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1. INTRODUCTION

We say a number is multiperfect of abundancy k (or k-perfect) if �(N) =kN . No k-perfect odd numbers are known for any k � 2, and it is believedthat none exist. For a survey of known results see [6] or [3] and the refer-ences given there. For example, if N is odd and 4-perfect then N has atleast 22 distinct prime factors. If it is also not divisible by 3 then it has atleast 142 prime factors.In this paper we consider properties of classes of odd numbers whichmust be satis�ed if they are to be 4-perfect. Conversely, properties ofclasses which can never be 4-perfect. In a number of cases theorems follow,with some changes, in the pattern of corresponding results for 2-perfectnumbers. However, mostly because of the number of primes involved, someof those techniques, from the theory of 2-perfect numbers, are not so readilyavailable.We show that Euler's structure theorem, that every odd 2-perfect num-ber has the shape N = qep2�11 � � � p2�mm , where q � e � 1 mod 4, has anextension to odd 4-perfect numbers, and then to odd 2k-perfect numbers.For 4-perfect numbers there are three possible shapes like Euler's form, (A)with 2 q's instead of 1, (B) with q � 3 mod 8 and e � 1 mod 4, and (C)with q � 1 mod 4 and e � 3 mod 8. An immediate corollary is that nosquare or square free number is 4-perfect.For 2k-perfect numbers we need to derive a fact, which could be of inde-pendent interest. For j � 1, odd primes p and odd e, we have 2j jj�(pe) ifand only if 2j+1jj(p+ 1)(e+ 1).We include negative results (i.e. shapes which no odd 4-perfect numbercan have) for odd 4-perfect cubes, numbers with 9 being the maximum
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2 BROUGHAN AND ZHOU
power of 3 dividing N , numbers with each of the pi occurring to the power2, and a positive result on the power of 3 dividing any odd 2k-perfectnumber.

2. RESTRICTED FORMS FOR AN ODD PERFECTNUMBER OF ABUNDANCY 4
We begin with two lemmas, summarizing well known results.
Lemma 2.1. Let d and n be whole numbers and p a prime number. Ifd+ 1 j n+ 1 then �(pd) j �(pn).

Lemma 2.2. (Congruences modulo 3)Let p be an odd prime with p 6= 3.(1) Let j be any natural number and p > 3 an odd prime. Then �(p6j) �1 mod 3.(2) Let the whole number j be odd. If p � 1 mod 3 then �(p3j) � 1 mod3. If p � 2 mod 3 then �(p3j) � 0 mod 3.(3) Let j be a natural number. If p � 1 mod 3 then �(p1+3j) � 2 mod 3.If p � 2 mod 3 then �(p1+3j) � 0 mod 3 if j is even and �(p1+3j) �1 mod 3 if j is odd.(4) Let j be any natural number. If p � 1 mod 3 then �(p2+3j) � 0 mod3. If p � 2 mod 3 then �(p2+3j) � 1 mod 3 if j is even and �(p2+3j) �0 mod 3 if j is odd.
This set of results is best summarized in a table, with the rows corre-sponding to values of p modulo 3, in the �rst column, and the columns thevalues of �(pe) mod 3 for values of e modulo 6 which are in the �rst row:

p=e 0 1 2 3 4 5
1 1 2 0 1 2 0
2 1 0 1 0 1 0

Theorem 2.1. (Euler equivalent)Let N be an odd 4-perfect number. Then N has one of the followingforms, where the �i are whole numbers and the pi odd primes:(A) N = qe11 qe22 p2�11 � � � p2�mm for primes qi and whole numbers ei withqi � ei � 1 mod 4.In the remaining types N = qep2�11 � � � p2�mm where:
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(B) q � 1 mod 4 and e � 3 mod 8 or(C) q � 3 mod 8 and e � 1 mod 4.
Proof. (1) Let N = p�11 � � � p�mm where the pi are odd primes and the �iwhole numbers. Then �(N) = 4N implies 22jj�(p�11 ) � � ��(p�mm ) so either21 is the maximum power of two dividing two distinct terms in the productand the remaining terms are odd, or 22 is the maximum power dividing oneterm and the remaining terms are odd. So type (A) is the former shapeand (B) and (C) the latter. Therefore we need only consider primes q andpowers � such that 22jj�(q�).(2) Claim: If q � 1 mod 4 and � � 3 mod 8 then 4 j �(q�). To see thislet � = 3 + 8e and q = 1 + 4x then (where f and y are integers)

�(q�) = (1 + 4x)4+8e � 14x
= (1 + 4x)4f � 14x
= 14x (4x � 4f + �4f2

�(4x)2 + (4x)3y)
= 4g

so 4 j �(q�).(3) In the same situation as in (2), 8 - �(q�): Write
�(q�) = 1 + q + q2 + q3 + � � �+ q3+8e;

group the 4 + 8e terms in 1 + 2e sets of 4 terms, so that
�(q�) � (1 + q + q2 + q3)(1 + 2e) mod 8;

where we have used q4 � 1 mod 8. Replacing q by 1 + 4x and reducingmodulo 8 we get �(q�) � 4 � (1+2e) mod 8, which is non-zero, so 8 - �(q�).(4) Claim: If q � 3 mod 8 and � � 1 mod 4 then 4 j �(q�). Let � = 1+4eand q = 3 + 8x then (where f; y; z and w are integers)
�(q�) = (3 + 8x)2f � 12 + 8x where f is odd

= (1 + 2y)2f � 12y where y is odd
= 12y (2y � 2f + �2f2

�(2y)2 + � � � )
= 2f + 2f(2f � 1)y + 4z= 4w
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so 4 j �(q�).(5) In the same situation as in (4) 8 - �(q�): write

�(q�) = q2+4e � 12 + 8x � q2 � 12 � (3 + 8x)2 � 12 � 4 mod 8:
so, again 8 - �(q�).(6) The remainder of the proof consists in showing the above cases con-stitute the only possibilities by examining in turn the 12 possible additionalvalues of fq; eg modulo 8. In summary, using the notation qe for the valuesof q and e modulo 8, and using the same techniques as used in parts (2),(3) and (4) of the proof, the cases 11; 15; 51; 55 give 4 - �(qe). The cases17; 33; 37; 57; 71; 73; 75; 77 give 8 j �(pe), so cannot occur. The remainingcases 53; 35 are covered by (B) and (C).
Corollary 2.1. No square or square free number is odd and 4-perfect.
Proof. Since the exponents of the leading primes are odd, and one of thethree forms is always present, the �rst part of the claim is immediate. Forthe second part we need only consider the special forms N = q1q2 and N =q1, where the qi are odd primes to see thatm 6= 0, so no odd 4-perfect num-ber is square free.
It might be of interest to speculate, on the basis of Euler's theorem andthe above, on the general form for division of �(p�) by powers of 2. Howeverfor powers 23, and beyond, the situation appears to be well structured butmysterious.For example, in the following each pair corresponds to the classes modulo24 of an odd prime and odd exponent (p; e) such that 23jj�(pe). The listappears to be complete for this power of 2:

(1; 7); (3; 3); (3; 11); (5; 7); (7; 1); (7; 5);(7; 9); (7; 13); (9; 7); (11; 3); (11; 11); (13; 7):
Note that in each case 24jj(p+ 1)(e+ 1). It is a beautiful fact that thisis true in general for all powers of 2.
Theorem 2.2. (P+E+) For all odd primes p, powers j � 1 and oddexponents e > 0 we have

2j jj�(pe)() 2j+1jj(p+ 1)(e+ 1):
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Proof. (1) Let 2j jj�(pe). First expand p to base 2:

p = 1 + e121 + e222 + � � �+ 2j+1�;
where � 2 f0g[N and ei 2 f0; 1g. There exits a minimum i with 1 � i � jso that

p = 1 + 21 + 22 + � � �+ 2i�1 + 0:2i + � � �+ 2j+1�
since otherwise

p = 1 + 21 + � � �+ 2j + 2j+1� � �1 mod 2j+1
so

�(pe) = 1 + p+ p2 + � � �+ pe� 1� 1 + 1 � � � � 1 � 0 mod 2j+1
so 2j+1j�(pe) which is impossible. Hence we can write

p = 2i � 1 + 2i+1�; � 2 f0g [ N:
Therefore p + 1 = 2i � o where here, and in what follows, \o" represents ageneric odd integer, with not necessarily the same value in a given expres-sion.Since e + 1 is even, there exists an l � 1 such that e + 1 = 2l � o. Since2j jj�(pe) we have

p2l�o � 1p� 1 = 2j � o
and therefore (2i � o� 1)2l�o � 1 = 2j � o � (2i � o� 2). Call this equation (1).(1a) If i > 1 examine both sides of equation (1) in base 2 and equatethe lowest powers of 2. This leads to i + l = j + 1 since 2i � o � 2 = 2 � o.Therefore l = j � i+ 1.(1b) If i = 1 write p + 1 = 2:o so p � 1 = 2k � o for some k � 2. Hence,because 2j jj�(pe),

p2l�o � 1 = 2j � 2k � o
(1 + 2k � o)2l�o � 1 = 2j+k � o

so, again comparing the lowest powers of 2 on both sides, k+ l = j + k sol = j = j � 1 + 1. Hence, for all i � 1, l = j � i+ 1 and we can write
p = 2i � 1 + 2i+1 � xe = 2j�i+1 � 1 + 2j+1�i+1 � y
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where x; y are integers. Hence (p + 1)(e + 1) = 2j+1(1 + 2x)(1 + 2y) so2j+1jj(p+ 1)(e+ 1).(2) Conversely, let 2j+1jj(p + 1)(e + 1) so for some i > 0, 2ijjp + 1 and2j+1�ijje+1. We now consider two cases, depending on the values if i andj. (2a) Let i = 1 and j = 1. (This is really Euler's theorem). In this casep+ 1 = 2 � o = 2(2x+ 1) so p = 4x+ 1 and e+ 1 = 2 � o. Therefore

�(pe) = p2�o � 1p� 1 = po � 1p� 1 (po + 1)
= (1 + p+ � � �+ po�1)((4x+ 1)o + 1)= o � (4y + 2) = 2 � o

so 21jj�(pe).(2b) Let i = 1 and j > 1. Again p = 4x+1. The inductive hypothesis isthat for all j0 < j, 2j0 jj(p2j0 �o � 1)=(p� 1). Then
�(pe) = p2j�1�o � 1p� 1 (p2j�1�o + 1)

= 2j�1 � o((4x+ 1)2j�1�o + 1)= 2j�1 � o(4y + 2)= 2j � o
so in this case also 2j jj�(pe).(3) First we make some preliminary polynomial constructions where allpolynomials are in Z[x]. For n 2 N de�ne fn; qn; sn; rn by

fn(x) = (1 + x)n � 1 = xqn(x)sn(x) = (1 + x)n + 1 = (x+ 2)rn(x) for n odd:
Then

f2�o = ((1 + x)o � 1)((1 + x)o + 1) = x � ro(x) � (x+ 2) � qo(x);
and for l � 1

f2l�o = f2l�1�o(x) � s2l�1�o(x)= s2l�1�o(x) � s2l�2�o(x) � � � s2�o(x)x(x+ 2) � ro(x) � qo(x)
s2l�o = (((1 + x)2l)o � (�1))

= ((1 + x)2l � (�1))(((1 + x)2l)o�1 + � � �+ 1)
= ((1 + x)2l + 1)(� � � )
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Since i > 1, x = 2i � o� 2 = 2 � o. Hence x+ 1 = 2 � o+ 1 = o and
s2l�o = (o2l + 1)(an even number of odd terms + 1) = 2 � o � o = 2 � o;

and x+2 = 2i � o. Note also that ro(x) = ((1+2y)o� 1)=(2y) = o+2z = oand qo(x) = ((1+x)o)=(x+2) = (oo�1� oo�2 � � �+1) = o. Therefore, withthis value of x
2l � ox = 2l�1 � o � 2i � o � o � o = 2l+i�1 � o:

Now, at last, we can complete the proof. Let x = p� 1 = 2i � o� 2 andl = j + 1� i. Then
�(pe) = pe+1 � 1p� 1 = (1 + x)2l�o � 1x= f2l�o(x) = 2l+i�1 � o = 2j � o

so 2j jj�(pe).
Corollary 2.2. Let Mq be a Mersenne prime and e odd with e � 1. If2j jj�(Meq ) then j � q.
From the theorem we also get the following corollary, which is an exten-sion of Euler's theorem to perfect numbers of abundancy 2k.
Corollary 2.3. Let N be odd and 2k-perfect. Then there exists a par-tition of k, k = k1 + � � �+ kn, with ki � 1, such that

N = nY
i=1 p

eii mY
j=1 q

2fjj
where the ei are odd, the pi; qj odd primes, and for each i with 1 � i � nthere exist positive integers li and mi such that 2li jjpi + 1, 2mi jjei + 1 andli +mi = ki + 1.
Theorem 2.3. (Cubes)Let N be an odd cube with 3 - N .(A) If N has shape N = q1+4e11 � q1+4e22 � p2�11 � � � p2�mm and q1 � 5 mod 12(i.e. q1 � 1 mod 4 and 2 mod 3) and q2 � 1 mod 4, then N is not a4-perfect number.
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(B) If N has shape N = q1+4ep2�11 � � � p2�mm and q � 11 mod 24 (i.e.q � 3 mod 8 and 2 mod 3), then N is not a 4-perfect number.(C) If N has shape N = q3+8ep2�11 � � � p2�mm and q � 5 mod 12 (i.e. q �1 mod 4 and 2 mod 3), then N is not a 4-perfect number.
Proof. (C) Let N be an odd and 4-perfect cube with q � 2 mod 3. Thenwe can write:

�(N) = �(q3+24e)�(p6�11 ) � � ��(p6�mm ):
By Lemma 2.2, the �rst factor on the right is congruent to 0 modulo 3, so�(N) � 0 mod 3. Since �(N) = 4N ,

0 � q3+24ep6�11 � � � p6�mm mod 3;
but each factor on the right hand side is non-zero modulo three. Hence Nis not 4-perfect.In parts (A) and (B) the result also follows since �(q3+6f ) � 0 mod 3.
Theorem 2.4. (Nine is the maximum power of three dividing N)If N is a whole number with 32jjN and such that if 13, 61 and 97 appearin the prime factorization of N , they do so to powers congruent to 2 modulo6. Then N is not an odd 4-perfect number.
Proof. Let the hypotheses of the theorem hold for N , but let it also beodd and 4-perfect. Then 32jjN implies �(32) = 13 j N . So 13 must appear,and by the argument given below, 61 and 97 must also appear.Now, by Lemma 2.1, for all primes p and natural numbers e, �(p2) j�(p2+6e). So 3 � 61 = �(132) j �(132�) j N , for some � � 1, which implies3 � 61 j N . Again 3 � 13 � 97 = �(612) j �(612�) j N , for some � � 1, whichimplies 3 � 13 � 97 j N . Finally 3 � 3169 = �(972) j �(972
) j N , for some
 � 1, so 3 j N .Now if 13, 61 or 97 appear, even though each is congruent to 1 mod-ulo 4, their powers, being congruent to 2 modulo 6, are even, so mustappear amongst the pi in each of the three shapes given in Theorem 2.1.Therefore 33 j N , which is a contradiction. Therefore N is not 4-perfect.
The following result uses techniques similar to those developed for 2-perfect numbers by Steuerwald in [8].
Theorem 2.5. (Small powers)(1) If N is odd, 3 j N and N has the shape either (1a) N = q1+4e11 �q1+4e22 �32 �p21 � � � p2m or (1b) N = q3+8e11 �32 �p21 � � � p2m where, in either case,qi � 1 mod 4, or (1c) q1+4e1 � 32 � p21 � � � p2m, where q1 � 3 mod 8, where theprimes are distinct, then N is not an odd 4-perfect number.
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(2) If N is odd, 3 - N and N has the shape either (2a) N = q3+8e �p21 � � � p2m with q � 1 mod 4 or (2b) N = q1+4e � p21 � � � p2m with q � 3 mod 8,or (2c) N = q1+4e11 � q1+4e22 � p21 � � � p2m, with qi � 1 mod 4, then N is not a4-perfect number.
Proof. (1) Let N satisfy �(N) = 4N . Then �(32) = 13 j N . In case(1c), q1 is not in the set f13; 61; 97g. Assume �rst that the qi are not in thisset in cases (1a) and (1b). (Below we consider the situation which ariseswhen a qi is in this set.)Under this assumption we obtain the chain:

�(132) = 3 � 61; �(612) = 3 � 13 � 97; �(972) = 3 � 3169;
so 33 j N , which is false. Hence N is not 4-perfect.Since the exponent of each qi is odd, for q = q1 or q2, e = e1 or e2,q + 1 j �(qe).If q = 13, since q + 1 j N we obtain the chain:

�(72) = 3 � 19 j N; �(192) = 3 � 127 j N; �(1272) = 3 � 5419 j N;
giving 33 j N , which is false.If q = 61 we can assume also �(132) = 3 � 61 j N . Again, since q + 1 j NWe obtain the chain:

�(312) = 3 � 331 j N; �(3312) = 3 � 7 � 5233 j N; �(1272) = 3 � 5419 j N;
again giving 33 j N , which is false.If q = 97 then (q + 1)=2 = 72 j N and the same chain as in the q = 13case can be derived with the same conclusion. Thus our assumption thatno qi is in the set f13; 61; 97g is valid and the proof is complete.(2a) and (2b): Let N satisfy �(N) = 4N and 3 - N , with shape

N = qf � p21 � � � p2m;
where 3 < p1 < � � � < pm and f is odd.Since, for each i, �(p2i ) = 1 + pi + p2i and 3 - N , we must have pi �2 mod 3.By Theorem 2.1, q is congruent to 1 modulo 4 or 3 modulo 8. Because fis odd, q + 1 j �(qf ) j N and since also 3 - N we cannot have q � 2 mod 3,so must have q � 1 mod 3.Since �(p21) < (p1 + 1)2 < p22, �(p21) is divisible by at most one pi.Therefore either (a) �(p21) = qg with 1 � g or (b) �(p21) = qg �pi for some i.Case (b) is impossible, since it is invalid modulo 3. In case (a), [1, Lemma1] shows the only possibility is g = 1.
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Let x = (q + 1)=2. Then x � 1 mod 3. Since x is too small to include apower of at least two q's, it must be a product of the pi. We cannot havex = pi since pi � 2 mod 3, so it must have at least 2 prime factors, withthe smallest factor being less than or equal to px, and therefore pi � pxfor some i. But then

q = 1 + p1 + p21 � 1 + pi + p2i � 1 +px+ x � q + 32 +
rq + 12

so q = 5 or q = 7. Each of these is impossible since q � 1 mod 4 and1 mod 3 or q � 3 mod 8.(2c): Now let N = q1+4e11 q1+4e22 p21 � � � p2m, be odd and 4-perfect with3 - N . Since �(N) = 4N we can write:
�(q1+4e11 )�(q1+4e22 )(1+p1+p21)(� � � )(1+pm+p2m) = 4q1+4e11 q1+4e22 p21 � � � p2m:
Considering this equation modulo 3 shows each pi � 2 mod 3 and then�(q1+4e11 )�(q1+4e22 ) � q1+4e11 q1+4e22 mod 3. But qi � 2 mod 3 implies, byLemma 2.2, 3 j �(q1+4eii ), which is impossible. This means q1 � 1 mod 3,q2 � 1 mod 3.(Now we modify the argument of Steuerwald, and �nd that the Lemmaof Brauer is not needed.) Since �(p21) < p22, �(p21) is divisible by at mostone of the pi, so we can write

�(p21) = qg11 qg22 pi or �(p21) = qg11 qg22 or �(p21) = qg11 or �(p21) = qg22 ;
where q1 < q2, gi � 1 except in the �rst case where gi � 0. Considerationof these possibilities modulo 3 shows that the �rst case cannot occur.Since e1 is odd, by Lemma 2.1, x = q1+12 j N and x � 1 mod 3. Now xis too small to include a qi in its prime factorization, so must be a productof the pi. We cannot have x = pi (consider modulo 3 again), so there mustbe two or more of the pi in the factorization of x, so there exists an i withpi � px. But then, in all remaining cases,
q1 � 1 + p1 + p21 � 1 + pi + p2i � 1 +px+ x = 1 +

rq1 + 12 + q1 + 12 ;
so q1 � 1 +q q1+12 + q1+12 . But this means q1 must be 2; 3; 5 or 7. Each ofthese is impossible, since q � 1 mod 4 and 1 mod 3. This contradiction ver-i�es our conclusion (that no such 4-perfect number exists) in this �nalcase.
If we call the leading prime(s) to odd power(s) with special shape the\Euler part" and the rest the \squared part", then the previous result says
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that \no odd 4-perfect number exists with squared part a square of a squarefree number".The following result is based on the technique of Starni [7] whose theo-rem, for 2-perfect numbers, had uniform powers for the pi. This, in turndepended on a result of McDaniel [4] (incorrectly cited), where the powersare not uniform.
Theorem 2.6.Let N = �32�QMi=1 p2�ii be odd and 2k-perfect, where the pi are distinctodd primes with pi > 3, � > 0, the Euler factor � has any of the formsgiven by Theorem 2.1, and, for all i �i 6� 1 mod 3. Then 32� j �(�).
Proof. Firstly (�(32�); 32�) = 1. Since �i 6� 1 mod 3, 1+2�i � 1; 5 mod6. Since pi � 1;�1 mod 6, �(p2�ii ) � 1 mod 6 if pi � �1 mod 6 or �(p2�ii ) �1+2�i mod 6 if pi � 1 mod 6. But then, subject maybe to some reordering,there exists an m � 0 with

P := MY
i=1�(p

2�ii ) � mY
i=1 1 + 2�i mod 6

� mY
i=1 1 + 2�i mod 3:

By the given assumption, 1 + 2�i 6� 0 mod 3, so P 6� 0 mod 3, and thus(P; 32�) = 1.But for some whole number k, �(N) = 2k �N so therefore
�(�)�(32�)P = 2k�32� MY

i=1 p
2�ii :

Therefore 32� j �(�).
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