UNIVERSITY OF WAIKATO

Hamilton New Zealand

Asymmetric Adjustment of Unemployment and Output in New Zealand: Rediscovering Okun's Law

Richard Harris and Brian Silverstone

Department of Economics Working Paper in Economics 2/00

May 2000

Richard Harris University of Durham 23/26 Old Elvet Durham, United Kingdom, DH1 3HY

Tel: +44 (0191) 374-7280 (direct); Fax: +44 (0191) 374-7289 Email: richard.harris@durham.ac.uk Web: http://www.durham.ac.uk/Economics

> Brian Silverstone University of Waikato Private Bag 3105 Hamilton, New Zealand

Tel: +64 (07) 838-4076 (direct); Fax: +64 (07) 838-4331 Email: silver@waikato.ac.nz Web: http://www.mngt.waikato.ac.nz/econ

Abstract

Okun's law - the relationship between unemployment and output - is one of the best known empirical regularities in macroeconomics. It is an important relationship because the way in which unemployment reacts to changes in output has implications for labour market and monetary policies and for forecasting. Most specifications of Okun's law assume a symmetric relationship: expansions and contractions in output have the same absolute effect on unemployment. In this paper, we test this assumption against the alternative view that the relationship is asymmetric. We use New Zealand data from 1978 to 1999 and contemporary econometric techniques including asymmetric modelling. Our main finding is that changes in unemployment and output in New Zealand are related in both the long run and the short run but only if an asymmetric approach is taken.

Key Words

Okun's law; asymmetric modelling; unemployment and output; New Zealand

JEL Codes C22, E32

Acknowledgements

We are grateful to Pierre Siklos for his advice and comments on the critical values of the tests and to Les Oxley for his helpful insights. Any errors or omissions are our responsibility.

1. Introduction

Okun's law - the relationship between unemployment and output - is one of the best known empirical regularities in macroeconomics (Okun 1962). It is an important relationship because the way in which unemployment reacts to changes in output has implications for labour market and monetary policies and for forecasting. Okun equations have been estimated for many countries. (See, for example, Attfield and Silverstone 1998, Kaufman 1988, Moosa 1997, Palley 1993 and Prachowny 1993 and Weber 1995).

Most specifications of Okun's law assume a symmetric relationship, that is, expansions and contractions in output have the same absolute effect on unemployment. In this paper, we test this assumption against the alternative view that the relationship is asymmetric. We use New Zealand data from 1978 to 1999 and contemporary econometric techniques including asymmetric modelling. Our main finding is that changes in unemployment and output in New Zealand are related in both the long run and the short run but only if an asymmetric approach is taken. Sections 2 and 3 outline Okun's law and its estimation, respectively. Section 4, 5 and 6 test for asymmetry, unit roots and cointegration while Section 7 provides estimates of the error-correction model. Section 8 concludes the paper.

2. Okun's Law

A typical textbook presentation of Okun's law is:

$$\Delta U = a + b \frac{\Delta Y}{Y} \qquad b < 0 \tag{1}$$

where

 ΔU = annual percentage point change in the unemployment rate $\Delta Y/Y$ = annual percentage change in real output.

Figure 1 is a scatter plot of ΔU against $\Delta Y/Y$ using quarterly New Zealand data for the 20 year period from 1979:1 to 1999:1. Equation 2 is an OLS estimate of equation 1 (where the brackets enclose the *t*-statistic). It is illustrated as the trend line in Figure 1.

$$\Delta U = 1.1 - \underbrace{0.4}_{(11.2)} \frac{\Delta Y}{Y} \qquad R^2 = 0.61 \tag{2}$$

Several insights are typically drawn from equation 2 and Figure 1. The most important insight relates to b or 'Okun's coefficient'. It says that a one percent change in output is

associated inversely with a 0.4 percentage point change in unemployment. Equation 2 also indicates that in the absence of output growth, unemployment will increase around one percentage point, while the rate of growth required to prevent unemployment from rising is around 2.75 percent.

Source: Data Appendix.

The reason for the less than proportionate change in (un)employment, argued Okun, is that changes in output are also associated with changes in participation, labour hours and capital utilisation. Prachowny (1993), using a production function in natural logs, shows that Okun's argument can be derived from a production function whereby either employment or unemployment (the labour force divided by employment) enters the function. In particular, let

$$y_t = \alpha(k_t + c_t) + \beta(\gamma n_t + \delta h_t) + \tau_t + \varepsilon_t$$

= $\alpha(k_t + c_t) + \beta[\gamma(l_t - u_t) + \delta h_t] + \tau_t + \varepsilon_t$ (3)

where

y = real output

- k = capital input
- c = capital utilisation
- n = number of workers (labour force less number unemployed)
- h = average hours worked
- l = labour force
- u = unemployment rate (*l*-*n*)
- τ = disembodied technological progress

 $\gamma, \delta, \alpha, \beta$ output elasticities

 ε = error term.

Equation 3 shows that labour services has three components: the labour force (l_t) , the unemployment rate (u_t) and hours worked (h_t) . The substance of Okun's law is to say that comovements in output (y_t) and unemployment dominate any adjustment in capital and its utilisation $(k_t + c_t)$, the labour force, hours worked and technological progress (τ_t) . Okun's relationship, as specified by Prachowny, comprises a long run and a short run, while Attfield and Silverstone (1998) show that Okun's coefficient can be interpreted as the slope coefficient in the cointegrating regression between output and unemployment.

3. The Basic Approach to Estimation

Figure 2 shows the log of the quarterly unemployment rate (log u) against the log of real output (log y) between 1978 and 1999. The relationship is clearly non-linear.

Source: Data Appendix.

Since log u and log y (hereafter u and y) are potentially non-stationary variables, the relationship between them has to be estimated using the cointegration approach. This presupposes that there is a long-run and a short-run relationship between the variables which, given that n = 2, implies that there is, at most, a single long-run relationship between u and y, that is:

$$u_t = \beta_0 + \beta_1 y_t + \beta_2 t + \varepsilon_t \tag{4}$$

where the time trend (*t*) is included to take account of long-run linear growth which the model cannot explain. (One reason for putting u_t on the far left of equation 4 is that subsequent tests establish that y_t is weakly exogenous). Assuming u_t and y_t are both I(1), then Engle and Granger (1987) show that cointegration exists if $\varepsilon_t \sim I(0)$. The long-run model set out in equation 4 is associated with a short-run error-correction model (ECM) based on symmetric adjustment, with the second-step Engle-Granger test for cointegration based on the OLS estimate of ρ in the following regression equation:

$$\Delta \hat{\varepsilon}_t = \rho \hat{\varepsilon}_{t-1} + v_t \qquad v_t \sim IID(0, \sigma^2) \tag{5}$$

If the null hypothesis of no cointegration H_0 : $\rho = 0$ can be rejected in favour of H_1 : $\rho < 0$, then equations 4 and 5 jointly imply the following ECMs:

$$A(L)\Delta u_t = B(L)\Delta y_{t-1} - (1 - \alpha_1)ec_{t-1} + \omega_t \qquad \omega_t \sim IID(0, \sigma^2)$$
(6a)

$$A(L)\Delta y_t = B(L)\Delta u_{t-1} - (1 - \alpha_2)ec_{t-1} + \omega_t^* \qquad \omega_t^* \sim IID(0, \sigma^2)$$
(6b)

where

$$ec_{t-1} = \hat{\varepsilon}_{t-1} = u_{t-1} - \hat{\beta}_0 - \hat{\beta}_1 y_{t-1} - \hat{\beta}_2 u_{t-1}$$

and A(L) and B(L) are polynomial lag operators.

Equation 6 implies that any short-run changes in unemployment and output due to disequilibrium $(1-\alpha_i)$ are strictly proportional to the absolute value of the error-correction term. If, however, adjustment to disequilibrium is asymmetric, then Enders and Granger (1998) and Enders and Siklos (1999) show that an alternative specification for equation 4 - called the threshold autoregressive (TAR) model - can be written as:

$$\Delta \hat{\varepsilon}_{t} = I_{t} \rho_{1} \hat{\varepsilon}_{t-1} + (1 - I_{t}) \rho_{2} \hat{\varepsilon}_{t-1} + v_{t}^{*} \qquad v_{t}^{*} \sim IID(0, \sigma^{2})$$
(7)

where I_t is the Heaviside indicator function based on the threshold value τ .

$$I_{r} = \begin{cases} 1 & \text{if } \hat{\varepsilon}_{r-1} \ge \tau \\ 0 & \text{if } \hat{\varepsilon}_{r-1} < \tau \end{cases}$$

$$\tag{8}$$

The asymmetric version of the ECM, then, replaces the single error-correction term in equation 6 (ec_{t-1}) with two error-correction terms multiplied by I_t and $(1-I_t)$ respectively.

Before proceeding to estimate the model implied by equations 4, 7 and 8, it is useful to test formally to see if u_t and y_t adjust in an asymmetric pattern with respect to the business cycle.

If our tests show that they are asymmetric, this will provide further evidence in favour of using the threshold adjustment model of cointegration. It will also ensure that our approach to estimating Okun's law is not misspecified.

4. Testing for Asymmetries in u_t and y_t

The method used to test for asymmetries is based on Sichel (1993). He uses a form of the test for skewness to consider if the detrended component of a time series variable exhibits 'deepness' and/or 'steepness' as opposed to following a symmetric pattern over the cycle. With 'deepness' there is an expectation that business cycle troughs will be deeper than cyclical peaks are tall (although the opposite is possible and can be tested). 'Steepness' occurs when business cycle contractions are steeper than expansions, although the form of this asymmetry can again be tested to see if expansions are steeper than contractions.

The method used to detrend each series follows Speight and McMillan (1998). They use the structural times-series (STM) approach of Harvey (1985) to decompose u_t and y_t into trend and cycle(s). Denoting the trend as u_t^* and y_t^* , it is possible to test $(u_t - u_t^*)$ and $(y_t - y_t^*)$ for asymmetries. Following Harvey (1995) and Koopman *et al.* (1995), a univariate time-series y_t can be modelled as:

$$y_t = \mu_t + \varphi_t + \varepsilon_t; \qquad \varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2)$$
(9)

where μ_t is the trend and φ_t is the cycle. The seasonal component and (potential) first-order autoregressive components are omitted, the former since the data are seasonally-adjusted. The trend is specified in stochastic form with slope β_t that also can vary stochastically.

$$\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \qquad \eta_t \sim NID(0, \sigma_\eta^2) \tag{10}$$

$$= \beta_{t-1} + \zeta_t \qquad \qquad \zeta_t \sim NID(0, \sigma_{\zeta}^2) \tag{11}$$

The cycle is given by

 β_t

$$\begin{bmatrix} \varphi_t \\ \varphi_t^* \end{bmatrix} = \rho_{\varphi} \begin{bmatrix} \cos \lambda_c & \sin \lambda_c \\ -\sin \lambda_c & \cos \lambda_c \end{bmatrix} \begin{bmatrix} \varphi_{t-1} \\ \varphi_{t-1}^* \end{bmatrix} + \begin{bmatrix} \kappa_t \\ \kappa_t^* \end{bmatrix}$$
(12)

where $0 < \rho_{\varphi} \le 1$ is a damping factor, λ_c is the frequency of the cycle in radians (where $2\pi/\lambda_c$ defines the period of the cycle). κ_t and κ_t^* are two mutually uncorrelated NID disturbances with zero mean and common variance, σ_{κ}^2 .

The model hyperparameters $(\sigma_{\varepsilon}^2, \sigma_{\eta}^2, \sigma_{\xi}^2, \sigma_{\kappa}^2, \rho_{\phi}, \lambda_c)$ can be estimated with STAMP (see Koopman *et al.* 1995) using the Kalman filter, with associated state space form used to construct estimates of the unobserved components $(\mu_t, \varphi_t, \text{ and } \beta_t)$. The results for u_t and y_t , based on imposing no prior restrictions and using seasonally adjusted data from 1978:1 to 1999:1, are presented in Table 1. Figures 3 and 4 show actual unemployment and real output, respectively, and their associated STM and Hodrick-Prescott trends.

Hyperparameters	Log Unemployment Rate ^a (u_t)	Log Real GDP ^b (y_t)
σ_{ε}^2 (×100)	2.7124	0
σ_η^2 (×100)	0	0
σ_{ξ}^2 (×100)	0.6895	0
Cycle 1		
σ_{κ}^{2} (×100)	1.2698	0.1169
$ ho_{arphi}$	0.9896	0.9647
λ_c	0.6015	1.1550
$2\pi/4\lambda_c$ (in years)	2.6115	1.3600
Cycle 2		
σ_{κ}^2 (×100)	1.6666	0.2029
$ ho_{arphi}$	0.9946	0.9677
λ_c	0.1896	0.5929
$2\pi/4\lambda_c$ (in years)	8.2866	2.6493
Cycle 3		
σ_{κ}^2 (×100)	-	0.5025
$ ho_{arphi}$	_	0.9862
λ_c	_	0.1305
$2\pi/4\lambda_c$ (in years)	-	12.0398
Diagnostic Tests		
Standard error	0.0517	0.0069
Normality $\chi^2(2)$	1.0740	0.7122
Heteroskedasticity $F(26, 26)$	0.6690	0.7550
Durbin-Watson	1.885	1.751
Box-Ljung Q-statistic $\chi^2(6)$	10.74	7.400
R^2	0.992	0.996
R_d^2 (based on differences)	0.590	0.570

^a Slope dummies starting in 1985.3 and 1988.4 and dummies for outliers in 1978.4, 1980.2, 1983.1, 1983.4 and 1985.2 were included.

^b A slope dummy starting in 1985.4 and outlier dummies for 1980.4, 1981.1, 1983.4, 1984.1 and 1986.4 were included.

Figure 3. Unemployment in New Zealand, Seasonally Adjusted, 1978-1999 Actual and STM and Hodrick-Prescott Trends, March Years, Percent

Source: Data Appendix.

Figure 4. Real GDP in New Zealand, Seasonally Adjusted, 1978-1999 Actual and STM and Hodrick-Prescott Trends, March Years, \$billion

Source: Data Appendix

Table 1 shows that u_t has a fixed (rather than stochastic) level but a stochastic slope. Koopman *et al.* (1995) refer to this special case as a 'smooth trend'. (See Figure 3). In contrast, the output series (y_t) has both a fixed level and slope and therefore the trend component in the model is deterministic. (See Figure 4). The variance of output, σ_{ε}^2 , is zero. In such cases it is possible to test if the corresponding trend and slope parameters in the state are zero. For the output model, both parameters are significantly different from zero. The trends obtained from the STM approach are shown in Figures 3 and 4 and compared to the corresponding trends obtained when using the Hodrick-Prescott (1980) filter. The latter is very close to fitting a natural cubic spline with bandwidth 1600.

In the unemployment model, two cycles were obtained with periods of 2.6 and 8.3 years. There are three cycles in the output series, one very short at 1.4 years, a second cycle at 2.6 years, and a much longer cycle of over 12 years. Both models are correctly specified as shown by the various diagnostic tests reported in Table 1. The resulting composite cycles for u_t and y_t , when detrended and expressed as $(u_t - u_t^*)$ and $(y_t - y_t^*)$, show a high degree of correspondence as indicated by Figure 5.

Figure 5. Cyclical Unemployment and Real GDP in New Zealand, 1978-99 Quarterly, March Years

Source: Data Appendix.

Having obtained detrended series for each of the variables being considered, and denoting such a series by x_t , we tested for asymmetry using a 'deepness' test. This involved regressing

$$z_t = (x_t - \overline{x})^3 / \sigma(x)^3 \tag{13}$$

on a constant and computing the Newey-West (1987) asymptotic heteroskedasticity and autocorrelation consistent standard error (using a 'Parzen window' of one third of the

sample). Similarly, the 'steepness' test is the same as equation 13, but replacing x_t with Δx_t . The results obtained are presented in Table 2. These results suggest that the height and depth of the unemployment cycle is fairly symmetric, but that there is contractionary steepness (given that the unemployment cycle is negatively related to the output cycle). In contrast, the real GDP cycle is typified by negative skewness (hence the trough is deeper than the boom is tall) and expansionary steepness. Thus for both series, there is evidence of asymmetric adjustment across the business cycle.

Variable	$\log z_t$	a.s.e	<i>p</i> -value	$\log \Delta z_t$	a.s.e.	<i>p</i> -value
Unemployment Rate, u_t	0.063	0.062	0.16	0.364	0.042	0.00
Real GDP, y_t	-0.421	0.092	0.00	0.217	0.043	0.00

Table 2. Asymmetric 'Deepness' and 'Steepness' Tests

5. Testing for Unit Roots in u_t and y_t

Standard ADF-tests for unit roots are reported in Table 3. They are based on the sequential testing procedure outlined in Perron (1988) which tests down from the drift plus trend model to the no drift, no trend model. The results indicate that both unemployment and output are non-stationary I(1) series.

=				
Variable			Test statistic	
	lag length	$ au_{ au}$	$ au_{\mu}$	τ
Unemployment rate, u_t	3	-1.85	-1.87	-0.10
Real GDP, y_t	3	-1.92	-0.22	2.45
Δu_t	3	-3.51*	-3.40*	-3.31**
Δy_t	2	-4.82**	-4.85**	-3.71**

Table 3. Augmented Dickey-Fuller Tests for Unit RootsNew Zealand Unemployment and Real GDP, 1978:1-1999:1, Seasonally Adjusted

Rejects the null hypothesis at ** 1 per cent and * 5 per cent levels, respectively.

Perron (1989) shows that a stationary series around a deterministic time trend that undergoes a permanent shift during the period under consideration is often mistaken by conventional ADF-tests as a persistent innovation to a stochastic trend. Thus the recursive, rolling and sequential approaches developed by Banerjee, Lumsdaine and Stock (1992) are used to test for unknown shifts in the trend and/or intercept in the ADF-test. The results are reported in Table 4. These show that even after allowing for structural breaks in the series, u_t and y_t are I(1).

Variable	Recursive	Rolling	Mean-shi	ft statistics	Trend-shi	ft statistics
	min $ au_{ au}$	min $ au_{ au}$	Min τ_{τ}	max F	min $ au_{ au}$	max F
u_t	-2.09	-2.74	-1.83	4.48	-2.11	4.83
y_t	-1.87	-3.15	-1.52	5.11	-1.77	4.59
5% critical value	-4.33	-5.01	-4.80	18.62	-4.48	16.30

 Table 4. Recursive, Rolling and Sequential Augmented Dickey-Fuller Tests of Unit Roots

 New Zealand Unemployment and Real GDP, 1978:1-1999:1, Seasonally Adjusted

6. Testing for Cointegration between u_t and y_t

We have established that the data are non-stationary and tested for structural breaks. Since u_t and y_t also follow asymmetric adjustment paths, equation 4 was estimated and the residuals used to estimate equations 7 and 8. As the threshold value τ in equation 8 is unknown (and there is no *a priori* reason to expect that it should be zero), the procedure suggested in Enders and Siklos (1999) was used to perform a grid-search. Specifically, the estimated residuals from equation 4 were sorted in ascending order and called $\hat{\varepsilon}_1^r < \hat{\varepsilon}_2^r < < \hat{\varepsilon}_r^r$ where *T* is the number of usable observations. The largest and smallest 15 percent of the $\{\hat{\varepsilon}_i^r\}$ values were discarded and the remainder considered as possible thresholds. Equations 7 and 8 were then estimated for each possible threshold. The model with the lowest residual sum of squares was chosen in order to obtain the preferred value of τ . Equation 7, with τ equal to 0.006, was then used to test for cointegration using the *t*-Max and *F*-test proposed in Enders and Siklos (1999).

The results obtained from estimation are as follows, where the brackets *t*-values. D84:1 is a dummy for 1984:1 to take account of an outlier. If the dummy is removed there is evidence of non-normality in the regression residuals.

$$u_t = 3.9193 - 0.405 y_t + 0.003 t \tag{14}$$

$$\Delta \hat{\varepsilon}_t = -0.301 I_t \hat{\varepsilon}_{t-1} - 0.054 (1 - I_t) \hat{\varepsilon}_{t-1} + 0.018 D841 + v_t$$
(15)
(-4.16) (15)

Diagnostics

AR 1-5 F(4, 73) = 1.560; DW = 1.98; ARCH 4 F(4, 73) = 0.233; Normality $\chi^2(2) = 0.116$ $X_i^2 F(5, 75) = 0.826$; $X_i * X_i F(5, 75) = 0.826$; RESET F(1, 80) = 0.05cointegration *t*-Max = -4.16** (5% critical value -1.85, Enders and Siklos 1999, Table 6a) cointegration *F*-test $\rho_1 = \rho_2 = 0$ *F* = 8.936** (5% critical value 6.95, Enders and Siklos 1999, Table 5a) *F*-test $\rho_1 = \rho_2 F(1, 81) = 11.76^{**}$ (** rejects at 1% significance level).

Equation 14 shows that the long-run Okun coefficient for New Zealand is -0.41.¹ Equation 15 tests whether equation 14 represents a long-run stationary relationship. The *t*-Max and *F*-tests both reject the null hypothesis of no cointegration at better than the 1% significance level. Since the Enders and Siklos critical values are based on simulations with no trend in the long-run relationship (and no dummy for 1984:1 in the DF equation), a Monte Carlo experiment was conducted with the model structure set by equations 14 and 15, $\tau = 0.006$, and u_t and y_t replaced with two variables constrained to equal random walks. The simulation was performed 10,000 times using N(0,1) serially uncorrelated pseudo-random numbers. In common with this type of Monte Carlo experiment, we set the initial values of the two random walks at zero, and discarded the first 50 observations generated before computing *t*- and *F*-values. The 5% critical value for the *t*-Max is -2.747, and the 5% critical value for the *F*-test is 5.650.

Thus, the model structure used here (especially involving the time trend) does have an important effect on the size properties of the model, although we are still able to reject at better than the 1% significance level. Lastly, having established that $\hat{\varepsilon}_{t-1}$ is stationary, it is possible to test if $\rho_1 = \rho_2$. This null is strongly rejected and asymmetry is again confirmed.

In comparison, the symmetric Engle-Granger test based on testing the residuals from equation 14, using equation 5, produced a *t*-statistic of -2.002 (the MacKinnon 1991, critical value at the 5% level is -3.898). The dynamic model single-equation test, using the approach given in Banerjee, Dolado and Mestre (1992), produced a cointegration *t*-statistic of -1.907 (the critical value at the 5% level is -3.98).² Lastly, the Johansen (1995) approach was used, with the time trend constrained to enter the cointegration space. The λ_{max} and λ_{trace} tests (that

¹ Moosa (1997) provides estimates for the G7 countries ranging from -0.49 and -0.46 for Canada and the U.S. to -0.10 for Japan. Most countries had Okun coefficients between -0.38 and -0.49.

² This procedure is automated in PcGive (Version 9). See Harris (1995) for details. The long-run Okun coefficient obtained by solving the dynamic model is -0.330.

the rank r = 0) were 6.312 and 9.646, respectively.³ Neither test can reject the null at better than the 50% significance level. Imposing the condition that y_t is weakly exogenous (by restricting the weightings matrix α) was accepted. Assuming that a cointegration vector exists, the Johansen approach produced a long-run Okun coefficient of -0.358 (with an associated asymptotic *t*-value of -2.64).

7. Asymmetric Error-Correction Model

Having established cointegration in the asymmetric model, it is now possible to estimate an asymmetric version of equation 6. The results obtained are as follows:

$$\Delta u_t = \underbrace{0.002-0.158}_{(3.14)} I_t \hat{\varepsilon}_{t-1} + \underbrace{0.036(1-I_t)\hat{\varepsilon}_{t-1} - 0.103}_{(0.51)} \Delta y_{t-1} + \underbrace{0.248}_{(2.41)} \Delta u_{t-1} + \omega_t$$
(16a)

Diagnostics

 $R^2 = 0.29$; AR 1-5 F(5,73) = 2.026; DW = 2.21; ARCH 4 F(4, 70) = 0.286Normality $\chi^2(2) = 0.271$; $X_i^2 F(8, 69) = 0.944$; $X_i * X_i F(13, 64) = 0.847$; RESET F(1, 77) = 0.729Chow F(4, 74) = 1.642; Chow F(14, 64) = 0.975; Chow F(30, 48) = 1.360; Chow F(50, 28) = 1.688.

$$\Delta y_t = \underbrace{0.005 - 0.190}_{(3.46)} \underbrace{I_t \hat{\varepsilon}_{t-1} + 0.047(1 - I_t) \hat{\varepsilon}_{t-1} - 0.382}_{(0.22)} \Delta u_{t-1} + \underbrace{0.217}_{(1.90)} \Delta y_{t-1} - \underbrace{0.039}_{(-3.89)} D86: 4 + \omega_t^*$$
(16b)

Diagnostics

 $R^2 = 0.23$; AR 1-5 F(5, 72) = 1.656; DW = 1.88; ARCH 4 F(4, 69) = 0.651Normality $\chi^2(2) = 2.732$; $X_i^2 F(9, 67) = 0.555$; $X_i * X_i F(14, 62) = 0.627$; RESET F(1, 76) = 1.264Chow F(4, 73) = 0.215; Chow F(14, 63) = 0.507; Chow F(30, 47) = 0.432; Chow F(45, 32) = 0.399.

Both equations are well-specified. The *t*-statistics on the error-correction terms show that real GDP is weakly exogenous, while the *t*-statistics on the Δu_{t-1} and Δy_{t-1} terms in equation 16 show that real GDP Granger-causes unemployment, but real GDP is not Granger-caused by unemployment. We therefore concentrate on equation 16a, which shows that the short-run Okun coefficient is -0.103 (about one-quarter the value of the estimated long-run coefficient). Unemployment adjusts asymmetrically to disequilibrium. Figure 6 illustrates the path of $\hat{\varepsilon}_{t-1}$. Positive values of $\hat{\varepsilon}_{t-1}$ are associated with short-run negative adjustments in the unemployment

³ The residuals from the VECM pass the various diagnostic tests available in PcFiml (v9), such as no autocorrelation, no ARCH processes, normality, and homoskedasticity (including vector tests and tests for stability based on 1-step ahead residuals and Chow tests).

rate. These values bring the long-run unemployment-output relationship back into equilibrium. Other things being equal, the speed of adjustment $(1-\alpha)$ indicates that some 15.8% of the disequilibrium is removed each quarter; it would therefore take 1.58 years for the economy to return to its long-run trend.

Source: Data Appendix.

In contrast, negative values of $\hat{\varepsilon}_{i-1}$ have no significant impact on short-run changes in unemployment. Thus, quantity adjustments in the output and labour market appear confined to downturns in the economic cycle. Upturns are presumably characterised by short-run adjustments in prices more than short-run adjustments in the real side of the economy.⁴

8. Summary and Conclusion

Failure to take account of asymmetries would result in a rejection of an Okun hypothesis that there exists a long-run relationship between unemployment and real GDP in New Zealand. Using an asymmetric approach, it is possible to establish cointegration and to show that shortrun adjustment to disequilibrium is confined mostly to downturns in the business cycle. These results suggest that standard estimates of Okun's law will, at best, be understated due to misspecification of the adjustment process.

⁴ In the symmetric version of the model, the speed-of-adjustment coefficient, $(1-\alpha)$ in equation 3a, is -0.080 (with an associated *t*-value of -1.90). In the Johansen version, $(1-\alpha)$ equals -0.080 with a *t*-value of -2.36.

References

- Attfield, C.L.F. and Silverstone, B. (1998) 'Okun's Law, Cointegration and Gap Variables', *Journal of Macroeconomics* 20, 625-637.
- Banerjee, A., Dolado, J.J, and Mestre, R. (1992) 'On Some Simple Tests for Cointegration: The Cost of Simplicity', *Bank of Spain Working Paper No. 9302*.
- Banerjee, A., Lumsdaine, R.L. and Stock, J.H. (1992) 'Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence', *Journal of Business and Economic Statistics* 10, 271-287.
- Chapple, S. (1994) 'HLFS-Consistent Labour Market Data', New Zealand Institute of Economic Research Working Paper 94/16.
- Enders, W. and Granger, C.W.J. (1998) 'Unit-Root Tests and Asymmetric Adjustment with an Example using the Term Structure of Interest Rates', *Journal of Business and Economic Statistics* 16, 304-311.
- Enders, W. and Siklos, P.L. (1999) 'Cointegration and Threshold Adjustment', Paper Presented to the Fourth New Zealand Econometrics Workshop, Auckland, July.
- Engle, R.F. and Granger, C.W.J. (1987) 'Cointegration and Error Correction: Representation, Estimation and Testing', *Econometrica* 55, 251-276.
- Harris, R.I.D. (1995) Using Cointegration Analysis in Econometric Modelling, Prentice-Hall, Hemel Hempstead.
- Harvey, A.C. (1985) 'Trends and Cycles in Macroeconomic Time Series', *Journal of Business and Economic Statistics* 3, 216-227.
- Hodrick, R.J. and Prescott, E.C. (1980) 'Postwar U.S. Business Cycles: An Empirical Investigation', *Carnegie-Mellon University Discussion Paper 451*.
- Johansen, S. (1995) Likelihood Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, Oxford.
- Kaufman, R.T. (1988) 'An International Comparison of Okun's Laws', *Journal of Comparative Economics* 12, 182-203.
- Koopman, S.J., Harvey, A.C., Doornik, J.A., and Shephard, N. (1995) STAMP 5.0: Structural Times Series Analyser, Modeller and Predictor, Chapman and Hall, London.
- MacKinnon, J. (1991) 'Critical Values for Co-integration Tests', in R.F. Engle and C.W.J. Granger (eds) *Long-run Economic Relationships*, Oxford University Press, Oxford, 267-276.
- Moosa, I.A. (1997) 'A Cross-Country Comparison of Okun's Coefficient', *Journal of Comparative Economics* 24, 335-356.
- Newey, W. and West, K. (1987) 'A Simple Positive Semi-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', *Econometrica* 55, 703-708.
- Okun, A.M. (1962) 'Potential GNP: Its Measurement and Significance', American Statistical Association, *Proceedings of the Business and Economic Statistics Section*, 98-104.

- Palley, T.I. (1993) 'Okun's Law and the Asymmetric and Changing Cyclical Behaviour of the USA Economy', *International Review of Applied Economics* 7, 144-162.
- Perron, P. (1988) 'Trends and Random Walks in Macroeconomic Time Series: Further Evidence from a New Approach', *Journal of Economic Dynamics and Control* 12, 297-332.
- Perron, P. (1989) 'The Great Crash, the Oil Shock and the Unit Root Hypothesis', *Econometrica* 57, 1361-1402.
- Prachowny, M.F.J. (1993) 'Okun's Law: Theoretical Foundations and Revised Estimates', *Review of Economics and Statistics* 75, 331-36.
- Sichel, D.E. (1993) 'Business Cycle Asymmetry: A Deeper Look', *Economic Inquiry* 31, 224-236.
- Speight, A.E.H. and McMillan, D.G. (1998) 'Testing for Asymmetries in UK Macroeconomic Time Series', *Scottish Journal of Political Economy* 45, 158-170.
- Weber, C.E. (1995) 'Cyclical Output, Cyclical Unemployment, and Okun's Coefficient: A New Approach', *Journal of Applied Econometrics* 10, 433-445.

Data Appendix

Figure 1

Figure 2

	ΔΥ/Υ	ΔU		gdp	ln(gdp)	и	ln(u)
1978-1			1978-1	14773	9.600556	1.5	0.405465
1978-2			1978-2	14834	9.604677	1.7	0.530628
1978-3			1978-3	15102	9.622582	1.6	0.470004
1978-4			1978-4	15365	9.639847	1.4	0.336472
1979-1	0.4	0.0	1979-1	15450	9.645364	1.5	0.405465
1979-2	3.0	-0.2	1979-2	15452	9.645494	1.5	0.405465
1979-3	3.8	-0.3	1979-3	15371	9.640238	1.3	0.262364
1979-4	2.8	-0.1	1979-4	15474	9.646916	1.3	0.262364
1980-1	1.9	0.0	1980-1	15633	9.657139	1.5	0.405465
1980-2	1.0	0.1	1980-2	15477	9.647110	1.6	0.470004
1980-3	0.7	0.8	1980-3	15488	9.647821	2.1	0.741937
1980-4	1.0	1.2	1980-4	15772	9.665991	2.5	0.916291
1981-1	0.7	1.2	1981-1	15635	9.657267	2.7	0.993252
1981-2	1.5	1.0	1981-2	16006	9.680719	2.6	0.955511
1981-3	2.5	0.5	1981-3	16184	9.691778	2.6	0.955511
1981-4	3.0	0.2	1981-4	16392	9.704549	2.7	0.993252
1982-1	4.5	0.1	1982-1	16606	9.717519	2.8	1.029619
1982-2	4.6	0.1	1982-2	16643	9.719745	2.7	0.993252
1982-3	4.0	0.3	1982-3	16514	9.711964	2.9	1.064711
1982-4	2.9	0.8	1982-4	16302	9.699043	3.5	1.252763
1983-1	0.6	1.8	1983-1	16112	9.687320	4.6	1.526056
1983-2	-1.0	2.3	1983-2	16246	9.695602	5.0	1.609438
1983-3	-1.2	2.0	1983-3	16672	9.721486	4.9	1.589235
1983-4	-0.1	1.2	1983-4	16953	9.738200	4.7	1.547563
1984-1	2.8	0.4	1984-1	17552	9.772923	5.0	1.609438
1984-2	5.5	-0.6	1984-2	17573	9.774119	4.4	1.481605
1984-3	6.6	-0.7	1984-3	17559	9.773322	4.2	1.435085
1984-4	6.9	-0.9	1984-4	17824	9.788301	3.8	1.335001
1985-1	5.0	-1.0	1985-1	17853	9.789927	4.0	1.386294
1985-2	3.4	-0.8	1985-2	17855	9.790039	3.6	1.280934
1985-3	2.3	-0.7	1985-3	17728	9.782901	3.5	1.252763
1985-4	1.2	0.2	1985-4	17927	9.794063	4.0	1.386294
1986-1	0.8	0.0	1986-1	17852	9.789871	4.0	1.386294
1986-2	0.9	0.4	1986-2	18248	9.811811	4.0	1.386294
1986-3	1.9	0.4	1986-3	18557	9.828602	3.9	1.360977
1986-4	1.8	0.0	1986-4	17976	9.796793	4.0	1.386294
1987-1	2.3	-0.1	1987-1	18202	9.809287	3.9	1.360977
1987-2	1.7	0.0	1987-2	18264	9.812687	4.0	1.386294
1987-3	0.3	0.2	1987-3	18334	9.816513	4.1	1.410987
1987-4	0.7	0.2	1987-4	18363	9.818093	4.2	1.435085
1988-1	0.4	0.9	1988-1	18307	9.815039	4.8	1.568616
1988-2	0.3	1.2	1988-2	18247	9.811756	5.2	1.648659
1988-3	0.5	2.1	1988-3	18240	9.811372	6.2	1.824549
1988-4	-0.3	1.9	1988-4	18169	9.807472	6.1	1.808289

Figure 1 contd

Figure 2 contd

	ΔΥ/Υ	DU		gdp	ln(gdp)	и	ln(u)
1989-1	-0.4	2.2	1989-1	18330	9.816294	7.0	1.945910
1989-2	0.1	2.1	1989-2	18568	9.829195	7.3	1.987874
1989-3	0.4	0.9	1989-3	18381	9.819073	7.1	1.960095
1989-4	0.9	1.0	1989-4	18332	9.816403	7.1	1.960095
1990-1	0.8	0.0	1990-1	18324	9.815967	7.0	1.945910
1990-2	0.1	0.2	1990-2	18336	9.816622	7.5	2.014903
1990-3	-0.1	0.7	1990-3	18355	9.817657	7.8	2.054124
1990-4	-0.3	1.7	1990-4	18399	9.820052	8.8	2.174752
1991-1	-0.6	2.4	1991-1	18076	9.802340	9.4	2.240710
1991-2	-0.9	2.6	1991-2	17912	9.793226	10.1	2.312535
1991-3	-1.3	3.1	1991-3	17999	9.798071	10.9	2.388763
1991-4	-1.7	1.9	1991-4	18145	9.806150	10.7	2.370244
1992-1	-1.2	1.2	1992-1	18213	9.809891	10.6	2.360854
1992-2	-0.3	0.0	1992-2	18184	9.808297	10.1	2.312535
1992-3	0.3	-0.6	1992-3	18069	9.801953	10.3	2.332144
1992-4	0.9	-0.4	1992-4	18304	9.814875	10.3	2.332144
1993-1	1.2	-0.8	1993-1	18577	9.829680	9.8	2.282382
1993-2	1.9	-0.2	1993-2	18978	9.851036	9.9	2.292535
1993-3	3.6	-1.1	1993-3	19347	9.870293	9.2	2.219203
1993-4	5.0	-1.2	1993-4	19541	9.880270	9.1	2.208274
1994-1	6.3	-0.7	1994-1	19861	9.896513	9.1	2.208274
1994-2	6.7	-1.6	1994-2	20136	9.910265	8.3	2.116256
1994-3	6.3	-1.4	1994-3	20384	9.922506	7.8	2.054124
1994-4	5.9	-1.7	1994-4	20606	9.933338	7.4	2.001480
1995-1	5.4	-2.5	1995-1	20782	9.941843	6.6	1.887070
1995-2	5.0	-2.0	1995-2	21025	9.953467	6.3	1.840550
1995-3	4.5	-1.7	1995-3	21136	9.958733	6.1	1.808289
1995-4	4.0	-1.2	1995-4	21269	9.965006	6.2	1.824549
1996-1	3.7	-0.5	1996-1	21530	9.977203	6.1	1.808289
1996-2	3.3	-0.3	1996-2	21608	9.980819	6.0	1.791759
1996-3	3.2	0.1	1996-3	21803	9.989803	6.2	1.824549
1996-4	3.1	-0.2	1996-4	21908	9.994607	6.0	1.791759
1997-1	2.6	0.4	1997-1	21864	9.992597	6.5	1.871802
1997-2	2.6	0.5	1997-2	22208	10.008208	6.5	1.871802
1997-3	2.4	0.6	1997-3	22275	10.011220	6.8	1.916923
1997-4	2.1	0.7	1997-4	22330	10.013686	6.7	1.902108
1998-1	2.0	0.7	1998-1	22096	10.003152	7.2	1.974081
1998-2	1.0	1.1	1998-2	21941	9.996112	7.6	2.028148
1998-3	0.2	0.6	1998-3	22079	10.002382	7.4	2.001480
1998-4	-0.3	1.0	1998-4	22268	10.010906	7.7	2.041220
1999-1	-0.2	0.0	1999-1	22418	10.017619	7.2	1.974081

Figure 3

CTM 4 .1 1978-1 1978-2 1978-3 1978-4 1979-1 1979-2 1979-3 1979-4 1980-1 1980-2 1980-3 1980-4 1981-1 1981-2 1981-3 1981-4 1982-1 1982-2 1982-3 1982-4 1983-1 1983-2 1983-3 1983-4 1984-1 1984-2 1984-3 1984-4 1985-1 1985-2 1985-3 1985-4

1986-1 1986-2 1986-3 1986-4 1987-1 1987-2 1987-3 1987-4 1988-1 1988-2 1988-3 1988-4 1989-1 1989-2 1989-3 1989-4

Figure 4

и	STM trend	HP trend		gdp	STM trend	HP trend
1.5	1.536980	1.322863	1978-1	14773	15262.184	14981.85
1.7	1.591535	1.322863	1978-2	14834	15322.650	14981.85
1.6	1.646514	1.389074	1978-3	15102	15383.355	15065.68
1.4	1.703786	1.458829	1978-4	15365	15444.301	15149.89
1.5	1.762808	1.532702	1979-1	15450	15505.488	15234.40
1.5	1.822950	1.611317	1979-2	15452	15566.917	15319.27
1.3	1.881999	1.695365	1979-3	15371	15628.590	15404.72
1.3	1.943912	1.785562	1979-4	15474	15690.508	15491.02
1.5	2.011529	1.882408	1980-1	15633	15752.670	15578.45
1.6	2.083929	1.986057	1980-2	15477	15815.079	15667.27
2.1	2.160027	2.096325	1980-3	15488	15877.735	15757.80
2.5	2.238554	2.212616	1980-4	15772	15940.639	15850.22
2.7	2.318957	2.334135	1981-1	15635	16003.793	15944.57
2.6	2.403762	2.460047	1981-2	16006	16067.197	16040.83
2.6	2.497754	2.589543	1981-3	16184	16130.852	16138.76
2.7	2.600432	2.721728	1981-4	16392	16194.759	16238.14
2.8	2.708031	2.855545	1982-1	16606	16258.919	16338.72
2.7	2.818407	2.989745	1982-2	16643	16323.334	16440.39
2.9	2.936135	3.122869	1982-3	16514	16388.003	16543.15
3.5	3.062843	3.253069	1982-4	16302	16452.929	16647.19
4.6	3.195585	3.378144	1983-1	16112	16518.112	16752.63
5.0	3.331037	3.495857	1983-2	16246	16583.554	16859.40
4.9	3.465280	3.604532	1983-3	16672	16649.255	16967.02
4.7	3.603169	3.703311	1983-4	16953	16715.215	17074.59
5.0	3.744229	3.792164	1984-1	17552	16781.438	17180.99
4.4	3.887908	3.871809	1984-2	17573	16847.922	17285.02
4.2	4.038057	3.943845	1984-3	17559	16914.670	17385.67
3.8	4.194075	4.010413	1984-4	17824	16981.683	17482.08
4.0	4.362051	4.074016	1985-1	17853	17048.961	17573.51
3.6	4.540768	4.137207	1985-2	17855	17116.505	17659.40
3.5	3.790898	4.202660	1985-3	17728	17184.317	17739.38
4.0	3.953202	4.272847	1985-4	17927	17536.996	17813.18
4.0	4.122866	4.349915	1986-1	17852	17606.474	17880.55
4.0	4.305775	4.435990	1986-2	18248	17676.227	17941.30
3.9	4.506464	4.533153	1986-3	18557	17746.257	17995.23
4.0	4.726066	4.643393	1986-4	17976	17363.864	18042.35
3.9	4.960527	4.768484	1987-1	18202	17887.150	18083.00
4.0	5.207783	4.909972	1987-2	18264	17958.015	18117.52
4.1	5.462005	5.068984	1987-3	18334	18029.161	18146.31
4.2	5.719762	5.246141	1987-4	18363	18100.589	18169.89
4.8	5.984489	5.441421	1988-1	18307	18172.300	18188.88
5.2	6.253112	5.653976	1988-2	18247	18244.295	18204.05
6.2	6.526595	5.882292	1988-3	18240	18316.575	18216.23
6.1	6.147086	6.124200	1988-4	18169	18389.141	18226.29
7.0	6.383810	6.377282	1989-1	18330	18461.995	18235.13
7.3	6.604867	6.638619	1989-2	18568	18535.138	18243.60
7.1	6.807080	6.905153	1989-3	18381	18608.570	18252.61
7.1	6.994713	7.173740	1989-4	18332	18682.294	18263.28

Figure 3 contd

1999-1

7.2

	и	STM trend	HP trend		gdp	STM trend	HP trend
1990-1	7.0	7 173/18	7 4409045	1990-1	18324	18756 309	18276 81
1990-2	7.0	7 350479	7 7026769	1990-2	18336	18830 618	18290.01
1990-3	7.5	7.524172	7 9543561	1990-3	18355	18905 221	18317 40
1990-4	8.8	7 696329	8 1906824	1990-4	18399	18980 119	18347.25
1991-1	94	7.865056	8 4059315	1991-1	18076	19055 315	18385.08
1991-2	10.1	8 034298	8 594503	1991-2	17912	19130 808	18432.40
1991-3	10.1	8 201605	8 7513218	1991-3	17999	19206 600	18490.46
1991-4	10.7	8.357054	8.8723185	1991-4	18145	19282.693	18560.20
1992-1	10.6	8.503388	8.9549547	1992-1	18213	19359.087	18642.29
1992-2	10.1	8.639879	8.9981972	1992-2	18184	19435.784	18737.15
1992-3	10.3	8.763531	9.0024827	1992-3	18069	19512.785	18844.98
1992-4	10.3	8.856976	8.9694115	1992-4	18304	19590.090	18965.64
1993-1	9.8	8.911945	8.9017869	1993-1	18577	19667.702	19098.50
1993-2	9.9	8.932541	8.803519	1993-2	18978	19745.622	19242.53
1993-3	9.2	8.917231	8.6792392	1993-3	19347	19823.850	19396.31
1993-4	9.1	8.874876	8.5342523	1993-4	19541	19902.388	19558.23
1994-1	9.1	8.807042	8.3740551	1994-1	19861	19981.237	19726.62
1994-2	8.3	8.711132	8.2042359	1994-2	20136	20060.398	19899.72
1994-3	7.8	8.595305	8.0304611	1994-3	20384	20139.874	20075.79
1994-4	7.4	8.461297	7.8580364	1994-4	20606	20219.664	20253.19
1995-1	6.6	8.314200	7.6916955	1995-1	20782	20299.770	20430.42
1995-2	6.3	8.168814	7.5354917	1995-2	21025	20380.193	20606.13
1995-3	6.1	8.028920	7.3924435	1995-3	21136	20460.936	20779.16
1995-4	6.2	7.892851	7.2645407	1995-4	21269	20541.998	20948.58
1996-1	6.1	7.758039	7.1528102	1996-1	21530	20623.381	21113.66
1996-2	6.0	7.628429	7.0575715	1996-2	21608	20705.086	21273.83
1996-3	6.2	7.506637	6.9785044	1996-3	21803	20787.116	21428.81
1996-4	6.0	7.387584	6.914683	1996-4	21908	20869.470	21578.50
1997-1	6.5	7.275221	6.8647909	1997-1	21864	20952.151	21723.06
1997-2	6.5	7.159984	6.8270207	1997-2	22208	21035.159	21862.84
1997-3	6.8	7.040460	6.7994366	1997-3	22275	21118.496	21998.33
1997-4	6.7	6.913116	6.7799743	1997-4	22330	21202.163	22130.23
1998-1	7.2	6.784526	6.7666264	1998-1	22096	21286.162	22259.44
1998-2	7.6	6.650132	6.7573716	1998-2	21941	21370.493	22387.02
1998-3	7.4	6.505537	6.7504714	1998-3	22079	21455.159	22513.92
1998-4	7.7	6.354337	6.7446943	1998-4	22268	21540.160	22640.88

6.197292 6.7392006

Figure 4 contd

21540.160

22418 21625.497

1999-1

18276.81

18294.46

18317.49 18347.25

18385.08

18432.40

18490.46

18560.20 18642.29

18737.15

18844.98

18965.64

19098.50

19242.53

19396.31

19558.23

19726.62

19899.72

20075.79

20253.19

20430.42

20606.13

20779.16

20948.58

21113.66

21273.83

21428.81

21578.50

21723.06

21862.84

21998.33

22130.23

22259.44

22387.02

22513.92 22640.88

22768.33

Figure 5

Figure 6

$ln(y-y^*)$ ln(u-u*)

ec

1978-1	-0.032577	-0.024354	1978-1	-0.013191
1978-2	-0.032410	0.065929	1978-2	-0.012204
1978-3	-0.018459	-0.028657	1978-3	-0.008578
1978-4	-0.005148	-0.196381	1978-4	-0.006199
1979-1	-0.003585	-0.161443	1979-1	-0.005628
1979-2	-0.007410	-0.194991	1979-2	-0.008228
1979-3	-0.016619	-0.369970	1979-3	-0.014985
1979-4	-0.013895	-0.402338	1979-4	-0.014929
1980-1	-0.007626	-0.293430	1980-1	-0.011463
1980-2	-0.021609	-0.264251	1980-2	-0.017198
1980-3	-0.024852	-0.028183	1980-3	-0.014654
1980-4	-0.010636	0.110461	1980-4	-0.006026
1981-1	-0.023314	0.152134	1981-1	-0.010268
1981-2	-0.003816	0.078477	1981-2	-0.004383
1981-3	0.003289	0.040119	1981-3	-0.002550
1981-4	0.012106	0.037574	1981-4	0.000951
1982-1	0.021122	0.033398	1982-1	0.004532
1982-2	0.019394	-0.042920	1982-2	0.001809
1982-3	0.007659	-0.012383	1982-3	-0.002054
1982-4	-0.009216	0.133419	1982-4	-0.004133
1983-1	-0.024893	0.364286	1983-1	-0.000969
1983-2	-0.020565	0.406154	1983-2	0.003555
1983-3	0.001365	0.346442	1983-3	0.010447
1983-4	0.014125	0.265749	1983-4	0.012665
1984-1	0.044895	0.289222	1984-1	0.026957
1984-2	0.042136	0.123733	1984-2	0.019059
1984-3	0.037385	0.039321	1984-3	0.014165
1984-4	0.048411	-0.098672	1984-4	0.013742
1985-1	0.046082	-0.086648	1985-1	0.013674
1985-2	0.042240	-0.232162	1985-2	0.007213
1985-3	0.031148	-0.079840	1985-3	0.000699
1985-4	0.021995	0.011768	1985-4	0.007393
1986-1	0.013849	-0.030254	1986-1	0.003040
1986-2	0.031835	-0.073663	1986-2	0.009286
1986-3	0.044672	-0.144536	1986-3	0.012482
1986-4	0.034646	-0.166799	1986-4	-0.002110
1987-1	0.017449	-0.240535	1987-1	-0.000657
1987-2	0.016895	-0.263860	1987-2	-0.000969
1987-3	0.016767	-0.286829	1987-3	-0.001109
1987-4	0.014393	-0.308843	1987-4	-0.002160
1988-1	0.007385	-0.220555	1988-1	-0.000310
1988-2	0.000148	-0.184421	1988-2	-0.000485
1988-3	-0.004189	-0.051336	1988-3	0.006168
1988-4	-0.012043	-0.007689	1988-4	0.000991
1989-1	-0.007175	0.092145	1989-1	0.010364
1989-2	0.001771	0.100068	1989-2	0.015743
1989-3	-0.012305	0.042132	1989-3	0.007119
1989-4	-0.018928	0.014940	1989-4	0.003384

Figure 5 contd

Figure 6 contd

	ln(y-y*)	ln(u-u*)		ec
1990-1	-0.023319	-0.024472	1990-1	-0.00038
1990-2	-0.026618	0.020138	1990-2	0.001895
1990-3	-0.029536	0.036003	1990-3	0.002449
1990-4	-0.031096	0.134008	1990-4	0.010002
1991-1	-0.052761	0.178280	1991-1	0.005665
1991-2	-0.065829	0.228816	1991-2	0.005694
1991-3	-0.064938	0.284433	1991-3	0.012246
1991-4	-0.060813	0.247138	1991-4	0.011065
1992-1	-0.061026	0.220389	1992-1	0.009026
1992-2	-0.066574	0.156147	1992-2	0.001196
1992-3	-0.076872	0.161545	1992-3	-0.00221
1992-4	-0.067904	0.150939	1992-4	0.000373
1993-1	-0.057054	0.094990	1993-1	-0.00082
1993-2	-0.039651	0.102834	1993-2	0.006102
1993-3	-0.024348	0.031218	1993-3	0.004869
1993-4	-0.018325	0.025050	1993-4	0.005347
1994-1	-0.006036	0.032723	1994-1	0.009283
1994-2	0.003762	-0.048346	1994-2	0.004848
1994-3	0.012049	-0.097092	1994-3	0.002532
1994-4	0.018927	-0.134023	1994-4	0.000556
1995-1	0.023478	-0.230895	1995-1	-0.00612
1995-2	0.031149	-0.259774	1995-2	-0.00688
1995-3	0.032460	-0.274761	1995-3	-0.00928
1995-4	0.034779	-0.241408	1995-4	-0.00845
1996-1	0.043022	-0.240441	1996-1	-0.00709
1996-2	0.042684	-0.240122	1996-2	-0.00922
1996-3	0.047714	-0.191238	1996-3	-0.00635
1996-4	0.048565	-0.208041	1996-4	-0.00894
1997-1	0.042600	-0.112672	1997-1	-0.0077
1997-2	0.054257	-0.096706	1997-2	-0.00402
1997-3	0.053316	-0.034751	1997-3	-0.00264
1997-4	0.051828	-0.031313	1997-4	-0.00523
1998-1	0.037339	0.059437	1998-1	-0.00748
1998-2	0.026346	0.133512	1998-2	-0.00926
1998-3	0.028662	0.128826	1998-3	-0.01123
1998-4	0.033232	0.192083	1998-4	-0.00764
1999-1	0.035991	0.149969	1999-1	-0.01222

Sources

- *GDP* Statistics New Zealand, PC Infos SNBQ.S2SZT Real GDP, quarterly, seasonally adjusted, millions of New Zealand dollars. *Note:* For Figure 1, GDP is the four-quarter moving total of SNBQ.S2SZT.
- *U* Statistics New Zealand, PC Infos HLFQ.S1F3S (post 1985-4) Unemployment rate, males and females, all ages. Chapple (1994) (pre 1985-4).