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Abstract 
 

This paper develops a theoretically-consistent and easy-to-apply framework for 

interpreting, investigating, and monitoring the relationships between the yield curve, 

output, and inflation. The framework predicts that steady-state inflation plus steady-

state output growth should be cointegrated with the long-maturity level of the yield 

curve as estimated by a arbitrage-free version of the Nelson and Siegel (1987) model, 

while the shape of the yield curve model from that model should correspond to the 

profile (that is, the timing and magnitude) of expected future inflation and output 

growth. These predicted relationships are confirmed empirically using 51 years of 

United States data. The framework may be used for monitoring expectations of 

inflation and output growth implied by the yield curve. It should also provide a basis 

for using the yield curve to value and hedge derivatives on macroeconomic data. 
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1 Introduction

This article develops a macroeconomic-finance framework based on a standard continuous-time
economy and an arbitrage-free version of the popular and parsimonious Nelson and Siegel (1987)
(hereafter NS) model of the yield curve. The motivation is to provide a theoretically-consistent, yet
easy-to-apply foundation for interpreting, investigating, and monitoring the relationships between
the yield curve, output, and inflation.

By context, yield curve, output, and inflation relationships have already been well-established
in the existing literature, but often as a statistical exercise with limited theoretical structure. That
is, single-equation ordinary least squares (OLS) regressions typically show a strong relationship
between the current slope of the yield curve (often measured as the 10-year less the 90-day in-
terest rate) and future output growth, a moderate relationship between the current slope of the
yield curve and future inflation, and a cointegrating relationship between term interest rates and
inflation.1 However, as noted in Estrella (2003) pp. 1-4, the various justifications advanced for
these empirical relationships are generally informal or heuristic: e.g real business cycles, counter-
cyclical monetary policy, and life-cycle consumption to justify yield curve/output relationships;
and the Fisher hypothesis with assumed constant or stationary real interest rates to justify yield
curve/inflation relationships and interest rate/inflation cointegration. More formal macroeconomic
foundations include Rendu de Lint and Stolin (2003) and Estrella (2003),2 but the yield curves in
those models are not constructed to be arbitrage-free.

An alternative approach to investigating yield curve, output, and inflation relationships is to use
vector autoregressive (VAR) models containing selected macroeconomic and yield curve data, such
as in Bernard and Gerlach (1998), Ang and Piazzesi (2003), Jardet (2004), and Diebold, Rudebusch
and Aruoba (2005). VAR models allow some theoretical structure to be imposed via parameter
restrictions, including an arbitrage-free construction in the Ang and Piazzesi (2003) model. That
said, the models noted still have an implicit atheoretical element given that VAR dynamics are
assumed, as is the order of the autoregression and the parameter restrictions, rather than being
derived from an underlying theoretical structure. Also, a practical issue associated with VAR
models is that they can be challenging to estimate and interpret due to their lack of parsimony, even
after simplifying restrictions are imposed to prevent overfitting and avoid parameter instability.3

Conversely, the framework developed in this article allows parsimonious single-equation econo-
metric relationships between the yield curve, output, and inflation to be explicitly derived. This
embeds the theoretical consistency of the underlying continuous-time models of the economy and
the yield curve, and also provides theoretical parameter values to compare against the empirically
estimated values. The estimation process itself simply requires “fitting” the yield curve data at
each point in time (an approach familiar to users of NS models),4 and then using the resulting
output to estimate (via OLS) the derived econometric relationships with output and inflation data.

The article proceeds as follows: section 2 develops a generic multifactor version of the standard
continuous-time general-equilibrium-economy model of the yield curve from Cox, Ingersoll and Ross

1Berk (1998) provides a useful survey. Recent examples reporting these results include: Hamilton and Kim (2002),
Bordo and Haubrich (2004), Nakaota (2005) and Paya, Matthews and Peel (2005) for yield curve/output; Estrella,
Rodrigues and Schich (2003) for yield curve/inflation; and Fahmy and Kandi (2003) and Lai (2004) for interest
rate/inflation cointegration.

2Rendu de Lint and Stolin (2003) derives a yield curve/output relationship via an intertemporal production and
endowment economy, and Estrella (2003) derives yield curve, output, and inflation relationships via a standard
dynamic model of the macroeconomy incorporating a short-maturity and a long-maturity interest rate.

3For example, the Diebold et al. (2005) model requires the estimation of 66 parameters (via the application of the
Kalman filter and maximum likelihood) for the 20 variables it uses (i.e a price variable, a real activity variable, a
monetary policy variable, and interest rates for 17 maturities). Similarly, the Ang and Piazzesi (2003) model requires
the estimation of 18 parameters (via the multistep application of maximum likelihood) for the ten variables it uses
(i.e three price series, four indicators of real activity, and interest rates for five maturities).

4Bank for International Settlements (1999) provides a survey of the use of NS model by central banks. Recent
examples of the application of NS models include Fang and Muljono (2003), Diebold and Li (2005), and Diebold
et al. (2005).
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(1985a), and then reinterprets that model into macroeconomic quantities; i.e aggregate output
growth and economy-wide inflation, and the steady-state values of those two quantities. Section 3
introduces the augmented NS (hereafter ANS) model, an intertemporally-consistent and arbitrage-
free model of the yield curve from Krippner (2005),5 and then explicitly relates the state variables
from the ANS model to the macroeconomic quantities specified in section 2. This provides the
platform for deriving discrete-time single-equation econometric relationships analogous to those
used in the existing literature, but with a rigorous theoretical foundation. Section 4 uses United
States data to estimate the econometric relationships derived in section 3. Section 5 concludes, and
notes several potential applications of the ANS framework.

2 A generic model for the macroeconomy and the yield curve

This section develops a model of the macroeconomy and its associated yield curve. Section 2.1
specifies an augmented version of the Berardi and Esposito (1999) (hereafter BE) model, which
is itself a generic multifactor version of the standard continuous-time general-equilibrium-economy
model proposed by Cox et al. (1985a). Section 2.2 specifies macroeconomic quantities from the
augmented BE (hereafter ABE) model, and in light of these interpretations then justifies the
specification and assumptions from section 2.1.

2.1 A generic general-equilibrium-economy model of the yield curve

The ABE economy is based on J real factors of production (e.g capital, labour, etc., potentially by
industry sector), each with its own associated deflator/inflation factor. The dynamics of the ABE
economy are represented by 2J processes analogous to the Vasicek (1977) specification, i.e:

dsj (t) = −κj [sj (t)− θj (t)] dt+ σ1,jdz1,j (t) (1)

where sj (t) for j = 1 to J are the real state variables representing instantaneous growth on returns
to the factors of production in the economy at time t; κj are positive constant mean-reversion
parameters; θj (t) are the steady-state (i.e long-run) values of sj (t) which vary stochastically over
time as dθj (t) = σ0,jdz0,j (t); σ0,j and σ1,j are positive constant standard deviation parameters
with σ0,j ¿ σ1,j ; and dz0,j (t) are dz1,j (t) are independent Wiener variables under the physical (i.e
non-risk neutral) measure. For j = J + 1 to 2J , sj (t) are the inflation state variables. BE shows
that these have the form sJ+j (t) = πj (t)− σ2j,p, where πj (t) is the instantaneous rate of inflation
for the factor of production j, and σ2j,p is a positive constant parameter representing the variance
of instantaneous changes in the deflator j. Similarly, θJ+j (t) = θj,π (t) − σ2j,p, where θj,π (t) is
steady-state rate of inflation for the factor of production j. The parameters for the inflation state
variables are analogous to the real state variables. Following BE, this article also assumes for
mathematical convenience that all state variables sj (t) and their associated steady-state variables
θj (t) are constructed from the original 2J state variables and 2J steady-state variables so that all
innovations dz0,j (t) and dz1,j (t) are uncorrelated.

Given the stochastic processes specified in equation 1, appendix A derives the expected path
of the short rate and the default-free forward rate curve in the economy (both instantaneous and
continuously-compounding) using the Heath, Jarrow and Morton (1992) (hereafter HJM) frame-
work. That is:

Et [r (t+m)] =
2JX
j=1

θj (t) +
2JX
j=1

[sj (t)− θj (t)] · exp (−κjm) (2)

5Filipovíc (2000), for example, shows that non-augmented NS models cannot be theoretically consistent across
time unless interest rates are fully deterministic (an obviously unrealistic assumption).
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where Et is the expectations operator at time t; m (≥ 0) denotes a horizon from time t, so t+m
represents a future point in time; and Et [r(t+m)] is, as at time t, the expected path of the short
rate as a function of horizon m. Similarly:

f (t,m) =
2JX
j=1

θj (t) +m ·
2JX
j=1

σ0,jρ0,j −m2 ·
2JX
j=1

1

2
σ20,j

+
2JX
j=1

[sj (t)− θj (t)] · exp (−κjm) +
2JX
j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ ·Bj (m)

−
2JX
j=1

1

2

£
σ21,j − σ20,j

¤ · [Bj (m)]
2 (3)

where f (t,m) is the forward rate curve as at time t as a function of maturity m; Bj (m) =
1
κj
[1− exp (−κjm)] (the Vasicek (1977) functional form), and ρ0,j and ρ1,j are respectively the

market prices of risk associated with the innovations dz0,j (t) and dz1,j (t). The market prices of
risk arise in f (t,m) because the ABE model is specified under the physical measure where, relative
to the risk-free rolling investment in the short rate, investors will demand compensation for the risk
associated with owning fixed interest securities (i.e unanticipated changes in market value imparted
by the innovations dz0,j (t) and dz1,j (t) in Et [r (t+m)] and f (t,m) as time evolves). The (zero-
coupon continuously-compounding) interest rate curve, as at time t as a function of maturity m, is

then defined as R (t,m) = 1
m

Z m

0
f(t,m)dm, and the market-quoted prices and yields-to-maturity

of default-free coupon-bearing securities that compose the yield curve (hereafter simply called the
yield curve) are defined by each security’s cashflows discounted by R (t,m).

At this stage, the ABE model is a generic and theoretically-consistent economic-finance model.
That is, there is complete identification between the yield curve and an arbitrary number of real
factors of production with their associated deflator/inflation factors, and the model is explicitly
constructed to be dynamic, intertemporally-consistent, and arbitrage-free. However, the generic
ABE model is not practically amenable. For example, a “complete” specification based on multiple
factors of production by multiple industry sectors would quickly inflate to an untenable number of
variables and parameters, and an approximation based on just the three real factors of production
that are typically used to represent the entire economy (i.e capital, labour, and total factor pro-
ductivity) would contain six state variables, six steady-state variables, and 30 parameters.6 Even
a minimal approximation based on a single factor of production would require two state variables,
two steady-state variables, and ten parameters.

Alternatively, section 3 shows it is possible to use just three state variables and seven parameters
to represent the generic ABE model to a precise first-order approximation. Before proceeding with
that exposition, the following sub-section defines some macroeconomic quantities from the ABE
model that are used subsequently in the article.

2.2 The ABE macroeconomy

Firstly, define real instantaneous output growth as dY (t) =
PJ

j=1 sj (t). That is, the sum of
instantaneous growth on returns to the factors of production in the economy equals instantaneous
income growth, which equals instantaneous output growth (given the economy is in continuous
equilibrium). Secondly, define real instantaneous steady-state (i.e potential) output growth at time

6That is, each real state variable has associated inflation state variable. Each state variable then requires the
parameters κj , σ1,j , ρ1,j , and the steady-state variable θj (t), and the latter requires the parameters σ0,j , ρ0,j . Note
that this is implicitly after any orthogonalisation of the original state variables; allowing for covariances between the
original state variables would require further parametrisation.
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t as dY ∗ (t) =
PJ

j=1 θj (t). That is, if the returns to the factors of production are all growing at
their steady-state values, then output must be growing at its steady-state value. Thirdly, define
an economy-wide inflation state variable as the sum of all inflation state variables, i.e dP (t) =P2J

j=J+1 sj (t), and finally define an economy-wide steady-state inflation variable as the sum of all

steady-state inflation variables, i.e dP ∗ (t) =
P2J

j=J+1 θj (t).
These interpretations justify the ABE model specification and assumptions in section 2.1 from

a macroeconomic perspective. That is, time-varying θj (t) values allow steady-state output growth
and inflation to vary over time, and Gaussian innovations allow output growth and inflation to take
on negative values, which are properties consistent with realised historical macroeconomic data.7

Similarly, the orthogonalisation assumed in the construction of the ABE model implicitly (and
realistically) allows for empirical covariances between inflation, output growth, and their steady-
state values.

Conversely, the BE model assumes that θj (t) are constant parameters, which would result in
constant steady-state output growth. The BE model can also be specified with Cox, Ingersoll and
Ross (1985b) dynamics (i.e innovations of

p
sj (t) · dz1,j (t) in equation 1), but that would prohibit

output growth and inflation from becoming negative. The BE model also requires additional
assumptions for the single inflation state variable it uses.8

3 The ABE model and the ANS model of the yield curve

This section relates the ABE model of the yield curve from section 2 to the ANS model of the yield
curve from Krippner (2005), which is itself a theoretically-consistent (i.e intertemporally-consistent
and arbitrage-free) version of the NS model. Section 3.1 outlines the theoretical elements of the
ANS model essential to this article and then illustrates the application of the ANS model in practice.
Section 3.2 explicitly relates the state variables of the ANS model to the state variables and the
macroeconomic quantities from the ABE model, and section 3.3 derives the discrete-time single-
equation econometric relationships implied by the ANS framework.

3.1 The ANS model of the yield curve

The ANS model is based on the following specification for the expected path of the short rate:

Et [r(t+m)] =
3X

n=1

λn (t) · gn (φ,m) (4)

where Et [r(t+m)] is the expected path of the short rate as at time t as a function of horizon m;
and λn (t) are the three state variables that are associated with the three time-invariant functions
of maturity gn (φ,m) taken from the NS model. The latter are defined as g1 (φ,m) = 1, g2 (φ,m) =
− exp (−φm), and g3 (φ,m) = − exp (−φm) (−2φm+ 1), where φ is a positive constant parameter
that governs the rate of exponential decay. Figure 1 illustrates these functions, which are named
the Level, Slope, and Bow modes based on their intuitive shapes.

7From a financial perspective, Gaussian innovations imply that interest rates have a non-zero probability of
becoming negative. This can safely be ignored in practice (as is often done when Vasicek (1977) models are used)
unless interest rates are already materially close to zero. Alternatively, a reflecting boundary at zero could be imposed,
as in Goldstein and Keirstead (1997), but that is well beyond the scope of this article.

8Specifically, BE assumes that innovations in inflation are independent of innovations in the original real state
variables, and that κπ ' 0 (to allow for inflation persistence and consistency with the Fisher hypothesis). Incidentally,
these assumptions result in the BE model with Gaussian dynamics being a special case of the ABE model, and
therefore allows the BE model to be related directly to the ANS model in section 3. That is, setting θj (t) = θj
and σ0,j = 0 in equation 3 recovers the BE expression for f (t,m). Then, by setting κπ = 0 and noting that
limκπ→0B1 (m) = m and limκπ→0 [B1 (m)]

2 = m2 (by L’Hôpital’s rule), the inflation component of Et [r (t+m)] and
f (t,m) in the BE model may be related precisely to the Level component of Et [r (t+m)] and f (t,m) in the ANS
model.
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[ Figure 1 here ]
The augmentation of the ANS model relative to the NS model is to explicitly specify the stochas-

tic dynamics for the state variables λn (t) under the physical measure. This allows the derivation
of an intertemporally-consistent and arbitrage-free model of the yield curve while maintaining the
essence of the NS approach, i.e the yield curve at any point in time is still summarised by three
estimated coefficients. Specifically, the ANS model assumes constant market prices of risk, denoted
ρn, and independent innovations σn · gn(φ,m) · dWn (t) for each state variable λn (t), where σn
are positive constant standard deviation parameters and dWn (t) are independent Wiener variables
under the physical measure. As detailed in Krippner (2005), applying the HJM framework to the
components of Et [r(t+m)] under these specified dynamics results in the following forward rate
curve:

f (t,m) = σ1ρ1m+
3X

n=1

βn (t) · gn(φ,m)−
3X

n=1

σ2n · hn(φ,m) (5)

where βn (t) = γn + λn (t) (γn are constant term premia parameters derived as γ1 =
1
φ(−σ2ρ2 +

σ3ρ3), γ2 =
1
φ (−σ2ρ2 − 2σ3ρ3), γ3 = 1

φσ3ρ3); and hn(φ,m) are time-invariant functions of maturity

derived as h1(φ,m) = 1
2m

2, h2(φ,m) = 1
2φ2
[1− exp (−φm)]2, h3(φ,m) = 1

2φ2
[1 − exp (−φm) −

2mφ exp (−φm)]2.
Appendix C of Krippner (2005) details how, analogous to the estimation of NS models, the

ANS coefficients βn (t) at any point in time may be estimated by “fitting” the yield curve data
observed at that point in time, and how the parameters φ, ρ1, σ1, σ2, and σ3 may be estimated
over an appropriate historical period. Anticipating the complete discussion of the monthly yield
curve data in the empirical application of section 4.1, figure 2 illustrates an example of estimating
the ANS model by “fitting” the yield curve data for June 2004. The following section explains
why is valid to ignore the estimated residuals, which leaves just the estimates of the Level, Slope,
and Bow coefficients as at June 2004, i.e β1 (Jun-2004), β2 (Jun-2004), and β3 (Jun-2004), as the
essential output. That is, when applied to the time-invariant modes gn (φ,m), those June 2004
ANS coefficients define the expected path of the short rate as at June 2004 to within a time-
invariant term premium function

P3
n=1 γn · gn(φ,m); i.e

P3
n=1 [βn (Jun-2004)− γn] · gn(φ,m) =P3

n=1 λn (Jun-2004) · gn(φ,m) = EJun-2004 [r(Jun-2004+m)].
[ Figure 2 here ]
Each observation of yield curve data gives an associated estimate of the ANS Level, Slope, and

Bow coefficients. Hence, any time series of yield curve observations may be processed into time
series of Level, Slope, and Bow coefficients, i.e β1 (t), β2 (t), and β3 (t). Figure 3 illustrates the
time series of two of the seven yields used to define the yield curve at each point in time, and figure
4 plots the three time series of estimated ANS coefficients obtained using the full sample of yield
curve data.

[ Figure 3 here ], [ Figure 4 here ]

3.2 Relating the ANS model to the ABE model

Comparing equations 2 and 4, the first apparent correspondence is between λ1 (t) and
P2J

j=1 θj (t), or
dP ∗ (t)+dY ∗ (t) using the macroeconomic quantities from section 2.1. That is, dP ∗ (t)+dY ∗ (t) =
λ1 (t) · g1 (φ,m) = λ1 (t), and so substituting λ1 (t) = β1 (t)− γ1 gives:

β1 (t) = γ1 + dP ∗ (t) + dY ∗ (t) (6)

Hence, the Level coefficient from the ANS model at time t is composed of a constant term pre-
mium component γ1, and the economy-wide steady-state inflation variable plus steady-state output
growth at time t. Because both the ANS and ABE models are specified with Gaussian dynamics,
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the innvotions in the ANS Level coefficient correspond precisely to the ABE steady-state inno-
vations, i.e σ1dWn (t) =

P2J
j=1 σ0,jdz0,j (t) . In addition, the component of the ANS forward rate

curve associated with the Level coefficient and its dynamics corresponds precisely to the component
of the ABE forward rate curve associated with the steady-state components and their dynamics.
That is, the Level component of the ANS forward rate equation 5 is σ1ρ1m + βn (t) − σ21 · 12m2

which corresponds to steady-state component of the ABE forward rate equation (the first line of
equation 3) with σ1ρ1 =

P2J
j=1 σ0,jρ0,j and σ21 =

P2J
j=1 σ

2
0,j . This correspondence between forward

curves ensures that when yield curve data observed at time t is “fitted” using the ANS model, the
Level coefficient β1 (t) will be a consistent estimate, to within a constant γ1, of the sum of the
steady-state components of the ABE model as at time t.

The “remainder” of the yield curve as estimated by the ANS model (i.e the Slope and Bow
components, and the residuals from the yield curve estimation) will therefore relate to the non-
steady-state components of the ABE model. Indeed, appendix B.1 proves that the ANS Slope and
Bow components are a precise first-order approximation to the non-steady-state components of the
ABE model with an arbitrary number of state variables, and the latter may also be expressed as
the expected values of the ABE macroeconomic quantities from section 2.1, i.e:

−
2JX
j=1

[sj (t)− θj (t)] · exp (−κjm) = −Et[dP (t+m) + dY (t+m)

−dP ∗ (t+m)− dY ∗ (t+m)] (7a)

'
3X

n=2

[βn (t)− γn] · gn(φ,m) (7b)

where Et is the expectations operator at time t, and dP (t+m), dY (t+m), dP ∗ (t+m), and
dY ∗ (t+m) are respectively the economy-wide inflation state variable, real output growth, the
economy-wide steady-state inflation variable, and steady-state output growth, all at the future
time t+m. The approximation in equation 7 can also been seen as a reduction in dimensionality
that is commonly undertaken using latent factor models for the yield curve (e.g see Ang and Piazzesi
(2003) and Diebold et al. (2005)), but with an underlying theoretical structure; i.e the two time-
varying coefficients β2 (t) and β3 (t) applied to the factors g2(φ,m) and g3(φ,m) are being used
to represent the expected evolution of 2J state variables relative to their steady-state values, i.ePJ

j=1 [sj (t)− θj (t)] · exp (−κjm), each with a different mean-reversion parameter κj . Appendix
B.1 also shows that this precise first-order approximation also carries through to the innovations
and forward rate curves.

3.3 Econometric relationships for the ANS model coefficients, and inflation and
output growth

For econometric estimation, the continuous-time relationships noted in the previous section need
to be expressed as annualised discrete-time relationships. The elements of equation 6 are all con-
temporaneous, and so its discrete-time version is simply:

β1,t −∆P ∗t −∆Y ∗t = α∗ + ε∗t (8)

where β1,t is the estimated Level coefficient, ∆P
∗
t is steady-state inflation, and ∆Y

∗
t is steady-state

output growth, all at time t. The constant parameter α∗ captures the term premium component
γ1 and the parameters σ

2
j,p noted in section 2.1. Equation 8 is therefore a (1,-1) cointegrating

relationship between β1,t and ∆P
∗
t +∆Y

∗
t , and ε∗t represents a time series of estimated residuals

that should be stationary. Note that appendix B.2 proves that all of the data in equation 8 should
be Gaussian processes, meaning OLS estimation and standard unit root tests are applicable.

7



Equation 7 is an intertemporal relationship, so its discrete-time version requires the appro-
priate notation for both time and horizon. Hence, denote a forward interval from time t by
t+ T1, t+ T2 where T1 (≥ 0) and T2 (> T1) are both constants. For notational convenience, then
define the quantity “expected relative nominal output growth” (i.e the expected change in instanta-
neous nominal output growth relative to steady-state nominal output growth) as Et [dX (t+m)] =
Et [dP (t+m) + dY (t+m)− dP ∗ (t+m)− dY ∗ (t+m)]. The discrete-time measure of expected
relative nominal output growth over the forward horizon t + T1, t + T2, denoted Et [∆Xt+T1,t+T2 ],
is then the average of Et [dX (t+m)] over the forward interval. For example, Et [∆Xt,t+1] is ex-
pected relative nominal output growth over the following year (i.e now to one year from now), and
Et [∆Xt+0.5,t+0.75] is expected relative nominal output growth over the period two quarters from
now to three quarters from now.

The corresponding averages of the ANS model terms from equation 7, i.e −P3
n=1 [βn (t)− γn] ·

gn(φ,m), may be calculated by via integration by maturity over the forward interval, i.e:

−1
T2 − T1

Z t+T2

t+T1

"
3X

n=2

[βn (t)− γn] · gn(φ,m)
#
dm = −

3X
n=2

γn ·qn (T1, T2)+
3X

n=2

βn (t) ·qn (T1, T2) (9)

where qn (T1, T2) = −1
T2−T1

Z T2

T1

gn(φ,m)dm. The two calculations required are:

q2 (T1, T2) =
−1

φ (T2 − T1)
[exp (−φT2)− exp (−φT1)] (10a)

q3 (T1, T2) =
−1

φ (T2 − T1)
[exp (−φT2) (−2φT2 − 1) − exp (−φT1) (−2φT1 − 1)] (10b)

and table 3 contains the values of q2 (T1, T2) and q3 (T1, T2) that correspond to the forward horizons
tested in the empirical work. For example, using the ANS Slope and Bow coefficients estimated
for June 2004 (from figure 2), expected relative nominal output growth from June 2004 to June
2005 excluding any term premium estimate is 6.80% × 0.61 − 2.09% × 0.07 = 4.03%. Similarly,
expected annualised relative nominal output growth between December 2004 to March 2005 is
6.80% × 0.51 − 2.09% × −0.17 = 3.84%. Because the values of γ2 and γ3 are constant in the
ANS model, for each forward horizon the quantity −PN

n=2 γn · qn (T1, T2) will be a constant, which
may be denoted as α0,T1,T2 . Hence, the discrete-time single-equation relationship for each forward
horizon is:

Et [∆Xt+T1,t+T2 ] = α0,T1,T2 + α1,T1,T2 ·
3X

n=2

βn (t) · qn (T1, T2) + εt,T1,T2 (11)

Note that the coefficient α1,T1,T2 should equal 1 for each forward horizon, because the intertemporal
profile of Et [∆Xt+T1,t+T2 ] is already embedded in qn (T1, T2). As standard in the existing literature
(e.g see Estrella et al. (2003)), the estimation of equation 11 proceeds by substituting realised
∆Xt+T1,t+T2 data for Et [∆Xt+T1,t+T2 ]. Appendix B.2 proves that all of the data in equation 11
should be Gaussian processes, meaning OLS estimation is applicable. The Newey-West technique
may also be used to correct the estimated standard errors for the effect of moving-average serial
correlation induced in εt,T1,T2 , which occurs whenever the forward horizon exceeds the frequency of
the data (this technique is standard in the existing literature; e.g see Estrella et al. (2003)).

Note that the ANS framework above has been developed for the nominal yield curve, which
relates directly to the empirical application in the following section. Of course, the ANS model
linked explicitly to the real ABE model (obtained by simply omitting the deflator/inflation state
variables, the associated steady-state variables, and the deflator/inflation parameters) would pro-
duce an analogous real ANS framework applicable to inflation-indexed yield curve data.
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4 An empirical application to US data

This section tests the predictions of the ANS model framework empirically using US data. To
make the results directly comparable to the existing literature and to allow for the longest pe-
riod of estimation, the empirical analysis is undertaken in-sample only using standard published
data. Section 4.1 outlines that data, section 4.2 discusses the results from estimating the predicted
yield curve/inflation relationships, and 4.3 discuss the results from estimating the predicted yield
curve/output growth relationships.

4.1 Description of the yield curve, inflation, and output data

The interest rate data used in the empirical application are obtained from the online Federal Reserve
Economic Database (hereafter FRED) on the Federal Reserve Bank of St Louis website. The specific
series are the monthly averages of the federal funds rate, the 3-month Treasury bill rate, and the
1-year, 3-year, 5-year, 10-year, and 20-year or 30-year constant-maturity bond rates.9 The sample
period is July 1954 (the first month federal funds rate data is available) to June 2005 (the last
month available at the time of the analysis), giving 612 monthly observations of the yield curve.
Figure 4 has already illustrated the monthly time series of ANS Level, Slope, and Bow coefficients
derived from the yield curve data, and taking the last month of each quarter provides the relevant
quarterly data for this article. Note that the ANS coefficients are already on an annualised basis,
given that they are estimated from yield curve data expressed on an annualised basis.

The analysis also requires data for steady-state inflation, steady-state output growth, and nom-
inal output growth relative to its steady-state value. These data are not measured directly, and
so proxies are necessarily required. The primary proxy for economy-wide steady-state inflation is
chosen as inflation in the GDP deflator (hereafter IGD). This choice means that nominal output
growth relative to its steady-state value equals real output growth relative to its steady-state value,
i.e∆Xt+T1,t+T2 = ∆Yt+T1,t+T2−∆Y ∗t+T1,t+T2 , for which there is standard data available. Specifically,
the proxy for real output growth is real GDP growth, and the proxy for steady-state output growth
is Congressional Budget Office potential GDP growth (hereafter CBO ∆Y ∗t ; see Congressional
Budget Office (2001) for calculation details). Inflation in the personal consumption expenditure
deflator, including and excluding food and energy (hereafter PCE and PCEX respectively), are also
tested as alternative proxies for steady-state inflation when testing for the cointegration implied by
equation 8.10 All index levels for the series mentioned are available from the FRED on a quarterly
basis, and the inflation and growth data are calculated as changes in the logarithm of those levels.

Equations 8 and 11 are estimated using both annualised quarterly data, and quarterly annual
data; the latter for comparability to the existing literature. The existing literature also forecasts
GDP growth, rather than GDP growth relative to potential GDP growth. Using a constant estimate
of potential output growth (i.e ∆Y ∗t = 3.31%, which is the average of annualised quarterly GDP
growth over the entire sample), instead of the time-varying CBO ∆Y ∗t obtains ∆Xt+T1,t+T2 data
equivalent to GDP growth to within a constant.

To allow a visual inspection of some of the relationships to be estimated, figure 5 plots the time
series of the ANS Level coefficient and the annualised quarterly IGD plus annualised quarterly CBO
∆Y ∗t data, and figure 6 plots the difference between the Level coefficient and IGD plus CBO ∆Y ∗t .
Figure 7 illustrates the annual GDP growth, the annual CBO ∆Y ∗t , and the constant ∆Y ∗t = 3.31%
data that are used to calculate the annual ∆Xt+T1,t+T2 data subsequently used in the estimation of

920-year data is unavailable from January 1987 to September 1993, and so 30-year data (with a 30-year maturity)
is used during this period for the estimation of the ANS model.
10Surveyed long-term, or even short-term, CPI inflation expectations would arguably make superior proxies for

steady-state inflation. However, the availability of that data is limited; e.g 10-year inflation expectations from the
Philidelphia Federal Reserve website are only available from 1991, and Michigan year-ahead inflation expectations
from the FRED are only available from 1978. An alternative proxy for steady-state inflation might be a suitable
trend extracted from the historical data.
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equation 11. Figure 8 plots ∆Xt,t+1 based on CBO ∆Y ∗t , and the corresponding predicted values
of ∆Xt,t+1 using the ANS Slope and Bow coefficients that prevailed at time t.

[ Figure 5 here ] [ Figure 6 here ], [ Figure 7 here ], [ Figure 8 here ]
Figures 5, 6, and 8 all show prima facie evidence of structural breaks in the yield curve/inflation

and yield curve/output growth relationship from around the late 1970s/early 1980s. This is not
surprising given the context of substantial change in the US economic and financial environment
during the late-1970s to the mid-1980s. For example, a significant economic change was the Fed-
eral Reserve’s Volcker-led disinflation from October 1979, and the subsequent maintenance of low
inflation. A significant financial change was progressive market deregulation, including eliminating
interest rate restrictions, rationalising reserve requirements, and allowing an increasing role for se-
curitisation. Prior empirical work also mentions these reasons when documenting structural breaks
between 1979:Q4 to 1984:Q1.11

The analysis for the full sample therefore proceeds with the inclusion of a step dummy variable
Dt in equations 8 and 11, where Dt = 0 up to the period immediately before the breakpoint, and
Dt = 1 from the given breakpoint. The breakpoints for the analysis in this article are 1982:Q1
for inflation and 1984:Q1 for output, which were selected to be consistent with the prior empirical
work noted above. The analysis is also undertaken for the two sub-samples pre-1979:Q4 and post-
1984:Q1, which excludes all of the breakpoints referenced in prior empirical work.

4.2 The ANS Level coefficient and inflation

Tables 1 and 2 contain the test results for cointegration, as as implied by equation 8, between the
ANS Level coefficient and the annualised quarterly and annual measures of inflation plus CBO
potential GDP growth.12 Both sets of results are moderately supportive of the hypothesis of coin-
tegration over the whole sample and the two sub-samples. Specifically, the test statistics in the top
half of the table typically do not reject the unit root hypothesis,13 but the Level coefficient less
the measures of inflation with or without potential growth added typically do reject the unit root
hypothesis. Consistent with the prior discussion on structural change, the cointegration results
over the whole sample are stronger when the structural change dummy variable is included. In-
terestingly, the results are also better when CBO ∆Y ∗t is ignored (which is equivalent to replacing
CBO ∆Y ∗t with the constant ∆Y ∗t = 3.31%), and/or measures of consumption inflation are used
as proxies for steady-state inflation. These observations suggest that long-maturity yields may
be more responsive to movements in consumption inflation measures, rather than economy-wide
inflation and/or variations in steady-state output growth.

[ Table 1 here ], [ Table 2 here ]
That said, any conclusions must remain tentative given what is essentially modest and variable

evidence for cointegration. This might be because current inflation and potential output growth

11For example, based on statistical tests for unknown breakpoints, Estrella et al. (2003) identifies structural breaks
in October 1979 and October 1982 when the yield curve is used as an indicator of future inflation, and in September
1983 when the yield curve is used as an indicator of future output. Using a similar technique, Aïssa and Jouini
(2003) documents a break in the inflation process in June 1982, and Lai (2004) suggests a break between mid-1980
and early-1981. Jardet (2004) documents a break in the yield curve/output relationship in March 1984, and the
yield curve forecasting application of Krippner (2005) implies a structural break in yield curve term premia between
September 1979 and October 1982.
12For consistency, all quarterly results use one lag for the augmented Dickey-Fuller tests and a window of one for

the Phillips-Perron tests, and all annual results use four lags and a window of four (to allow for the expected MA(3)
serial correlation plus one). The results using optimal lag and window selection were similar, but implausibly long
lag lengths were occasionally selected.
13The quarterly measures of inflation often produce materially negative test statistics, but MacKinnon (1996) p.

615 notes that test statistics on the annual measures of inflation are more reliable (essentially because unobservable
measurement errors in inflation data over short intervals tend to bias the unit root test statistics downward, but that
bias fades over longer intervals). Of course, any downward bias in the unit root tests for inflation will also translate
into the cointegration tests, but the latter test statistics are typically of a larger magnitude than the unit root test
statistics on inflation itself.

10



are not good proxies for their steady-state counterparts, but an alternative explanation is that
the variance of relative changes in the deflators (i.e the parameters σ2j,p noted in section 2.1)
might vary over time, as might the risk premia related to steady-state inflation and/or steady-state
growth. Indeed, if the combination of those quantities over time are represented by the time series
β1,t −∆P ∗t −∆Y ∗t , then figure 6 shows four distinct levels: i.e a low (but variable) level up to the
late-1970s/early-1980s; a peak level from the early-1980s to 1986; a moderate level from 1986 to
1998; and a return to a relatively low level (i.e consistent with pre-1979 levels) from 1998. It would
be intriguing to formally test for structural breaks in the time series β1,t−∆P ∗t −∆Y ∗t , and to see
how those breaks correspond to changes in the economic and financial environments that prevailed
at the time. However, that investigation is beyond the scope of this article, and so will be explored
in future work.14

4.3 The ANS Slope and Bow coefficients and output growth

Table 3 contains the results from estimating equation 11 over the full sample, using the dummy
variable with the 1984:Q1 breakpoint and ∆Xt+T1,t+T2 based on CBO ∆Y

∗
t .
15 The first point

of note is that the yield curve has explanatory power for ∆Xt+T1,t+T2 over short and medium
horizons. That is, the coefficients α1,T1,T2 are highly significant and positive for forward horizons
up to one year, become insignificant while remaining positive through the second year (although
the coefficient is significant on an annual basis), but become insignificant and negative for most
forward horizons over two years. In addition, the coefficients α1,T1,T2 are insignificantly different
from the theoretical value of 1, except for the marginal rejection of that hypothesis for the 2.25
to 2.5 year, and the 2.5 to 2.75 year horizons. This indicates that the ANS framework provides a
gauge of the profile (i.e the timing and magnitude) of the future changes in output growth relative
to potential output growth. Both the constant and the dummy variable are highly significant for
short horizons (and remain consistently signed but insignificant after that), suggesting that a term
premium existed before the structural break, and became larger in magnitude after the structural
break. The negative value of both coefficients is consistent with positive term premia; i.e the yield
curve would persistently over-forecast ∆Xt+T1,t+T2 , so a negative adjustment is required to remove
that persistent bias.

[ Table 3 here ]
Table 4 contains the results for equation 11 estimated over each sub-sample, and this provides

an interesting insight into the results for the entire sample. That is, up to 1979:Q3 the shape of the
yield curve was best at predicting ∆Xt+T1,t+T2 over short forward horizons, although it tended to
under-predict those changes. Conversely, beyond 1984:Q1 the shape of the yield curve was best at
predicting ∆Xt+T1,t+T2 over medium forward horizons; while remaining useful for short horizons, it
tended to over-predict ∆Xt+T1,t+T2 . The combination of these sub-sample results evidently offset
to give estimates of the coefficients α1,T1,T2 that are close to unity over the full sample.

[ Table 4 here ]
Tables 5 and 6 contain the results for estimating equation 11 using ∆Xt+T1,t+T2 based on

∆Y ∗t = 3.31%. These estimations are now directly analogous to the regressions of GDP growth
on lagged yield curve spreads from the existing literature, and therefore provide some insights into
those prior results. Firstly, the existing literature finds the explanatory power of the regressions
are highest for short forward horizons and fade quickly past forward horizons of one year (e.g
see Hamilton and Kim (2002) table 2). Equation 11 shows this is to be expected, given that theP3

n=2 βn (t) · qn (T1, T2) “signal” decreases (due to the falling magnitudes of qn (T1, T2)) while the
14Buraschi and Jiltsov (2005) provide evidence for a time-varying risk premium on inflation using an arbitrage-free

structural model of the macroeconomy and yield curve. However, the more parimonious ANS framework should prove
more amenable to investigating such phenomena.
15The Newey-West window used in each estimation is the number of quarters to T2 less 1. This allows for the

induced serial correlation expected in theory for both the annualised quarterly and the annual data. For example,
both ∆Xt,t+1 and ∆Xt+0.75,t+1 data will induce MA(3) serial correlation into εt,T1,T2 .
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εt,T1,T2 “noise” increases (due to the aggregation of more expectational surprises) as the forward
horizon lengthens. Secondly, the ANS framework results show better explanatory power using the
CBO ∆Y ∗t compared to ∆Y ∗t = 3.31%, suggesting that the results in the existing literature might
be improved by allowing for time-varying potential output growth.

[ Table 5 here ], [ Table 6 here ]

5 Conclusions and potential applications

This article develops the ANS framework; a theoretically-consistent and easy—to-apply foundation
for interpreting, investigating, and monitoring the relationships between the yield curve, output,
and inflation. The empirical results based on US data are consistent with the framework’s predic-
tions; i.e the estimated long-maturity level of the yield curve given by the Level coefficient in the
ANS model is cointegrated with steady-state inflation plus steady-state output growth, and the
shape of the yield curve given by the Slope and Bow coefficients in the ANS model corresponds to
the profile (i.e the timing and magnitude) of future output growth relative to its steady-state value.
The estimation techniques used within the ANS framework are routine, so its practical application
should be well-suited to researchers and market practitioners.16

An obvious practical use for the ANS framework is to extract implied market expectations of
inflation and output growth directly from the yield curve, and to track changes in those expectations
over time (particularly to gauge the response to economic and financial events such as data releases
or monetary policy decisions). Specifically, the ANS model applied to the nominal yield curve
implies the market’s determination of steady-state nominal output growth and the profile of future
nominal output growth. The real components of those latter quantities are implied by applying
the ANS framework to the inflation-indexed (i.e real) yield curve, thereby determining the implied
inflation components. However, time-varying term premia (for which this article provides some
preliminary evidence) also need to be considered when extracting market expectations implied by
the yield curve.

The central bank can use the information from the ANS framework as inputs into its own
economic assessments, and its formulation, implementation, and communication of monetary policy
with respect to its policy targets. For example, a rise in implied steady-state inflation to above the
stated inflation target might add to a case for tightening monetary policy. Market practitioners
should also find the information useful; indeed, the ANS framework applied in reverse should
provide a rigorous foundation for converting non-consensus macroeconomic views into optimal
trading positions on the level and shape of the yield curve. Similarly, another potential application
of the ANS framework is to use the yield curve to value and hedge some of the macroeconomic
derivatives that have been suggested by Shiller (1993 and 2003), and that have been provided to
the market over recent years (e.g see Frankel and O’Neill (2002), Chicago Mercentile Exchange
(2005), and Goldman Sachs (2005)).

A Derivation of the ABE forward rate curve

This appendix derives the ABE forward rate curve via the HJM framework. It proceeds in four
sections: (1) outlining the relevant notation and results from the HJM framework; (2) calculating
the expected path of the short rate for the ABE model; and (3) calculating the effect that the
market prices of risk and volatility in the ABE model coefficients have on the shape of the forward
rate curve, thereby obtaining the ABE model of the forward rate curve.

16 Indeed, as noted in Bank for International Settlements (1999), central banks are already frequent users of Nelson
and Siegel (1987) models, which can easily be modified into the theoretically-consistent ANS model.
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A.1 The HJM framework

HJM specifies the relationship between the instantaneous forward rate curve and the instantaneous
short rate under the physical measure as:17

r (t+m) = f (t,m) +
NX
n=1

Z m

0
σn (v,m)

½Z m

s
σn (v, u) du

¾
dv

−
NX
n=1

Z m

0
σn (v,m) ρndv +

NX
n=1

Z t+m

t
σn (v,m) dWn (v) (12)

where r (t+m) is the short rate at time t +m; f (t,m) is the forward rate curve at time t as a
function of maturity m (m ≥ 0); N is the number of independent stochastic processes that impart
instantaneous random changes to the forward rate curve; σn (v,m) is the volatility function for the
process n; θn is the market price of risk for the process n; dWn (v) are independent Wiener variables
under the physical measure; and u and v are dummy integration variables. The first two integrals in
equation 12 have been written with limits 0 and m (i.e independent of t) because the market prices
of risk from the ABE model are constant, and the volatility functions are time-variant functions of
maturity. The third integral retains time dependence via the paths of the Wiener processes.

Applying the expectations operator as at time t to equation 12 and rearranging provides a
relationship that will hold at any point in time, i.e:

f (t,m) = Et [r (t+m)] +
NX
n=1

Z m

0
σn (v,m) ρndv −

NX
n=1

Z m

0
σn (v,m)

½Z m

s
σn (v, u) du

¾
dv (13)

where Et [r (t+m)] is the expected path of the short rate at time t as a function of horizon m, and
the expectation of the stochastic term in equation 12 is zero (see Ross (1997) pp. 541-542).

A.2 The ABE expected path of the short rate

Following BE and Cox et al. (1985b), the nominal short rate at any given time is the summation
of state variables sj (t), i.e r (t) =

P2J
j=1 sj (t). This equality holds at all points in time, and

so Et [r(t+m)] =
P2J

j=1Et [sj (t+m)], where Et [sj (t+m)] are the expected values of the state
variables j, all as at time t as a function of horizon m.

Et [sj (t+m)] may be calculated by applying the expectations operation Et to equation 1
and noting that Et [θj (t+m)] = θj (t); hence Et [dsj (t+m)] = −κj {Et [dsj (t+m)]− θj (t)} dm.
This ordinary differential equation in m has the solution Et [sj (t+m)] = θj (t) +Aj · exp (−κjm).
The boundary condition at m = 0 is sj (t) = θj (t) + Aj , so Aj = sj (t) − θj (t), and therefore
Et [sj (t+m)] = θj (t) + [sj (t)− θj (t)] · exp (−κjm). Summing this result across all 2J state
variables gives Et [r (t+m)] as specified in equation 2.

A.3 The ABE forward rate curve

The HJM volatility functions for each component of the ABE model are determined by the stochas-
tic innovations for each factor j applied to the components of Et [r(t+m)] associated with that
factor. Firstly, an innovation dz0,j (t) will result in a parallel shift of σ0,j · dz0,j (t) to Et [r(t+m)]
and f (t,m) simultaneously. Therefore, the volatility function is σn (v,m) = σ0,j for any j, mak-
ing the first equation 13 integral

Rm
0 σ0,jρ0,jdv = σ0,jρ0,j · [v]m0 = σ0,jρ0,j · m, and the second

equation 13 integral
Rm
0 σ0,j ·

©Rm
v σ0,jdu

ª
dv =

Rm
0 σ0,j · {σ0,j · [u]mv } dv =

Rm
0 σ20,j · [m− v] dv =

σ20,j ·
h
mv − v2

2

im
0
= 1

2σ
2
0,j ·m2.

17From HJM eq. 5 with the substitution of HJM eq. 25.
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Secondly, an innovation dz1,j (t) will result in a non-parallel shift of σ1,j ·exp (−κjm)·dz1,j (t) (i.e
an exponential decay function by horizon/maturity) to Et [r(t+m)] and f (t,m) simultaneously.
Therefore, the volatility function is σn (v,m) = σ1,j · exp (−κjm) for any j, making the first equa-
tion 13 integral

Rm
0 σ1,j · exp (−κjv) ·ρ1,jdv = σ1,jρ1,j ·

h
− 1

κj
exp (−κjv)

im
0
= σ1,jρ1,j ·Bj (m) where

1
κj
[1− exp (−κjm)]. The second equation 13 integral is calculated in two steps, i.e:

Rm
v σn (v, u) du

=
Rm
s σ1,j · exp (−κj [u− v]) du = σ1,j ·

h
− 1

κj
exp (−κj [u− v])

im
v
=

σ1,j
κj
· [1− exp (−κj [m− v])].

Then
Rm
0 σn (v,m)

©Rm
v σn (v, u) du

ª
dv is calculated as:

Rm
0 σ1,j · exp (−κj [m− v]) · σ1,j

κj
· [1 −

exp (−κj [m− v])]dv =
σ21,j
κj
·Rm0 [exp (−κj [m− v])−exp (−2κj [m− v])]dv =

σ21,j
κ2j
·[exp (−κj [m− v])

−12 exp (−2κj [m− v])]m0 =
σ21,j
κ2j
· [1− exp (−κjm)− 1

2 +
1
2 exp (−2κjm)] =

σ21,j
2κ2j

· [1− exp (−κjm) +
exp (−2κjm)] = σ21,j

2κ2j
· [1− exp (−κjm)]2 = −12σ21,j · [Bj (m)]

2

Thirdly, innovations in dz0,j (t) will also result in a non-parallel shift of −σ0,j · exp (−κjm) ·
dz0,j (t) to Et [r(t+m)] and f (t,m) simultaneously, in addition to the parallel shift already noted
earlier. The integrals for these non-parallel components follow those for dz1,j (t) above, giving the
results −σ0,jρ0,j ·Bj (m) and 1

2σ
2
1,j · [Bj (m)]

2.
Substituting Et [r (t+m)] from section A.2 and the calculations from this section into equation

13 gives equation 3.

B The correspondence between the ABE model and the ANS
model

This appendix further establishes the correspondence between the ABE model and the ANS model.
The first section shows that the non-Level components of the ANS model are a precise first-order
approximation to the non-steady-state components of the generic ABE model. The second section
proves that the data in equations 8 and 11 are all Gaussian under the ABE and ANS model
assumptions.

B.1 Relating the non-steady-state components of the ABE model to the non-
Level components of the ANS model

Using the macroeconomic quantities from section 2.1 and noting that Et [θj (t+m)] = θj (t) leads
directly to Et[dP (t+m)+dY (t+m)−dP ∗ (t+m)−dY ∗ (t+m)] = Et[dP (t+m)+dY (t+m)−
dP ∗ (t)− dY ∗ (t)] =

P2J
j=1 [sj (t)− θj (t)] · exp (−κjm). Negating these terms therefore establishes

the equality in equation 7a.
Regarding the approximation in equation 7b, define φ as a central measure of the values of

κj for j = 1 to 2J , i.e φ = central(κj) (φ is a positive constant, because all κj are positive con-
stants). Therefore κj = φ (1 +∆j), and the non-steady-state component of equation 2 may be
written as

P2J
j=1 [sj (t)− θj (t)] · exp (−κjm) = exp (−φm) ·P2J

j=1 [sj (t)− θj (t)] · exp (−∆jφm).
Now write each exp (−∆jφm) as a first-order Taylor expansion around ∆j = 0; i.e substituting
exp (−∆jφm) ' 1−∆jφm and expanding gives:

P2J
j=1 [sj (t)− θj (t)] · exp (−κjm) ' exp (−φm) ·P2J

j=1 [sj (t)− θj (t)]− exp (−φm) ·
P2J

j=1 [sj (t)− θj (t)]∆j · φm. The right-hand side may be rear-
ranged as − exp (−φm) ·−P2J

j=1 [sj (t)− θj (t)] ·
¡
1− 1

2∆j

¢−exp (−φm) ·−P2J
j=1 [sj (t)− θj (t)]∆j ·

1
2 (−2φm+ 1) = λ2 (t)·g2 (φ,m)+λ3 (t)·g3 (φ,m), where λ2 (t) = −

P2J
j=1 [sj (t)− θj (t)]·

¡
1 + 1

2∆j

¢
and λ3 (t) = −

P2J
j=1 [sj (t)− θj (t)]

1
2∆j .

Hence,
P3

n=2 λn (t) · gn (φ,m) ' −
P2J

j=1 [sj (t)− θj (t)] · exp (−κjm), which upon the substi-
tution of βn (t) − γn = λn (t) gives equation 7b. The non-Level component of the ANS expected
path of the short rate is therefore a precise first-order approximation to the ABE expected path
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of the short rate based on an arbitrary number of factors of production. Hence, ignoring the yield
residuals after estimating the ANS model is equivalent to ignoring the second-order and higher
terms from the Taylor expansion of the ABE model.18

By reference to appendix A.3, the stochastic components of −P2J
j=1 [sj (t)− θj (t)] ·exp (−κjm)

are −P2J
j=1 [σ1,jdz1,j (t)− σ0,jdz0,j (t)] · exp (−κjm). Following the first-order Taylor expansion

approach outlined above, the latter expression may be expressed as
P3

n=2 σn · gn(φ,m) · dWn (t).
This shows that innovations in the non-Level components of the ANS model are a first-order
approximation to innovations in the the non-steady-state component of the ABE model. Finally,
using these two first-order approximations, i.e

P3
n=2 λn (t)·gn (φ,m) and

P3
n=2 σn·gn(φ,m)·dWn (t),

within the HJM framework provides the non-Level component of the ANS forward rate curve that
will approximate the non-steady-state components of the ABE forward rate curve. Hence,

P3
n=2 γn·

gn(φ,m) '
P2J

j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ · Bj (m), and
P3

n=2 σ
2
n · h2(φ,m) ' −

P2J
j=1

1
2

h
σ21,j − σ20,j

i
·

[Bj (m)]
2.

B.2 The discrete-time time-series processes for the ABE state variables and
the ANS model coefficients

The data on both sides of equations 8 and 11 are Gaussian time-series processes under the ABE and
ANSmodel assumptions. That is, for the steady-state components of the ABEmodel

P2J
j=1 θj (t+ τ)

=
P2J

j=1 θj (t) +
P2J

j=1

R t+τ
t σ0,jdz0,j (v) dv, where τ is an arbitrary increment of time, and for

the Level coefficient of the ANS model β1 (t+ τ) = β1 (t) +
R t+τ
t σ1dWn (v) dv. The stochas-

tic integrals have closed forms; respectively
P2J

j=1

R t+τ
t σ0,jdz0,j (v) dv = N

³
0, τ

P2J
j=1 σ

2
0,j

´
, andR t+τ

t σ1dWn (v) dv = N
¡
0, τσ21

¢
.

Regarding the ANS coefficients in equation 11, Krippner (2005) proves they are Gaussian time-
series processes by deriving the underlying Gaussian vector autoregressive process for the ANS
model coefficients over arbitrary increments of time τ . To prove that ∆Xt+T1,t+T2 are also Gaussian
time-series processes over arbitrary increments of time τ , begin with the intertemporal relationship
for the expected path of the short rate from the HJM framework as derived in Krippner (2005), i.e:

Et+τ [r (t+ τ +m)] = Et [r (t+ τ +m)] +
NX
n=1

Z t+τ

t
σn (v,m) dWn (v) (14)

This is intuitive: the expected path of the short rate would be realised but for the impact of unpre-
dictable new information represented by the summation of stochastic integrals. These stochastic
integrals do not have closed form solutions but Et

hR t+τ
t σn (v,m) dWn (v)

i
= 0 (see Ross (1997)

pp. 541-542), and each integral will be a summation of infinitesimal σn (v,m) dWn (v) increments
expressible as εn (t+ τ) · σn (m), where εn (t+ τ) is Gaussian by virtue of the Wiener processes
being Gaussian.

The relationship in equation 14 will apply to each component j of the ABEmodel. For notational
convenience, define Et [xj (t+ τ +m)] = Et [sj (t+m)− θj (t+m)] = Et [−θj (t+m)] + θj (t) +
[sj (t)− θj (t)] · exp (−κjm) = [sj (t)− θj (t)] · exp (−κjm). Then applying the relationship from
equation 14 for each component j in the ABE model gives:

18The ANS model could be extended arbitrarily by adding higher-order exponential-polynomial functions, which
would be equivalent to adding terms in the Taylor expansion of the non-steady state components of the ABE model.
In this sense, the approximation is natural, while the approximations based on other functions (e.g simple polynomials
as in McCulloch (1971)), or Chebyshev polynomials as in Pham (1998)) would be “unnatural” because the addition
of each higher-order term would not directly correspond to an extra term in the Taylor expansion.
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Et+τ [xj (t+ τ +m)]

= Et [xj (t+ τ +m)] +

Z t+τ

t
exp (−κj [m− v]) [σ1,jdz1,j (v)− σ0,jdz0,j (v)] (15)

where Et

hR t+τ
t exp (−κj [m− v]) [σ1,j · z1,j (v)− σ0,j · z0,j (v)]

i
= 0 and the integral will be express-

ible as
£
η1,j (t+ τ)− η0,j (t+ τ)

¤ · exp (−κjm) = ηj (t+ τ) · exp (−κjm). Hence:

xj (t+ τ) · exp (−κjm) = xj (t) · exp (−κj [τ +m]) + ηj (t+ τ) · exp (−κjm) (16a)

xj (t+ τ) · exp (−κjm) = exp (−κjτ) · xj (t) · exp (−κjm) + ηj (t+ τ) · exp (−κjm) (16b)
xj (t+ τ) = exp (−κjτ) · xj (t) + ηj (t+ τ) (16c)

Therefore, ηj (t+ τ) are Gaussian for arbitrary increments of time τ , which is the results required
for the validity of using standard econometric estimation methods in section 3.3.

References

Aïssa, M. and Jouini, J. (2003), ‘Structural breaks in the US inflation process’, Applied Economics
Letters 10, 633—636.

Ang, A. and Piazzesi, M. (2003), ‘A no-arbitrage vector autoregression of term structure dynamics
with latent variables’, Journal of Monetary Economics 50, 745—787.

Bank for International Settlements (1999), Zero-coupon Yield Curves: Technical Documentation,
Bank for International Settlements.

Berardi, A. and Esposito, M. (1999), ‘A base model for multifactor specifications of the term
structure’, Economic Notes 28(2), 145—170.

Berk, J. (1998), ‘The information content of the yield curve for monetary policy: a survey’, De
Economist 146, 303—320.

Bernard, H. and Gerlach, S. (1998), ‘Does the term structure predict recessions? The international
evidence’, International Journal of Finance and Economics 3, 195—215.

Bordo, M. and Haubrich, J. (2004), ‘The yield curve, recessions, and the credibility of the monetary
regime: long run evidence 1875-1997’, NBER working paper series 10431.

Buraschi, A. and Jiltsov, A. (2005), ‘Inflation risk premia and the expectations hypothesis’, Journal
of Financial Economics 75, 429—490.

Chicago Mercentile Exchange (2005), ‘An introduction to CME economic derivatives’.
URL: http://www/cme.com

Congressional Budget Office (2001), ‘CBO’s method for estimating potential output: an update’.
URL: http://www/cbo.gov

Cox, J., Ingersoll, J. and Ross, S. (1985a), ‘An intertemporal general equilibrium model of asset
prices’, Econometrica 53, 363—384.

Cox, J., Ingersoll, J. and Ross, S. (1985b), ‘A theory of the term structure of interest rates’,
Econometrica 53, 385—407.

16



Diebold, F. and Li, C. (2005), ‘Forecasting the term structure of government bond yields’, Journal
of Econometrics (forthcoming) .

Diebold, F., Rudebusch, G. and Aruoba, S. (2005), ‘The macroeconomy and the yield curve: a
dynamic latent factor approach’, Journal of Econometrics (forthcoming) .

Estrella, A. (2003), ‘Why does the yield curve predict output and inflation?’, Working Paper,
Federal Reserve Bank of New York .

Estrella, A., Rodrigues, A. and Schich, S. (2003), ‘How stable is the predictive power of the yield
curve? Evidence from Germany and the United States’, Review of Economics and Statistics
85(3), 629—644.

Fahmy, Y. and Kandi, M. (2003), ‘The Fisher effect: new evidence and implications’, International
Review of Economics and Finance 12, 451—465.

Fang, V. and Muljono, R. (2003), ‘An empirical analysis of the Australian dollar swap spreads’,
Pacific-Basin Finance Journal 11, 153—173.

Filipovíc, D. (2000), ‘Exponential-polynomial families and the term structure of interest rates’,
Bernoulli Journal 6(6), 1081—1107.

Frankel, O. and O’Neill, J. (2002), ‘Economic derivatives: what is their benefit?’, Derivatives Week
11(38).

Goldman Sachs (2005), ‘Economic derivatives: options on economic statistics’.
URL: http://www/gs.com

Goldstein, R. and Keirstead, W. (1997), ‘On the term structure of interest rates in the presence of
reflecting and absorbing boundaries’, Working paper, Ohio State University .

Hamilton, J. and Kim, D. (2002), ‘A re-examination of the predictability of economic activity using
the yield spread’, Journal of Money, Credit, and Banking 34(2), 340—360.

Heath, D., Jarrow, R. and Morton, A. (1992), ‘Bond pricing and the term structure of interest
rates: a new methodology for contingent claims valuation’, Econometrica 60(1), 77—106.

Jardet, C. (2004), ‘Why did the term structure of interest rates lose its predictive power?’, Economic
Modelling 21, 509—524.

Krippner, L. (2005), ‘A theoretically consistent version of the Nelson and Siegel class of yield curve
models’, Applied Mathematical Finance (forthcoming) .

Lai, K. (2004), ‘On structural shifts and stationarity of the ex-ante real interest rate’, International
Review of Economics and Finance 13, 217—228.

MacKinnon, J. (1996), ‘Numerical distribution functions for unit root and cointegration tests’,
Journal of Applied Econometrics 11(6), 601—618.

McCulloch, J. (1971), ‘Measuring the term structure of interest rates’, Journal of Business 44, 19—
31.

Nakaota, H. (2005), ‘The term structure of interest rates in Japan: the predictability of economic
activity’, Japan and the World Economy 17, 311—326.

Nelson, C. and Siegel, A. (1987), ‘Parsimonious modelling of yield curves’, Journal of Business
October, 473—489.

17



Paya, I., Matthews, K. and Peel, D. (2005), ‘The term spread and real economic activity in the US
inter-war periods’, Journal of Macroeconomics 27(2), 331—343.

Pham, T. (1998), ‘Estimation of the term structure of interest rates: an international perspective’,
Journal of Multinational Financial Management 8, 265—283.

Rendu de Lint, C. and Stolin, D. (2003), ‘The predictive power of the yield curve: a theoretical
assessment’, Journal of Monetary Economics 50, 1603—1622.

Ross, S. (1997), Introduction to Probability Models, Sixth Edition, Academic Press.

Shiller, R. (1993), Macro Markets: Creating Institutions for Managing Society’s Largest Economic
Risks, Oxford University Press.

Shiller, R. (2003), The New Financial Order: Risk in the 21st Century, Princeton University Press.

Vasicek, O. (1977), ‘An equilibrium characterisation of the term structure’, Journal of Financial
Economics 5, 177—188.

18



-1

0

1

0 1 2 3 4 5 6 7 8 9 10

Maturity in years (m )

Fu
nc

tio
n 

va
lu

e
Level mode 

Bow mode 

Slope mode 

Figure 1: The Level, Slope, and Bow modes (i.e g1 (φ,m), g2 (φ,m), and g3 (φ,m) from the NS
model) that are used to represent the expected path of the short rate in the ANS model. This
illustration uses φ = 1.07.
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Figure 2: The yield curve data for the month of June 2004, and the “fitted” yields based on
the estimated ANS model. The estimated Level, Slope, and Bow coefficients are, respectively,
β1 (Jun-04) = 5.87%, β2 (Jun-04) = 6.80%, and β3 (Jun-04) = −2.09%. The ANS parameters
estimated over the entire sample are φ = 1.07, ρ1 = 2.57%, σ1 = 0.79%, σ2 = 2.31%, and
σ3 = 1.78%.
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Figure 3: The time series of two of the seven interest rates that are used to estimate the time series
of ANS Level, Slope, and Bow coefficients plotted in figure 4.
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Figure 4: The time series of the estimated ANS Level, Slope, and Bow coefficients (i.e β1 (t), β2 (t),
and β3 (t)). The ANS coefficients at each point in time are estimated using the seven points of
yield curve data observed at that point in time.
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Figure 5: The time series of the ANS Level coefficient (i.e β1 (t)), and annualised quarterly inflation
in the GDP deflator (IGD) plus annualised quarterly growth in Congressional Budget Office poten-
tial GDP (CBO ∆Y ∗). Note the apparent structural change between the two series from around
the late-1970s/early-1980s, as discussed in section 4.1.
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Figure 6: The time series of the ANS Level coefficient (i.e β1 (t)) less annualised quarterly inflation in
the GDP deflator (IGD) plus annualised quarterly growth in Congressional Budget Office potential
GDP (CBO ∆Y ∗). The alternative series allows for structural change in the difference between the
two series from 1982:Q1, as discussed in section 4.1.
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Figure 7: Output data used in the estimation of equation 11. ∆Y is the annual growth in GDP,
CBO ∆Y ∗ is annual growth in Congressional Budget Office potential GDP, and ∆Y ∗ = 3.31%
is the estimate of constant potential growth. The difference between ∆Y and the CBO ∆Y ∗ is
plotted in figure 8.
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Figure 8: The time series of ∆Yt,t+1 −∆Y ∗t,t+1(= ∆Xt,t+1) based on the ∆Yt and CBO ∆Y ∗t data
plotted in figure 5, and Et

£
∆Yt,t+1 −∆Y ∗t,t+1

¤
(= Et [∆Xt,t+1]) as implied by the ANS framework.

Note the apparent structural change in the relationship from around the late-1970s/early-1980s, as
discussed in section 4.1.
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Period
Unit root tests ADF PP ADF PP ADF PP

Level coefficient ( β1 ) -1.7 -1.6 -0.2 -0.2 -2.4 -3.0 **
Pot. GDP growth ( ∆Y* ) -2.8 * -0.9 -1.9 -0.8 -2.7 * -0.8 
Dummy ( D ) -1.0 -1.0 - - - -
∆ GDP deflator ( IGD ) -2.7 * -3.2 ** -1.6 -2.2 -3.6 *** -5.0 ***
∆ PCE deflator ( PCE ) -2.8 * -3.5 *** -1.2 -1.9 -3.4 ** -4.7 ***
∆ PCEX deflator ( PCEX ) -2.1 -2.6 -1.4 -1.7 -2.1 -2.9 **
IGD + ∆Y* -2.7 * -3.3 ** -1.8 -2.4 -3.9 *** -5.3 ***
PCE + ∆Y* -2.9 * -3.6 *** -1.5 -2.2 -3.6 *** -5.0 ***
PCEX + ∆Y* -2.2 -2.6 * -1.7 -1.9 -2.3 -3.2 **

Cointegration tests ADF PP ADF PP ADF PP
β1 - IGD -2.7 * -3.1 ** -3.6 *** -4.5 *** -2.8 * -3.2 **
β1 - PCE -2.9 * -3.5 ** -3.1 ** -4.4 *** -3.2 ** -3.7 ***
β1 - PCEX -2.9 * -3.2 ** -3.7 *** -4.1 *** -3.7 *** -3.8 ***
β1 - [ IGD + ∆Y* ] -2.5 -2.8 * -3.8 *** -4.9 *** -2.7 * -3.0 **
β1 - [ PCE + ∆Y* ] -2.6 * -3.2 ** -3.4 ** -4.7 *** -3.1 ** -3.5 **
β1 - [ PCEX + ∆Y* ] -2.5 -2.8 * -3.6 *** -4.0 *** -3.5 ** -3.6 ***
β1 - IGD - D -3.8 ** -4.7 *** - - - -
β1 - PCE - D -3.9 ** -5.1 *** - - - -
β1 - PCEX - D -4.0 *** -4.9 *** - - - -
β1 - [ IGD + ∆Y* ] - D -3.6 ** -4.5 *** - - - -
β1 - [ PCE + ∆Y* ] - D -3.8 ** -4.9 *** - - - -
β1 - [ PCEX + ∆Y* ] - D -3.7 ** -4.5 *** - - - -

Full sample Up to 1979:Q3 From 1984:Q1

Table 1: Tests for cointegration between the ANS Level coefficient, and an-
nualised quarterly measures of inflation with and without annualised quar-
terly growth in CBO potential GDP growth and with and without an esti-
mated step dummy variable. ADF is augmented Dickey-Fuller, and PP is
Phillips-Perron. ***, **, * respectively represent 1, 5, and 10 percent levels
of significance.
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Period
Unit root tests ADF PP ADF PP ADF PP

Level coefficient ( β1 ) -1.7 -1.7 -0.3 -0.3 -0.8 -2.6 *
Pot. GDP growth ( ∆Y* ) -2.0 -1.3 -1.0 -1.3 -1.9 -1.1 
Dummy ( D ) -0.9 -0.9 - - - -
∆ GDP deflator ( IGD ) -1.7 -1.9 -0.5 -1.0 -1.3 -2.1 
∆ PCE deflator ( PCE ) -2.0 -2.2 -0.6 -1.1 -1.3 -1.9 
∆ PCEX deflator ( PCEX ) -1.5 -1.7 -0.9 -1.1 -0.9 -1.3 
IGD + ∆Y* -1.7 -2.0 -0.8 -1.3 -1.5 -2.2 
PCE + ∆Y* -2.1 -2.3 -0.9 -1.4 -1.5 -2.0 
PCEX + ∆Y* -1.5 -1.8 -1.3 -1.4 -1.1 -1.5 

Cointegration tests ADF PP ADF PP ADF PP
β1 - IGD -2.1 -2.1 -2.7 * -2.5 -1.0 -2.4 
β1 - PCE -2.4 -2.4 -2.8 * -2.7 * -0.9 -3.0 **
β1 - PCEX -2.2 -2.5 -2.8 * -2.9 * -2.0 -3.7 ***
β1 - [ IGD + ∆Y* ] -2.0 -1.9 -3.1 ** -2.9 * -0.9 -2.3 
β1 - [ PCE + ∆Y* ] -2.3 -2.2 -1.4 -1.8 -1.4 -2.3 
β1 - [ PCEX + ∆Y* ] -2.2 -2.2 -1.4 -1.7 -1.5 -2.7 *
β1 - IGD - D -2.7 -2.7 - - - -
β1 - PCE - D -3.1 * -3.1 * - - - -
β1 - PCEX - D -3.3 * -3.4 ** - - - -
β1 - [ IGD + ∆Y* ] - D -2.6 -2.7 - - - -
β1 - [ PCE + ∆Y* ] - D -3.1 * -3.0 - - - -
β1 - [ PCEX + ∆Y* ] - D -3.3 * -3.0 - - - -

Full sample Up to 1979:Q3 From 1984:Q1

Table 2: Tests for cointegration between the ANS Level coefficient, and an-
nual measures of inflation with and without annual growth in potential GDP
growth and with and without an estimated step dummy variable. ADF is
augmented Dickey-Fuller, and PP is Phillips-Perron. ***, **, * respectively
represent 1, 5, and 10 percent levels of significance.

Horizon R2 Constant ANS Dummy ANS coeff.
T 1 , T 2 Slope Bow in % coefficient coefficient coefficient less 1
0 - 0.25 0.88 0.65 10.0 -0.64 * 0.76 *** -1.16 ** -0.24 

0.25 - 0.5 0.67 0.14 15.7 -0.95 ** 1.10 *** -1.81 *** 0.10 
0.5 - 0.75 0.51 -0.17 8.5 -0.83 * 0.89 *** -1.34 ** -0.11 
0.75 - 1 0.39 -0.34 6.3 -0.78 0.85 *** -1.13 -0.15 
1 - 1.25 0.30 -0.42 5.7 -0.76 0.91 *** -1.05 -0.09 

1.25 - 1.5 0.23 -0.44 1.1 -0.42 0.46 -0.39 -0.54 
1.5 - 1.75 0.18 -0.43 1.0 -0.34 0.50 -0.45 -0.50 
1.75 - 2 0.13 -0.40 1.3 -0.38 0.67 * -0.51 -0.33 
2 - 2.25 0.10 -0.36 0.5 -0.23 0.49 -0.34 -0.51 

2.25 - 2.5 0.08 -0.32 0.0 -0.04 -0.18 0.14 -1.18 *
2.5 - 2.75 0.06 -0.28 0.0 -0.06 -0.11 0.07 -1.11 *
2.75 - 3 0.05 -0.24 0.8 -0.29 1.13 -0.38 0.13 

0 - 1 0.61 0.07 25.4 -0.82 ** 0.93 *** -1.40 *** -0.07 
1 - 2 0.21 -0.43 4.9 -0.48 0.66 *** -0.59 -0.34 
2 - 3 0.07 -0.30 0.2 -0.15 0.28 -0.12 -0.72 

q n (T 1,T 2)

Table 3: Full-sample estimates of equation 11 using a step dummy vari-
able and ∆Xt+T1,t+T2 based on CBO potential output growth. ***, **, *
respectively represent 1, 5, and 10 percent two-tailed levels of significance.
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Horizon R2 Const. ANS ANS cf. R2 Const. ANS ANS cf.
T 1 , T 2 in % coeff. coeff. less 1 in % coeff. coeff. less 1
0 - 0.25 17.8 -1.31 *** 1.53 *** 0.53 4.2 -0.61 0.27 * -0.73 ***

0.25 - 0.5 17.2 -1.57 *** 1.82 *** 0.82 ** 5.1 -0.77 0.31 * -0.69 ***
0.5 - 0.75 9.2 -1.28 ** 1.47 *** 0.47 8.0 -1.01 0.41 ** -0.59 ***
0.75 - 1 13.1 -1.55 *** 1.93 *** 0.93 * 6.2 -0.91 0.40 * -0.60 **
1 - 1.25 4.7 -0.96 1.26 ** 0.26 5.9 -0.90 0.44 * -0.56 **

1.25 - 1.5 0.8 -0.45 0.58 -0.42 4.3 -0.78 0.44 -0.56 *
1.5 - 1.75 0.2 -0.22 0.31 -0.69 9.4 -1.16 0.75 ** -0.25 
1.75 - 2 0.3 -0.26 0.47 -0.53 7.4 -1.05 0.81 * -0.19 
2 - 2.25 0.0 -0.09 0.17 -0.83 6.7 -1.02 0.94 ** -0.06 

2.25 - 2.5 1.9 0.36 -1.58 -2.58 1.3 -0.48 0.51 -0.49 
2.5 - 2.75 0.7 0.19 -1.16 -2.16 * 0.2 -0.24 0.27 -0.73 
2.75 - 3 0.3 -0.16 0.91 -0.09 1.1 -0.43 0.70 -0.30 

0 - 1 38.0 -1.56 *** 1.80 *** 0.80 ** 12.1 -0.80 0.33 * -0.67 ***
1 - 2 2.7 -0.43 0.68 * -0.32 15.2 -1.00 0.61 ** -0.39 
2 - 3 0.2 0.07 -0.37 -1.37 3.8 -0.56 0.66 -0.34 

Up to 1979:Q3 From 1984:Q1

Table 4: Sub-sample stimates of equation 11 using ∆Xt+T1,t+T2 based on
CBO potential output growth. ***, **, * respectively represent 1, 5, and 10
percent two-tailed levels of significance.

Horizon R2 Constant ANS Dummy ANS coeff.
T 1 , T 2 Slope Bow in % coefficient coefficient coefficient less 1
0 - 0.25 0.88 0.65 8.7 -0.41 0.71 *** -1.49 *** -0.29 *

0.25 - 0.5 0.67 0.14 13.5 -0.70 1.03 *** -2.09 *** 0.03 
0.5 - 0.75 0.51 -0.17 6.8 -0.57 0.80 *** -1.59 ** -0.20 
0.75 - 1 0.39 -0.34 4.8 -0.51 0.75 *** -1.37 * -0.25 
1 - 1.25 0.30 -0.42 4.3 -0.50 0.79 *** -1.29 * -0.21 

1.25 - 1.5 0.23 -0.44 0.6 -0.16 0.32 -0.63 -0.68 **
1.5 - 1.75 0.18 -0.43 0.7 -0.07 0.34 -0.70 -0.66 **
1.75 - 2 0.13 -0.40 0.9 -0.11 0.48 -0.76 -0.52 
2 - 2.25 0.10 -0.36 0.5 0.04 0.27 -0.60 -0.73 *

2.25 - 2.5 0.08 -0.32 0.5 0.22 -0.43 -0.13 -1.43 **
2.5 - 2.75 0.06 -0.28 0.4 0.20 -0.40 -0.21 -1.40 **
2.75 - 3 0.05 -0.24 0.7 -0.04 0.79 -0.68 -0.21 

0 - 1 0.61 0.07 20.5 -0.57 0.86 *** -1.68 *** -0.14 
1 - 2 0.21 -0.43 3.1 -0.21 0.50 ** -0.84 -0.50 **
2 - 3 0.07 -0.30 0.7 0.11 0.00 -0.40 -1.00 *

q n (T 1,T 2)

Table 5: Full-sample estimates of equation 11 using a step dummy variable
and ∆Xt+T1,t+T2 based on constant potential output growth (i.e ∆Y

∗
t =

3.31%). ***, **, * respectively represent 1, 5, and 10 percent two-tailed
levels of significance.
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Horizon R2 Const. ANS ANS cf. R2 Const. ANS ANS cf.
T 1 , T 2 in % coeff. coeff. less 1 in % coeff. coeff. less 1
0 - 0.25 15.3 -0.90 * 1.43 *** 0.43 1.7 -0.60 0.17 -0.83 ***

0.25 - 0.5 14.3 -1.13 * 1.67 *** 0.67 * 2.3 -0.71 0.21 -0.79 ***
0.5 - 0.75 7.0 -0.81 1.30 *** 0.30 4.1 -0.91 0.30 -0.70 ***
0.75 - 1 10.3 -1.08 * 1.74 *** 0.74 2.7 -0.77 0.27 -0.73 ***
1 - 1.25 3.2 -0.49 1.05 0.05 2.8 -0.79 0.31 -0.69 ***

1.25 - 1.5 0.3 0.02 0.35 -0.65 1.9 -0.68 0.30 -0.70 **
1.5 - 1.75 0.0 0.24 0.07 -0.93 4.5 -0.96 0.54 -0.46 
1.75 - 2 0.1 0.20 0.20 -0.80 2.6 -0.77 0.49 -0.51 
2 - 2.25 0.0 0.37 -0.13 -1.13 2.4 -0.74 0.57 -0.43 

2.25 - 2.5 2.7 0.80 -1.90 -2.90 * 0.1 -0.29 0.13 -0.87 
2.5 - 2.75 1.2 0.63 -1.51 -2.51 ** 0.5 0.07 -0.39 -1.39 **
2.75 - 3 0.1 0.26 0.55 -0.45 0.2 -0.34 0.30 -0.70 

0 - 1 29.3 -1.07 * 1.62 *** 0.62 * 5.7 -0.77 0.23 -0.77 ***
1 - 2 1.1 0.04 0.45 -0.55 7.6 -0.90 0.44 -0.56 *
2 - 3 0.7 0.51 -0.67 -1.67 0.8 -0.45 0.31 -0.69 

Up to 1979:Q3 From 1984:Q1

Table 6: Sub-sample estimates of equation 11 using ∆Xt+T1,t+T2 based on
constant potential output growth (i.e ∆Y ∗t = 3.31%). ***, **, * respectively
represent 1, 5, and 10 percent two-tailed levels of significance.
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