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Consider a non-relativistic Hamiltonian operator H in 2 dimensions consisting of a kinetic
energy term plus a potential. We show that if the associated Schrödinger eigenvalue equation
admits an orthogonal separation of variables, there is a calculus to describe the (in general)
infinite-order differential operator symmetries of the Schrödinger equation. The calculus is
formal but can be made rigorous when all functions in the eigenvaue equation are analytic.
The infinite-order calculus exhibits structure that is not apparent when one studies only
finite-order symmetries. The search for finite-order symmetries can then be reposed as one of
looking for solutions of a coupled system of PDEs that are polynomial in certain parameters.
We go further and extend the calculus to the situation where the Schrödinger equation admits
a second-order symmetry operator, not necessarily associated with orthogonal separable
coordinates.

1 Introduction

Consider a Schrödinger operator

H ≡ L1 = ∆2 + V (x),

where ∆2 is the Laplace–Beltrami operator on a real or complex two-dimensional Riemannian
space and x = (x1, x2) are orthogonal coordinates on that space such that the Schrödinger
equation

HΨ = EΨ

separates multiplicatively in these coordinates. We here consider locally analytic solutions of
this equation; application of boundary conditions is a separate step. We will introduce a calcu-
lus to describe the differential symmetry operators for this system, even those of infinite order.
The question of finding finite order symmetries is reposed as a question of finding solutions of
finite systems of PDEs that are polynomial in certain parameters. (See [1] where we introduced
infinite-order conformal symmetry operators for the time-dependent Schrödinger equation in one
space variable.) We give a number of examples where this method yields finite order differential
symmetry operators. These questions as to when a system with two second-order constants of
the motion, classical or quantum, (generated by an orthogonal separation of variables) admits
additional polynomial constants of the motion are closely related to the concept of superinte-
grability [2–7]. We also consider all cases where the Schrödinger equation admits a second-order
symmetry, not necessarily associated with orthogonal separable coordinates, or even separable
coordinates at all. In each instance we construct additional symmetries.
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2 Two-dimensional separable systems

Consider the case of orthogonal separable coordinates in a general Riemannian space. In the
local separable coordinates {x, y} the Schrödinger operator has the form

H = L1 =
1

f1(x) + f2(y)
(
∂2

x + ∂2
y + v1(x) + v2(y)

)
. (1)

and, due to the separability, there is the invariant

L2 =
f2(y)

f1(x) + f2(y)
(
∂2

x + v1(x)
) − f1(x)

f1(x) + f2(y)
(
∂2

y + v2(y)
)
,

i.e., [L2, H] = 0, [9, 10]. We have the operator identities

f1(x)H + L2 = ∂2
x + v1(x), f2(y)H − L2 = ∂2

y + v2(y). (2)

We look for a partial differential operator L̃(H, L2, x, y) that satisfies

[H, L̃] = 0. (3)

and [L2, L̃] �= 0. We require that the invariant take the standard form

L̃(H, L2, x, y) =
∑
j,k

(Aj,k(x, y)∂xy + Bj,k(x, y)∂x + Cj,k(x, y)∂y + Dj,k(x, y)) HjLk
2. (4)

Note that if the formal operators (4) contained partial derivatives in x and y of orders ≥ 2 we
could use the identities (2), recursively, and rearrange terms to achieve the unique standard
form (4).

Using the operator identities

∂xH = H∂x − f ′
1

f1 + f2
H +

v′1
f1 + f2

, ∂yH = H∂y − f ′
2

f1 + f2
H +

v′2
f1 + f2

,

∂xL2 = L2∂x − f ′
1f2

f1 + f2
H +

f2v
′
1

f1 + f2
, ∂yL2 = L2∂y +

f1f
′
2

f1 + f2
H − f1v

′
2

f1 + f2
,

we see that

(f1(x) + f2(y))[H, A(x, y)∂xy + B(x, y)∂x + C(x, y)∂y + D(x, y)]
= (Axx + Ayy + 2By + 2Cx)∂xy + (Bxx + Byy − 2Ayv2 + 2Dx − Av′2)∂x

+ (2Ayf2 + Af ′
2)∂xH − 2Ay∂xL2 + (Cxx + Cyy − 2Axv1 + 2Dy − Av′1)∂y

+ (2Axf1 + Af ′
1)∂yH + 2Ax∂yL2 + (Dxx + Dyy − 2Bxv1 − 2Cyv2 − Bv′1 − Cv′2)

+ (2Bxf1 + 2Cyf2 + Bf ′
1 + Cf ′

2)H + (2Bx − 2Cy)L2.

Thus the condition (3) for the symmetries of (1) is equivalent to the system of equations

∂xxAj,k + ∂yyAj,k + 2∂yBj,k + 2∂xCj,k = 0, (5)
∂xxBj,k + ∂yyBj,k − 2∂yAj,kv2 + 2∂xDj,k − Aj,kv

′
2

+ (2∂yAj−1,kf2 + Aj−1,kf
′
2) − 2∂yAj,k−1 = 0, (6)

∂xxCj,k + ∂yyCj,k − 2∂xAj,kv1 + 2∂yDj,k − Aj,kv
′
1

+ (2∂xAj−1,kf1 + Aj−1,kf
′
1) + 2∂xAj,k−1 = 0, (7)

∂xxDj,k + ∂yyDj,k − 2∂xBj,kv1 − 2∂yCj,kv2 − Bj,kv
′
1 − Cj,kv

′
2 (8)
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+ (2∂xBj−1,kf1 + 2∂yCj−1,kf2 + Bj−1,kf
′
1 + Cj−1,kf

′
2) + (2∂xBj,k−1− 2∂yCj,k−1) = 0.

Note that condition (4) makes sense for infinite order differential equations, in domains
where the functions fj , vj are analytic. Indeed, one can consider H, L2 as parameters in
these equations. Then once L̃ is expanded as a convergent power series in these parameters,
the terms are reordered so that the powers of the parameters are on the right, before they are
replaced by explicit differential operators. Alternatively one can consider the operator L̃ as
acting on a simultaneous eigenbasis of the commuting operators H and L2, in which case the
parameters are the eigenvalues. In this view we can write

L̃(H, L2, x, y) = A(x, y, H, L2)∂xy + B(x, y, H, L2)∂x + C(x, y, H, L2)∂y + D(x, y, H, L2),

and consider L̃ as an at most second-order order differential operator in x, y that is analytic
in the parameters H, L2. Then the above system (5), (6), (7), (8) can be written in the more
compact form

Axx + Ayy + 2By + 2Cx = 0, (9)
Bxx + Byy − 2Ayv2 + 2Dx − Av′2 + (2Ayf2 + Af ′

2)H − 2AyL2 = 0, (10)
Cxx + Cyy − 2Axv1 + 2Dy − Av′1 + (2Axf1 + Af ′

1)H + 2AxL2 = 0, (11)
Dxx + Dyy − 2Bxv1 − 2Cyv2 − Bv′1 − Cv′2

+ (2Bxf1 + 2Cyf2 + Bf ′
1 + Cf ′

2)H + (2Bx − 2Cy)L2 = 0. (12)

and this system has many solutions.

Remark 1. Although our derivation has implicitly assumed analyticity of A, B, C, D in H,
L2 in a neighborhood of (0, 0). It is easy to show that the same equations (9)–(12) arise if these
functions are analytic in the neighborhood of any point (H0, L0

2).

We start with a very special case

A ≡ 0, B = X(x, H, L2), C = Y (y, H, L2), D = X̃(x, H, L2) + Ỹ (y, H, L2). (13)

Then the above PDEs uncouple into ODEs for X and Y , whose structure we can easily analyse.
The separated equation for X can be written in the compact form

X ′′′ + 4(v1 − f1H − L2)X ′ + 2(v′1 − f ′
1H)X = −2P (H, L2), X̃ = −1

2
X ′, (14)

where the separation constant P (H, L2) is a given analytic function of its arguments. (We can
take it to be a polynomial.) The first equation (14) always has solutions for any f1, v1, say
continuously differentiable. Thus we can always construct M and it will be analytic in the
parameters H, L2. Further we have the result

Lemma 1. Let Ψ1(H, L2, x), Ψ2(H, L2, x) be a basis of solutions for the equation

(
d2

dx2
+ v1(x) − f1(x)H − L2

)
Ψ(x) = 0.

Then S1(x) = Ψ2
1, S2(x) = Ψ1Ψ2, S3(x) = Ψ2

2 is a basis of solutions for the homogeneous
equation

S′′′ + 4(v1 − f1H − L2)S′ + 2(v′1 − f ′
1H)S = 0. (15)
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Thus the general solution of the first equation (14) is a particular solution of this equation
plus an arbitrary linear combination of S1, S2, S3.

Similarly, the separation equation for C = Y is

Y ′′′ + 4(v2 − f2H + L2)Y ′ + 2(v′2 − f ′
2H)Y = 2P (H, L2), Ỹ = −1

2
Y ′.

Once we have obtained X and Y , then we see that the corresponding operator L3 commutes
with H. Thus we can view L3 as an infinite order differential symmetry operator for H. In
special cases this will be a finite order operator.

It is important to note that (for P �= 0) L3 is not just a function of H and L2. Indeed,
a straightforward computation yields [L2, L3] = P (H, L2) �= 0. In fact, an analogous construc-
tions to the above but based on the operator L2 yields an operator L4 such that H = L1, L2,
L3, L4 satisfy the commutation relations

[L1, L2] = [L1, L3] = [L2, L4] = [L3, L4] = 0, [L2, L3] = [L1, L4] = P (L1, L2).

If we choose P (L1, L2) = I, the identity operator, then these are the canonical commutation
relations.

Example 1. We consider Cartesian coordinates in flat space and assume that the potential is
separable in these coordinates. Thus we have f1(x) = f2(y) = 1

2 and

H = ∂2
x + ∂2

y + v1(x) + v2(y), L2 =
1
2
(∂2

x + v1(x)) − 1
2
(∂2

y + v2(y)).

We look for a 3rd order constant of the motion L3. Thus we have

P (H, L2) =
∑

j+k≤2

αjkH
jLk

2

and the x-dependent part of the symmetry operator must take the form

M = (X10∂x + X̃10)H + (X01∂x + X̃01)L2 + (X00∂x + X̃00), X̃jk = −1
2
X ′

jk.

This leads to the system of equations (labeled by the powers (j, k) of HjLk
2)

(2, 0) X ′
10 = α20,

(1, 1) X ′
01 + 2X ′

10 = α11,

(0, 2) 2X ′
01 = α02,

(1, 0) − 1
2
X ′′′

10 − v1X10 − 2v1X
′
10 + X ′

00 = α10,

(0, 1) − 1
2
X ′′′

01 − v1X01 − 2v1X
′
01 + 2X ′

00 = α01,

(0, 0) − 1
2
X ′′′

00 − v1X00 − 2v1X
′
00 = α00. (16)

These equations are equivalent to

X10 = α20x + c10, X01 =
1
2
α02x + c01, α02 + 4α20 = 2α11,

X ′
00 = (α20x + c10)v′1 + 2α20v1 + α10,

2X ′
00 =

(
1
2
α02x + c01

)
v′1 + α02v1 + α01, −1

2
X ′′′

00 − v1X00 − 2v1X
′
00 = α00.

A very similar computation, with the same polynomial P (H, L2), yields the possibilities
for v2(y), and the construction of the y-dependent part of the symmetry operator L3. Then L3

is a third-order quantum constant of the motion.
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3 The general case

Up to now we have only considered the special case (13): A = 0, B = X(x), C = Y (y),
D = X̃(x) + Ỹ (y) of conditions (9)–(12). Let us now consider the case such that A ≡ 0, but,
otherwise, B, C, D are arbitrary. Then there is a function G(x, y, H, L2) such that

B = −∂xG, C = ∂yG,

and the determining conditions simplify to

1) Gxxxy + Gxyyy = 0,

2)
1
2
Gxxxx + 2Gxxv1 + Gxv′1 − (2Gxxf1 + Gxf ′

1)H − 2GxxL2

=
1
2
Gyyyy + 2Gyyv2 + Gyv

′
2 − (2Gyyf2 + Gyf

′
2)H + 2GyyL2.

The first determining equation means that G(x, y) = K(x, y) + F (x) + J(y) where F, J are
arbitrary and K is harmonic: Kxx + Kyy = 0. This representation is unique in K, F , J , up to
the addition of the harmonic separable function K̃(x, y) = a

2 (x2−y2)+bx+cy+d. Alternatively,
we can write

G(x, y) = z1(x + iy) + z2(x − iy) + F (x) + J(y),

where z1, z2 are arbitrary analytic functions. Then only condition 2) remains to be satisfied.

Example 2. If we make the ansatz G = X(x, H, L2)Y (y, H, L2) then, in addition to the well
known angular momentum invariant, we find the following two polynomial invariants:

1. X =
(

1
4

+ L2

)
cos x + s(1 + βH), Y =

(
1
4

+ L2

)
cosh y + t(1 + ξH),

v1(x) = 2s
sinx

cos2 x
+

a1

cos2 x
, f1(x) = −2sβ

sinx

cos2 x
+

a2

cos2 x
,

v2(y) = 2t
sinh y

cosh2 y
+

b1

cosh2 y
, f2(y) = −2tξ

sinh y

cosh2 y
+

b2

cosh2 y
,

D = −1
2
(
1
4

+ L2) (t cos x(1 + ξH) + s cosh y(1 + βH)) .

2. L̃ = −2x(y2 + 4L2)∂x + 2y(x2 − 4L2)∂y + x2 − y2,

v1(x) =
1
8
x2 +

a1

x2
, f1(x) =

a2

x2
, v2(y) =

1
8
y2 +

b1

y2
, f2(y) =

b2

y2
.

Example 3. Again we consider the special case of conditions (9)–(12) such that A ≡ 0. Now
we require

G(x, y) = −2 log(X(x) + Y (y)) + F(x) + J (y) = K(x, y) + F (x) + J(y),

where F , J are arbitrary and K is harmonic. Then the harmonic requirement on K implies that

K = −2 log(X + Y ) + F̃ (x) + J̃(y),

where

(X ′)2 =
α

12
X4 +

β

3
X3 + γX2 + 2δX + φ,

(Y ′)2 = − α

12
Y 4 +

β

3
Y 3 − γY 2 + 2δY − φ,
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X ′′ =
α

6
X3 +

β

2
X2 + γX + δ, Y ′′ = −α

6
Y 3 +

β

2
Y 2 − γY + δ.

Further,

F̃ (x) =
1
3

X ′′′

X ′ , J̃(y) =
1
3

Y ′′′

Y ′ ,

and the metric and potential terms have the solution

v1 − f1H =
− a

12X4 − b
3X3 + b1

2 X2 + η1X + η2

24(X ′)2
,

v2 − f2H =
a
12Y 4 − b

3Y 3 − b1
2 Y 2 + η1Y − η2

24(Y ′)2
.

Here, α, β, γ, δ, φ and

a = a(1) + a(2)H, b = b(1) + b(2)H, b1 = b
(1)
1 + b

(2)
1 H,

η1 = η
(1)
1 + η

(2)
1 H, η2 = η

(1)
2 + η

(2)
2 H

are parameters. The remaining condition is

1
2
F ′′′′ + 2F ′′(v1− f1H − L2) + F ′(v1− f ′

1H) − 1
2
J ′′′′− 2J ′′(v2− f2H − L2) − J ′(v′2− f ′

2H)

=
1
36

(a

2
X2 + bX − a

2
Y 2 + bY

)
+

2
3

(
X ′′′

X ′ (v1 − f1H) − Y ′′′

Y ′ (v2 − f2H)
)

+ F̃ ′(v′1 − f ′
1H) − J̃ ′(v′2 − f ′

2H).

The simplest family of solutions is obtained by setting F ≡ F̃ , J ≡ J̃ and α = β = a = b = 0.

Now we consider the general case of conditions (9)–(12). Then there are two functions
F (x, y, H, L2), G(x, y, H, L2) such that

A = ∂xyF, B = −1
2
∂xyyF − ∂xG, C = −1

2
∂xxyF + ∂yG,

and the determining conditions simplify to

1) 2Gxyyy +
1
2
Fxyyyyy + 2Fxyyy(v2 − f2H + L2) + 3Fxyy(v′2 − f ′

2H) + Fxy(v′′2 − f ′′
2 H)

= −2Gxxxy +
1
2
Fxxxxxy + 2Fxxxy(v1 − f1H − L2)

+ 3Fxxy(v′1 − f ′
1H) + Fxy(v′′1 − f ′′

1 H),

2)
1
2
Fxxxxyy + 2Fxxyy(v1 − f1H) + Fxxy(v′2 − f ′

2H) +
1
2
Gxxxx

+ 2Gxx(v1 − f1H − L2) + Gx(v′1 − f ′
1H)

= −1
2
Fxxyyyy − 2Fxxyy(v2 − f2H) − Fxyy(v′1 − f ′

1H) +
1
2
Gyyyy

+ 2Gyy(v2 − f2H + L2) + Gy(v′2 − f ′
2H).

Example 4. Consider the problem of finding all third-order symmetry operators corresponding
to potentials that separate in Cartesian coordinates in Euclidean space. Then f1 = f2 = 1

2 .
Third-order symmetry operators correspond to F = F (x, y) and G = g(x, y)L1 + h(x, y)L2 +
k(x, y). Now let f(x, y) = Fxy, and substitute these expressions into conditions 1) and 2).
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Equating coefficients of L2
1, L2

2, L1L2 in 1) and coefficients of L1, L2 in 2), we obtain easily the
expressions

f(x, y) = e00 + e10x + e01y +
c

2
(x2 − y2) + e11xy,

g(x, y) = c00 + c10x + c01y + c20(x2 + y2) + c11xy + c30(x3 + 3xy2)

+ c21

(
1
3
y3 + x2y

)
− c

12
(
x3y + xy3

)
,

h(x, y) = d00 + d10x + d01y − 2c20

(
x2 − y2

)
+ d11xy − 2c30

(
x3 − 3xy2

)
− 2c21

(
x2y − 1

3
y3

)
+

c

6
(x3y − xy3),

where eij , cij , dij , c are constants. Equating coefficients of L1 and L2 in 1) and integrating,
we can get expressions for kx and ky. The integrability condition ∂xky = ∂ykx, together with
equating coefficients of the constant term in 2) leads to a system of ordinary differential equations
for the potential terms:(

1
2
d11 − c11 − 2c21x +

1
2
cx2

)
v′′1 + (−12c21 + 3cx)v′1 + 3cv1 = −	5 − 	4x +

1
2
	1x

2,(
1
2
d10 − c10 − 4c20x − 6c30x

2

)
v′′1 − (12c20 + 36c30x)v′1 − 36c30v1 = −m2 − m1x +

1
2
	2x

2,

(12c30 − e01 + e11x)v′′1 − 3e11v
′
1 = −q1x + q3,

(d11 − e00 − e10x − 4c21x)v′′1 + (−3e10 − 4c21)v′1 = −q2x + q4,

and (
1
2
d11 + c11 + 12c30y − 1

6
cy2)v′′2 + (36c30 − 7

3
cy

)
v′2 − 3cv2 = −	3 − 	2y − 1

2
	1y

2,(
1
2
d01 + c01 − 4c20y − 2c21y

2

)
v′′2 + (12c20 + 12c21y)v′2 + 12c21v2 = −m3 + m1y +

1
2
	4y

2,

(4c21 + e10 + e11y)v′′2 + 3e11v
′
2 = q1y + q2,(

e00 + e01y − 12c30y − 1
3
cy2

)
v′′2 +

(
3e01 − 36c30 − 2

3
cy

)
v′2 = −q3y − q4.

Here, 	j , mj , qj are constants. The strategy is now clear. The f , g, h expressions simply define
the higher order (potential-independent) terms in the Euclidean symmetry operators and are
easy to understand. For a true third-order symmetry hx, hy, gx, gy cannot all vanish. For each
such choice of terms we can solve explicitly the ODEs for v1 and v2. Since the same v1, v2 have
to satisfy all these equations, this puts restrictions on the constants. Then we verify that each
common solution v1, v2 actually corresponds to a 3rd order symmetry. A tedious case-by-case
procedure leads to all solutions, provided not all of the ODEs for either v1 or v2 are vacuous.
If, say, the ODEs for v1 are vacuous, then we must make use of the remaining integrability
condition. Equating coefficients of the constant term in 1) leads to a coupled partial differential
equation for the potential terms v1, v2

0 =

[
− 2(4c20 + 12c30x + 4c21y − cxy)v2

+
(

1
2
d10 + c10 +

1
2
d11y + c11y + 6c30y

2 − 1
6
cy3

)
v′1
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−
(

1
2
d01 + c01 + 4c20y +

1
2
d11x + c11x + 12c30xy + 2c21y

2 − 1
6
cxy2

)
v′2

]
v1

+

[
−

(
4c20x + 6c30x

2 + 4c21xy − 1
2
cx2y

)
v2

+
1
2

(
1
2
d10 + c10 +

1
2
d11y + c11y + 6c30y

2 − 1
6
cy3

)
v1

− 1
2

(
1
2
d01x + c01x + 4c20xy +

1
4
d11x

2 +
1
2
c11x

2 + 6c30x
2y + 2c21xy2 − 1

12
cx2y2

)
v′2

− 1
4
m2y

2 − 1
12

y3	5 − 1
2

(
1
2
d11 − c11

)
V2 +

1
2
n2y +

1
2
p2 + e01 − cy

]
v′1

+

[
2(4c20 + 12c30x + 4c21y − cxy)v1

+
(

1
2
d01 − c01 +

1
2
d11x − c11x − 2c21x

2 +
1
6
cx3

)
v′2

−
(

1
2
d10 − c10 − 4c20x +

1
2
d11y − c11y − 6c30x

2 − 4c21xy +
1
2
cx2y

)
v′1

]
v2

+

[ (
4c20y + 12c30xy + 2c21y

2 − 1
2
cxy2

)
v1

+
1
2

(
1
2
d01 − c01 +

1
2
d11x − c11x − 2c21x

2 +
1
6
cx3

)
v2

− 1
2

(
1
2
d10y − c10y − 4c20xy +

1
4
d11y

2 − 1
2
c11y

2 − 6c30x
2y − 2c21xy2 +

1
4
cx2y2

)
v′1

− 1
4
m3x

2 − 1
12

x3	3 − 1
2

(
1
2
d11 + c11

)
V1 − 1

2
n1x − 1

2
p1 + e10 + cx

]
v′2

+
1
4

(
1
2
d10 + c10 +

1
2
d11y + c11y + 6c30y

2 − 1
6
cy3

)
v′′′1

+
1
4

(
1
2
d01 − c01 +

1
2
d11x − c11x − 2c21x

2 +
1
6
cx3

)
v′′′2 . (17)

Here, vj = V ′
j . This equation is complicated, but if the ODEs for v1 are vacuous, then v2 is

a second-order polynomial in y and all constants in the above equation must be zero, except,
d11, d01, d10, 	3, m3, n1, n2, p1, p2. Thus v1 must satisfy a simple nonlinear ODE and all
solutions can be obtained. The details can be found in [12], with a different method. (That
paper is focused on 3rd order invariants alone, rather than considering them as a special case of
infinite-order invariants as is done here.)

Factorized solutions for the general conditions 1), 2), exist for all spaces and separable po-
tentials.

Theorem 1. For any v1, v2, f1, f2 there are always solutions for equations 1), 2) in which
A �≡ 0, G ≡ 0 and F factors as F = X (x, H, L2)Y(y, H, L2), where X ′Y ′ �= 0.

Proof. Making the indicated substitutions, we see that the equations reduce to

1)
1
2
X (1)Y(5) + 2X (1)Y(3)(v2 − f2H + L2) + 3X (1)Y(2)(v′2 − f ′

2H) + X (1)Y(1)(v′′2 − f ′′
2 H)
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=
1
2
X (5)Y(1) + 2X (3)Y(1)(v1 − f1H − L2) + 3X (2)Y(1)(v′1 − f ′

1H)

+ X (1)Y(1)(v′′1 − f ′′
1 H),

2)
1
2
X (4)Y(2) +

1
2
X (2)Y(4) + 2X (2)Y(2)(v1 + v2 − f1H − f2H)

+ X (2)Y(1)(v′2 − f ′
2H) + X (1)Y(2)(v′1 − f ′

1H) = 0.

Variables separate in these equations and we have

1a)
1
2
X (5) + 2X (3)(v1 − f1H − L2) + 3X (2)(v′1 − f ′

1H) + X (1)(v′′1 − f ′′
1 H) = αX (1),

1b)
1
2
Y(5) + 2Y(3)(v2 − f2H + L2) + 3Y(2)(v′2 − f ′

2H) + Y(1)(v′′2 − f ′′
2 H) = αY(1),

where α is a constant. Similarly, if X (2)Y(2) �= 0 we have the separation equations

2a)
1
2
X (4) + 2X (2)(v1 − f1H − L2) + X (1)(v′1 − f ′

1H) = βX (2),

2b)
1
2
Y(4) + 2Y(2)(v2 − f2H + L2) + Y(1)(v′2 − f ′

2H) = −βY(2),

These equations are consistent if

A) α = β = 0 or B) αX ′ = βX ′′′, αY ′ = −βY ′′′.

Now set X = X ′, Y = Y ′. Considering case A) first, we see that we have a solution of equations
(9)–(12) whenever X ′Y ′ �= 0 and X and Y satisfy the ordinary differential equations

X ′′′ + 4X ′(v1 − f1H − L2) + 2X(v′1 − f ′
1H) = 0,

Y ′′′ + 4Y ′(v2 − f2H + L2) + 2Y (v′2 − f ′
2H) = 0,

essentially the same as the third order homogeneous ordinary differential equation (15).
Now suppose that X ′Y ′ ≡ 0, but X ′ �= 0. Then we have v′2−f ′

2H = 0 so v′2, f ′
2 are constants.

Further, X satisfies the ordinary differential equation

1
2
X ′′′′ + 2X ′′(v1 − f1L − L2) + 3X ′(v′1 − f ′

1H) + X ′(v′′1 − f ′′
1 H) = 0.

Finally, if X = Y = 1 we have v′′2 − f ′′
2 H = v′′1 − f ′′

1 H = α(H), corresponding to oscillator
potentials.

For case B) we can assume β = 1. Then we find, with α = a2,

X(x) = c1 sinh(ax) + c2 cosh(ax), f1(x) =
c3

X(x)2
, v1(x) =

4L2 + 2 − a2

4
+

c4

X(x)2
,

Y (y) = d1 sin(ax) + d2 cos(ax), f2(y) =
d3

Y (y)2
, v2(y) = −4L2 + 2 − a2

4
+

d4

Y (y)2
. �

Remark 2. The underlying structure of the solutions of the general equations (9)–(12) is fairly
simple. Let u1(x, L2) = u1[L2], u2(x, L2) = u2[L2] be a basis of solutions of the separated
equation(

d2

dx2
+ v1(x) − f1(x)H − L2

)
u = 0,
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and let w1(y, L2), w2(y, L2) be a basis of solutions of the separated equation(
d2

dy2
+ v2(y) − f2(y)H − L2

)
w = 0.

Then for any parameter L̂2 the operator

S(L̂2) = w2[L̂2]u2[L̂2]
(
w1[L2]u1[L2]∂xy− w′

1[L2]u1[L2]∂x− w1[L2]u′
1[L2]∂y+ w′

1[L2]u′
1[L2]

)
is a symmetry operator of L1 that maps any eigenspace of L2 into another (generally different)
eigenspace. It is not hard to characterize the space spanned by all linear combinations of func-
tions w2[L̂2]u2[L̂2]w1[L2]u1[L2] and this gives the equations for A. Similarly we can characterize
B, C, and D. Also the solutions of (9)–(12) in the special case A ≡ 0 can be obtained by taking
limits of the above general solutions. Indeed

S̃(L̂2) = (∂Lw2[L̂2]u2[L̂2] + w2[L̂2]∂lu2[L̂2])

× (−w′
1[L2]u1[L2]∂x − w1[L2]u′

1[L2]∂y + w′
1[L2]u′

1[L2]
)

+ (∂Lw1[L̂2]u1[L̂2] + w1[L̂2]∂lu1[L̂2])

× (−w′
2[L2]u2[L2]∂x − w2[L2]u′

2[L2]∂y + w′
2[L2]u′

2[L2]
)

− (∂Lw2[L̂2]u1[L̂2] + w2[L̂2]∂lu1[L̂2])

× (−w′
1[L2]u2[L2]∂x − w1[L2]u′

2[L2]∂y + w′
1[L2]u′

2[L2]
)

− (∂Lw1[L̂2]u2[L̂2] + w1[L̂2]∂lu2[L̂2])

× (−w′
2[L2]u1[L2]∂x − w2[L2]u′

1[L2]∂y + w′
2[L2]u′

1[L2]
)

is a symmetry with the right properties.

4 Lie form and nonorthogonal separation in two dimensions

We know that if a Hamiltonian H =
2∑

i,j=1
gijpipj admits a constant of the motion L that is

quadratic in the momenta

L =
2∑

i,j=1

aijpipj , {H, L} = 0

and if the roots of the determinant |aij − λgij | are distinct, then the eigenforms define new
(separable) variables x1, x2 and the associated Schrödinger operator can be written in Liouville
form

H =
1

f1(x1) + f2(x2)
(∂x1x1 + ∂x2x2 + v1(x1) + v2(x2)) .

However, it may be that the roots of this determinant are equal. In this case H cannot be put
into Liouville form, but rather Lie form, which for a suitable choice of variables (non-separable)
is

H =
1

x + B(y)

(
∂xy +

1
2
K(y)

)
+

1
2
U ′(y).

The associated quantum constant is L = ∂xx − 2yH + U(y).
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How can we calculate a third symmetry? We look for a quantum constant of the form

Lo = M(H, L, y)∂y + N(H, L, y).

Applying the condition [H, Lo] = 0, we see that the functions M and N are of the form

M =
1

2H − U ′(y)
,

N = −1
2

∫
U ′′K − 2K ′H + K ′U ′ + 4B′H2 + 4B′U ′H + B′U ′2

√
L + 2yH − U(2H − U ′)2

dy.

According to our operational calculus, these relations make sense when the operators are applied
to a simultaneous eigenspace of H and L. Note in particular that if we consider the free
Hamiltonian then Lo has the particularly simple form

Lo = H

∫
B′(y)√
L + 2yH

dy − ∂y.

While this appears to be only a formal expression it makes good sense for a spectral resolu-
tion analytic in a neighborhood of (H0, L0) �= (0, 0). Indeed, the following explicit example is
informative.

Example 5. Consider the zero potential case K = U ≡ 0, B(y) = y2. We can formally evaluate
the integral in the expression for Lo by integrating by parts, and then multiply by 3H to obtain

Li = 2(L + 2yH)1/2(−L + yH) − 3H∂y.

This expression can immediately be interpreted as the differential operator

L̂ = 2∂x(−L + yH) − 3∂yH = −2∂3
x +

1
x + y2

(6y∂2
x∂y − 3∂2

y∂x)

which can be verified to commute with H. Indeed, if B(y) is a polynomial then, through inte-
gration by parts, we can always uncover a symmetry operator of finite order. In this particular
example the Hamiltonian also admits a second order symmetry operator

N̂ = x∂2
x +

3
4
∂2

y − 3xy + 1
3y3

x + y2
∂x∂y,

and [N̂ , L] = L̂. However, for general polynomial B(y) the corresponding invariant L̂ cannot be
obtained as a commutator of other finite differential invariants.

It is clear from the method of the example that if one takes U(y) as a constant and B(y)
and K(y) as polynomials then, as before, we can generate explicit finite order differential oper-
ators that commute with H.

There is one remaining possibility for a quadratic constant of the motion in two dimensions:
the constant may be associated with nonorthogonal separation of variables. In two dimensions
there is only one case: separation in light cone (null) coordinates, [11]. For this case the Hamil-
tonian takes the form

H = ∂z∂z̄ + f(z̄)

and there is a first-order symmetry operator ∂z, so ∂zz is a second-order constant of the motion.
In addition there is a quadratic constant

L = M∂z +
i

2

∫
z̄
df

dz̄
dz̄.

where M = i(z∂z − z̄∂z̄).
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5 Further work

A particular feature of our approach is that we can replace the partial differential operators L1,
L2 (that do not commute with the underlying variables x, y) by scalar parameters that commute
with all variables. It provides a relatively simple tool to uncover invariants. Encouraged by the
theorem above, we expect to be able to characterize the structure of the algebra of infinite
dimensional symmetries of L1. Of particular interest would be conditions that would guarantee
that the symmetry conditions had solutions that were polynomials in the parameters.

In future papers we will show that there is a similar calculus to express differential symmetries
of the time-independent Schrödinger equation on an n-dimensional Riemannian manifold, when
the equation admits R-separation in an orthogonal coordinate system. Further there is a calculus
to express differential conformal symmetries of the time-dependent Schrödinger equation on an n-
dimensional Riemannian manifold, when the equation admits R-separation. The time-dependent
case is particularly interesting because some of its conformal symmetries can be considered as
energy-shifting operators for the time-independent equations. These energy-shifting operators
are usually of infinite order, but appear first order in our canonical form. They correspond to
raising and lowering operators in the equations of mathematical physics.
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