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Abstract— This paper studies the nonblocking check used in
supervisory control of discrete event systems and its limitations.
Different examples with different liveness requirements are
discussed. It is shown that the standard nonblocking check can
be used to specify most requirements of interest, but that it lacks
expressive power in a few cases. A generalised nonblocking
check is proposed to overcome the weakness, and its relationship
to standard nonblocking is explored. Results suggest that gener-
alised nonblocking, while having the same useful properties with
respect to synthesis and compositional verification, can provide
for more concise problem representations in some cases.

I. I NTRODUCTION

Blocking or conflicts are common faults in the design
of concurrent programs that can be very subtle and hard
to detect [1], [2]. They have long been studied in the
field of discrete event systems[3], [4], which is applied to
the modelling of complex, safety-critical systems [5]–[7].
To improve the reliability of such systems, techniques are
needed to facilitate the design of nonblocking systems.

A discrete event system is nonblocking if, from every
reachable state, all involved componentscan cooperatively
reach a terminal state. It is not required that a terminal state
is necessarily reached on every possible execution path, only
that there exists an execution path to a terminal state. This
weak liveness condition has been used very successfully for
the synthesis ofdiscrete event systems[3], [4], [8]. Other
works investigate the compositional semantics [9], [10] of
nonblocking and its compositional verification [11], [12].

Despite its widespread use, the expressive powers of non-
blocking are limited. To overcome some of the weaknesses,
nonblocking has been generalised to handle multiple mark-
ing conditions [13], [14]. During their attempts to develop
compositional verification methods for the conditions of
hierarchical interface-based supervisory control[15], the
authors discovered a nonblocking-like verification problem
that still is difficult to cast into standard nonblocking.

In an attempt to pave the way for compositional verifica-
tion [11] of a wider range of properties, this paper proposes
a more general nonblocking condition, which includes the
original nonblocking condition as a special case. Sect. II
introduces the notation for finite-state automata and a formal
definition of the nonblocking property. Sect. III presents
four examples of liveness verifications problems that occur
in discrete event systems modelling and discusses how
nonblocking can be used to address them. In Sect. IV, the
generalised nonblocking property is introduced and shown

to cover all the examples, and results about synthesis and
compositional verification are given. Finally, Sect. V contains
some concluding remarks.

II. PRELIMINARIES

In this paper, discrete event systems are modelled using
nondeterministic automata. While most of the concepts con-
cerning nonblocking can be explained using deterministic
automata, nondeterminism is needed for compositional ver-
ification in Sect. IV-E.

Event sequences and languages are a simple means to
describe system behaviours. Their basic building blocks are
events, which are taken from a finitealphabetΣ. In addition,
the silent eventτ /∈ Σ is used, with the notationΣτ =
Σ ∪ {τ}.

Σ∗ denotes the set of all finitestrings of the form
σ1σ2 . . . σn of events fromΣ, including theempty stringε.
The concatenationof two stringss, t ∈ Σ∗ is written asst.
A subsetL ⊆ Σ∗ is called alanguage. For Ω ⊆ Σ, natural
projection PΩ: Σ∗ → Ω∗ denotes the operation that deletes
all events not inΩ from strings.

Definition 1: A (nondeterministic)automatonis a tuple
G = 〈Σ,X ,→ ,X◦,Xm〉 whereΣ is a finite set ofevents,
X is a set ofstates, → ⊆ X×Στ ×X is thestate transition
relation, X◦ ⊆ X is the set ofinitial states, andXm ⊆ X
is the set ofmarked states.

Definition 2: An automatonG = 〈Σ,X ,→ ,X◦,Xm〉 is
deterministic if X◦ is a singleton,x

σ
→ y1 and x

σ
→ y2

always impliesy1 = y2, and→ contains noτ -transitions.
The transition relation is written in infix notationx

σ
→ y,

and is extended to strings inΣ∗

τ in the standard way. For
state setsX1,X2 ⊆ X, the notationX1

s
→ X2 denotes the

existence ofx1 ∈ X1 andx2 ∈ X2 such thatx1
s
→ x2. Also,

x → y denotes the existence of a strings ∈ Σ∗

τ such that
x

s
→ y, and x

s
→ denotes the existence of a statey ∈ X

such thatx
s
→ y. Finally, G → x stands forX◦ → x.

Synchronous compositionand hiding are common opera-
tions to manipulate languages and automata. Synchronous
composition models parallel execution and is done using
lock-step synchronisation in the style of [16]. Hiding is an
elementary operation of abstraction.

Definition 3: Let G1 = 〈Σ1,X1,→1 ,X◦

1 ,Xm
1 〉 and

G2 = 〈Σ2,X2,→2 ,X◦

2 ,Xm
2 〉 be two automata. Thesyn-

chronous productG1 ‖ G2 of G1 andG2 is

〈Σ1 ∪ Σ2,X1 × X2,→ ,X◦

1 × X◦

2 ,Xm
1 × Xm

2 〉 (1)
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where

(x1, x2)
σ
→ (y1, y2) if σ ∈ (Σ1 ∩ Σ2), x1

σ
→1 y1, x2

σ
→2 y2;

(x1, x2)
σ
→ (y1, x2) if σ ∈ (Σ1 ∪ {τ}) \ Σ2, x1

σ
→1 y1;

(x1, x2)
σ
→ (x1, y2) if σ ∈ (Σ2 ∪ {τ}) \ Σ1, x2

σ
→2 y2.

Definition 4: Let G = 〈Σ,X ,→ ,X◦,Xm〉 be an au-
tomaton, and letΥ ⊆ Σ. The result ofhiding Υ in G is

G \ Υ = 〈Σ \ Υ,X,→ \ Υ,X◦,Xm〉 , (2)

where→ \ Υ is obtained from→ by replacing all events
in Υ with the silent eventτ .

It is a desirable property that every execution of an au-
tomaton can be completed by reaching a marked state inXm,
otherwiselivelock or deadlockmay occur. In discrete event
systems theory, an automaton that is unable to terminate
in this way is calledblocking. This concept becomes more
interesting when several automata are running in parallel—
in this case the termconflicting is also used [4]. The
following extends the standard definition [4] to the case of
nondeterministic automata considered in this paper.

Definition 5: An automatonG = 〈Σ,X ,→ ,X◦,Xm〉 is
callednonblocking, if for all statesx ∈ X such thatG → x,
it also holds thatx → Xm.

In order to be nonblocking, it is sufficient that a terminal
state can be reached in every possible situation. This is
equivalent to termination under an implicitstrong fairness
assumption stating that “whenever a transition can occur
infinitely often, it occurs infinitely often” [17].

III. A PPLICATIONS

This section discusses four examples where nonblocking
checks are used to verify liveness properties of interest.

A. Dining Philosophers

The dining philosophers problem [18] is an illustrative
example of a common computing problem in concurrency.
Five philosophers are sitting at a circular table with a large
bowl of spaghetti in the centre. A fork is placed between each
pair of philosophers, and it is assumed that each philosopher
must eat with the two forks next to him. Each philosopher
can be eitherthinkingor eating, and the objective is to ensure
that every philosopher can eventually get a chance to eat.

The simplest approach to verify the absence of starvation
in this system is to consider the state where all philosophers
are thinking as the success state. Yet, this is a much too
weak property, since a system in which all philosophers keep
thinking indefinitely would be nonblocking.

The desired liveness property in this system is that each
philosopher can always enter theeatingstate. However, the
dynamics of the systems does not permit all philosophers to
be eating at the same time. Yet, it is possible to consider the
set of states, where philosopher 1 is eating (independently
of the states of the other philosophers) as success states, and
perform a nonblocking check with respect to this marking
condition. By repeating the same check for each of the five
philosophers, the absence of starvation in the entire system
can be verified.

waitidle

draw

η

reset winner black

winner white

Fig. 1. Verifying the simple game nonblocking.

In this example, a single nonblocking check is not enough
to verify the liveness requirements of a system. The possi-
bility of handling multiple termination conditions simultane-
ously and its use in synthesis is discussed in [14].

B. Simple Game

Assume that a simple board game is to be modelled. Two
players are taking their moves in turn, modifying the game
state with each move. It is a desired liveness property of this
system that the game can always end, i.e., it should always
be possible that one player wins, or that a draw is declared.

This can easily be achieved by marking all the states where
one player has won, or the game is over without a winner.
Then a standard nonblocking check can be carried out to
verify the desired property that the game can always end.

To complicate the example slightly, a reset feature is added
to the model: an additional eventreset is introduced which
can always be executed and resets the game to its initial state.

With this addition, the standard nonblocking check be-
comes much less expressive. Indeed, there may be states
where one player refuses to perform any further move, so the
game cannot end. However, due the omnipresent possibility
of reset, the system is still nonblocking as long as there is
only some way of ending the game from its initial state.

In this modified model, it is much more interesting to
verify whether“the game can always end, even ifreset is not
used.”This stronger property can be verified using a standard
nonblocking check, if the model is modified by adding the
automaton in Fig. 1. Here,η is a new event that does not
occur anywhere in the model, and which therefore can occur
at any time. This event is used only for the nonblocking
check. It can be understood as an observer, who at any time
can temporarily disablereset in order to check whether the
system can terminate successfully without it.

C. Nonblocking under Control

A similar verification problem is discussed in [1]. When
modelling reactive systems, there typically are two types of
events,controllableevents that are in some way produced by
the control software, anduncontrollableevents that sponta-
neously occur in the system to be controlled.

In this context, a nonblocking check is used to verify
whether the controlled system can always terminate. How-
ever, it may be desirable to rule out certain unlikely be-
haviours and require that termination can always be achieved
by “expected” or “normal” behaviour. In [1], it is considered
unlikely that uncontrollable events occur while the controller
is in the process of sending a sequence of commands. More
formally, termination is required to be achievable by means
of a completesequence of events.



Definition 6: Let G = 〈Σ,X ,→ ,X◦,Xm〉 be a deter-
ministic automaton, and letΣc ⊆ Σ. The path

x0
σ1→ x1

σ2→ · · ·
σn→ xn (3)

is calledΣc-completein G, if for eachi = 1, . . . , n it holds
that eitherσi ∈ Σc or there does not exist anyσ ∈ Σc such
that xi−1

σ
→.

Definition 7: Let G = 〈Σ,X ,→ ,X◦,Xm〉 be a deter-
ministic automaton, and letΣc ⊆ Σ. G is said to be
nonblocking underΣc-control if for all statesx ∈ X such
thatG → x, there exists aΣc-complete pathx → Xm in G.

It is discussed in [7] how this property can be expressed
and verified using a standard nonblocking check. Essentially,
a similar translation as in the previous example is used, but
with more sophisticated modelling to restrict the possible
behaviours to beΣc-complete once theη event has occurred.

D. Hierarchical Interface-Based Supervisory Control

Yet another type of nonblocking property occurs in hi-
erarchical interface-based supervisory control [15]. In this
context, systems are decomposed intohigh-level and low-
level modules in a master-slave relationship. An interface
between the modules is defined, and properties are verified
by considering only one module and the interface at a time.
One of these properties is given in the following definition.
For a full discussion of the remaining properties and the
context, the reader is referred to Def. 5 in [15].

Definition 8: Let Σ = ΣR ∪̇ΣA ∪̇ΣL, and letI = 〈ΣR ∪
ΣA,XI ,→I , {x◦

I},X
m
I 〉 andL = 〈Σ,XL,→L , {x◦

L},X
m
L 〉

be two deterministic automata.I and L are said to satisfy
Serial Interface Consistency (SIC) Property Vif, for all
stringss ∈ Σ∗ and all eventsρ ∈ ΣR such thatsρ ∈ L(I‖L),
and for all eventsσ ∈ ΣA such thatPΣR∪ΣA

(s)ρσ ∈ L(I),
there existst ∈ Σ∗

L such thatsρtσ ∈ L(I ‖ L).
The definition says that, after the occurrence ofrequestρ,

all answersσ that are possible according to the interfaceI
must somehow be possible to occur in the system. However,
once the request has occurred, the low levelL may make
decisions and evolve in ways that preclude the occurrence
of some of the answers that were originally possible.

SIC property V is similar to the standard nonblocking
property if states where answer eventσ is possible are
considered as marked states. However, instead of requiringa
path from all reachable states to these states, such a path is
required only from statesimmediatelyafter request eventρ.
Thus, although the property clearly is related to nonblock-
ing, it is weaker than standard nonblocking, and cannot
be expressed easily as a standard nonblocking problem.
The following section proposes the generalised nonblocking
condition that can be used to cover this property also.

IV. GENERALISED NONBLOCKING

A. Formal Definition

To model more general nonblocking properties, it is
convenient to specify different state sets of automata and
define relationships between them. Therefore, automata are
extended tomulti-colouredautomata by labelling states with

G1: G2: G3:

σ1

σ1

σ2

σ2

σ1

σ1

σ2

σ2

σ1

σ1

σ2

σ2

Fig. 2. Generalised nonblocking vs. standard nonblocking.

differentcoloursor propositions. Afterwards, the generalised
nonblocking condition is defined using these propositions.

Definition 9: A multi-coloured automatonis a tupleG =
〈Σ,Π,X ,→ ,X◦,Ξ〉 whereΣ is a finite set ofevents, Π is
a finite set ofpropositionsor colours, → ⊆ X × Στ × X
is the state transition relation, X◦ ⊆ X is the set ofinitial
states, andΞ:Π → 2X defines the set of marked states for
each proposition inΠ.

This definition allows different sets of marked states for
each proposition. The concept is similar to that of Kripke-
structures [19], but the above definition is inspired by [14].
The main difference to [14] is the colouring mapΞ, which
maps propositions to state sets and not vice versa, to allow
for slightly more concise notation in this paper.

An automaton without colours,G = 〈Σ,X ,→ ,X◦,Xm〉,
can be considered as a multi-coloured automaton with a
single propositionω by definingΞ(ω) = Xm. Most standard
notations and definitions for automata such as state tran-
sitions, languages, and hiding are naturally lifted to multi-
coloured automata. In synchronous composition, marking for
all colours needs to be considered.

Definition 10: Let G1 = 〈Σ1,Π,X1,→1 ,X◦

1 ,Ξ1〉 and
G2 = 〈Σ2,Π,X2,→2 ,X◦

2 ,Ξ2〉 be two multi-coloured au-
tomata. The synchronous product ofG1 andG2 is

G1 ‖ G2 = 〈Σ,Π,X → ,X◦,Ξ〉 (4)

whereΣ, X, →, andX◦ are given as in Def. 3, andΞ(π) =
Ξ1(π) × Ξ2(π) for eachπ ∈ Π.

The generalised nonblocking property uses two propo-
sitions, calledα and ω. The intended meaning is thatω
represents terminal states and corresponds to the traditional
marked states, whileα specifies a set of states from which
marked states are required to be reachable.

Definition 11: Let G = 〈Σ,Π,X ,→ ,X◦,Ξ〉 with α, ω ∈
Π be a multi-coloured automaton.G is called (α, ω)-non-
blocking, if for all statesx ∈ X such thatG → x and
x ∈ Ξ(α) it also holds thatx → Ξ(ω).

Generalised nonblocking requires that, from all reachable
states markedα, it is possible to reach a state markedω.
Clearly, if an automaton is standard nonblocking (Def. 5),
it is also(α, ω)-nonblocking. The following example shows
the the converse is not true in general.

Example 1:Consider the automata in Fig. 2. States
marked α are grey, and states markedω are black. Only
automatonG3 is (α, ω)-blocking, althoughG2 and G3 are
blocking according to Def. 5 if all states markedω are
considered as terminal states.



B. Relationship to Standard Nonblocking

Generalised nonblocking includes standard nonblocking
as a special case. Clearly, if all states of an automaton
are marked by the propositionα, then (α, ω)-nonblocking
requires that a state markedω is reached from every state,
i.e., that the automaton is nonblocking in the sense of Def. 5.
This translation from standard nonblocking to generalised
nonblocking is straightforward and does not change the size
or complexity of the automaton translated.

The reverse translation from generalised nonblocking to
standard nonblocking is much more involved. For such a
translation to be of interest, it should be applicable to a
set of composed automata without first constructing their
synchronous product, and without first checking the(α, ω)-
nonblocking property. The following translation can be done
in a modular way and highlights the major problems that
need to be overcome.

Definition 12: Let G = 〈Σ,Π,X ,→ ,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π. The conflict-automaton
Gconf = 〈Σconf ,Xconf ,→conf ,X◦

conf ,X
m
conf〉 for G is con-

structed as follows.

• Σconf = Σ ∪ {α, β, ω}, whereα, β, ω /∈ Σ;
• Xconf = X × (Ξ(α) ∪ {⊥}), where⊥ /∈ X;
• →conf consists of the following transitions:

(x, r)
σ
→conf (y, r), if x

σ
→ y ;

(x,⊥)
α
→conf (x, x), if x ∈ Ξ(α) ;

(x, r)
β
→conf (r, r), if r 6= ⊥ ;

(x, r)
ω
→conf (x,⊥), if x ∈ Ξ(ω) andr 6= ⊥ ;

• X◦

conf = { (x,⊥) | x ∈ X◦ }.
• Xm

conf = { (x,⊥) | x ∈ X }.

The idea of this translation is as follows. Propositions
α and ω are introduced as events, enabled in the states
marked with these propositions. The initial states are marked;
transitions to an unmarked state are only possible via anα
event, and after the occurrence ofα, a marked state can only
be reached whenω occurs. However, to ensure that only the
statesimmediatelyafter α are checked for nonblocking, the
reset eventβ is added to all states reached later and provides
a transition back to the state immediately afterα. In this
way, it is ensured that automatonG2 in Fig. 2 is translated
to a nonblocking automaton, and onlyG3 is translated to a
blocking automaton.

Proposition 1: Let G = 〈Σ,Π,X ,→ ,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π. ThenG is (α, ω)-non-
blocking if and only ifGconf is nonblocking.

Proof: First let G be (α, ω)-nonblocking, and let
Gconf

s
→conf (x, r). If r = ⊥, then (x, r) ∈ Xm

conf and
therefore(x, r)

ε
→conf Xm

conf . Otherwise, ifr 6= ⊥, the string
s must contain the eventα by construction and can be written
ass = s′αt′ for somet′ ∈ (Σ∪{β})∗. Again by construction,

Gconf
s′α
−→conf (r, r)

t′

→conf (x, r) (5)

where r ∈ Ξ(α). By removing all maximal substringsuβ,
u ∈ Σ∗, and allα and ω events froms′, a strings′′ ∈ Σ∗

can be constructed such thatG
s′′

→ r ∈ Ξ(α). SinceG is
(α, ω)-nonblocking,r

t
→ y ∈ Ξ(ω) for somet ∈ Σ∗. Thus,

(x, r)
β
→conf (r, r)

t
→conf (y, r)

ω
→conf (y,⊥) ∈ Xm

conf (6)

by construction, i.e.,Gconf is nonblocking.
Second letGconf be nonblocking, and letG

s
→ x ∈ Ξ(α).

It follows by construction that

Gconf
s
→conf (x,⊥)

α
→conf (x, x) . (7)

SinceGconf is nonblocking, there existst ∈ (Σ∪{α, β, ω})∗

such that (x, x)
t
→conf Xm

conf . By construction,t must
contain the eventω and can be written ast = t′ωu′ for
somet′ ∈ (Σ ∪ {β})∗. This means that

(x, x)
t′

→conf (y, x)
ω
→conf (y,⊥) (8)

for somey ∈ Ξ(ω). If t′ ∈ Σ∗, it follows immediately that

x
t′

→ y ∈ Ξ(ω). Otherwise,t′ contains the eventβ and can
be written ast′ = u′′βt′′ for somet′′ ∈ Σ∗. Then

(x, x)
u′′β
−→conf (x, x)

t′′

→conf (y, x)
ω
→conf (y,⊥) , (9)

which implies x
t′′

→ y. In both cases,y ∈ Ξ(ω) can be
reached fromx, i.e., G is (α, ω)-nonblocking.

The translation from generalised nonblocking to standard
nonblocking given above increases the number of states by
a factor proportional to the number of states markedα
in the original automaton. It is unknown to the authors
whether there exists a more efficient translation with the
same properties, although evidence so far suggests that this
is not possible. This is in line with similar results about
automata on infinite words [20], [21].

On the other hand, generalised nonblocking can be verified
at least as easily as standard nonblocking: it suffices to
check for each reachable state markedα (as opposed to
each reachable state for standard nonblocking) that a state
marked ω can be reached. This suggests that verifying
generalised nonblocking directly is preferable to translation
to standard nonblocking with the associated blow-up.

C. Expressing SIC Property V

SIC Property V can be expressed directly using gener-
alised nonblocking. This is achieved by marking precisely
those statesα that are entered immediately after a request
event.

More precisely, let automataI and L and eventσ ∈ ΣA

be given as in Def. 8. Then multi-coloured automataIσ,
Lσ, andT σ are constructed such thatIσ ‖Lσ ‖T σ is (α, ω)-
nonblocking if and only if SIC Property V is satisfied for
the given answerσ. The construction is as follows.

• Iσ is obtained fromI by adding propositionsα andω
such that all states withσ enabled are markedα, and
all states are markedω. If I = 〈ΣR ∪ ΣA,XI ,→I ,
X◦

I ,Xm
I 〉, then Iσ = 〈ΣR ∪ ΣA,Π,XI ,→I ,X◦

I ,ΞI〉
with Π = {α, ω}, ΞI(α) = {x ∈ XI | x

σ
→}, and

ΞI(ω) = XI .



σ

σΣ

ΣR

ΣL

ΣL

x0
T

x1
T

x2
T

Fig. 3. The automatonT σ for translating SIC Property V into(α, ω)-
nonblocking.

• Lσ is obtained fromL by marking all states with both
α and ω. If L = 〈Σ,XL,→L ,X◦

L,Xm
L 〉, then Lσ =

〈Σ,Π,XL,→L ,X◦

L,ΞL〉 with ΞL(α) = ΞL(ω) = XL.
• T σ = 〈Σ,Π,XT , {x0

T },→T ,ΞT 〉 with XT = {x0
T ,

x1
T , x2

T }, ΞT (α) = {x1
T } and ΞT (ω) = {x0

T } is the
nondeterministic multi-coloured automaton in Fig. 3.

Proposition 2: Let Σ = ΣR ∪̇ΣA ∪̇ΣL, and let automata
I and L be given as in Def. 8. For eachσ ∈ ΣA construct
multi-coloured automataIσ, Lσ, andT σ as explained above.
I andL satisfy SIC Property V if and only ifIσ ‖ Lσ ‖ T σ

is (α, ω)-nonblocking for eachσ ∈ ΣA.
Proof: First, let I and L satisfy SIC Property V. Let

σ ∈ ΣA such thatIσ ‖ Lσ ‖ T σ s
→ (xI , xL, xT ) ∈ ΞI(α) ×

ΞL(α) × ΞT (α). SinceΞT (α) = {x1
T } by construction, it

holds thatxT = x1
T and s = s′ρ for somes′ ∈ Σ∗ andρ ∈

ΣR. Also I‖L
s
→ (xI , xL), and sincexI ∈ ΞI(α), it holds by

construction thatI
PΣR∪ΣA

(s)
−→ xI

σ
→ yI for someyI ∈ XI =

ΞI(ω). Therefore,s′ρ = s ∈ L(I ‖L) andPΣR∪ΣA
(s′)ρσ ∈

L(I). By SIC Property V, there existst ∈ Σ∗

L such that
stσ = s′ρtσ ∈ L(I ‖ L). Since L is deterministic, there
existsyL ∈ XL = ΞL(ω) such thatxL

tσ
→ yL. Furthermore,

note thatxT = x1
T

tσ
→ x0

T ∈ ΞT (ω) for any stringt ∈ Σ∗

L.
Therefore,(xI , xL, xT )

tσ
→ ΞI(ω) × ΞL(ω) × ΞT (ω), i.e.,

Iσ ‖ Lσ ‖ T σ is (α, ω)-nonblocking.
Second, letIσ ‖Lσ ‖T σ be(α, ω)-nonblocking for allσ ∈

ΣA. Let s ∈ Σ∗,ρ ∈ ΣR, andσ ∈ ΣA be such thatsρ ∈ L(I‖
L) andPΣR∪ΣA

(s)ρσ ∈ L(I). Then there exist statesxI ∈

XI and xL ∈ XL such thatI
PΣR∪ΣA

(s)ρ
−→ xI

σ
→ and L

sρ
→

xL. Also, T σ sρ
→ x1

T by construction ofT σ, and therefore
Iσ ‖ Lσ ‖ T σ sρ

→ (xI , xL, x1
T ) ∈ ΞI(α) × ΞL(α) × ΞT (α).

SinceIσ ‖ Lσ ‖ T σ is (α, ω)-nonblocking, there existsu ∈
Σ∗ such that(xI , xL, x1

T )
u
→ ΞI(ω) × ΞL(ω) × ΞT (ω). By

construction ofT σ, and sinceΞT (ω) = {x0
T }, there exists

a prefix tσ of u such thatt ∈ Σ∗

L and (xI , xL, x1
T )

tσ
→,

i.e., sρtσ ∈ L(I ‖ L). Sinces, ρ, and σ have been chosen
arbitrarily, I andL satisfy SIC Property V.

The above construction can be performed modularly, i.e.,
if I andL are composed of several automata, then the con-
struction can be applied to the individual components. Unlike
Def. 12, the state space is only increased by a constant factor
of three. This is a small price for a construction that makes
SIC Property V amenable to compositional verification as
in [11]—to the best of the authors’ knowledge, this property
so far has only been verified using explicit or symbolic state-
space exploration [22].

D. Synthesis

Having defined the concept of(α, ω)-nonblocking, it is of
interest to study its properties. A crucial question in super-
visory control theory is whether synthesis is feasible. Given
a languageL, the problem ofsynthesisconsists of finding
a sublanguageL′ ⊆ L that satisfies particular properties of
interest such as controllability or nonblocking [4].

To discuss synthesis in the context of nondeterministic
automata, the concept of subautomata and union of automata
are used. The following definitions are adapted from [23].

Definition 13: Let G = 〈Σ,Π,X ,→ ,X◦,Ξ〉 and G′ =
〈Σ,Π,X,→G′ ,X◦

G′ ,Ξ〉 be two automata with the same
alphabets and state sets.G′ is a subautomatonof G, written
G′ ⊆ G, if →G′ ⊆ → andX◦

G′ ⊆ X◦.
Definition 14: Let Gj = 〈Σ,Π,X,→j ,X◦

j ,Ξ〉, j ∈ J be
a family of automata all having the same alphabets and state
sets. Theunion of the automataGj is defined as

⋃

j∈J

Gj = 〈Σ,Π,X,
⋃

j∈J

→j ,
⋃

j∈J

X◦

j ,Ξ〉 . (10)

To simplify notation, all automata are assumed to have the
same state sets and markings. This is exactly the situation
encountered in synthesis. Unreachable states can always be
removed, but this is not discussed here.

Given an automatonG, there typically are several subau-
tomataG′ that qualify as a solution to a particular synthesis
problem, and the question arises which one to choose. Here
it is desirable to identify amost generalor least restrictive
solution, which can be used as a unique synthesis result.
The obvious candidate for this is the union of all solutions,
provided that the result of combining two or more solutions
to the synthesis problem still is a solution. This requirement
is known to be satisfied for controllability and for nonblock-
ing of deterministic automata [4]. It is easy to show that it
also holds for generalised nonblocking of nondeterministic
automata.

Proposition 3: Let Gj = 〈Σ,Π,X,→j ,X◦

j ,Ξ〉, j ∈ J
be a family of automata withα, ω ∈ Π such that eachGj is
(α, ω)-nonblocking. Then

⋃
j∈J Gj is (α, ω)-nonblocking.

Every nondeterministic automaton has a maximal(α, ω)-
nonblocking subautomaton. This result can be combined with
results about controllability or other properties [4], [23] and
used to build synthesis algorithms.

E. Compositional Verification

The straightforward approach to verify whether a com-
posed system

G1 ‖ G2 ‖ · · · ‖ Gn (11)

is (α, ω)-nonblocking consists of explicitly constructing
the synchronous composition and checking whether a state
markedω can be reached from every state markedα. This
can be done using CTL model checking, and models of sub-
stantial size can be analysed if the state space is represented
symbolically [19]. Yet, the technique remains limited by the
amount of memory available to store representations of the
synchronous product.



As an alternative, compositional reasoning [10] attempts
to rewrite individual components of a composed system such
as (11) and, e.g., replaceG1 by a simpler versionG′

1, and
then analyse the simpler system

G′

1 ‖ G2 ‖ · · · ‖ Gn . (12)

Such compositional reasoning requires thatG1 andG′

1 are
related in some way. An appropriate notion of equivalence
has been identified for nonblocking verification in [10], and
these results can easily be adapted to the case of(α, ω)-
nonblocking considered in this paper.

Definition 15: Let G1 and G2 be two multi-coloured
automata withα, ω ∈ Π. ThenG1 andG2 are called(α, ω)-
nonblocking equivalent, written G1 ≃(α,ω) G2, if for any
multi-coloured automatonT with the same proposition setΠ,
it holds thatG1‖T is (α, ω)-nonblocking if and only ifG2‖T
is (α, ω)-nonblocking.

To be feasible for compositional verification as discussed
above, the equivalence used must be well-behaved with
respect to synchronous composition and hiding. These so-
calledcongruenceproperties can easily be shown for(α, ω)-
nonblocking equivalence.

Proposition 4: Let G1, G2, T be multi-coloured automata
with α, ω ∈ Π. If G1 ≃(α,ω) G2, thenG1 ‖T ≃(α,ω) G2 ‖T .

Proposition 5: Let G = 〈Σ,Π,X ,→ ,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π, and letΥ ⊆ Σ. Then
G is (α, ω)-nonblocking if and only ifG \Υ is (α, ω)-non-
blocking.

Note that, if given two automataG and H such thatH
does not use any events in alphabetΥ, then(G ‖ H) \ Υ =
(G \ Υ) ‖ H. In combination with Prop. 5 this means that
abstractions can be applied in a compositional way, as long
as only events local to the subsystem considered are ab-
stracted away. Subsystems can be simplified individually or
composed as needed, and the verification and simplification
strategies outlined in [10], [11] can be used.

Observation equivalence, which comes with efficient sim-
plification algorithms [24], can be shown to preserve(α, ω)-
nonblocking equivalence. Furthermore, the fact that gener-
alised nonblocking is a weaker property than standard non-
blocking can make more aggressive simplification possible
than for standard nonblocking.

V. CONCLUSIONS

A generalised nonblocking condition has been introduced
as a simple extension of standard nonblocking that makes it
possible to express certain other nonblocking-like properties
concisely. Generalised nonblocking permits synthesis and
compositional verification like standard nonblocking does,
and can be verified with the same computational effort. The
framework for compositional verification outlined in this
paper is the first known method to make SIC property V [15]
amenable to modular verification. This framework can now
be used to develop a unified approach for standard nonblock-
ing, as well as other properties such as SIC property V and
controllability [23].
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