
A Framework for Collaborative Writing with Recording and
Post-Meeting Retrieval Capabilities

Matt Bouamrane† David King‡

†Department of Computer Science
Trinity College
Dublin, Ireland

{bouamrane,luzs}@cs.tcd.ie

Saturnino Luz† Masood Masoodian‡

‡Department of Computer Science
The University of Waikato

Hamilton, New Zealand
{dnk2,m.masoodian}@cs.waikato.ac.nz

ABSTRACT
From a HCI perspective, elucidating and supporting the con-
text in which collaboration takes place is key to implement-
ing successful collaborative systems. Synchronous collab-
orative writing usually takes place in contexts involving a
“meeting” of some sort. Collaborative writing meetings can
be face-to-face or, increasingly, remote Internet-based meet-
ings. The latter presents software developers with the pos-
sibility of incorporating multimedia recording and informa-
tion retrieval capabilities into the collaborative environment.
The collaborative writing that ensues can be seen as an activ-
ity encompassing asynchronous as well as synchronous as-
pects. In order for revisions, information retrieval and other
forms of post-meeting, asynchronous work to be effectively
supported, the synchronous collaborative editor must be able
to appropriately detect and record meeting metadata. This
paper presents a collaborative editor that supports record-
ing of user actions and explicit metadata production. Design
and technical implications of introducing such capabilities
are discussed with respect to document segmentation, con-
sistency control, and awareness mechanisms.

CATEGORIES AND SUBJECT DESCRIPTORS
H.5.3 [Group and Organization Interfaces]: Computer-
supported cooperative work; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems

GENERAL TERMS
Collaborative Editing, Multimedia Indexing and Retrieval

KEYWORDS
Synchronous Collaboration, Infrastructure, Usability

INTRODUCTION
The final version of a text is rarely the sole outcome of col-
laborative writing. Arriving at the final text is often a la-
borious process which involves extensive discussion, access

to external data sources, and many revisions [7]. Although
the product of these activities is certainly reflected in the fi-
nal text, the process by which collaborators agree on a final
form is seldom recorded anywhere other than in the group’s
collective memory. In scenarios described elsewhere [8] as
joint writing, synchronous interaction acts as a focal point
to a number of activities performed prior to the collaborative
editing session. While there is widespread belief that record-
ing audio, and to a lesser extent video, produced during such
synchronous sessions provides valuable additional informa-
tion sources for collaborators [5, 6], little research has been
done on how the design of a synchronous collaborative editor
should be adapted to allow effective integration of the editor
into an environment that incorporates multimedia recording
and information retrieval.

In order to address that issue we have designed and imple-
mented RECOLED (REcording COLlaborative EDitor), an
XML-based collaborative editing environment that incorpo-
rates detailed logging of text editing actions. Our main de-
sign assumption is that, recorded text editing sessions com-
bined with speech recordings can provide a valuable resource
for post-meeting information retrieval and therefore support
the asynchronous phase of the writing process. The focus
of research in collaborative editing has generally been on
groupware distribution architectures, centralised, replicated
or hybrid [9], or on concurrency and consistency issues [10].
This paper, on the other hand, focuses on the issue of col-
lecting meeting metadata. In what follows we describe the
idea of annotating and timestamping text segments in ongo-
ing meetings, and discuss the requirements and design is-
sues that arise when a collaborative editor is immersed in an
environment that encompasses meeting recording and post-
meeting retrieval capabilities.

BACKGROUND
The general collaborative writing scenario assumed in this
paper is one in which geographically dispersed users work
on a shared editor supported by an audio (speech) channel
[4]. Since in the scenario we have investigated collabora-
tors are not assigned specific a priori roles, the processes
of communication, discussion, argumentation, clarification
and negotiation are critical to successful collaborative writ-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195730?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ing. The audio channel presents a suitable medium for those
processes. It does not require extra screen real estate, and it is
the fastest and arguably the richest and most fluid medium of
human-to-human communication. Increases in bandwidth,
reduced prices and improved performances of hardware as
well as the development of powerful sound software all con-
tribute to making audio an ideal complement for a shared
editor in collaborative writing tasks.

The ability to record, index and retrieve audio and textual
contents produced during collaborative writing sessions is
also regarded as a vital aspect of the scenario described
above. In [2], we presented a model for multimedia infor-
mation visualisation and retrieval which uses temporal map-
pings between text and speech segments as a basis for a tool
that supports off-line browsing of collaboratively produced
text and related audio contexts. As an example of the inter-
relatedness of text and audio in such recordings, consider the
following collaboratively written text fragments (t1 and t2)
extracted from a corpus of student-supervisor meetings [3]:

(t1) Is the mobile visualization an improvement
over a simple text based itinerary? (simple
conventional paper-base) (clarify what is be-
ing compared!)

(t2) (also find out if general user preference exist
as far as a number of interface options i. do
they like clocks on turning points or on the
line; [...]

The first segment (t1) is temporally related to six audio seg-
ments. In one of those audio segments (s3), the speaker
makes an elliptical reference to the second text segment (t2),
as shown in the following transcribed speech fragment:

(s3) ok [pause] because [pause] yes, to start with
you’re saying that over here [telepoints at
(t1)] but as you get down to these parts
[telepoints at (t2)] you are talking about text-
based interfaces on the mobile phone versus
the graphical form on the phone [...]

Text segment (t2), by its turn, is linked to another seven au-
dio segments, each of which might be linked to a number
of text segments, and so on. The nature of these text-audio
links is such that it would be nearly impossible for a user to
perform meaningful post-meeting revisions without access-
ing both media. Annotation and timestamping of text events
is therefore a vital step of content indexing in such contexts.
RECOLED uses XML tags to identify and timestamp differ-
ent text segments. Figure 1 shows an example of annotated
text document. Users, actions and timestamps are identified
for each text segment, assumed in this case to correspond to
paragraphs.

DESIGN ISSUES
As mentioned above, the most distinctive feature of the
shared editors currently under development is the generation

<?xml version="1.0"?>

<!DOCTYPE comapdoc SYSTEM "file:comapdoc.dtd">

<?xml-stylesheet type="text/css" href="comapdoc.css"?>

<comapdoc>

<meeting date="20030304">

<description>

Student-supervisor meeting: User testing of a visualisation

tool ...

</description>

<!--participant details omitted-->

</meeting>

<section level="1">

<segment id="1">

<header level="1">

<timestamp agent="A" action="insert" start="35" end="36"/>

Aim of Testing

</header>

</segment>

<segment id="2">

<timestamp agent="A" action="insert" start="35" end="36"/>

<timestamp agent="A" action="point" start="83" end="86"/>

<timestamp agent="A" action="point" start="100" end="104"/>

<timestamp agent="B" action="point" start="122" end="125"/>

<timestamp agent="B" action="point" start="146" end="148"/>

<timestamp agent="A" action="modify" start="167" end="183"/>

<timestamp agent="A" action="point" start="208" end="210"/>

<timestamp agent="A" action="point" start="473" end="477"/>

Is the mobile visualization an improvement over a simple text based itinerary?

(simple conventional paper-base)

(clarify what is being compared!)

</segment>

<segment id="3">

<timestamp agent="A" action="insert" start="35" end="36"/>

<timestamp agent="A" action="point" start="235" end="238"/>

<timestamp agent="B" action="modify" start="247" end="257"/>

<timestamp agent="B" action="modify" start="268" end="281"/>

<timestamp agent="A" action="point" start="273" end="274"/>

<timestamp agent="A" action="point" start="406" end="411"/>

<timestamp agent="A" action="point" start="437" end="446"/>

<timestamp agent="A" action="point" start="461" end="465"/>

<timestamp agent="A" action="point" start="473" end="477"/>

Hypothesis: Visualization once understood by user allows the user to do all tasks done

by text method just as well but also allows user to make estimates and determine how

events interrelate to each other in ways that a text only interface could not.

</segment>

.

.

.

Figure 1: RECOLED internal document format

of metadata and timestamps. Editing operations on shared
editors are of a complex nature due to the distributed nature
of the applications and the concurrent access to a shared doc-
ument. Timestamping introduces further programming com-
plexities in the editor design. However, it builds upon exist-
ing technical features of shared editors. Timestamping is a
parallel task to common shared editing operations and does
not interfere with the nature of theses operations. More pre-
cisely, it is a subordinate task whose purpose is to accurately
describe editing operations whenever they take place.

Metadata and Timestamping Requirements
One of the key requirements to timestamping is that it should
be transparent to the users, and introduce no further con-
straints or complexity to the editing task. In other words,
all operations theoretically possible on previous shared edi-
tors should be possible with the inclusions of timestamps. In
this section, we examine how this functionality fits into ex-
isting CSCW design issues [1], and how it might sometimes
require additional consideration.

Low response time When designing a shared editor, doc-
uments are generally replicated. Updates are performed lo-
cally in order to achieve a low response time and then mul-
ticast to the other peers or sent to a central server for propa-
gation to various clients. All these operations are transparent
to the users. Timestamping, in the context of this paper, in-
volves identifying those operations performed by a user that
are deemed relevant and to trigger an event which automati-



cally generates a corresponding timestamp. This can be per-
formed at the client side (replicated architecture) or at the
server side (centralised or semi-centralised architecture). In
either case, at current processing speeds, the time overhead
of generating and managing timestamps is negligible in com-
parison to overall system performance constraints.

Awareness Awereness is traditionally implemented by a
list of users, and by the use of telepointers and other aware-
ness widgets. In this case, timestamping is used to retain
information about gestures performed. As we will see below
the time and occurrences of gestures take a very significant
proportion of meeting time. RECOLED introduces a num-
ber of enhancements to existing awareness mechanisms in
order to exploit this fact. These enhancements are described
in detail below.

Concurrency control There are various approaches to
concurrency issues when designing a shared editor. In the
case of locking, some part of the document becomes only
accessible to one user. In this case timestamping merely
records the editing operation being currently performed by
the user holding the lock and does not interfere with this
process. Timestamping applied to other concurrency mech-
anisms has not been explored and would need further re-
search.

Reversible operations Undo operations are of complex
nature in group editing and this option has yet to be imple-
mented in our editor. In terms of timestamping, allowing un-
dos to happen while keeping track of these operations could
in some instances offer useful clues for post-meeting pro-
cessing.

Text Segmentation and Granularity
Currently we identify three significant operations for times-
tamping:

• Insertion, which describes the creation of a new text
segment,

• Modification, which describes changes occurring in an
existing segment, and

• Gesturing which describes the use of a telepointer or
other deictic widgets used on one or more segments.

Further nuances such as Deletion timestamping could be in-
troduced if needed. In our current implementation, a Modifi-
cation action does not discriminate between the insertion of
further text in a segment or deletion of some part of the seg-
ment. This is mainly because we are currently interested in
measuring a level of activity on a particular paragraph rather
than obtaining a completely accurate description of every
editing operations.

The format of timestamps used in RECOLED, as illustrated
in Figure 1, consists of attributes for agent, action,
start, and end. The start and end record the dura-
tion of an action in seconds, measured from the start of the

meeting.

The text unit in our editor is a paragraph, defined as a
segment of text separated by at least two consecutive new-
line characters. Changes on a single line would be too fine
grained for post-meeting processing, and therefore, the gran-
ularity for the detection and recording of a change has been
assumed to be the paragraph. Timestamps are generated
when an editing or gesturing (telepointing) operation takes
place and are associated with the paragraph in which they
were generated. Hence, each paragraph maintains a linked
list of all timestamps describing the editing operations which
occurred on a particular paragraph.

To this end, a segmentation method has been implemented on
the clients. If a text is loaded prior to the meeting, the text is
parsed and segmented into paragraphs. Otherwise, the inser-
tion of text after two or more consecutive newlines triggers
the creation of a new paragraph. In order to accurately detect
the nature of changes so as to generate the correct times-
tamps, each client maintains a state of the current document
with the number of all paragraphs and their content. Merging
or splitting existing paragraphs introduce further difficulties
in maintaining a coherent list of timestamps and are ongoing
research issues.

Another issue lies in establishing timestamp time bound-
aries. Although detecting the start of an editing operation
is relatively easy, determining the end leaves more scope for
ambiguity and eventually has to be decided by a hard choice
in the design of the editor. If a user writes a sentence and then
stops for a few seconds to think about it and then resumes
writing, does that constitute one or two modifications? In this
case, should we generate one or two timestamps? A thresh-
old of a few seconds of inactivity has to be arbitrarily chosen
in order for the timestamping to operate efficiently. Eventu-
ally, this issue seems to be secondary as post-processing of
timestamps is likely to merge editing operations of similar
nature which are closely related in time.

IMPLEMENTATION
We have developed two alternative prototypes which em-
ploy different architectures, consistency control strategy and
awareness mechanisms. These alternative implementations
have enabled us to assess the effects of various techniques
on the metadata collection and timestamping functionality as
well as general usability issues. In what follows we discuss
how certain design choices may impact on these factors, and
describe the current choice of prototype in greater detail.

System Architecture and Timestamping
One of our prototypes uses a fully replicated peer-to-peer ar-
chitecture. Timestamping takes place on the client side and
the timestamp is multicast along with the editing operation
to other peers. This requires a synchronisation algorithm
among peers. The user interface comprises two windows:
the shared view which is non editable and the personal view



Figure 2: Synchronous collaboration in RECOLED

where the user can perform editing operations. When the
user deems his operation to be finished, he can trigger the
sending of the modified paragraph. In this case, the times-
tamp measures the time elapsed between the beginning of the
editing operation and the sending of the modification. When
using a telepointer, the information is sent immediately and
the end of the timestamp corresponds with the release of the
widget.

The second prototype was designed using a semi-centralised
architecture. In this case, timestamping takes place at the
server and is subordinate to an automatic, optimistic locking
mechanism. When a user edits a paragraph, the server will
automatically assign the client with a lock on this paragraph,
unless the editing request is refused. The data unit in this
case is the character which makes this implementation highly
responsive as changes are propagated in real time. After a
few seconds of inactivity, the server releases the lock and
a timestamp is generated. This second choice introduces a
small latency in the capture of timestamps. However, it offers
more responsiveness and seems to be more natural to users.
It also appears to minimise possible editing conflicts. We
describe this second implementation in greater detail in the
next section.

RECOLED
The basic architecture of RECOLED consists of a single
server and several clients, communicating through TCP-IP
connections. The system is semi-centralised in that clients
cannot directly communicate with each other and must re-
lay all communication through the server. However it is
also semi-distributed in that each client maintains a copy of
the document on which modifications can be made instantly.

This ensures high local responsiveness regardless of network
conditions.

To maintain consistency between the copies of the document,
a paragraph based concurrency control mechanism is used.
This organises the document into paragraphs, so that modi-
fications are made on these rather than on the document as
a whole. A locking scheme ensures that each paragraph can
only be modified by one client at a time. This locking scheme
is optimistic in order to maintain local responsiveness.

Unfortunately this locking scheme introduces two problems
in terms of the user’s perception of the system:

• The user will not have complete access to the document
at all times.

• There will be occasions when the user’s edits are not
carried out. This will occur when an assumed lock is
denied by the server.

These problems are quite significant, particularly because
they are very difficult for the user to anticipate as they are
caused by other users’ interactions with the document. If left
unchecked these two problems would result in very negative
and frustrating use. RECOLED takes three main approaches
towards minimising the effects of these issues.

Reduce the likelihood of these issues being encountered
RECOLED seeks to reduce the likelihood that users will at-
tempt to modify the same region of text, which is the root
cause of both of these problems. This is achieved by the use
of group awareness mechanisms which allow users to coor-
dinate their access to the document more effectively. Much
of the interface is directed towards providing different types



Total Editing Total Pointing Editing Pointing
Operations Operations Mean Duration (in s) Mean Duration (in s)

268 54 4.2 8.5
64 22 5.1 6.4
128 36 3.9 5.7
84 22 7.2 6.2

Table 1: Detail of Editing Operations on 4 Separate Meetings

of group awareness.

For instance, the avatars on the right hand side of Figure 2
identify other users in the group and provide a rough indi-
cation of their current activities. They also provide a colour
key as each user is assigned a unique colour which is used
extensively within the interface. Shared scrollbars to the left
of the avatars show where each user is located in the docu-
ment and how much of the document they can see. Within
the document itself, ownership of modifications is shown by
shading text in the colour of the person who typed it.

Highlight these issues when they are encountered
RECOLED highlights the effects of the locking mechanism
by transparently showing the mechanism itself in the inter-
face. This is achieved by using the regions to the left of each
paragraph (Figure 1) which change colour to indicate the sta-
tus of the paragraph lock. White indicates that the paragraph
is unlocked, and the user is free to edit it. Grey indicates that
a lock has been requested but has not yet been confirmed,
which means that there is a chance that any modifications
to this paragraph will be ignored. Any other colour indicates
that the paragraph is exclusively locked by someone else who
is represented by that colour. A locked paragraph cannot be
edited by anyone other than the current owner. However, the
lock is automatically released if the owner is not active for a
specific period of time.

Allow users to communicate directly to avoid or resolve
conflicts These issues become much less significant when
users are given the means to communicate directly and effi-
ciently. Because of this, RECOLED is intended to be used
in conjunction with the Robust Audio Tool (RAT) [11]. With
the flexibility, richness and efficiency of oral communication,
it is expected that users will be able to quickly resolve con-
flicts by negotiating access, making requests or suggestions,
or forming author/scribe relationships. RECOLED comple-
ments this by allowing users to gesture over the document,
which assists in pointing out locations and illustrating con-
cepts.

POST-MEETING PROCESSING
The idea behind capturing the time and nature of editing and
gesturing operations is that we believe that this information,
once processed, will highlight high level of activity and offer
some precious insight into the meeting’s focus. One interest-
ing and immediate result of our timestamps collections is that
it shows how important the use of gestures is in a meeting if

this option is available. Table 1 shows that in a sample of
four meetings from our corpus, the total number of pointing
operations account for a significant number of editing oper-
ations and are generally of longer duration. In other words,
gesturing takes a significant part in the collaborative writing
task. Awereness widgets are used to bring other participants
attention to some part of the text, and could also be used to
relate different segments together. Therefore, these gestures
are likely to highlight parts of text which participants focused
on or which were the subject of discussions. This valuable
information would be lost without the use of timestamps as
the final document would contain no records of gestures.

Metadata gathered using RECOLED has been effectively
used in two systems: HANMER, a HANdheld Meeting
BrowsER and COMAP, a desktop-based Content MAPper.
COMAP and HANMER employ timestamping and other
forms of metadata to define temporal and contextual neigh-
bourhoods, or mappings, between text and speech segments.
The concept of content mapping through neighbourhoods
has been shown to provide an effective way to support brows-
ing of synchronous audio and text produced in online col-
laborative writing sessions. A detailed description of those
systems is beyond the scope of this paper but the interested
reader is referred to the relevant publications [4, 2, 3].

A different prototype is also under development which uses
timestamps collected during a meeting in order to identify
speech and text clusters. Trials of the prototype have shown
promising results in terms of isolating high level of activity
during the meeting and in some cases, identifying semantic
clusters. In this case, gesturing has proved useful in high-
lighting links between non-contiguous text segments. The
implications of this fact are a subject of ongoing research.

CONCLUSIONS

We have presented a framework for the design of shared edi-
tors with the specific purpose of recording meeting metadata,
in terms of timestamping text and gesture activity. We have
discussed how this functionality fits in with existing shared
editor design requirements, and identified cases in which it
requires special consideration. RECOLED, a collaborative
editor which records meeting metadata has been described
in the context of possible applications for post-meeting pro-
cessing and text revision. Future work will explore how
timestamping interacts with more sophisticated concurrency
and consistency mechanisms, and investigate how the alter-



native timestamping and update propagation strategies dis-
cussed above affect user performance in meeting mining and
information retrieval tasks.

ACKNOWLEDGMENTS
This work has been supported by Enterprise Ireland through
a Basic Research Grant.

REFERENCES
1. C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some

issues and experiences. Commun. ACM, 34(1):39–58,
1991.

2. S. Luz and M. Masoodian. Compact visualisation of
multimedia interaction records. In Proceedings of the
7th International Conference on Information Visuali-
sation, pages 536–541, London, 2003. IEEE Computer
Society.

3. S. Luz and M. Masoodian. A mobile system for non-
linear access to time-based data. In Proceedings of Ad-
vanced Visual Interfaces AVI’04, pages 454–457. ACM
Press, 2004.

4. M. Masoodian and S. Luz. COMAP: A content map-
per for audio-mediated collaborative writing. In M. J.
Smith, G. Savendy, D. Harris, and R. J. Koubek, ed-
itors, Usability Evaluation and Interface Design, vol-
ume 1 of Proceedings of HCI International 2001,
pages 208–212, New Orleans, LA, USA, Aug. 2001.
Lawrence Erlbaum.

5. T. P. Moran, L. Palen, S. Harrison, P. Chiu, D. Kimber,
S. Minneman, W. van Melle, and P. Zellweger. “I’ll get
that off the audio”: A case study of salvaging multime-
dia meeting records. In Proceedings of ACM CHI 97

Conference on Human Factors in Computing Systems,
volume 1 of PAPERS: Enhancing, Finding, & Integrat-
ing Audio, pages 202–209, 1997.

6. C. M. Neuwirth, R. Chandhok, D. Charney, P. Wojahn,
and L. Kim. Distributed collaborative writing: A com-
parison of spoken and written modalities for review-
ing and revising documents. In Proceedings of ACM
CHI’94 Conference on Human Factors in Computing
Systems, volume 2, page 202, 1994.

7. S. Noël and J.-M. Robert. Empirical study on collab-
orative writing: What do co-authors do, use, and like?
Computer Supported Cooperative Work, 13(1):63–89,
2004.

8. I. R. Posner and R. M. Baecker. How people write to-
gether. In R. M. Baecker, editor, Readings in Computer
Supported Collaborative Work, pages 239–250. Mor-
gan Kaufmann, 1993.

9. J. Roth and C. Unger. An extensible classification
model for distribution architectures of synchronous
groupware. In M. Dieng, editor, Fourth International
Conference on the Design of Cooperative Systems,
pages 113–127. IOS Press, 2000.

10. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative edit-
ing systems. ACM Trans. Comput.-Hum. Interact.,
5(1):63–108, 1998.

11. Ucl network and multimedia research group. www-
mice.cs.ucl.ac.uk/multimedia.


	Introduction
	Design Issues
	Metadata and Timestamping Requirements
	Text Segmentation and Granularity

	Implementation
	System Architecture and Timestamping
	RECOLED

	Post-meeting processing
	Conclusions
	Acknowledgments

