
ON THE SET OF CERTAIN CONFLICTS

OF A GIVEN LANGUAGE

Robi Malik

Department of Computer Science, University of Waikato
Hamilton, New Zealand

Abstract: Two concurrent processes are said to be in conflict if they can get trapped
in a situation where they both are waiting or running endlessly, forever unable to
complete their common task. In the design of reactive systems, this is a common
fault which can be very subtle and hard to detect. This paper studies conflicts in
more detail and characterises the most general set of behaviours of a process which
certainly leads to a conflict when accepted by another process running in parallel.
It shows how this set of certain conflicts can be used to simplify the automatic
detection of conflicts and thus the verification of reactive systems.

Keywords: Discrete event systems, large-scale systems, formal verification,
deadlock, termination.

1. INTRODUCTION

Conflicts are a common fault in the design of
concurrent programs, and have long been studied
in the context of discrete event systems (Dietrich
et al., 2002; Ramadge and Wonham, 1989; Wong
et al., 2000). Two concurrent processes are in
conflict if they can reach a state, from which
no terminal state can be reached anymore. This
includes both the possibility of deadlock, where
processes are stuck and unable to continue at
all, and livelock, where processes continue to run
forever without achieving any further progress.

Since discrete event systems are used to model
complex, safety-critical systems (Brandin and
Charbonnier, 1994; Leduc and Wonham, 1995;
Malik, 2003), tools to detect conflicts in very
large systems are needed. Existing model checking
techniques (Clarke et al., 1999) can be used, but
are limited by the state explosion problem. This
paper studies the special nature of conflicts in
deeper detail and proposes a method to facilitate
the automatic detection of conflicts in modular
systems.

A common way of fighting state explosion is to
exploit modular system structures (Leduc et al.,
2000; Wong and Wonham, 1998). Often it suffices
to analyse only subsystems of a large system
to establish that the entire system satisfies a
property of interest (Åkesson et al., 2002; Brandin
et al., 2004). Yet, the nature of conflict is more
sophisticated: even if each individual subsystem is
free from conflict, the system composed from these
subsystems may be in conflict (Wong et al., 2000).

In this situation, it is possible to use abstrac-
tions of subsystems that preserve possible con-
flicts with other subsystems. Structural (Leduc
et al., 2000; Lee and Wong, 2002) and priority-
based (Wong et al., 2000) approaches have been
suggested. These techniques give some insight how
systems can be designed to be free from conflict,
but they rely on design carried out by users,
and therefore cannot be performed automatically.
Other techniques have been discovered in the con-
text of model checking (Clarke et al., 1999; Dams
et al., 1997), but they are not tailored for the
special needs of conflict analysis and therefore are
limited in power or cannot be applied directly.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Recently, a heuristic algorithm for detecting a spe-
cial case of conflicts has been developed (Malik,
2003). The experience gained from this algorithm
can be used to find abstractions of discrete event
systems that preserve all possible conflicts. This
paper introduces the set of certain conflicts of a
language, a set of behaviours that can always be
treated specially for verification purposes, consid-
erably improving performance.

Section 2 introduces the necessary notations from
supervisory control theory (Ramadge and Won-
ham, 1989; Wonham, 1999) including conflicts.
Section 3 defines the set of certain conflicts and
shows how it can simplify the task of checking a
complex system for conflicts. Section 4 presents a
fixed point algorithm to compute the set of cer-
tain conflicts, and section 5 gives some concluding
remarks.

2. NOTATION AND PRELIMINARIES

2.1 Languages

Event sequences and languages are a simple means
to describe discrete system behaviours. Their ba-
sic building blocks are events, which are taken
from a finite alphabet Σ. Then, Σ∗ denotes the
set of all finite strings of the form σ1σ2 · · ·σk of
events from Σ, including the empty string ε. A
language over Σ is any subset L ⊆ Σ∗.

The catenation of two strings s, t ∈ Σ∗ is written
as st. A string t ∈ Σ∗ is called a prefix of s ∈ Σ∗,
written t v s, if s = tu for some u ∈ Σ∗. The
prefix-closure L of a language L ⊆ Σ∗ is the set
of all prefixes of strings in L, i.e. L = { t ∈ Σ∗ |
t v s for some s ∈ L}. A language L is called
prefix-closed if L = L.

Projection is used to hide events that are not
of interest. For Ω ⊆ Σ, the natural projection
PΩ: Σ∗ → Ω∗ removes all events not in Ω from a
string. This is extended to languages by PΩ(L) =
{PΩ(s) | s ∈ L}. The inverse projection adds
events not in Ω to strings of a language in all
possible ways, P−1

Ω
(L) = { s ∈ Σ∗ | PΩ(s) ∈ L}.

2.2 Discrete Event Systems

A discrete event system (DES) over Σ is a pair
G = (L,M), where L ⊆ Σ∗ is a prefix-closed
language, and M ⊆ L (Cassandras and Lafor-
tune, 1999). The language L contains all possible
sequences of events that can be executed by the
system, while M contains only event sequences
corresponding to completed tasks. A DES G is
completely characterised by these two languages,
which are also referred to as L(G) and M(G),
respectively.

timeout

reset

timer
runidl

autovr

cmd

timeout

restart

autovr

cmd timer

timini run out

Fig. 1. Two DES represented as state transition
diagrams.

timer

autovr

cmd

reset

timeout

autovr

cmd

restart

autovr

cmd

(run, run)(ini, idl) (tim, idl) (res, idl)

(run, idl)

Fig. 2. The synchronous product of the DES in
fig. 1.

Discrete event systems can be represented visually
using state transition diagrams. Fig. 1 shows two
examples of this representation. The left DES rep-
resents a timer which, after having been started
by event timer, can either produce a timeout or be
reset before being started again. Initial states have
a thick border, and terminal states are coloured
gray. In this example, the states idl and ini are
both initial and terminal states.

2.3 Synchronous Product

When multiple DES run in parallel, lock-step
synchronisation is used. In order to execute an
event in a certain state, all participating DES
must be able to accept that event (Hoare, 1985).
It follows that the behaviour G1 ‖ G2 of two
DES running in parallel is characterised by the
intersection of their languages (Wonham, 1999).

This kind of synchronisation requires G1 and G2

to use the same event alphabet Σ. Otherwise, the
event alphabet Σ1 of G1, e.g., can be extended to
the common alphabet Σ = Σ1 ∪ Σ2 using inverse
projection. The events not considered in G1 are
assumed to be possible in every state and not to
cause any state change.

Given such an extended DES, it is interesting
which events are actually used to characterise the
behaviour, and which may just have been intro-
duced by the above procedure. An event set Ω ⊆ Σ
is called adequate for L ⊆ Σ∗ if P−1

Ω
(P

Ω
(L)) = L,

i.e., if the language can be reconstructed from its
projection. Ω is called adequate for a DES G, if
Ω is adequate for L(G) and M(G).

In the state transition diagram representation, the
synchronous product of DES is obtained from the
Cartesian product of all involved state spaces.
Fig. 2 shows the synchronous product of the two
DES in fig. 1, after extending both DES to use the



events autovr, cmd, reset, and restart which occur
in only one of the original DES.

2.4 Conflicts

Given a DES G, it is desirable that every be-
haviour possible in L(G) can be extended to a
complete task in M(G). A DES satisfying this
property is called nonblocking ; otherwise it is said
to be blocking (Wonham, 1999). The DES in fig. 2
is blocking, because no terminal state can be
reached from state (run, idl).

Blocking becomes more interesting when multiple
DES are running in parallel—in this case the term
conflicting is used instead of blocking. Two DES
G1 and G2 are called nonconflicting if G1 ‖ G2

is nonblocking, i.e.,

L(G1) ∩ L(G2) = M(G1) ∩M(G2). (1)

Otherwise G1 and G2 are called conflicting. The
above (1) extends the traditional definition of
nonconflicting languages (Wonham, 1999) to po-
tentially blocking DES.

Conflicts are difficult to analyse in a modular way
(Wong et al., 2000). For example, although each
of the two DES in fig. 1 is nonblocking, they are
conflicting when run in parallel (fig. 2). In compu-
tation tree logic (CTL) (Clarke et al., 1999), the
property of being nonblocking or nonconflicting is
expressed as

AGEFmarked state, (2)

where marked state is a propositional formula
identifying the states in which all involved DES
have completed their tasks. This formula is neither
in ∀CTL∗ nor in ∃CTL∗, which explains why
many known abstraction techniques (Clarke et
al., 1999) cannot be used for this kind of property.

3. FINDING CONFLICTS IN LARGE
SYSTEMS

3.1 The Problem

The aim of this paper is to find efficient algorithms
to determine whether a large system of concurrent
DES is blocking or not. The straightforward ap-
proach to do this is to construct and examine a
synchronous product such as

G1 ‖ G2 ‖ · · · ‖ Gn .

The check is done by exploring all reachable
states and checking whether a terminal state can
be reached from every reachable state. Using
symbolic representations such as BDDs (Bryant,
1986) or IDDs (Zhang and Wonham, 2002), this
approach has been used to analyse very large

models. Yet, the technique always remains lim-
ited by the amount of memory available to store
representations of the synchronous product.

An alternative approach avoids building the entire
synchronous product by analysing smaller subsys-
tems first. Assume, for example, that the blocking
DES in fig. 2 is the first component G1 of a large
system of concurrent DES. If it can be shown
that all components of the system can execute
the event sequence cmd timer reset, e.g., then it al-
ready follows that the entire system is blocking. In
order to determine whether this is the case with-
out constructing the entire synchronous product,
an incremental language inclusion check (Brandin
et al., 2004) can be used.

Further to the example, assume that the events
timer and reset are known never to be disabled
by any of the other components of the system.
In this case, the system is known to be blocking
if G1 can ever enter state (tim, idl): if G1 is in
this state, the entire system can execute the event
sequence timer reset and put G1 into the blocking
state (run, idl).

Therefore, the states (tim, idl), (run, run), and
(run, idl) are considered as states of certain con-
flicts of G1: any system that is to be nonconflict-
ing with G1 has to prevent G1 from entering these
states. In the following, these ideas are presented
in a more formal way using languages.

3.2 The Set of Certain Conflicts

If a DES G interacts with other systems, then its
event set Σ can be split into a set Υ of events that
are used only by G and are irrelevant to all other
systems, and a set Ω of events that can be shared
between G and other systems.

Σ = Ω ∪̇ Υ (3)

As seen in the above example, if G is blocking,
then there exists a set of strings accepted by G

which, when accepted by another DES H running
in parallel with G, causes G and H to be con-
flicting. These strings constitute the set of certain
conflicts.

Definition 1. Let G be a DES over Σ, and Ω ⊆
Σ. A string s ∈ Ω∗ is said to be Ω-blocking
for G, if, for every DES H over Σ such that Ω
is adequate for H and s ∈ L(H), the DES G

and H are conflicting. Otherwise s is said to be
Ω-nonblocking for G.

To be Ω-blocking is a property of strings—for s to
be Ω-blocking, every DES H with the mentioned
properties has to be conflicting with G.



Definition 2. For a DES G over Σ, and Ω ⊆ Σ,

Conf(G,Ω) = { s ∈ Ω∗ |

s is Ω-blocking for G };

NConf(G,Ω) = { s ∈ Ω∗ |

s is Ω-nonblocking for G }.

Conf(G,Ω) is the set of certain conflicts of G

with respect to Ω. Its complement NConf(G,Ω)
is the set of all strings s of shared events for which
there exists another system which accepts s and
is nonconflicting with G.

Let G1 be the DES in fig. 2, and assume Υ =
{reset, timer}. Then every DES H that has the
events in Υ selflooped in all states and accepts
autovr or cmd must be conflicting with G1. Thus,

Conf(G1,Ω) = {autovr, cmd}Ω∗. (4)

The following result shows how the set of certain
conflicts can simplify conflict analysis: another
system can only be nonconflicting with a DES G

if the behaviour of that system remains confined
by NConf(G,Ω). This gives a necessary condition
for complex systems to be nonconflicting.

Proposition 3. Let G and H be two DES over Σ,
and let Ω ⊆ Σ be adequate for H. If G and H are
nonconflicting then

PΩ(L(H)) ⊆ NConf(G,Ω). (5)

Proof. Assume G and H are nonconflicting, and
let s ∈ PΩ(L(H)). Since Ω is adequate for H, it
follows that s ∈ P−1

Ω
(PΩ(L(H))) = L(H). Hence,

s is Ω-nonblocking for G, and s ∈ NConf(G,Ω)
by definition. 2

Consider once more the example subsystem G1

in fig. 2, which is part of a larger system G1 ‖
· · · ‖ Gn. The events in Υ = {timer, reset} are
not used in G2, . . . ,Gn. Therefore, the above
result says that, if the behaviour of G2, . . . ,Gn

can be shown not to be contained in the lan-
guage NConf(G1,Ω), i.e. if it is not the case that

L(G2 ‖ · · · ‖ Gn) ⊆ P−1

Ω
(NConf(G1,Ω)), (6)

then the entire system must be conflicting.

The example discussed above was taken from a
faulty model of an actual automotive central lock-
ing system (KorSys project), which consists of
54 components and has a reachable state space of
7.5×108 states. The two components in fig. 1 that
are responsible for the conflict were found and
combined automatically, by appropriate heuris-
tics, and an incremental language inclusion check
quickly revealed that the event cmd can indeed
be executed by the entire system, after executing

autovr

cmd

reset

restart

timeout

timer

autovr

cmd

(ini, idl) conflict

Fig. 3. A DES which is conflict equivalent to fig. 2.

only one other event. The error was that the
event reset in the timer model of fig. 1 had been
forgotten when modelling the rest of the system.
This example demonstrates that proposition 3
provides a very powerful means to detect conflicts
in large systems.

3.3 Simplifying Subsystems

If condition (6) is true, it remains unknown
whether the composed system G1 ‖ · · · ‖ Gn is
conflicting or not. In this case, the information
about the certain conflicts of G1 can still be used
to simplify conflict analysis. The component G1

can be replaced by a simpler model G
′

1, and then
the system G

′

1 ‖ G2 ‖ · · · ‖ Gn can be considered
for analysis.

The prerequisite for such an approach to work is
that the replacement G

′

1 preserves all possibilities
of G1 being in conflict with the rest of the
system. This suggests to use conflicts to define a
testing semantics along the lines of (Brinksma et
al., 1995).

Definition 4. Two DES G1 and G2 over Σ are
called conflict equivalent with respect to Ω ⊆ Σ if,
for every DES H such that Ω is adequate for H,
G1 and H are nonconflicting if and only if G2

and H are nonconflicting.

The DES in fig. 3 is conflict equivalent to the DES
in fig. 2: any DES H, which does not use the
events timer and reset, is conflicting with either
of these two DES if and only if it ever accepts one
of the events autovr or cmd. Therefore, fig. 2 can
be replaced by the smaller fig. 3 before starting a
conflict check of the entire system. Furthermore,
other components of the system may be replaced
in a similar way.

The simplification of fig. 2 to fig. 3 was based
on the observation that, as far as conflicts are
concerned, all the strings that bear a certain
conflict for a DES can be treated in the same way.
In a state transition diagram, this can be done by
collapsing all states representing certain conflicts
into a single state where all events are possible.

The following two results justify this idea. Propo-
sition 5 states that strings from the set of cer-
tain conflicts can be added to the language L(G)
of a DES without affecting its possible conflicts.



Proposition 6 states that certain conflicts do not
represent proper completed tasks, and therefore
can be removed safely from the language M(G).
Fig. 3 can be obtained from fig. 2 by first applying
proposition 6 and then proposition 5.

Proposition 5. Let G be a DES over Σ, and Ω ⊆
Σ. Then G is conflict equivalent to G

′ with
respect to Ω, where

L(G′) =L(G) ∪ P−1

Ω
(Conf(G,Ω));

M(G′) =M(G).

Proof. Let H be a DES over Σ such that Ω is
adequate for H.

First assume that G
′ and H are conflicting.

Then there exists s ∈ L(G′) ∩ L(H) such that
s /∈ M(G′) ∩M(H) = M(G) ∩M(H) since
M(G′) = M(G). If s ∈ L(G), it follows immedi-
ately that G and H are conflicting. Otherwise,
if s /∈ L(G), note that s ∈ L(G′) and there-
fore s ∈ P−1

Ω
(Conf(G,Ω)). Then s′ = PΩ(s) ∈

Conf(G,Ω), and s′ ∈ L(H) since s ∈ L(H) and
Ω is adequate for H. By definition of Conf(G,Ω),
G and H are conflicting.

Now assume that G
′ and H are nonconflicting.

To prove that G and H are nonconflicting, let
s ∈ L(G)∩L(H) ⊆ L(G′)∩L(H). Since G

′ and H

are nonconflicting, there exists t ∈ Σ∗ such that
st ∈ M(G′)∩M(H) = M(G)∩M(H). Thus, G

and H are nonconflicting. 2

Proposition 6. Let G be a DES over Σ, and Ω ⊆
Σ. Then G is conflict equivalent to G

′ with
respect to Ω, where

L(G′) =L(G);

M(G′) =M(G) ∩ P−1

Ω
(NConf(G,Ω)).

Proof. Let H be a DES over Σ such that Ω is
adequate for H.

First assume that G and H are nonconflicting.
To prove that G

′ and H are nonconflicting, let
s ∈ L(G′) ∩ L(H) = L(G) ∩ L(H). Since G

and H are nonconflicting, there exists t ∈ Σ∗ such
that st ∈ M(G) ∩ M(H) ⊆ L(H). Since Ω is
adequate for H, PΩ(st) ∈ L(H) is Ω-nonblocking
for G. By definition of NConf(G,Ω) it follows
that PΩ(st) ∈ NConf(G,Ω). Thus, st ∈ M(G)∩
P−1

Ω
(NConf(G,Ω)) ∩M(H) = M(G′) ∩M(H),

i.e., G
′ and H are nonconflicting.

Now assume that G
′ and H are nonconflicting.

To prove that G and H are nonconflicting, let
s ∈ L(G)∩L(H) = L(G′)∩L(H). Since G

′ and H

are nonconflicting, there exists t ∈ Σ∗ such that
st ∈ M(G′)∩M(H) ⊆ M(G)∩M(H). Thus, G

and H are nonconflicting. 2

4. A FIXED POINT ALGORITHM

This section provides an operational characteri-
sation and an algorithm to compute the set of
certain conflicts. The set of certain conflicts can
be characterised as a fixed point of the following
operator which manipulates languages over Ω.

Definition 7. Let G be a DES over Σ, and Ω ⊆ Σ.
Then define the mapping

ΞG,Ω : 2Ω
∗

→ 2Ω
∗

;

X 7→ PΩ(L(G) \M(G) \ P−1

Ω
(X) ) Ω∗.

This operator is designed to compute the set
of certain conflicts of the DES G iteratively.
Iteration starts with the empty language X0 = ∅
which is extended repeatedly, until the complete
set Conf(G,Ω) is obtained. The first step yields

X1 = ΞG,Ω(∅) = PΩ(L(G) \M(G)) Ω∗,

the set of all strings that resemble, considering
only the shared events from Ω, strings that can-
not be extended to a completed task, plus any
continuations of such strings. The set of certain
conflicts can be shown to be the least fixed point
of this iteration.

Proposition 8. Let G be a DES over Σ, and Ω ⊆
Σ. Then Conf(G,Ω) = lfp ΞG,Ω.

The proof uses the fixed point theory of (Tarski,
1955) and is technical. While the operator ΞG,Ω

can be shown to be monotonic, it is not necessarily
continuous, and therefore the iteration is not
guaranteed to converge in all cases.

If the DES to be analysed can be represented by a
finite-state transition diagram, then the iteration
does converge and terminate in a finite number of
steps. In this case, it is convenient to use sets of
states X ′

i instead of languages Xi in the algorithm.
In the example of fig. 2, the iteration terminates
with the second step, producing

X ′

0 = ∅;

X ′

1 = {(run, idl), (run, run), (tim, idl)};

X ′

2 = X ′

1.

Not all state transition diagrams can be manipu-
lated in such a simple way. A single state may be
reachable via different sequences of events which
may need to be treated separately.

Such states can be split on the fly or in a pre-
processing step. It is possible to compute a repre-
sentation P of the language PΩ(L(G)) first, using
subset construction (Hopcroft et al., 2001), and
then use the synchronous product G ‖ P as input
for the algorithm. This shows that the procedure
outlined above can indeed be used to compute the
set of certain conflicts for a finite-state DES.



5. CONCLUSION

The set of certain conflicts for a discrete event
system has been characterised as the largest set
of behaviours which, when accepted by another
system running in parallel, definitely cause a live-
lock or deadlock. This set can help to detect
conflicts in complex models of reactive systems
without exploring their complete state space, and
to simplify the analysis of conflicts in general.

While the abstraction techniques proposed give
very powerful reductions for systems that actually
have conflicts, i.e. deadlocks or livelocks, the effect
on nonconflicting systems remains limited. Al-
though some simplification is possible, it remains
necessary to compose all components of a system
in order to prove that it actually is nonconflicting.

In the future, the author plans to study abstrac-
tion techniques which also deal with behaviours
that are not certain conflicts, and obtain better
reductions for nonconflicting systems. The goal is
to develop efficient techniques for verifying com-
plex systems to be conflicting or nonconflicting.

REFERENCES

Åkesson, K., H. Flordal and M. Fabian (2002).
Exploiting modularity for synthesis and
verification of supervisors. In: Proc. 15th
IFAC World Congress on Automatic Control.
Barcelona, Spain.

Brandin, Bertil A., Robi Malik and Petra Malik
(2004). Incremental verification and synthesis
of discrete-event systems guided by counter-
examples. IEEE Trans. Contr. Syst. Technol.
12(3), 387–401.

Brandin, Bertil and François Charbonnier (1994).
The supervisory control of the automated
manufacturing system of the AIP. In: Proc.
Rensselaer’s 4th Int. Conf. Computer Inte-
grated Manufacturing and Automation Tech-
nology. Troy, NY, USA. pp. 319–324.

Brinksma, Ed, Arend Rensink and Walter Vogler
(1995). Fair testing. In: Proc. 6th Int. Conf.
Concurrency Theory, CONCUR ’95 (Insup
Lee and Scott A. Smolka, Eds.). Vol. 962
of LNCS. Springer. Philadelphia, PA, USA.
pp. 313–327.

Bryant, Randal E. (1986). Graph-based algo-
rithms for Boolean function manipulation.
IEEE Trans. Comput. 35(8), 677–691.

Cassandras, C. G. and S. Lafortune (1999). Intro-
duction to Discrete Event Systems. Kluwer.

Clarke, Jr., Edmund M., Orna Grumberg and
Doron A. Peled (1999). Model Checking. MIT
Press.

Dams, Dennis, Rob Gerth and Orna Grum-
berg (1997). Abstract interpretation of reac-

tive systems. ACM Trans. Programming Lan-
guages and Systems 19(2), 111–149.

Dietrich, P., R. Malik, W. M. Wonham and B. A.
Brandin (2002). Implementation considera-
tions in supervisory control. In: Synthesis and
Control of Discrete Event Systems (B. Cail-
laud, P. Darondeau, L. Lavagno and X. Xie,
Eds.). Kluwer. pp. 185–201.

Hoare, C. A. R. (1985). Communicating Sequen-
tial Processes. Prentice-Hall.

Hopcroft, John E., Rajeev Motwani and Jef-
frey D. Ullman (2001). Introduction to Au-
tomata Theory, Languages, and Computa-
tion. Addison-Wesley.

Leduc, R. J. and W. M. Wonham (1995). PLC
implementation of a DES supervisor for a
manufacturing testbed. In: Proc. 33rd Aller-
ton Conf. Communication, Control and Com-
puting. Monticello, Illinois. pp. 519–528.

Leduc, R. J., B. A. Brandin and W. M. Won-
ham (2000). Hierarchical interface-based non-
blocking verification. In: Proc. Canadian
Conf. Electrical and Computer Engineering.
pp. 1–6.

Lee, Sang-Heon and Kai C. Wong (2002). Struc-
tural decentralised control of concurrent
discrete-event systems. European J. Control
8, 477–491.

Malik, Petra (2003). From Supervisory Control to
Nonblocking Controllers for Discrete Event
Systems. PhD thesis. University of Kaisers-
lautern. Kaiserslautern, Germany.

Ramadge, Peter J. G. and W. Murray Wonham
(1989). The control of discrete event systems.
Proc. IEEE 77(1), 81–98.

Tarski, Alfred (1955). A lattice-theoretical fix-
point theorem and its applications. Pacific J.
Math. 5(2), 285–309.

Wong, K. C. and W. M. Wonham (1998). Modu-
lar control and coordination of discrete-event
systems. Discrete Event Dynamic Systems:
Theory and Applications 8(3), 247–297.

Wong, K. C., J. G. Thistle, R. P. Malhame and
H.-H. Hoang (2000). Supervisory control of
distributed systems: Conflict resolution. Dis-
crete Event Dynamic Systems: Theory and
Applications 10, 131–186.

Wonham, W. M. (1999). Notes on control
of discrete event systems. Systems Con-
trol Group, Dept. of Electrical Engineer-
ing, University of Toronto, Ontario, Canada;
at http://www.control.utoronto.ca/ un-
der “Research”.

Zhang, Z. H. and W. M. Wonham (2002). STCT:
An efficient algorithm for supervisory control
design. In: Synthesis and Control of Discrete
Event Systems (B. Caillaud, P. Darondeau,
L. Lavagno and X. Xie, Eds.). Kluwer. pp. 77–
100.


