events to be retained. Typically,
Υ consists of the events used exclusively by the
automaton considered, but other choices are pos-
sible (Pena et al., 2006a; Pena et al., 2006b).
Projection

PΩ : Σ∗ → Ω∗ (5)

is the operation that removes all events not in Ω
(i.e., all events in Υ) from a string.

When considering nondeterministic automata, it
is more appropriate to use τ transitions instead
of language projection. This makes it possible to
use different ways of selecting events or individual
transitions for abstraction. In the following, it is
assumed that all transitions to be abstracted away
are labelled τ . In terms of projection, it then only
remains to remove the event τ . This is done by
natural projection

θ : Σ∗

τ → Σ∗ , (6)

which deletes all τ events from a string. This
operation is also applied to automata G: θ(G)
denotes the minimal deterministic recogniser of
the language L(G) = { s ∈ Σ∗ | G

s
⇒}.

The observer property is known as a key prop-
erty for when language projection can be used
as conflict-preserving abstraction. The following
extends the original definition (Wong and Won-
ham, 1996) to the nondeterministic case.

Definition 1. An automaton G satisfies the ob-

server property if, for all strings s, t ∈ Σ∗ and

all states q such that G
s
⇒ q and G

stω
=⇒ it holds

that q
tω
⇒. In this case, the natural projection

θ : Σ∗
τ → Σ∗ is called an observer projection for G.

The observer property requires that the possibility
of continuation to a terminal state is indepen-
dent of the particular state. If an automaton can
terminate after executing a string s, it has to
be able to terminate in the same way from all
states reachable via s. This ensures that all states
reached by a given string have the same conflicting
properties in all possible contexts.

2.3 Process Equivalences

Effective abstractions are the key to compositional
verification of large systems. The idea is to replace
a component by a simpler equivalent one, such
that crucial properties of the whole system are
preserved. One of the finest known equivalences is
observation equivalence (Milner, 1989).

Definition 2. Let G1 = 〈Q1,Σ,→1, q
i
1〉 and G2 =

〈Q2,Σ,→2, q
i
2〉 be two automata. A relation ≈ ⊆

Q1×Q2 is a weak bisimulation between G1 and G2

if, for all states q1 ∈ Q1 and q2 ∈ Q2 such that
q1 ≈ q2 and for all s ∈ Σ∗,

• if q1
s
⇒ q′1 then there exists q′2 ∈ Q2 such that

q2
s
⇒ q′2 and q′1 ≈ q′2;

• if q2
s
⇒ q′2 then there exists q′1 ∈ Q1 such that

q1
s
⇒ q′1 and q′1 ≈ q′2.

G1 and G2 are observation equivalent, denoted
G1 ≈ G2, if there exists a weak bisimulation ≈
between G1 and G2 such that qi

1 ≈ qi
2.

Observation equivalent automata have the same
branching structure of their nondeterministic be-
haviour. Observation equivalence preserves all be-
havioural properties, and therefore has been sug-
gested for modular synthesis in some contexts of
discrete-event systems (Su and Thistle, 2006).

Observation equivalence is unnecessarily fine for
compositional reasoning about conflicts—it some-
times distinguishes automata that could be con-
sidered as equivalent. In (Malik et al., 2006), the
coarsest possible equivalence is identified:

Definition 3. Automata G1 and G2 are said to
be conflict equivalent, denoted G1 'conf G2, if,
for any automaton T , it holds that G1 ‖ T is
nonblocking if and only if G2 ‖ T is nonblocking.

This definition extends the process-algebraic fair

testing equivalence (Brinksma et al., 1995) to
cover blocking processes. It is inspired by testing
theory (De Nicola and Hennessy, 1984), where
processes are considered as equivalent if their re-
sponses to all tests are the same. A test here is an
arbitrary automaton; it represents the unknown
remainder of the system to be verified. The test
outcome is the result whether the automaton is
nonconflicting together with the test or not.

3. ABSTRACTION BY PROJECTION

Natural projection can be used to simplify au-
tomata. If the observer property holds, then this
abstraction is suitable for compositional nonblock-
ing verification (Pena et al., 2006b). This section
explores the relationship between abstractions ob-
tained in this way on the one hand, and conflict
and observation equivalence on the other hand.

3.1 Relation to Conflict Equivalence

By the results of (Malik et al., 2006), con-
flict equivalence is coarser than any abstraction
suitable for compositional nonblocking verifica-
tion, including observer projection. The following
proposition gives a direct proof of this fact.

Proposition 4. Let θ be an observer projection
for G. Then G 'conf θ(G).



Proof. Let T be an arbitrary automaton.

First, assume that G ‖ T is nonblocking, and let

θ(G)‖T
s
⇒ (qθ, qT ). Then θ(G)

s
⇒ qθ and therefore

G
s
⇒ q for some state q ∈ Q. Thus, G‖T

s
⇒ (q, qT ).

Since G ‖ T is nonblocking, (q, qT )
tω
⇒ for some

t ∈ Σ∗. Hence, stω ∈ L(G) = L(θ(G)), and since

θ(G) is deterministic, this implies qθ

tω
⇒. It follows

that (qθ, qT )
tω
⇒, i.e., θ(G) ‖ T is nonblocking.

Second, assume that θ(G) ‖T is nonblocking, and

let G ‖ T
s
⇒ (q, qT ). Then G

s
⇒ q, and therefore

θ(G)
s
⇒ [s], i.e., θ(G)‖T

s
⇒ ([s], qT ). Since θ(G)‖T

is nonblocking, ([s], qT )
tω
⇒ for some t ∈ Σ∗. Hence,

stω ∈ L(θ(G)) = L(G), i.e., G
stω
=⇒. Then q

tω
⇒

because of the observer property, and therefore

(q, qT )
tω
⇒, i.e., G ‖ T is nonblocking. 2

Thus, if the observer property holds, then the
result of projection is conflict equivalent to the
original automaton. The converse of proposition 4
is also true. If natural projection yields a conflict
equivalent automaton, then the observer property
holds.

Proposition 5. Let G 'conf θ(G). Then θ is an
observer projection for G.

Proof. Let G = 〈Q,Σ,→, qi〉 be such that
G 'conf θ(G). To show the observer property, let

s, t ∈ Σ∗ and q ∈ Q such that G
s
⇒ q and G

stω
=⇒,

and assume t = α1 . . . αn. Recall that θ(G) is a
deterministic automaton that can be written as
θ(G) = 〈Qθ,Σ,→θ, [ε]〉 where Qθ = L(G)/≡L(G).
Construct a test T from θ(G) by first removing all
blocking states and second adding the following
states and transitions:

[s]
τ
→ p0

α1→ p1
α2→ · · ·

αn→ pn

ω
→ pω . (7)

Note that [s] is not a blocking state in θ(G)
because stω ∈ L(G) = L(θ(G)).

θ(G) ‖ T is nonblocking. To see this, let u′ ∈

(Στ \{ω})
∗ such that θ(G) ‖ T

u
′

→ (q, p). Then
q = [u] where u = θ(u′). If u′ does not include any
τ event, then by construction q = [u] = p is not a

blocking state in θ(G). Thus, q
vω
→ for some v ∈ Σ∗,

and again by construction (q, p)
vω
→. If, on the

other hand, u′ includes τ , then u′ = sτα1 . . . αk for

some k ≤ n, and p = pk

αk+1...αnω

−→ . Furthermore,

q = [u]
αk+1...αnω

−→ because sα1 . . . αnω = stω ∈
L(G) = L(θ(G)) and θ(G) is deterministic.

Hence, θ(G) ‖ T is nonblocking. Since G 'conf

θ(G), this implies that G ‖ T is nonblocking. By

construction of T , it holds that G ‖ T
s
⇒ (q, p0).

Then the only way how G ‖T can be nonblocking

is when (q, p0)
α1...αnω

=⇒ . This means q
tω
⇒, i.e., the

observer property holds. 2

G

PSfrag replacements

0

0.1

1

1.2

2

3

4

5

α

α

β

γ

δ
τ ′

τ

θ(G)

PSfrag replacements

0

0.1

1

1.2

2

3

4

5
α

α
β

γ

δ
τ ′

τ

G′

PSfrag replacements

0

0.1

1

1.2

2

3

4

5

α

α

β

γ

δ
τ ′

τ

Fig. 1. Equivalence issues with blocking automata.

These results show that conflict equivalence and
the observer property are equivalent when using
natural projection. The observer property is the
weakest possible restriction that can be imposed
on natural projection to ensure that conflicts are
preserved in all contexts. If projection is to be used
for compositional reasoning about conflicts, then
the observer property is the best possible choice.

3.2 Relation to Observation Equivalence

Given a nondeterministic automaton G, natu-
ral projection produces a deterministic automa-
ton θ(G), the state set of which is the set of
Nerode equivalence classes of L(G). This automa-
ton may be very different in structure or size
from G (Wong, 1998). In particular,

G ≈ θ(G) (8)

may or may not hold. This section explores the re-
lationship between (8) and the observer property.
Firstly, if an automaton is observation equivalent
to its natural projection, then the observer prop-
erty holds.

Proposition 6. Let G ≈ θ(G). Then θ is an ob-
server projection for G.

Proof. By the results of (Malik et al., 2006) it is
known that G ≈ θ(G) implies G 'conf θ(G). Then
the claim follows from proposition 5. 2

The converse of proposition 6 does not hold. Ob-
server projection can produce a better abstraction
than observation equivalence.

Example 7. The natural projection is an observer
projection for automaton G in figure 1. To check
this, only state 0 needs to be considered, because
no terminal state can be reached from the other
states. Therefore, θ(G) can be used as conflict-
preserving abstraction of G. However, θ(G) is not
observation equivalent to G, because θ(G) does
not contain any state equivalent to state 3 of G,
where only β is enabled.

The observer property only imposes restrictions
on strings that can be extended to a terminal
state, so it can equate blocking states with dif-
ferent futures. This is the only way how observer
projection differs from observation equivalence.



Proposition 8. Let G be nonblocking, and let θ be
an observer projection for G. Then G ≈ θ(G).

Proof. Let G = 〈Q,Σ,→, qi〉 be nonblocking.
Recall that the state set Qθ of θ(G) can be
written as Qθ = L(G)/≡L(G). Define the relation
∼ ⊆ Q × Qθ such that q ∼ [s] if and only if

qi s̃
⇒ q for some s̃ ≡L(G) s. Clearly, ∼ is a

well-defined relation independent of the particular
representatives chosen for equivalence classes [s].
To see that ∼ establishes a weak bisimulation
between the states of G and θ(G), let q ∈ Q and
[s] ∈ Qθ such that q ∼ [s]. Note that this means

qi s̃
⇒ q for some s̃ ≡L(G) s.

First, let q
t
⇒ p for some t ∈ Σ∗ and p ∈ Q.

Then qi s̃
⇒ q

t
⇒ p. Since s̃ ≡L(G) s, it follows that

s̃t ≡L(G) st. Hence, p ∼ [st] by definition of ∼.

Second, let [s]
t
⇒ [st] for some t ∈ Σ∗. Then

st ∈ L(G). Therefore, qi s
⇒ q′

t
⇒ p′ for some

states q′, p′ ∈ Q. Since G is nonblocking, p′
uω
⇒ for

some u ∈ Σ∗, i.e., stuω ∈ L(G). Since s̃ ≡L(G) s,

it follows that s̃tuω ∈ L(G). Thus, qi s̃
⇒ q and

qi s̃tuω
=⇒. By the observer property, q

tuω
=⇒. This

implies qi s̃
⇒ q

t
⇒ p for some state p ∈ Q. Since

s̃ ≡L(G) s, it follows that s̃t ≡L(G) st, i.e., p ∼ [st].

Finally, note that the initial state of θ(G) is [ε].
The correspondence of initial states follows imme-
diately since qi ε

⇒ qi and thus qi ∼ [ε]. 2

A nonblocking automaton is observation equiva-
lent to its natural projection if and only if the
observer property holds. This very close relation-
ship between the observer property and obser-
vation equivalence explains the good computa-
tional properties of observer projection. It can
be computed in polynomial time, and the result
never has more states than the original automa-
ton (Wong, 1998).

4. ON THE EFFECTIVENESS OF NATURAL
PROJECTION

The results presented so far discuss the relation-
ships between an automaton and its natural pro-
jection. Process equivalence can equate arbitrary
processes that are not necessarily obtained by
projection, and this gives them more possibilities
of abstraction.

Example 9. Automata G1 and G2 in figure 2 are
conflict equivalent. Every test that is nonconflict-
ing with G1 or G2 needs to be able to execute β
while α is an “optional” way of terminating. How-
ever, G2 is not the natural projection of G1 or vice
versa. Also, θ is not an observer projection for G1,

G1 G2 G3

PSfrag replacements

0

0.1

1

1.2

2 3

4

5

α

β

βγ

δ
τ ′

τ

τ

PSfrag replacements

0

0.1

1

1.2

2 3

4

5

α

β

β
γ

δ
τ ′

τ

PSfrag replacements

0

0.1

1

1.2

2 3

4

5

α β

γ

δ
τ ′

τ

τ

Fig. 2. Conflict equivalence versus projection.

G1

PSfrag replacements

0

0.1

1

1.2

2

3

4

5

α
β
γ

δ
τ ′

τ τ

G2

PSfrag replacements

0

0.1

1

1.2

2

3

4

5

α

β
γ

δ
τ ′

τ

Fig. 3. G1 and G2 are observation equivalent, yet
the observer property is not satisfied.

because α is enabled in state 0 but not in states
1 and 3.

Thus, two automata can be conflict equivalent
even though the observer property is not satisfied.
In this case, this is because conflict equivalence
can operate on individual transitions as opposed
to projecting all τ transitions together or none.

In fact, if the τ transition between states 0 and 1
in G1 is relabelled as τ ′, where τ ′ is not a silent
event, then the observer property holds, and the
automaton can be simplified to yield a result
like G2. This interesting observation can enhance
the effectiveness of projections, yet not all conflict
equivalent automata can be recognised in this way.

Example 10. States 0 and 1 in automaton G3 of
figure 2 are conflict equivalent and can be merged
as in example 9. A test only needs to be able to
execute γ to be nonconflicting with G3, while α
and β are “optional” ways of terminating. Yet, θ
is not an observer projection for G3, because α is
enabled in state 0 but not in state 1. Likewise,
β is enabled in state 1 but not in state 3. There
is no nonempty subset of the τ transitions in G3

that would make the observer property hold.

This example shows how conflict equivalence,
which operates on the branching behaviour of a
nondeterministic automaton, can have completely
different abstraction qualities from projection.
Even observation equivalence can yield better ab-
stractions than projection, for similar reasons.

Example 11. Automata G1 and G2 in figure 3 are
observation equivalent. Yet, the observer property
is not satisfied, because α is enabled in state 0 but
not in states 1, 2, or 1.2, so these two automata
cannot be equated by observer projection.

In this example, observation equivalence can re-
duce the number of states of an automaton while
observer projection cannot. As shown in exam-
ple 7, there are also cases where observer projec-
tion can perform better than observation equiv-



alence, because it allows for some simplification
of the blocking states. Yet, observer projection is
restricted to a more limited degree of abstraction
for blocking states than conflict equivalence.

Example 12. Automaton G′ in figure 1 is con-
flict equivalent to G and θ(G): since blocking is
inevitable once α has occurred, the precise set
of possible continuations after α is immaterial.
However, G′ has a different language from G and
therefore cannot be obtained by projection.

The improved abstraction potential of process
equivalence comes at a price. Projections can be
computed by straightforward algorithms, in the
case of the observer property even in polynomial
time (Wong, 1998). While there also are good
algorithms for observation equivalence (Milner,
1989), in the case of conflict equivalence, a min-
imal equivalent automaton is not guaranteed to
exist, and the only algorithms available so far are
based on incomplete reduction rules and heuris-
tics (Flordal and Malik, 2006).

5. CONCLUSIONS

This paper compares two methods of abstrac-
tion for compositional nonblocking verification,
namely projection with the observer property and
conflict equivalence.

The observer property is shown to be the least
restrictive possible condition that can be imposed
on natural projection to enable compositional rea-
soning about conflicts. The observer property is
very closely related to observation equivalence,
except for blocking automata where observer pro-
jection can produce better abstractions.

Process equivalence is not restricted to language
projection, and this fact gives conflict equivalence
a better potential of abstraction and state reduc-
tion. This is partly due to the fact that conflict
equivalence can treat the transitions of an au-
tomaton individually, as opposed to projections,
which operate on all transitions with the same
event in the same way. On the other hand, pro-
jections are much easier to compute than abstrac-
tions based on conflict equivalence.

It is of great interest to see how the two meth-
ods of abstraction can be combined to produce
more efficient algorithms for nonblocking verifica-
tion. In future research, the authors would like to
see observer projection with its better computa-
tional properties incorporated into their conflict
equivalence-based algorithm, and to investigate
how observer projection can be enhanced by in-
corporating some of the ideas from process and
conflict equivalence presented in this paper.

REFERENCES

Brinksma, Ed, Arend Rensink and Walter Vogler
(1995). Fair testing. In: Proc. 6th Int. Conf.

Concurrency Theory, CONCUR ’95 (Insup
Lee and Scott A. Smolka, Eds.). Vol. 962 of
LNCS. Springer. pp. 313–327.

De Nicola, Rocco and Matthew C. B. Hennessy
(1984). Testing equivalences for processes.
Theor. Comp. Sci. 34(1–2), 83–133.

Feng, Lei and W. Murray Wonham (2006).
Computationally efficient supervisor design:
Abstraction and modularity. In: Proc. 8th

Int. Workshop on Discrete Event Systems,

WODES ’06. pp. 3–8.
Flordal, Hugo and Robi Malik (2006). Modular

nonblocking verification using conflict equiva-
lence. In: Proc. 8th Int. Workshop on Discrete

Event Systems, WODES ’06. pp. 100–106.
Hill, Richard C. and Dawn M. Tilbury (2006).

Modular supervisory control of discrete-event
systems with abstractions and incremen-
tal hierarchical construction. In: Proc. 8th

Int. Workshop on Discrete Event Systems,

WODES ’06. pp. 399–406.
Hoare, Charles A. R. (1985). Communicating se-

quential processes. Series in Computer Sci-
ence. Prentice-Hall.

Malik, Robi, David Streader and Steve Reeves
(2006). Conflicts and fair testing. Int. J.

Foundations of Comp. Sci. 17(4), 797–813.
Milner, Robin (1989). Communication and con-

currency. Series in Computer Science. Pren-
tice-Hall.

Pena, Patŕıcia N., José E. R. Cury and Stéphane
Lafortune (2006a). New results on testing
modularity of local supervisors using abstrac-
tions. In: Proc. 11th IEEE Int. Conf. Emerg-

ing Technologies and Factory Automation,

ETFA ’06. pp. 950–956.
Pena, Patŕıcia N., José E. R. Cury and Stéphane

Lafortune (2006b). Testing modularity of
local supervisors: An approach based on
abstractions. In: Proc. 8th Int. Workshop

on Discrete Event Systems, WODES ’06.
pp. 107–112.

Su, Rong and John Thistle (2006). A distributed
supervisor synthesis approach based on weak
bisimulation. In: Proc. 8th Int. Workshop on

Discrete Event Systems, WODES ’06. pp. 64–
69.

Wong, K. (1998). On the complexity of projec-
tions of discrete-event systems. In: Proc. 4th

Int. Workshop on Discrete Event Systems,

WODES ’98. pp. 201–206.
Wong, Kai C. and W. Murray Wonham (1996).

Hierarchical control of discrete-event systems.
Discrete Event Dynamic Systems 6(3), 241–
273.


