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Abstract 

 
We review the practice of experimental design in the environmental economics 

literature concerned with choice experiments.  We then contrast this with advances in 

the field of experimental design and present a comparison of statistical efficiency 

across four different experimental designs evaluated by Monte Carlo experiments.  

Two different situations are envisaged.  First, a correct a priori knowledge of the 

multinomial logit specification used to derive the design and then an incorrect one.  

The data generating process is based on estimates from data of a real choice 

experiment with which preference for rural landscape attributes were studied. Results 

indicate the D-optimal designs are promising, especially those based on Bayesian 

algorithms with informative prior.   However, if good a priori information is lacking, 

and if there is strong uncertainty about the real data generating process - conditions 

which are quite common in environmental valuation - then practitioners might be 

better off with conventional fractional designs from linear models.  Under mis-

specification, a design of this type produces less biased estimates than its competitors.  
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1 Introduction

This paper reports research results on the performance of various experimental designs (hence-

forth abbreviated in EDs) for logit models estimated on datafrom choice-experiments (hence-

forth abbreviated in CEs). The context of study is that of theliterature on non-market valuation

of environmental goods.

In the last decade the use of discrete CEs for the purpose of non-market valuation of envi-

ronmental goods has encountered the favour of many applied environmental economists.

CEs are used when policy alternatives may be described in terms of attributes and the objec-

tive is to infer the value attached to the respective attribute levels1. Attributes could be relevant

policy traits and include policy cost. Choice alternativesinstead could be different policy op-

tions and are called profiles. A CE consist of selected subsets of all possible profiles. Typically,

respondents are asked to select the best alternative from a set of alternatives (the “choice set”),

and are asked to repeat this choice for several sets.

Using the set of observed discrete choices researchers can estimate separate marginal values

for each attribute used in describing the policy alternatives, rather than a unique value for the

entire policy scenario. The latter is seen as a limitation ofcontingent valuation, which unlike

CEs cannot trace out the underlying willingness to pay for each attribute. Willingness to pay

estimates are typically derived from random utility assumptions and their efficiency reflect the

informativeness of the study. On the other hand, in this multi-attribute context the efficiency of

the estimates depends crucially on the choice of experimental designs i.e. how attributes and

attribute levels are combined to create synthetic alternatives (or profiles) and eventually choice

sets to provide maximum information on the model parameters.

Yet, little work has been done to systematically evaluate the effect of the experimental design

(ED) on the efficiency of estimates.2 With few exceptions, in most published papers employing

CE for the purpose of valuation one finds scant information onthe methodology employed to

derive the ED, or its statistical properties. The most common set of arguments seems to be

something vaguely like:
1 This motivates the proposed term of “attribute-based stated preference” method [33].
2 Although some work on the effect of choice set creation and some proposed measure of choice complexity has been

published [21, 19].
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“The total number of combinations implied by the full factorial could not be em-

ployed, so a main effects orthogonal fraction of such factorial was employed. Choice

sets were then formed by blocking the resulting set of profiles inton blocks.”

Fractional factorial design is frequently used in marketing research with conjoint analysis

which draws on general linear-in-the-parameters models, whereas CEs data are analysed by

means of models highly non-linear-in-the-parameters, usually of the multinomial logit type.

When estimating preference parameters from CE data the highnon-linearity of the multi-

nomial logit (MNL) specification affects the efficiency properties of the maximum likelihood

estimator. Hence, efficient EDs3 for MNL specifications are likely to differ in most practical

circumstances from those that are efficient in linear multivariate specifications. In particular, in

a MNL context the efficiency properties of the ED will depend on the unknown values of the

parameters, as well as the unknown model specification.

Although it may be good to raise the awareness around the issue that EDs for linear multi-

variate models are only “surrogates” for proper EDs suitable for the MNL context of analysis,

one must consider why this is a dominant stance in the profession. One reason might be that the

cost of implementing MNL-specific algorithms to derive “optimal” or “efficient”4 EDs is too

high when compared with the practical rewards it brings in the analysis. More empirical inves-

tigations of the type conducted by Carlsson and Martinsson [18] in a health economics context

are necessary to evaluate the rewards of efficient designs for non-linear-in-the-parameter mod-

els. In as much as possible these investigations should be tailored to the state of practice in

environmental valuation, which is quite different from that in health economics.5 This is what

we set out to achieve with this paper. In doing so we also extend the investigation to Bayesian

designs which allow the researcher to account for uncertainty about thea-priori knowledge on
3 The concept ofD-optimality (and sometimesA-optimality) has dominated the design literature for choice experiments.

However, when the objective is choice prediction, rather than inference, then other optimality criteria, such asG- andV -

optimality, are more useful [39].
4 Kuhfeld et al. [42] Blemier et al. [7] suggest that it is often more appropriate to discussD-efficient designs, rather than

D-optimal ones, although the prevailing terminology in the field seems to be aboutD-optimality.
5 For example, health economists are basically concerned with a private good: health status, while environmental economists

are concerned with public goods. A review of the studies in health economics reveals that choice sets are often offering only

two alternatives to respondents, while in environmental economics it is more frequent the format including two experimentally

designed alternatives plus the status-quo (zero-option).
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the parameter values.

After reviewing recent advances in ED for logit models, it stands to reason that the current

approach of the profession towards ED is “improvable”. However, the gains affordable from

such improvement need further investigation. This paper intends to contribute to the existing

literature by exploring the empirical performance of a number of recently proposed approaches

to construct designs for discrete choice experiments. The investigation is conducted by means

of Monte Carlo experiments designed to focus on the finite sample size properties of frequently

employed estimators for value derivation in environmentalvaluation.

In section2 we provide a summary of the evolution of the knowledge on design construc-

tion for CE. In section3 we quickly revise the use of design construction techniquesin the

environmental economics literature of CEs for the purpose of valuation. The methodology of

our empirical investigation is explained in section4, while in section5 we present and discuss

the results. We draw our conclusions in section6.

2 What do we know about design construction for MNL?

A number of significant theoretical and empirical developments have taken place in the field of

ED in recent years, and in this paper we draw heavily on these [57, 58, 62, 63, 64, 37, 14, 55,

40, 38, 15].

Before describing our contribution we briefly sketch some recent significant research devel-

opments in this area.

The notion of describing a good on the basis of its attribute was born out of the theoretical

approach of Lancaster [43] and [44]. It was then readily employed in marketing by Green and

Rao [26] who proposeconjoint analysis as a tool to model consumer’s preference.

ED techniques were first introduced in multi-attribute stated preference method for market-

ing by Louviere and Woodworth [46] and Louviere and Hensher [47], who used the conven-

tional factorial design developed mostly for the statistical analysis of treatment effects in agri-

cultural and biological experiments, to derive and predictchoices or market shares. Through

this approach they identify a set of “profiles” with well-known statistical properties for general

linear models. These profiles are basically synthetic goodsdescribed on the basis of selected at-
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tributes whose levels are arranged in an orthogonal fashion. When profiles are too numerous for

evaluation in a single choice context they are divided into a“manageable” series of choice sets

using different blocking techniques. This procedure guarantees that the attributes of the design

are statistically independent (i.e., uncorrelated). Orthogonality between the design attributes

represented the foremost criteria in the generation process of fractional factorial designs.

Later, some modifications to this basic approach were brought about by the necessity of

making profiles to be “realistic” and “congruent” so that orthogonality was no longer seen as

a necessary property [see also55, on the effects of lack of orthogonality on ED efficiency, and

how this can easily come about even when orthogonal designs are employed], and hence a good

ED may be non-orthogonal in the attribute levels and requirethe investigation of mixed effects

and selected attribute interactions (therefore in many realistic cases main-effects only may not

be deemed adequate, as shown in [48]).

Non-orthogonal designs can be optimized for linear multivariate models and guarantee to

maximize the amount of information obtained from a design—this is to say that they areD-

optimal6—but why have these EDs (in which the response variable is continuous) been used in

designing CEs (where the response is discrete and a highly non-linear specification is assumed

to generate response probabilities)? The answer is given bythe assumption that “an efficient

design for linear models is also a good design for MNL for discrete choice response” [42].

Corroborating evidence of this is provided by Lazari and Anderson [45] and Kuhfeldet al. [42].

More recently Lusk and Norwood [48] studied the small-sample performance of commonly

employedD-efficient EDs for linear-in-the-parameters models in the context of logit models

for choice-modelling. By appealing to these empirical results one may conveniently ignore the

necessity of deriving design for non-linear model where assumptions on the unknown parameter

vector (β) is necessary.7

The effects of assigning the experimentally designed alternatives to individual choice-sets
6 Such linearly optimal designs can be obtained by specific software such as SPSS, MINITAB Design Ease. The most

comprehensive algorithms for choice design we know of are those in the free macro MktEx (pronounced “Mark Tex” and

requiring base SAS, SAS/STAT, SAS/IML, an SAS/QC) [40, 41], while CBC also provides choice designs, but only guided

towards balancedness.
7 Typically, in non-linear model the information matrix (andhence the statistical efficiency of experimental design) isa

function of the (unknown) vector of the true models parameter or, equivalently, the true choice probabilities.
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were investigated by Bunchet al. [13] who—although restrictively assumingβ = 0, thereby

reducing again theD-optimality problem (efficiency maximization) to a linear problem [27]—

did approach the issue of choice sets construction by proposing theobject-based andattribute-

based strategies, which we employ later for one of our designs under comparison in Section4.

Because of theβ = 0 assumption such designs take the name ofD0-optimal or “utility-neutral”.

They satisfy the properties oforthogonality, minimum overlapping, andbalanced levels. Such

properties, along with that ofbalanced utility are described in [34] who consider these to be

essential features in the derivation of efficient EDs.

Later on, Huber and Zwerina [34] broke away from theβ = 0 assumption, and championed

theDp-optimality criterion, wherep stands for “a-priori” information onβ. They demonstrated

how restrictive it can be to assumeβ = 0 in terms of efficiency loss, and demonstrated that

including pre-test results into the development of efficient ED may improve efficiency up to

fifty percent.

Their strategy to obtain aDp-optimal ED is to start from aD0-optimal design as described

in [13] and expanded upon by Burgess and Street [14], and then improve its efficiency by means

of heuristic algorithms. Not only is the resulting ED more efficient under the correcta-priori

information, but it is also robust to some mis-specifications. It is worth noting that this is a local

optimum because it is based on a given vector of parameter values.

In some later work [3] it is observed that there exists uncertainty about thea-priori infor-

mation on parameter valuesβ and hence such uncertainty should be accounted for in the ED

construction. They propose a hierarchical Bayesian approach based on the estimates ofβ from

some pilot study, used to derive a finalDb-optimal design using Bayes’ principle. Such Bayesian

ED approaches are described in Atkinson and Donev [4] and in Chaloner and Verdinelli [20]

and they were also used by Sandor and Wedel [57] for MNL specifications by using and mod-

ifying the empirical algorithms proposed by Huber and Zwerina [34]. This design violates the

property of balanced utility but it produces more efficient designs. However, all these Bayesian

designs are notglobally optimal because they are derived from a search that improvesupon an

initial fractional design, rather than a search on a full factorial.

Recent work by Burgess and Street have tackled the issue of construction of more general

designs, such as [62], [14], [63] and [15] but they are limited to the case ofβ = 0.
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An approach to derive efficient EDs unconstrained by theβ = 0 hypothesis is illustrated in

[38], in which the approach by Zwerinaet al. [67] is extended and aDb-optimal ED is obtained

by using a weakly-informative8 (uniform) prior distribution ofβ.

A short summary of the evolution of ED research is reported inTable1. Notice that although

in recent years the theoretical research work on efficient EDconstruction for non-linear logit

models has intensified [see also24, 25, for more theoretical results], it still remains mostly

anchored to the basic MNL model, whereas much of the cutting edge empirical research is based

on mixed logit models of some kind. For logit models with continuous mixing of parameters

we found only two applied study concerning ED: by Sandor and Wedel [58] and by Blemier

et al. [8]. We found no study addressing the issue in the context of finite mixing (latent class

models).

On the other hand, there are still few empirical evaluationsof the different ways of deriving

efficient EDs for multinomial logit models in the various fields of applications in economics,

with the exception of [18] in health economics and [55] in transportation.

In particular, Carlsson and Martinsson [18] use a set of Monte Carlo experiments to inves-

tigate the empirical performance of four EDs (orthogonal,shifted, D0-optimal andDp-optimal)

for pair-wise CE—the dominant form in health economics. They assume that the investigator

correctly specifies the data generating process, thea-priori β and the estimation process. Under

these conditions—contrary to the results found by Lusk and Norwood [48]—they find that the

orthogonal ED produces strongly biased estimates. An apparently worrying result considering

that this is the dominant approach in environmental economics. They also find that theshifted

(also sometimes termedcycled) [13] ED performs better than theD0-optimal for generic at-

tributes, but in general the most efficient design is theDp-optimal. However, their experimental

conditions are quite restrictive, do not extend to Bayesiandesign construction and are tailored

to replicate features that are common in health economics, but—according to our review—not

so common in environmental economics.

In transportation modelling, instead, Roseet al. [55] emphasized how the much sought-

after property of orthogonality may well be lost in the final dataset due to the cumulative effects
8 We prefer the term “weakly-informative to the more common Bayesian term “uninformative” because of the reasons spelled

out in [22] where it is noted that a uniform prior is not uninformative in this context.
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of sample non-response. Furthermore, while the transportation literature of experiment design

for choice modelling is often dominated by labelled experiments (one label per transportation

mode, with relative label-specific attributes), the typical situation in environmental valuation

seem to be that of generic (unlabelled) experiments.

Finally, on the issue of sequential design Kanninen [37] illustrates how one can choose

numerical attributes such as price to sequentially ensure the maximization of the information

matrix of binary and multinomial model from CE data. On the other hand Raghavarao and Wi-

ley [51] show that with sequential design and computer aided interview it is possible to include

interaction effects and define Pareto-optimal choice sets.Both papers are particularly interest-

ing for future applications with computer aided interview administration of CEs. Sequential

designs, however, are beyond the scope of this paper.

3 A review of the state of practice in environmental economic s

The introduction of CE in environmental economics took place in the early 90’s, when the

state of research on ED was still at an embryonal stage. However, environmental economists

concerned with discrete choice contingent valuation were already aware of the importance of

ED [2, 36, 1] on efficiency of welfare estimates.

But such concern does not seem to have carried over to CE practice, were the dominant

approach, as visible from Table2, remains that based on fractional factorial for main effects with

orthogonality. This is typically derived for algorithms suitable for multivariate linear models,

which is—as explained earlier—only a surrogate upon which much potential improvement can

be brought by more tailored designs. But under what conditions?

The prevailing scheme in environmental economics applications seems to be the following:

1. determination of choice attributes and their levels;

2. ex-ante determination of the number of alternatives in the choice set;

3. alternative profiles built on linear ED approaches;

4. assignment of the profiles so derived to choice set with different combinatorial devices.
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Generally, attributes and levels are selected on the basis of both the objective of the study

and the information fromfocus group. The number ofchoice sets each respondent is asked to

evaluate ranges from 4 to 16 and the number of alternatives ineach choice set from 2 to 7. The

most frequentchoice set composition (see Table2) is that of two alternatives and thestatus-quo

(2+sq), where typically thesq is added to ED alternatives, rather than being built into theoverall

design efficiency.

The allocation of alternatives in the singlechoice set is either randomized or follows the

method in [13].

Only in few environmental economics studies [16, 52] is the criterion of maximizing the

information matrix of the MNL the guiding principle for the derivation of the ED.

On the basis of these observations we can make a few considerations:

1. The observed delay with which factorial designs tend to besubstituted withD-optimal

designs might be due to a lack of persuasion on the efficiency gains derivable from the

latter. Hence it is of interest to evaluate empirically, in atypical environmental valuation

context, to how much such gains amount and how robust they are.

2. Amongst the variousD-optimal designs algorithms the only ones that have been employed

so far are those for MNL specifications. This is probably due to the fact that for these EDs

predefined macro are available in SAS and are well documented[40]. These macros

require as input the number of attributes (and their respective levels), of alternatives, of

choice sets, the specification for indirect utility, and a guess of thea-priori parameter

estimatesβ.

On the other hand, for Bayesian EDs no pre-packaged softwareprocedures seem to be

available and the researcher needs to code the algorithm foreach context of study, which

requires a considerable effort and time commitment. It is therefore important to empiri-

cally investigate the gains in efficiency achievable with these more elaborate designs to be

able to assess when it is worth employing them in the practiceof environmental valuation.

3. The dominance in the environmental valuation literatureof the 2+sq choice task format,

which as demonstrated elsewhere in the literature [28, 29, e.g.] is prone to give rise to
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status-quo bias, introduces a specific issue of interest to environmental economists. When

such bias is present it is often inadequately addressed by means of a simple inclusion of an

alternative-specific-constant in the MNL specification [60], and it requires either nested

logit cite cases or more flexible specifications.

4. Finally, an empirical investigation should also explorewhich ED approach is most robust

with regards to a wrong or poora-priori assumption about the model values ofβ .

4 Methods

In our empirical investigation9 we compare four different ways of deriving an ED for discrete

CEs for the MNL specification. We report them here in order of growing complexity of deriva-

tion.

4.1 The shifted design

We chose to employ a shifted design rather than the most common fractional factorial orthog-

onal design (FFOD). We felt this has already been thoroughlyassessed by Lusk and Norwood

[48]. Furthermore, based on the results of [18], the shifted design seem to produce a better per-

formance than the FFOD, and to be just as simple to derive. Theshifted design was originally

proposed by [13] and it is based on the implicit assumption that thea-priori values ofβp = 0.

Given this assumption they consider designs for general linear models and propose a procedure

to assign alternatives to choice sets. The work by Burgess and Street shows how to shift so as

to obtain optimal designs.

The basic ED is derived from a FFOD. Alternatives so derived are allocated to choice-sets

usingattribute-based strategies. Within this category we use a variant of the shifting technique

whereby the alternatives produced by the FFOD are used as seeds for each choice set. This

strategy gives the possibility to use module arithmetic which “shifts” the original columns of

the FFOD in such a way that all attributes take different levels from those in the original design.

We refer to this ED as the “shifted” design. For example, in our case from an initial FFOD (the
9 All is necessary to replicate this study (Gauss codes, experimental designs, etc.) are available from the authors.
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seed) all attribute levels were shifted by one unit. Those originally at the highest level were set

to the lowest.

4.2 Dp-optimal design

A design potentially more efficient than theshifted one is obtainable by making use ofa-priori

information onβ and deriving aDp-optimal design through the maximization of the information

matrix for the design under the MNL model assumptions, whichis given by:

I(X, β) =

(
−

∂2 ln L (β)

∂β∂β ′

)
=

S∑

s=1

µ2X′

s (Ps − psp
′

s)Xs, (1)

wheres denotes choice-situations,Xs = [x1s, . . . , xJs]
′ denotes the choice attribute matrix,

ps = [p1s, . . . , pJs]
′ denotes the vector of the choice probabilities for thejth alternative and

Ps = diag[p1s, . . . , pJs] with zero off diagonal elements andpjs = eµVj (
∑J

i=1 eµVi)−1.10

A widely accepted [42, 57] scalar measure of efficiency in the context of EDs for models

non-linear-in-the-parameter is theD-criterion, which is defined as:

D-criterion=
{
det

(
I (β)−1)}1/k

, (2)

wherek is the number of attributes. We employed the modified Federovalgorithm proposed by

[67] to find the arrangement of the levels in the various attributes inX such that theD-criterion

is minimized whenβ = βp. Such algorithm is available in the macro “%ChoicEff”, in SAS

v. 9 [see40, for details].

4.3 Db-optimal designs

While theDp-optimal design does not incorporate the uncertainty whichinvariably surrounds

the values ofβ, theDb-optimal design allows the researcher to do so.

10 As commonly done in these estimations the scale parameterµ was normalized to 1 for identification.
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On the other hand the derivation of Bayesian designs is computationally more demanding,

and perhaps explains why previous studies have neglected them. However, they are appealing

because they show robustness to other design criteria for which they are not optimized [39].

For Bayesian designs the criterion to minimize is theDb, which is the expected value of the

D-criterion with respect to its assumed distribution overβ or π(β) :

Db-criterion= Eβ

[{
det I(β)−1

}1/k
]

=

∫

ℜk

{
det I(β)−1

}1/k
π (β)dβ. (3)

In practice this is achieved by approximating via simulation the value ofDb: one drawsR sets

of valuesβr from thea-priori π(β) and computes the average of the simulatedD-criterion over

theR draws:

D̃b =
1

R

R∑

r=1

{
det I(βr)−1

}1/k
. (4)

Bayesian approaches always allow one to incorporate the information from thea-priori distri-

bution, and in this application we compared twoDb-optimal designs, one with a relatively poor

information on the prior implemented by a uniform distribution [38], and the second with a

more informative prior implemented by means of a multivariate normal centered on the param-

eter estimates from the pilot study, and with variance covariance matrix as estimated from the

pilot [57].

4.3.1 Db-optimal design with weakly-informative prior

The distributional assumption about the prior in this case is uniformπ(β) = U [−a, a]k where

−a anda are the extreme values of the levels of the choice attributes. We refer to this design

throughout the paper asDk
b -optimal.

4.3.2 Db-optimal design with informative prior

We refer to this design asDs
b-optimal. Following [57] we assume the prior to be distributed

π(β) = N(β̂, Ω̂). While [57] derive theβ̂ andΩ̂ estimates on the basis of managers’ expecta-

tions, we instead derive the values from data obtained from apilot study, as these are typically

available in environmental valuation studies. The pilot data were in turn obtained on the basis
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of a fractional factorial orthogonal main effects design. The search for efficiency overX was

implemented by using the RCS algorithm developed by Sándorand Wedel [57, 58].

4.3.3 Criteria for comparing designs

Some synthetic criteria are available for design comparison. These depend on the coding of

choice and on the values of theβ vector. We choose to report theD-criterion in equation2 and

theA-criterion:

A-criterion=
{
trace

(
I (β)−1)}1/k

. (5)

Given some choice of parameter values and of coding, the lower this values the more informa-

tive the design matrix, and hence the more efficient the design.

Finally, as a measure of balancedness and choice complexitywe report a common measure

of entropy for the design, computed as:

E(X, β) = −

S=18∑

s=1

J=3∑

j=1

pjs(X, β) ln(pjs(X, β)) (6)

wherej denotes alternatives ands denotes choice-situations in the design. The higher this value,

the higher the complexity of the choice set. These values arereported in Table3 and show that

when evaluated with dummy coding (the most frequent coding in environmental economics

for qualitative attributes) and at the parameter values of the MNL model in Table4, the most

efficient design (a-priori) is theDp-optimal and the least efficient is theDs
b-optimal, which is

also the one associated with largest entropy.

4.4 Design of Monte Carlo experiment

To assess the difference between the alternative designs, we have drawn inspiration from a

study about willingness to pay (WTP) for four rural landscape components for a government

programme designed to improve rural landscape. The four components were mountain land

(ML), stonewalls (SW), farmyard tidiness (FT) and culturalheritage features (CH) [59]. In this

CE study all the attributes where potentially improved by the proposed policy with two degrees

of intensity which we succinctly describe as “some action” and “a lot of action”. In the original
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study respondents were obviously given photographic representations of how such levels of

improvement would differ from each other and the status-quo. The interested reader is referred

to an extensive report available for this study [50].

Inspired by this study, our Monte Carlo experiment is designed to investigate the relative

performance of four designs under the assumption of an expected MNL specification. Such

expectation is the most frequent in this context of analysis.

However, after the data collection, the data may display evidence corroborating other more

flexible specifications. In particular, we examine the case of a flexible error component model

with alternative specific constant, which produces a correlation structure across utilities analog

to the nested logit. This specification is motivated and examined in some detail in [60] and it

accounts for status-quo effects in a more flexible fashion than the more commonly employed

nested logit specification.

In our CE the error component approach takes the following basic utility form11:

U(c1) = βxc1 + ũc1 = βxc1 + εc1 + uc1,

U(c2) = βxc2 + ũc2 = βxc2 + εc2 + uc2,

U(sq) = Asc + βxsq + usq,

(7)

where, in our case,εc1 = εc2 ∼ N(0, σ2) are additional error components to the conventional

Gumbel-distributeduc1 anduc2, thereby leading to the following error covariance structure:

Cov(ũc1, ũc2) = σ2, V ar(ũc1, ũc2) = σ2 + π2/6, (8)

Cov(ũcj
, ũsq) = 0, V ar(ũcj

, ũsq) = π2/6, j = 1, 2; (9)

whereũcj
= εcj

+ ucj
. Note that this is an analog of the nested logit model in the sense that

it allows for correlation of utilities across alternativesin the same nest, but different correlation

for those across nests. However, there is no IIA restriction, and theAsc captures any remaining

systematic effect on thesq alternative. Withσ2 = 0 the MNL model is obtained.

Conditional on the presence of the error componentεj the choice probability is logit, and

11 In fact, as expanded upon by [12], [65], [32], more general forms than this may be empirically appealing.
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the assumption above leads to the following expression for each marginal choice probability:

P (i) =

∫

ε

π(i|ε)f(ε|θ)dε and, hence, substituting in:

P (i) =

∫ +∞

−∞

eβxi+εi

∑
j eβxj+εj

φ(0, σ2)dε, j = c1, c2, sq,

(10)

whereφ(·) is the normal density, andεj = 0 whenj = sq. Estimation ofβ̂ andσ̂2 is obtained

by maximum simulated likelihood [65].

The effects of the alternative designs considered are assessed by Monte Carlo experiments.

The evaluation of the performance of the four designs in the case of an incorrectly assumed

data generating process (DGP) gives us the chance of examining the robustness of their perfor-

mance to the MNL specification assumeda-priori, which is the one for which standard non-

linear designs are commercially available.

Short of the differences in the form of the DGP and the alternative ED, the steps of the

experiment are the same. We creater = 1, 2, 3,· · · , R = 550 samples of 100, 250 and 500 ob-

servations under two different DGP: the MNL and the error components model with alternative

specific constant (abbreviated henceforth with KL-Asc).

1. At each replicationr individual counterfactual responsesyir are produced by identifying

the alternativej associated with the largest utility valueU(β, ε, xj), where theβ values

are the true one and are reported in table4, while the errorsε are drawn from the adequate

distributions (Gumbel for MNL; Gumbeland Normal for the KL-Asc).

2. The counterfactualyir produced for the whole sample are used to get maximum likeli-

hood or maximum simulated likelihood estimates ofβ̂r of β. Then a series of indicators

of estimation performance are computed. For the sake of comparisons across models—

and given their relevance in non-market valuation—we focuson the marginal rates of

substitutions with the money coefficient:

M̂RSr = τ̂r = −
β̂r

γ̂r
. (11)

And then we report some additional indicators.
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(a) First, we report the average values of their distribution across replications:

MRS = 1
R

R∑

1

τ r, r = 1, · · · , 550 (12)

and the associated standard deviations.

(b) Secondly we report the mean squared error:

MSE = 1
R

R∑

1

(τ̂r − τ)2, r = 1, · · · , 550 (13)

whereτ is the true value and̂τr is therth estimated in the experiment. Everything

else equal the design with lowestMSE is the one with the smallest empirical bias.

(c) The third measure considered is the average of the absolute relative error:

RAE = 1
R

R∑

r

| (τ̂r − τ)/τ |. (14)

This gives a relative measure of the error, which can be easily mapped into percent

of error of the “true” marginalWTP for the attribute.

(d) Finally, as a measure of efficiency we count the percent ofMRS values falling within

a 5% interval of the true value:

Γ0.05 = 1
R

R∑

r

I(τ̂r ∈ τ ± τ × 0.05). (15)

whereI(·) is an indicator function. This gives an idea of the empiricalefficiency of

each design.

5 Monte Carlo Results

A large amount of information is produced by the experimentsand here we focus only on the

estimation of the coefficient for the attribute that showed highest implicit value in the original

study12 [see Table n.4 and 59]. This attribute was expressed at two levels of policy action

“some” (ML some) and “a lot of” (MLalot) and concerned the visual aspect of mountainous
12 Qualitatively similar results were obtained for the other coefficients.
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rural land (ML). Tables5 and6 display the results from the empirical distributions of theMRS

and illustrate the sensitivity of these to the four different designs.

5.1 Correct specification and correct design information

Table5 present the results for “the best of the worlds” in which the DGP, thea-priori distribu-

tions of parameters and the specification used in the estimation are all the “correct” ones.

Observing the values for the efficiency indicatorsΓ0.05 andMSE one can detect how the

Ds
b-optimal design is the most efficient at all sample sizes. As expected, efficiency increases

with sample size. Similar conclusions can be derived from the values ofRAE. However, the

liner shifted design at small sample sizesN = 100 gives a similar performance, and certainly

superior to that of theDk
b -optimal design.

A graphical illustration of what happens at large sample sizes (N = 500) is reported in Fig-

ure1 where we show the kernel-smoothed [9] distributions ofMRSMLalot
for all four designs.

Notice that while theDk
b -optimal design is centered on the true value, it shows a stronger vari-

ability than the other designs. TheDp-optimal and theDs
b-optimal respectively underestimate

and overestimate by very little, while theshifted design produces significant overestimates at

this sample size.

Analog conclusions can be drawn from an inspection of Figure2, where we report the

absolute relative error (RAEMLtot
). Suppose a decision rule was to be incorrectly taken if the

relative absolute error is larger than 20 or 30%. From the plot in Figure2 it is apparent that

the umber of cases in which this would occur is highest for theshifted design (continuous line).

In conclusion, in this case—in which the DGP is coherent withthe a-priori expectations and

estimates are derived under the correct specification—the two best performing designs are those

built by assuming the least uncertainty around the true parameters, that is theDp-optimal and

theDs
b-optimal.

Given the difficulty inherent in the computation of the latter, however, one would expect

the former (that can be obtained with the macro “%Choiceff” in SAS) to be more frequently

employed, as our review has shown.
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5.2 Incorrect specification, but correct design informatio n

As a way to investigate the sensitivity of these results to the quality ofa-priori assumptions—

where fora-priori here we refer to the information available in the pre-designand estimation

phase—we now turn our attention to the case in which the estimation makes use of a mis-

specified model, but the D-efficient experimental designs are correctly informed. The Monte

Carlo statistics for such a case are reported in Table6, where for the mis-specified model we

employ the flexible error component model with Asc for the SQ (KL-Asc) while the true model

is a MNL. The values show that in this case too at medium (N =250) and large (N =500)

sample sizes the best performance is obtained by theDs
b-optimal design. The one withweakly-

informed prior (Dk
b -optimal) is the second best performer, while the non Bayesian MNL design

(Dp-optimal) is dominated by the one optimized for linear specifications (shifted design) at

sample sizes smaller than 500.

The fact that the Bayesian (informedand weakly-informed) designs are the most robust in

the context of correct DGP prediction come across best in observing the kernel plots of absolute

relative error distributions in Figure3, which again refers to the large sample size scenario.

There is therefore evidence that as long as thea-priori design information is “good” the

Bayesian designs are robust to mis-specifications in the estimation phase; under all criteria the

shifted design is preferable to theDp-optimal at small sample sizes; and that even at large

sample sizes the latter produces large errors more frequently than the shifted design (Figure3).

5.3 Correct specification, but incorrect design informatio n

What happens when—instead—thea-priori information incorporated in theD-efficient design

is “poor” and the model specification is right? Of course, under this category falls a very large

number of cases, but as a way of exploring this instance we repeated the experiment with the

real DGP formulated as a KL-Asc and correct estimation assumptions, but with incorrect prior

(MNL) for the experimental design.

The choice of a the error component model KL-Asc is motivatedby the fact that it allows

for a greater variance and correlation in the errors associated with the utilities of experimen-

tally designed alternatives than in those associated with the status-quo alternative. This is an
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often-encountered situation in environmental valuation,which results in nested logit models

providing a better fit than conditional logit models [60]. The KL-asc provides a similar covari-

ance structure to the nested logit model with a degenerate nest for the status-quo alternative. It

is also more flexible and has an objective function globally concave in the parameter space, it is

hence deemed appropriate for a Monte Carlo simulation.

For the sake of brevity we do not report the results in a tabular form,13 but the findings are

illustrated in Figure4: in this instance the most robust design is the one not informed at all, i.e.

theshifted design. The more information is built into the design instead, the higher the degree of

bias produced, even under correct specification. Of course,it is easy to anticipate these results

rationally, however, this investigation provides ground for some less obvious considerations.

First of all, it seems that the efficiency gains made available from more advanced non-

linear and Bayesian-informed designs is only available in cases in which thea-priori design

information is goodand this outcome is robust to substantial model mis-specification.

In the absence of good qualitya-priori design information to be built into the design, re-

searchers are perhaps better off using more rudimentary designs, even when these are only

optimized for linear models, which is exactly what the profession has been doing, perhaps in-

advertently.

6 Conclusions

Data from discrete choice experiments for the purpose of environmental valuation are predom-

inantly analyzed by means of highly non-linear specifications of the multinomial logit family.

Yet, a review of the published literature in environmental valuation discloses a prevailing use

of experimental designs produced for linear-in-the-parameters, rather than for non-linear-in-

the-parameters models, without any built-ina-priori information on the parameter values. We

reviewed various notions ofD-efficiency in the experimental design literature focussing on de-

sign for multinomial logit assumptions, and on how these canbe improved by usinga-priori

information.

Then, by means of Monte Carlo experiments—and inspired by the results and structure of
13 These are available from the authors.
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a real-world application—we explored the relative performance of four alternative approaches

to derive experimental designs. The simplest design to derive is the (shifted), and it is based

on a modification of a conventional fractional factorial main effect orthogonal design. The

other three were specifically optimized for the highly non-linear multinomial logit model, and

contained various form of aa-priori information on the underlying parameter values. The

Dp-optimal design did not allow for uncertainty on parameter values, while the two Bayesian

designs did, with more uncertainty for theDk
b -optimal, and with the amount of information that

typically becomes available from a standard pilot study—inthe form of parameter estimates

and their variance-covariance matrix—built into theDs
b-optimal design.

The features of the Monte Carlo experiments (sample size, data generating processes,

choice-set construction, etc.) were chosen so as to reflect the reality commonly faced by prac-

titioners in environmental valuation as derived from a review of published studies.

The results from the experiment showed that efficiency gainsare available from the use of

BayesianD-efficient designs for non-linear-in-the-parameters models. These gains are substan-

tial for parameter estimates of important attributes (“a lot of” action in our empirical study), but

much less so for parameters of less relevant attributes (“some” action).

For important attributes and with gooda-priori information on the values of the unknown

parameters gains can be available at all sample sizes, as shown in the results for theDs
b-optimal

design in Tables5 and6.

Even by building into the design relatively poor information (Dk
b -optimal design) on the

parameter values, efficiency gains become attractive only at medium to large sample sizes (N >

250) but they are more significant when both:

• thea-priori information on the parameters provided by the pilot is of good quality;

• and the data generating process is consistent with the specification chosen in the estima-

tion.

However, when these conditions fail, the best performance is obtained with the most “rudi-

mentary” of the designs we employed (theshifted design), which is derived from the common

fractional factorial orthogonal design dominating the state of practice. This design ignores any

information on the parameters of the true DGP.



6 Conclusions 20

This result suggests that—in as much asa-priori information on parameter values has been

ignored at the stage of design construction—environmentaleconomists might well not have

missed out too much in terms of efficiency gains, and even in bias, as a consequence of the lag

with which they have been adopting recent advances in experimental design construction.

On the other hand, this points to an area of potentially interesting and valuable research on

methods of design construction that do incorporatea-priori information progressively and cu-

mulatively at different stages of the survey. This could be of particular interest as new computer-

assisted technology becomes increasingly used in choice-experiment surveys and especially

given the encouraging results that bid design updating produced in the field of contingent valu-

ation [49, 54].

Constructing designs using adaptive techniques can be a valuable strategy in choice-

experiment surveys [51]. For example, one can systematically incorporate the information be-

coming available as the sampling progresses to derive gradually more tailored designs. The type

of information needed are the parameter estimates and theirvariance-covariance into successive

designs. A similar suggestion was put forward by Kanninen [36] for the cost attribute. On the

basis of our results we speculate that this updating should possibly involve more attributes, such

as those that appear to become dominant, or even all of them aswe did in this application. More

research on the most effective strategy to gradually incorporate such information during survey

administration is needed.

Another area of potential interest may be that of deriving experimental designs based on

efficiency criteria that most directly recognize the ultimate purpose of attribute based valua-

tion studies. The focus on efficient estimation of monetary values, typically a non-linear func-

tion of parameter estimates, should be explicitly addressed in the measure of efficiency. This

could translate—for example—in the maximization of the information matrix for the vector of

marginal value estimate, rather than that for the parameters of the indirect utility function.

While statistical efficiency remains an important goal, more research is necessary to eval-

uate whether this additional efficiency comes at too high a cost in terms of increased choice

complexity to respondents. This issue requires field tests and can only be partially addressed by

means of simulation tools.

Finally, given the importance that discriminating betweenbehaviorally plausible and hence
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likely specifications in logit models has on estimate efficiency, future research should also focus

on the construction of designs able to discriminate betweencompeting specifications. Seminal

research of this kind in the context of multivariate linear models is already available [5]. Future

work in this direction can allow researchers to address the issue of uncertainty about logit model

specifications from the onset into the experimental designs.
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[52] M. X. V. Ròdriguez and C. J. Leòn. Altruism and the economic values of environmental and social

policies. Environmental and Resource Economics, 28:233–249, 2004.

[53] J. Rolfe, J. Bennett, and J. Louviere. Choice modellingand its potential application to tropical

rainforest preservation.Ecological Economics, 35:289–302, 2000.

[54] K. Rollins, W. Wistowsky, and M. Jay. Wilderness canoeing in Ontario: using cumulative results to

update dichotomous choice contingent valuation offer amounts. Canadian Journal of Agricultural

Economics, 45:1–16, 1997.

[55] J. M. Rose and M. C. J. Bliemer. The design of stated choice experiments: The state of practice

and future challenges. Working Paper ITS-WP-04-09, Institute of Transport Studies, University of

Sydney and Monash University, 2004.

[56] K. Sælensminde. The impact of choice inconsistencies in stated choice studies.Environmental and

Resource Economics, 23:403–420, 2002.



6 Conclusions 26

[57] Z. Sándor and M. Wedel. Designing conjoint choice experiments using managers’ prior beliefs.

Journal of Marketing Research, 38:430–444, 2001.

[58] Z. Sándor and M. Wedel. Profile construction in experimental choice designs for mixed logit mod-

els. Marketing Science, 4:455–475, 2002.

[59] R. Scarpa, D. Campbell, and G. Hutchinson. Individual benefit estimates for rural landscape im-

provements: the role of sequential bayesian design and response rationality in a choice experiment

study. Paper presented at the14th Annual Conference of the European Association of Environmen-

tal and Resource Economics Bremen, 2005.

[60] R. Scarpa, S. Ferrini, and K. G. Willis. Performance of error component models for status-quo

effects in choice experiments. InApplications of simulation methods in environmental and resource

economics, chapter 13, pages 247–274. Springer, 2005.

[61] R. Scarpa, E.S.K. Ruto, P. Kristjanson, M. Radeny, and A.G. Drucker. Valuing indigenous cat-

tle breeds in kenya: an empirical comparison of stated and revealed preference value estimates.

Ecological Economics, 45:409–426, 2003.

[62] D. J. Street, D. S. Bunch, and B. Moore. Optimal designs for 2k paired comparison experiments.

Comm. Statist. Theory Methods, 30:2149–2171, 2001.

[63] D. J. Street and L. Burgess. Optimal and near-optimal pairs for the estimation of effects in 2-level

choice experiments.Journal of Statistical Planning and Inference, 118:185–199, 2004.

[64] D. J. Street and L. Burgess. Optimal stated preference choice experiment when all choice sets

contain a specific option. University of Technology, Sydney, 2004.

[65] K. Train. Discrete Choice Methods with Simulation. Cambridge University Press, New York, 2003.

[66] P. Wattage, S. Mardle, and S. Pascoe. Evaluation of the importance of fisheries management objec-

tives using choice-experiments.Ecological Economics, 55:85–95, 2005.

[67] K. Zwerina, J. Huber, and W. F. Kuhfeld. A general methodfor constructing efficient choice

designs. Working paper, Fuqua School of Business, Duke University, Durham, 1996.



7
Tables

2
7
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Authors Criterion Definition a-priori parameter Algorithm

Lazari and Anderson, 1994 D Det (XX) - Unspecified

Kuhfeld et al., 1994 D Det (XX) Modified Fedorov

Bunchet al., 1996 D Det (XX)

Huber and Zwerina, 1996 Dp Det{IMNL(X,β)−1} β0 RS

Zwerinaet al., 1996 Dp Det{IMNL(X,β)−1} β0 Modified Fedorov

Sandor and Wedel, 2001 Db E
[
Det{IMNL(X,β)−1}

]
N(β|β0,Σ0) RSC

Sandor and Wedel, 2002 Db E
[
Det{IRPL(X,β)−1}

]
N(β|β0,Σ0) RSC

Kanninen, 2002 Ds Det{IMNL(X,β)−1} Sequential update

Burgess and Street, 2003 Dp Det{IMNL(X,β)−1} β0

Kuhfeld, 2004 Dp Det{IMNL(X,β)−1} βP Modified Fedorov

Kesselset al., 2004 Db E
[
Det{IMNL(X,β)−1}

]
βU [−1, 1]k Modified Fedorov

Tab. 1: Approaches to experimental design for discrete choice experiments.
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Authors Number Choice task Choice tasks Experimental Model Sampled
and paper of Attributes Alternatives per respondent Design Specification respondents

Boxall et al., 1996 6 2 + sq 16 - MNL 271

(EE) (4422)

Hanleyet al., 1998 4 2 + sq 4 - MNL 181

(ERE) (23)

Rolfe et al., 2000 7 2 + sq 16 - MNL 105

(EE) (8146)

Carlsson and Martinsson, 3 2 14 D-optimal EVHL 350

2001 (JEEM) (33) Zwerinaet al., 1996

Boxall and Adamowicz, 5 5 + sq 8 Orthogonal main effects LC 620

2002 (ERE) (45) RPL

Blameyet al., 2002 6 2 + sq 4/8 MNL NL 480

(ERE) (443151) 4 + 1 Fractional factorial LC 620

DeShazo and Fermo, 4/9 2/7 - Factorial orthogonal Heteroskedastic 1800/2100

2002(JEEM) randomised MNL

Sælensminde, 2002 3/4 2 9 Fractional factorial Binary 2568

(ERE) orthogonal Logit

Hanleyet al., 2002 6 2 + sq 4/8 Fractional factorial MNL NL 267

(ERE) (442161)

Foster and Mourato, 5 2 + sq Fractional factorial MNL RPL 290

2003 (ERE) (SPEED software)

Horne and Petäjistö, 5 2 + sq 4/8 Fractional factorial MNL 1296

2003 (LE) (4421)

Scarpaet al., 2003 5 2 + sq 6 Fractional factorial MNL+Heterosk. 300

(EE) (332241) RPL

7 Fractional factorial MNL

Carlssonet al., 2003 (253141) 2 + sq 4 D-optimal RPL 5800

(EE) OPTEX (SAS)

D-optimal design MNL

Rodrı̀guez and Leòn, 6 2 + sq 8 Huber and Zwerina, RPL 350

2004 (ERE) (324222) 1996 EVHL

Wattageet al., 3 16 − Orthogonal main effects MNL 30

2005 (EE) (3241)

Jin et al., 3 1 + sq 8 Main effects MNL 260

2005 (EE) (2341) factorial design

MNL=Multinomial Logit, EVHL=Extreme Value Heteroschedastic Logit, RPL=Random Parameter, NL=Nested Logit; LC= Latent Class (JEEM)= Journal of Environmental Economics and

Management, (LE)= Land Economics, (ERE)= Environmental and Resource Economics, (EE)= Ecological Economics.

Tab. 2: Selected features ofchoice experiment studies in environmental economics.
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Criteria Shifted Dp-optimal Dk
b -optimal Ds

b -optimal

D-criterion 0.03946 0.03858 0.03901 0.05194

A-criterion 1.00399 1.02008 1.13810 1.61498

E 14.84 14.60 14.02 15.93

Tab. 3: Design comparison criteria evaluated atβMNL and with dummy coding.

MNL KL-Asc

Tax –0.037 (–4.46) –0.049 (–4.45)

Ml alot 0.712 (13.84) 0.683 (10.28)

Ml some 0.369 ( 7.06) 0.294 ( 4.03)

S alot 0.711 (14.22) 0.662 ( 9.15)

S some 0.495 ( 8.99) 0.413 ( 4.92)

P alot 0.589 (11.90) 0.540 ( 7.47)

P some 0.416 ( 8.01) 0.358 ( 4.80)

A alot 0.545 (11.00) 0.481 ( 7.02)

A some 0.443 ( 8.58) 0.370 ( 5.27)

Asc –1.420 (–6.20)

σ 1.351 ( 7.73)

Asymptoticz-values in brackets.

Tab. 4: Maximum likelihood estimates of MNL model and maximum simulated estimates of KL-Asc

model for the landscape study.
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DGP: Multinomial logit

Assumption: Multinomial logit

Shifted design Dp-optimal Dk
b -optimal Ds

b -optimal

N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

MRSMLalot
21.38 21.25 21.44 19.36 19.56 19.73 19.03 19.45 19.35 20.41 20.43 20.25

(4.25) (2.81) (1.95) (4.78) (2.95) (2.04) (5.47) (3.36) (2.38) (4.18) (2.52) (1.85)

MRSMLpar
10.56 10.10 10.36 8.70 8.88 8.64 10.50 10.02 10.03 10.89 10.35 10.08

(4.36) (2.86) (1.99) (4.53) (2.85) (2.06) (5.12) (3.21) (2.27) (4.37) (2.96) (2.07)

MSEMLalot
22.12 11.49 8.12 22.79 8.72 4.30 29.93 11.28 5.64 18.60 7.48 4.21

MSEMLpar 19.28 8.15 4.06 22.18 9.40 6.13 26.40 10.29 5.21 19.81 8.85 4.26

RAEMLalot
0.19 0.14 0.12 0.20 0.12 0.09 0.22 0.14 0.10 0.18 0.11 0.08

RAEMLpar 0.35 0.23 0.16 0.38 0.24 0.20 0.40 0.26 0.18 0.36 0.23 0.17

Γ(0.05,MLalot) 16 21 21 15 27 36 13 23 29 18 30 37

Γ(0.05,MLpar) 8 14 21 8 13 16 8 14 21 8 15 18

True WTP: MRSMLalot
= 19.35 MRSMLpar

= 10.02

Tab. 5: Summary statistics from Monte Carlo experiment on data fromDGP MNL and estimates from MNL specification.
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DGP: Multinomial logit

Assumption: Kernel Logit-Asc

Shifted design Dp-optimal Dk
b -optimal Ds

b -optimal

N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

MRSMLalot
23.04 22.46 22.58 23.51 22.79 22.29 19.54 19.85 19.71 21.52 21.25 21.05

(5.33) (3.22) (2.31) (6.61) (4.14) (2.89) (6.89) (4.10) (2.79) (4.79) (2.84) (2.07)

MRSMLsome 11.95 11.19 11.43 11.41 11.01 10.34 10.39 10.07 10.41 11.39 10.92 10.82

(5.48) (3.31) (2.27) (6.05) (3.59) (2.58) (6.44) (3.89) (2.65) (5.61) (3.62) (2.52)

MSEMLalot
41.96 20.03 15.74 60.90 28.97 16.94 47.50 17.07 7.89 27.60 11.68 7.16

MSEMLsome 33.71 12.29 7.11 38.48 13.86 7.77 41.48 15.13 7.18 33.30 13.89 7.01

RAEMLalot
0.27 0.19 0.18 0.32 0.22 0.17 0.28 0.17 0.12 0.22 0.14 0.11

RAEMLsome
0.46 0.28 0.22 0.48 0.30 0.22 0.49 0.30 0.21 0.46 0.29 0.21

Γ(0.05,MLalot) 11 17 12 8 15 17 11 19 26 15 22 27

Γ(0.05,MLsome) 8 10 14 8 9 13 9 12 14 8 10 12

True WTP: MRSMLalot
= 19.35 MRSMLsome

= 10.02

Tab. 6: Summary statistics from Monte Carlo experiment on data fromDGP MNL and estimates from KL-Asc specification.
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Fig. 1: DGP MNL and estimation MNL:kernel-smoothed distribution (optimal bandwidth) of the MRS

estimates of landscape attribute Mountain LandMLalot.

Continous line:shifted design,

Dashed line:Dp-optimal design,

Dotted line:Dk
b -optimal design,

Dashed and dotted line:Ds
b-optimal design.
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Fig. 2: DGP MNL and estimation MNL:kernel-smoothed distribution (optimal bandwidth) of the abso-

lute relative error of landscape attribute Mountain LandMLalot.

Continous line:shifted design,

Dashed line:Dp-optimal design,

Dotted line:Dk
b -optimal design,

Dashed and dotted line:Ds
b-optimal design.
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Fig. 3: DGP MNL and estimation KL-Asc, designed obtained under MNL assumptions: kernel-

smoothed distribution (optimal bandwidth) of the absolute relativeerror of landscape attribute

Mountain LandMLalot.

Continous line:shifted design,

Dashed line:Dp-optimal design,

Dotted line:Dk
b -optimal design,

Dashed and dotted line:Ds
b-optimal design.
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Fig. 4: DGP KL-Asc and estimation KL-Asc, designed obtained under MNL assumptions:kernel-

smoothed distribution (optimal bandwidth) of the absolute relativeerror of landscape attribute

Mountain LandMLalot.

Continous line:shifted design,

Dashed line:Dp-optimal design,

Dotted line:Dk
b -optimal design,

Dashed and dotted line:Ds
b-optimal design.




