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1 Intr oduction

Much hasbeenwritten recentlyabouttheneedfor effec-
tive toolsandmethodsfor mining thewealthof informa-
tion presentin biomedicalliterature(Mack andHehen-
berger, 2002;Blagosklonny andPardee,2001;Rindflesch
et al., 2002)—theactivity of conceptualbiology. Key-
word searchenginesoperatingover largeelectronicdoc-
umentstores(suchasPubMedandthePNAS) offer some
help,but therearefundamentalobstaclesthat limit their
effectiveness.In thefirst instance,thereisnogeneralcon-
sensusamongscientistsaboutthe vernacularto be used
when describingresearchaboutgenes,proteins,drugs,
diseases,tissuesand therapies,making it very difficult
to formulatea searchquerythat retrievestheright docu-
ments.Secondly, finding relevantarticlesis just oneas-
pect of the investigative process. A more fundamental
goal is to establishlinks andrelationshipsbetweenfacts
existing in publishedliteraturein orderto “validatecur-
rent hypothesesor to generatenew ones” (Barnesand
Robertson,2002)—somethingkeyword searchengines
do little to support.

Onepromisingsolution is to bring biomedicallitera-
ture into the structuredorganisationof the GeneOntol-
ogy (GO) (Consortium,2000). A large numberof ge-
nomic/proteomicdatabases(e.g. SwissProt,SGD, In-
terPro,FlyBase,etc) make useof GO in someway to
link andunify expressiondata,organizegenesandpro-
teinsinto moreor lesscoherentfunctionalgroups,andre-
solve someof theambiguitiesin nomenclature,but little
progresshasbeenmadetowardsexploiting GO directly
with documents.For example,a substantialsearchef-
fort madeby theauthorsof thispaperin mid-2002found
fewer thanthirty thousandMEDLINE abstractsdirectly
or indirectly linkedto GOtermsin publicdatabases.The
situationhasimproved greatly over the pastyear, such
thata morerecentsearch(completedin April 2003)un-
coveredabout120,000MEDLINE abstractslinkedto the
GeneOntology, but it will still take a very long time be-

fore all six million abstractscontainedin theMEDLINE
database1 are associatedwith GO terms if the process
continuesto bedonemanually.

This paper describesthe “Gene Ontology Knowl-
edgeDiscoverySystem”(GO-KDS),apublicly available
webapplication(www.go-kds.com) thatusesmachine
learningtechniquesto automaticallyconnectbiomedical
documentsto termsfrom theGeneOntology. Generalse-
manticmodelsfor eachGO termareinferredfrom train-
ing documentsgleanedfrom the referencesavailable in
public gene/proteindatabases.The modelsare subse-
quentlyusedto automaticallyclassifyall MEDLINE ab-
stractsto appropriateGO terms.

2 GO-KDS: The Technology

Machine learning is widely usedin bioinformaticsre-
search,with applicationsto variousgenemining tasks—
such as peptide identification, microarray and mass-
spectralanalyses,ESTcorrection,andsoforth. Thebasic
ideaof machinelearningis to createcomputerprograms
thatlearnhow to performsometaskbaseduponobserva-
tionsaboutsamplejudgmentsmadeby humanexperts.

In the case of documentclassification, the expert
givesthe learningalgorithmsomenumberof documents
deemedexemplarsof a particular semanticclass(and
usuallysomenumberthatarenot). The algorithmiden-
tifies all salient featuresof the documentsand weights
thosethatarethebestindicatorsfor determiningwhether
or not eachdocumentis aninstanceof theconceptbeing
learned. The result is a characteristiccomputermodel
that cansubsequentlybe usedto predicthow likely it is
that any future novel documentalsobelongsin that se-
manticclass.

1MEDLINE is oftencitedashaving 12million abstracts,but
abouthalf areactuallyretractionsandcorrections.
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2.1 The training data

The training datafor GO-KDSwasobtainedfrom those
publicly availablegenedatabasesthat includereferences
to MEDLINE (or PubMed)documentsandsupportdirect
or indirectassociationsto theGeneOntology2. Approxi-
mately26,500trainingdocumentsfor nearly3700differ-
entGO termswereobtainedin this way3.

2.2 Text preprocessing

Thefeaturesof a documentthataremostusefulfor pre-
dicting its classareprimarily its words(thoughmetadata
canoccasionallybe useful). To make the wordsacces-
sible for the machinelearningalgorithm,it is necessary
to preprocessthe input documentsin a way that makes
the generalsemanticsof eachdocumentasconspicuous
aspossiblein thetokenstream.

Empirical studiesrevealedthat many generallinguis-
tic operationswere unhelpful for GO-KDS. For exam-
ple, several stemmerswere trialed (including a Porters-
style greedystemmeranda rule-basedinflectional lem-
matizer)but failedto delivergeneralimprovementin doc-
umentclassificationtasks. Similalrly, bigramsandsoft-
parsedconstituentsmadesignificantdemandson system
resourceswithout delivering increasedaccuracy. Evena
custom-built “chemicalname”parser(i.e. a morpholog-
ical analyzerthat would, for example,parsea word like
“proteoglycan”into “proteo” and“glycan”) provedto be
of little value. Ultimately, tokenizationwas restricted
to the removal of function words (i.e. stopwords), the
expansionof Unicode abbreviations and symbols,and
the parsingof complex genenames(e.g. a genename
suchas”apo-H64Y/V68F” generatesthe features”apo-
H64Y/V68F”, ”apo”, ”H64Y” and”V68F”).

2.3 Learning Algorithm

In selecting appropriatemachine learning technology
therewerea numberof stringentconstraints.First was
theneedfor theunderlyingalgorithmto beableto scale
to large numbersof categories(around3,500), training
documents(about30,000)andaneven largernumberof
documentstobecategorized(about6million). Within the
setof training documentsthereareabouta million dis-
tinct wordsthatwereusedasfeatures.Anotherissuewas
the extremeskewnessof most of the categories- some
containedasfew astwo positive trainingdocumentsout
of 30,000.

The traditional algorithmswhich have beenusedfor
this type of applicationareNäive Bayes(NB) andSup-

2The databasesusedwere SwissProt,GenBank,FlyBase,
GOA, GrameneOryza, MGI, PomBase,RGD, SGD, TAIR,
TIGR, WB, InterProandAmiGO.

3TheMay 2003searchfoundover 110,000MEDLINE doc-
umentsassociatedwith 4700 GO terms,but resultsfrom this
new dataarenot yetavailable

port VectorMachines(SVM) (Mitchell, 1997). We ex-
perimentedwith usinganumberof differentSVM imple-
mentations.On small subsetsof thedataSVM wasable
to achievegoodaccuracy. Unfortunatelythelargeandun-
certainmemoryrequirementsof this algorithm coupled
with thesuper-lineardependenceof its executiontimeon
thenumberof traininginstancesmeansthat it wasinfea-
sibleto usemorethana few hundredtraininginstances.

We also implementeda straightforward Näive Bayes
algorithmbut found that its accuracy wastoo low to be
useful. This experiencecontradictsthat reportedelse-
wherein theliterature(Mitchell, 1997).

To getmaximalaccuracy bothNäive BayesandSVM
requirean initial passto selecta featureset. During our
initial investigationsthiswasfelt to betooslow to befea-
sible. In retrospectwe couldprobablyhaveengineeredit
to work but giventhat theWCL systemdoesnot require
it for goodperformancewehavenot revisitedthis issue.

Giventhisexperiencewedecidedto build ourown un-
derlying algorithm. It is looselybasedon Näive Bayes
in that it makesuseof thesame”bag of words” statistics
that Näive Bayesdoes. That is, we only keeptrack of
how many timeseachword hasoccurredin a document
of eachclass.An advantageof this is thatlikeNB wecan
easilymake useof leave-one-out(LOO) predictionsfor
evaluatingour performance.

The LOO procedureis usedwhen predicting docu-
mentstaken from the training set. First the statisticsfor
the documentare subtractedfrom the underlyingword
counts,thenthepredictionis doneandfinally thestatis-
tics arerestored.The time for this is roughly the same
asfor addinga documentto thestatisticssoit is feasible
to do it for all documentsin the training set. This LOO
predictionis thusnot biasedby overfitting, that is, it is a
truereflectionof how new previously unseendocuments
arelikely to bepredictedby thesystem.

2.3.1 WCL
The WCL algorithmassignsa score

�
to eachdocu-

ment � asfollows:
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is usedfor comparatively rank-
ing different documentswithin one class,later we will
dealwith theissueof actuallycomputingprobabilitiesof
membership.Both NB andSVM fit within this frame-
work. For SVM the valuesfor
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an iterative relaxationalgorithm. NB is formulatedthis
way by taking
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In describingtheactualformulationof
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for WCL
we will give a series of refinements. The first of



theselooks like an incorrect version of NB,
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by assuminga prior probabilitydistribution of G
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computingthe Bayesianestimateof the expectedpos-
terior probability. However, becausewe are using the���������"��� �#�$�

in
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whatwe shouldstrictly do is esti-
matetheexpectedlogarithmof theprobabilityratherthan
theprobability itself. This givesanestimatorof theformJ �* .KD �L% J (F .+6 �
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is
the digammafunction (Abramowitz and Stegun (Eds.),
1972)).Now we get
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This formulation gave a significantperformanceim-

provementover the simple logarithmic form. However,
like NB andSVM we found that selectinga featureset
of wordswasnecessaryin order to get the bestperfor-
mance.This is unsatisfyingbecauseaddingmoreinfor-
mation (that is the statisticsfor words outsidethe fea-
ture set)shouldnot degradeperformance.Oneproblem
thatwasapparentwasthatwordsthatoccurredvery sel-
dom,sayonceor twice,couldhavehigh valuesfor

������
andwerecontributing unduly to to the final scores.To
reducethe contribution of suchwords we formulateda
function U ��#�

which estimatesthestandarddeviation of����#�
. Thenthescorecanbereformulatedas:
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is thefirst
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J
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This formulation gave a further significant improve-
mentto performance.However, anotherissuearosethat
thescoresweredependenton thesizeof thedocuments.
That is, a documentwith many wordsoftengave a much
largerscore.Thisbecameanissuewhensomeof thedoc-
umentswe wereworking with wereshortabstractsand
otherswerefull academicpapers.To correctfor this the
scorewasnormalizedto allow for thelengthusing:
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andthensettingthefinal correctedscoreto be
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.

It is this formulationthatwasusedin GO-KDS.

2.3.2 Calibration

Thescoreobtainedaboveonly ranksdocumentswithin
a particularcategory it makes no decisionaboutactual
membershipin thecategory. In orderto compareour re-
sultswith othertechniquessuchasSVM thefacility was
includedto determineathresholdsothatscoresabovethe
thresholdwere consideredto be in the category. SVM
doesthis automaticallyaspartof its execution.

WCL doesthis by first collectingtheLOO prediction
scorefor eachtrainingdocument.Thisallowsthenumber
of incorrectdecisionsto be calculatedfor eachpossible
settingof the threshold. The actualthresholdis chosen
as the breakeven point wherethe numberof falseposi-
tivesequalsthenumberof falsenegativesandwherethe
precisionandrecallarethesame.

As well asa thresholdGO-KDSneedsan estimateof
whattheprobabilityof membershipis givenascorefor a
document.It usesthesefor providing feedbackto users
abouttheprobabilityof membership(it doesthis crudely
with a oneto fivestarsystem)andalsoto avoid indexing
large numbersof documentswith low (less than 10%)
probabilitiesof membership.

The probabilitiesareestimatedusingthe samesetof
LOO scoresas usedfor computingthe threshold. An
adaptive subdivision is doneof the rangeof scoresand
a count madeof the numberof positivesandnegatives
within eachregion. Thesecountsarethenusedto esti-
matethe trueprobabilities.Careis taken in this process
to ensurethat the probability assignmentsare a strictly
increasingfunctionof thescores.

2.3.3 Engineering

It was importantto get a good fast underlyingalgo-
rithm. WCL providesthis by ensuringthatmemoryand
time usageare at worst linear in the size of the docu-
ments.Also it permitsLOO predictionswhichallowsfast
andaccurateevaluationof performance.That said,sig-
nificantengineeringwasstill requiredto getsatisfactory
performance.This centeredaroundcarefullysharingthe
tablesof word countsbetweendifferentcategory models
and using sparsecompactrepresentations.The system
waswritten in Javawhichgiveseaseof portabilityacross
differentoperatingsystemsbut which doesrequirecare
to ensurethat theobjectorientednatureof Java doesnot
undulyslow down execution.

Thefinal resultof this is thatusingasinglecommodity
PentiumIV processorwith agigabyteof RAM it is possi-
bleto build themodelsfor GO-KDSanddoanLOO eval-
uationof thetrainingdocumentsin lessthananhour. The



completeindexing of the 6 million documentsin MED-
LINE takes1.5daysusing5 commodityprocessors.

2.4 Classificationaccuracy

Measuringthe perfomanceof WCL againstany sort of
baselineis difficult becausepublishedresultsfor a study
of comparablescaleusinganotherclassificationscheme
arenot available. Perhapsthe closestwork is that done
by Raychaudriet al. (Raychaudhuriet al., 2002),where
a “maximum entropy” techniquewasemployed to cate-
gorize21GOtermsusingtrainingandtestdocumentsex-
tractedfrom PubMedusinghandcraftedkeywordqueries.
Their studyreportsthatmodelstrainedon Medlinedoc-
umentspublishedprior to 2001achievedan accuracy of
72.8%whentestedon documentspublishedin 2001. To
make the ocmparison,an attemptwasmadeto recreate
their samplecorpusasbestaspossible,andexperimen-
tationwith GO-KDSon thesame21 categoriesachieved
an accuracy of 70.5%(at the precision-recallbreakeven
point). While thesenumbersarenotdirectlycomparable,
they do indicatethat the weightedconfidencelearneris
delivering acceptableclassificationaccuracy, and there-
fore thatGO-KDSoffersa practicalway to connectvast
amountsof biomedicalliterature to the geneontology.
The major bottle-neckto further improvements,both in
termsof accuracy and coverageof the ontology, is ob-
tainingmoregoodquality trainingdata.Our hopeis that
GO-KDS itself canbe usedto bootstrapthis processal-
lowing putativemembersof categoriesto beselectedand
thenhavehumanscheckthesesuggestions.

3 Remarks

The growing needfor effective text mining applications
specificallyfor biologistsis widely recognized,where“it
is becomingincreasinglymoredifficult to keepup with
theavalancheof informationfloodingresearchjournals”
(Krauthammeret al., 2002). Keyword searchingof elec-
tronic documentstoresis useful but limited by the fact
that “synonymsaboundin free text, andtherearemulti-
ple waysof expressingthesameidea... Theambiguities
in freetext mustbereconciledwith therigorousstructure
requiredby computers.Thisproblemis unsolvedanddif-
ficult” (ChangandAltman,2002).Controlledvocabular-
ies like MeSH “go someway to standardizingkeyword
searching... However, MeSHdoesnot provide the level
of detailor sophisticationneededto ensureprecisionand
recall of relevant abstractsfor the drug discovery scien-
tist” (BarnesandRobertson,2002).Thesefactshave led
many writers to speculateon the tremendouspotential
offeredby structuredontologiesasmechanismsto con-
trol thecontext of computationalsearchesoverpublished
reports. “By capturingknowledgeabouta domainin a
sharableandcomputationallyaccessibleform,ontologies
canprovide defined,accessibleandcomputableseman-

tics aboutthedomainknowledgethey describe”(Lord et
al., 2002).

GO-KDSusestext mining techniquesto automatically
connectresearchdocumentsto ontology terms,thereby
amplifying the potentialof GO to elucidatethe knowl-
edgeembeddedwithin biomedicalliterature.
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