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ABSTRACT

The TCP models in ns-2 have been validated and are widely
used in network research. They are however not aimed at
producing results consistent with a TCP implementation,
they are rather designed to be a general model for TCP
congestion control. The Network Simulation Cradle makes
real world TCP implementations available to ns-2: Linux,
FreeBSD and OpenBSD can all be simulated as easily as
using the original simplified models. These simulated TCP
implementations can be validated by directly comparing
packet traces from simulations to traces measured from a
real network. We describe the Network Simulation Cradle,
present packet trace comparison results showing the high
degree of accuracy possible when simulating with real TCP
implementations and briefly show how this is reflected in
a simulation study of TCP throughput.

1 INTRODUCTION

Network protocols are often tested, developed and evaluated
with the help of network simulators. Using simulation allows
a researcher to have full control and transparent access to
data in a complex distributed system, something that is
difficult (and in some cases impossible) with real systems
today. One of the protocols that is of great import is the
Transmission Control Protocol (TCP), as it is used on the
Internet and many other networks for transfer of reliable
data.

For simulation results to be credible the simulation
models in use must undergo verification and validation.
Balci (1997) defines verification as substantiating that a
model is built from a problem formulation accurately, where
validation is substantiating that the model behaves with
satisfactory accuracy within its domain. Carson (2002) and
Sargent (2003) define the two terms to be similar and both
note that sufficient accuracy is when a model can be used
211-4244-1306-0/07/$25.00 ©2007 IEEE
instead of a real system for purposes of experimentation
and analysis.

In the context of simulation models for the Transmission
Control Protocol (TCP), the models should be tested that
they conform to specification (verification of the model) and
that the model implementation produces results consistent
with a real system (validation of the model).

The ns-2 (Information Sciences Institute 2004) simu-
lator has a test suite that tests many facets of the simulator
including the one-way TCP agents (Floyd 1997). The TCP
tests cover a range of situations designed to provoke cer-
tain behaviour for each TCP variant. For example, the fast
recovery mechanism of TCP Reno is tested with differing
amounts of packet loss. A similar, though less thorough,
set of tests exists for the bidirectional TCP agents (Fall,
Floyd, and Henderson 1997). This type of testing is a
verification that the models produce results consistent with
specifications.

Floyd (1997) points out that the TCP models in the ns-2
simulator are not designed to model one specific real world
TCP implementation but be a general model for experiment-
ing with the underlying congestion control algorithms. The
Network Simulation Cradle (Jansen and McGregor 2005)
(NSC) uses real TCP implementation code in TCP models
in simulation, allowing a different sort of validation to be
used. The simulation model can be directly compared to a
real machine: the output of the simulation model should be
very close to that of a real machine given the same input.

The Network Simulation Cradle makes the OpenBSD,
Linux and FreeBSD network stacks available as ns-2 TCP
agents. These agents have the same interface as the original
ns-2 TCP models, making it very easy to use NSC models
in the place of or in addition to the existing models in
a simulation script. This paper presents validation work
done with the Network Simulation Cradle and the network
simulator ns-2 (Information Sciences Institute 2004) and
shows the degree of accuracy attained when using real
world code for simulation of TCP. The results presented
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here expand on the previous work (Jansen and McGregor
2005) to provide further validation and show how accurate
simulating with real world code is.

Bagrodia and Takai (1999) raise the question of whether
a TCP model is correct with respect to actual TCP imple-
mentations and list two cases where validation was quite
successful in their work with the GloMoSim (Zeng, Bagro-
dia, and Gerla 1998) simulator. Direct incorporation of
the implemented protocol into the model allows the proto-
col model to be validated against an operational prototype.
Comparison of independently developed models for a given
protocol provide further validation information.

The first method is used in this paper, both at a micro
level with comparisons of traces in section 3 and at a macro
level where TCP performance is compared in section 4.
First, a brief description of the Network Simulation Cradle
is provided.

2 THE NETWORK SIMULATION CRADLE

NSC is an architecture that allows real world TCP imple-
mentations to be used as TCP simulation models. This
is achieved by a runtime system that separates the TCP
implementations for the simulator and bridges between the
simulator and TCP implementations, a process used to in-
tegrate new TCP implementations and an off-line tool that
modifies code to allow multiple independent instances of
code to run within the same process.

The simulator includes a module that is responsible
for loading TCP implementations and bridging between the
abstractions used in the simulator and a consistent interface
exposed from the support code for each TCP implementation.
The TCP implementations are contained in shared libraries
which contain code to provide the interface the simulator
module expects.

The reader is referred to previous work (Jansen and
McGregor 2005) for a more detailed explanation of the
architecture of the NSC. The Network Simulation Cra-
dle version 0.2.2 (NSC is available for download from
<research.wand.net.nz/software>) is used in
the experiments presented in this paper with ns-2 version
2.29. NSC 0.2.2 includes the network stacks Linux 2.4.28,
Linux 2.6.10, FreeBSD 5.3 and OpenBSD 3.5.

3 TRACE COMPARISONS

The Network Simulation Cradle can produce packet trace
files in the format used by tcpdump (Jacobson, Leres, and
Mccanne 2005). Tcpdump captures packets from a network
interface and optionally saves them to a file. A simulation
can be modelled after a test network setup and tcpdump
traces can be recorded at the same logical points in the two
networks. The network trace from NSC and from a real
machine can then be directly compared using trace analysis
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tools such as tcptrace (Ostermann 2005). Such a method
of comparison is used in the experiments shown in this
section.

3.1 Emulating with a Testbed Network

Building computer networks of varying topologies, varying
link bandwidths and delays, possible packet loss, controlled
router buffer sizes and differing TCP implementations is
expensive and time consuming. This is one of the reasons
simulation is performed; often it is impractical (or even
impossible) to build networks to test a protocol or idea.
Simulation of an entire network has many abstractions and
needs to be validated against real systems, so a compromise
often referred to as emulation is used. Network emulation
is used here to mean a physical network which includes a
device or set of devices that simulate part of the network.
An example of this would be machine set to route packets
between its network interfaces, delaying packets by 20ms.
This machine would be simulating a long link in the network
topology by adding the artificial delay.

3.2 The WAND Emulation Network

The WAND Network Research Group has a network of 24
machines available for testing. This network is called the
WAND Emulation Network (Jones 2007). The machines
in the WAND Emulation Network have multiple network
interfaces. One network interface card is connected to a
central server to form a control network. The other network
interface card is connected to a patch panel which in turn
is connected to a switch. Some of the machines have four
Ethernet ports on their second card, allowing them to be used
as routers. The machines are configured with a topology by
changing connections on the patch panel. All machines are
also connected to a terminal server to allow administration
without relying on networking. This network is used for
all real measurements presented in this paper.

Six machines are configured in a simple dumb-bell
topology as shown in Figure 1. Two machines run FreeBSD
5.3 and use ipfw Dummynet (Rizzo 1997) to shape traffic.
Due to the scheduling of packet delays with Dummynet
(Dummynet processes delays on the software interrupt clock,
which fires once every 1/HZ seconds; HZ is set to 1000
in these tests), the round trip time (RTT) on this network
has some noticeable variation as presented in Table 1. The
RTT of an equivalent network simulated with ns-2 is also
shown. The results are gathered from 1000 pings on an
otherwise unloaded network. A FreeBSD Dummynet router
is configured to delay packets by 21ms in both directions
and limit bandwidth to 2Mb/s.

The variation in timing on the testbed network shown
in Table 1 means that there will be some small variation in
timing between the simulated trace and the measured trace.
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2 4
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Host machine FreeBSD 5.3 Router

Figure 1: Emulation network setup.

Table 1: Emulation network RTT measurements.
Round trip time (ms)

Packet size Min µ Max σ Simulated
84 43.0 43.6 49.9 0.588 43.1
1500 53.3 53.9 61.1 0.653 54.4

A direct binary comparison of the traces is therefore not
useful. The sequence numbers and time used in the traces is
also not synchronised. The tcpnorm (Jansen 2007) utility is
used to normalise the traces and tcptrace (Ostermann 2005)
is used to visualise them by making time-sequence graphs.

The bottom line on the tcptrace time sequence graphs
seen later in this paper is the TCP sequence number which has
been acknowledged to. The top line is the TCP acknowl-
edgement number plus the receivers advertised window.
This shows visually the window in which the data packets
should be sent. Data packets are indicated by small black
double-ended arrows. If the packet is a retransmission, it
will have an “R” next to it. Selective acknowledgement
blocks are shown by lines within the advertised window
with an “S” next to them. If a data packet has the PUSH
flag set a diamond will be drawn around the packet.

3.3 Connection Establishment

Figure 2 shows tcptrace graphs of TCP during connection
establishment and slow start. For each operating system
FreeBSD, Linux and OpenBSD a trace is measured on the
emulation network and created in simulation. The traces
are normalised with tcpnorm then graphed with tcptrace.
The two graphs for each operating system are shown side
by side. A Dummynet router limits bandwidth to 2Mb/s,
delays packets in both directions by 21ms and has a queue
length of 10 packets. The simulation scenario is configured
to be equivalent.

Each of the pairs of graphs in Figure 2 are very close
matches for each other. In addition to these graphs, each
situation is analysed in detail using the textual output of
tcpdump in the following sections.

3.3.1 FreeBSD

The two traces for FreeBSD are very close. The sequence
and content of packets shown in Figures 2(a) and 2(b) are
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nearly identical except for the TCP timestamp option. The
throughput measured on the emulation network is within
2% of the throughput measured in the ns-2 simulation. The
TCP timestamp option differs by one often in the traces.
The reason for this is that the timestamp counter is based
on the ticks variable in the network stack which in this
situation occurs once every 10ms. This timer starts counting
when the machine boots up, so synchronising it between
simulation and the real machine is not practical.

There are a small difference in timing of packets. This
is due to the difference in round trip time and variation
in timing found in the emulation network, as described in
§3. The per-packet time difference is plotted in Figure 3.
This graph shows how, in this case, the time differences
accumulates over time (this is not always the case for other
network stacks tested). This eventually leads to a slightly
different ordering of packets, though the tcptrace graphs
look similar.

3.3.2 Linux

The traces for Linux look similar in Figures 2(c) and 2(d).
The one notable difference is some of the data packets have
diamonds around them meaning they have the PUSH flag
set.

The PUSH flag in TCP was originally specified in RFC
793 to mean that when a receiving TCP sees the flag, it
must not wait to receive any more data before passing the
data to the receiving process. In practise, data is passed to
the application as soon as possible irrespective of the PUSH
flag and it is set by the sending network stack, rather than
the application, in most recent TCP implementations.

The interface between application and network stack is
very different in simulation with ns-2 and on a real machine,
so the model of the application is slightly different between
the two. These differences result in the PUSH flag being
set for extra packets in simulation.

The TCP timestamp option differs between the traces.
The counter used for the timestamp is increased once every
millisecond in the version of Linux studied. The packets
are consistently between 0 and 3 milliseconds different in
their timings and the TCP timestamp option reflects this.

Linux 2.6 tunes the windows used in TCP based on the
amount of memory available in the machine. The cradle
code attempts to have reasonable defaults set that match up
to the machines on the emulation network. The receivers
advertised window grows dynamically and is additionally
affected by the size of the packet structure allocated in the
Ethernet driver. This is an example of subtle interactions
coming from seemingly unimportant supporting code. We
believe that validating real world code in simulation is im-
portant, because there is the possibility of many interactions
such as this affecting results.
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(a) Simulated FreeBSD (b) Measured FreeBSD
(c) Simulated Linux (d) Measured Linux
(e) Simulated OpenBSD (f) Measured OpenBSD

Figure 2: Simulated vs. measured connection establishment graphs.
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Figure 3: Time difference vs. packet number for FreeBSD traces.
When a packet is received in a network driver, the driver
allocates a structure called an skbuff with enough space to
hold the packet. It is up to the driver to select the space
for the packet received, often there is extra slack space that
is unused by the driver (but possibly used later by other
sections of the network stack). This packet is then sent
on to the network stack. When calculating the receivers
advertised window, the size of the skbuff is checked as
Listing 1 shows.

int incr;
/*
* Check #2. Increase window, if skb

with such overhead
* will fit to rcvbuf in future.
*/

if (tcp_win_from_space(skb->truesize)
<= skb->len)

incr = 2*tp->advmss;
else

incr = __tcp_grow_window(sk, tp
, skb);

if (incr) {
tp->rcv_ssthresh = min(tp->

rcv_ssthresh + incr, tp->
window_clamp);

tp->ack.quick |= 1;
}

Listing 1: Linux 2.6 tcp_grow_window code.

In Listing 1 skb->truesize refers to the size of
the skbuff allocated in the driver. To obtain the same traces
on real machines and in simulation, the simulation driver
code needs to allocate skbuff sizes in the same manner as
the driver used on the real machine. The simulation driver
allocates skbuffs similar to the eepro100 driver used on
the emulation network machines and is able to produce
the same offered window sizes as those measured on the
emulation network.

The traces are identical until the difference in PUSH
flags save for the slight timing differences described above.
On the real machines some data packets are generated
later in the trace that are smaller than the MTU. This is
due to application differences, the timing of when data is
written to the TCP socket by the application is different
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between simulation and the real machine which results in this
behaviour. The traces are very similar when visualised with
tcptrace and the goodput (the amount of data received by
the application layer from TCP) measured on the emulation
network is within 2% of the goodput recorded in simulation.

3.3.3 OpenBSD

The sequence of packets shown in Figures 2(e) and 2(f) are
very close matches. When the traces are analysed further
it is evident some TCP timestamps vary between the traces
by one. This occurs for the same reason it does in the
FreeBSD trace and is described earlier.

There are less data packets in the graphs showing
OpenBSD (Figures 2(e) and 2(f)) due to the OpenBSD
sender only sending one initial data packet after the three-
way handshake of TCP. The acknowledgement for this
packet is not sent straight away by the other end of the
connection due to the delayed acknowledgement mechanism:
either the delayed acknowledgement timer must fire or two
packets must arrive. This is one of the reasons for RFC
3390 (Allman, Floyd, and Partridge 2002) which increases
the initial TCP window size. The version of OpenBSD
tested does not implement RFC 3390 while the versions of
Linux and FreeBSD studied here do. Figures 2(e) and 2(f)
show a timer firing with the same duration in emulation and
simulation: the acknowledgement is received which results
in further data packets prior to time 01:00:00.3000. The
acknowledgement is received at this time due to the delayed
acknowledgement timer being set to 200ms. This verifies
that this TCP timer is firing at the correct time.

The timing difference of packets is similar to FreeBSD
(see Figure 3). This eventually leads to a different sequence
of packets, although an overall tcptrace graph of the con-
nection looks nearly identical and the throughput recorded
in simulation is within 2% of the throughput measured on
the emulation network.

3.4 Congestion

Figures 4 and 5 are tcptrace graphs of TCP undergoing
loss because it has overflowed the router queue size. The
1
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(a) Simulated FreeBSD
(b) Measured FreeBSD

Figure 4: Simulated vs. measured TCP packet loss response for FreeBSD.
2182



Jansen and McGregor
(a) Simulated Linux
(b) Measured Linux

Figure 5: Simulated vs. measured TCP packet loss response for Linux.
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scenario simulated and measured is the same as earlier,
these graphs are produced from later in the connection.

3.4.1 FreeBSD

FreeBSD responds to the packet loss in the same manner
in simulation and on the testbed network. Figure 4(a)
and Figure 4(b) show the same selective acknowledgement
ranges and bursts of data packets due to the loss. The
difference in the two graphs is the time and sequence numbers
shown on the axis. This is due to loss occurring slightly
earlier on the emulation network. While the difference in
network produces this discrepancy, the graphs show the
algorithmic response of TCP is the same in simulation as
it is on the real machines.

3.4.2 Linux

The graphs in Figure 5 do not show the TCP PUSH flag
as previous graphs have. This makes the graphs easier
to follow and compare. The two graphs have the same
sequence numbers and time shown, unlike Figure 4, and
are almost an exact match. The response to packet loss is
the same with a simulated Linux TCP stack and one running
on a real machine.

4 MEASURED TCP PERFORMANCE

Measurement studies have found the presence of random
loss on the Internet (Zhang, Paxson, and Shenker 2000)
and uniform random loss is used as a simple model for
loss encountered on the Internet (Lakshman, Madhow, and
Suter 2000, Padhye et al. 2000) (or other networks, for
example, ATM networks, Romanow and Floyd 1995) in
many simulation studies. This section presents a study
of TCP performance under uniform random packet loss
showing comparisons between ns-2 TCP models, NSC TCP
implementations and measurements from a test network to
validate the NSC TCP implementations.

The performance of TCP during varying uniform ran-
dom loss rates is presented in Figure 7. Simulation results
using ns-2 with its standard TCP models and with NSC
TCP implementations are shown in Figure 7(a) and results
measured from the WAND Emulation Network are shown
in Figure 7(b). The TCP flow goes through a network with
a round-trip time of 200ms and a bandwidth of 2Mb/s. Each
point on the graphs is the mean of six runs of the same
test. This scenario is depicted in Figure 6.

The goodput of Linux 2.6 is much higher during low
loss than the other TCP implementations in simulation and
measured on the testbed. An explanation is the use of BIC-
TCP (Xu, Harfoush, and Rhee 2004) by default (Hemminger
2005) combined with auto-tuning buffer sizes with large
maximums. BIC-TCP is a TCP enhancement design to make
218
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Measured flow

100Mb/s, 0.1ms delay

Source Sink

2Mb/s, 100ms delay
Random packet loss

Figure 6: Simulation scenario for random loss scenario.

TCP more scalable so it is more efficient on high bandwidth
delay product links. This congestion control algorithm is
noticeable due to the large RTT in this experiment.

The simulation results of TCP implementations using
the Network Simulation Cradle are consistent with measure-
ments of the same implementations on the testbed network.
The ns-2 TCP models have the same general trend as the
real TCP implementations studied and fall in between the
measurements for the real implementations.

5 CONCLUSION

Using real world network stacks in simulation can produce
very accurate results. The Network Simulation Cradle, a
project that uses open source network stacks as TCP simu-
lation models in ns-2, is able to produce packet traces that
are nearly identical to traces collected from real machines.

Validating the Network Simulation Cradle resulted in
several bug fixes in the implementation. Though other
projects use real TCP implementations in simulation to
have a full, valid, TCP implementation in simulation, we
believe that the process used to extract the network stack
and make it available to simulate can introduce error. Even
though the network stacks in the Network Simulation Cradle
have not had any lines of code modified and the process
of modifying global variables is automated, we have still
found subtle bugs that come from the support code that is
required to allow the previously kernel-mode code to run
in user-mode and in a simulator.

Visualising traces with tcptrace and comparing between
a testbed network and equivalent simulation is a very help-
ful validation mechanism. The traces produced in both
scenarios now match up to the naked eye and only small
timing differences exist, save for the TCP PUSH flag in
some situations. Checking traces during connection estab-
lishment, congestion and showing timers fire at the correct
time gives a high level of confidence in the simulated TCP
implementation. This is supported by our simulations of
TCP under random loss, which agree between a measured
test network and simulation.
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