
Feature Subset Selection: A Correlation Based Filter Approach

Mark A. Hall, Lloyd A. Smith ([mhall, las]@cs.waikato.ac.nz)

Department of Computer Science, University of Waikato, Hamilton, New Zealand.

Abstract
Recent work has shown that feature subset selection can have a
positive affect on the performance of machine learning
algorithms. Some algorithms can be slowed or their performance

irrelevant or redundant to the learning task. Feature subset
selection, then, is a method for enhancing the performance of
learning algorithms, reducing the hypothesis search space, and,
in some cases, reducing the storage requirement. This paper
describes a feature subset selector that uses a correlation based

evaluates its effectiveness with three common ML algorithms: a
decision tree inducer (C4.5), a naive Bayes classifier, and an
instance based learner (IB1). Experiments using a number of
standard data sets drawn from real and artificial domains are
presented. Feature subset selection gave significant
improvement for all three algorithms; C4.5 generated smaller
decision trees.

1. Introduction

easy and storing it is relatively inexpensive. Unfortunately,
as the amount of machine readable information increases, the
ability to understand and make use of it does not keep pace
with this growth. Traditional statistical analysis is time
consuming as each hypothesis must be formulated and tested
individually. Moreover, it requires a background in
mathematics in order to understand the results. Machine
learning (ML) aims to automate the process of information
discovery and be of use to people from a wide range of
backgrounds.

ML programs often make assumptions or apply heuristics
that trade some accuracy of the resulting model for speed of
execution, and comprehensibility of the result. While these
assumptions and heuristics are reasonable and often yield

redundant and irrelevant
opposite of their intended effect: slowed execution, less
understandable results, and much reduced accuracy.

In the typical supervised machine learning task, data is
represented as a table of examples or instances. Each instance
is described by a fixed number of measurements or features
along with a label that denotes the category (class) the
instance belongs to. Feature selectors are algorithms that are
applied to the data before it reaches an ML program. Their
aim is to reduce the dimensionality of the data by removing
the irrelevant and redundant information; thus allowing the
ML program to operate more effectively.

This paper describes a feature selector that uses a
correlation based heuristic to determine the usefulness of

features, and evaluates its effectiveness with three common
ML algorithms.

2. Feature Selection: Filters and Wrappers
In ML, feature selectors can be characterised by their tie with
the induction algorithm that ultimately learns from the
reduced data. One paradigm, dubbed the Filter [Kohavi and
John, 1996], operates independent of any induction

before induction takes place. Some filter methods strive for

combination of values for a feature subset is associated with
a single class label [Almuallim and Deitterich, 1991]. Other
filter methods rank features according to a relevancy score
[Kira and Rendell, 1992; Holmes and Nevill-Manning,1995]

Another school of thought argues that the bias of a
particular induction algorithm should be taken into account
when selecting features. This method, dubbed the Wrapper
[Kohavi and John, 1996], uses the induction algorithm along
with a statistical re-sampling technique such as cross-
validation (CV) to evaluate feature subsets.

Often, the strengths of the wrapper approach advocated by
its proponents are hailed as weaknesses by the filter camp and
vice versa. For example, wrappers often achieve better results
than filters due to fact that they are tuned to the specific
interaction between an induction algorithm and its training
data. However, they are much slower than filters as they
must repeatedly call the induction algorithm and must be re-
run when a different induction algorithm is used.

The feature selector described in this paper is a filter. The
author believes that filters will ultimately be feasible in cases

may be a large number of features.

Training
data

FS

Search

Feature
evaluation

heuristic
"goodness"

feature
set

ML
Algorithm

Training
data

FS

Final feature set

Search

estimated
accuracy

feature
set

ML
Algorithm

Final feature set

Feature evaluation
cross val, hold out

ML Algorithm

Filter Wrapper

Figure 1: Filter and wrapper feature selectors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Search
Most feature selection algorithms perform a search through
the space of feature subsets. Since the size of this space is
exponential in the number of features, an exhaustive search is
usually intractable. Greedy hill climbing search strategies
such as forward selection and backward elimination [Kittler,
1978] are often applied to search the feature subset space in
reasonable time. Although simple, these searches often yield

sophisticated AI search strategies such as Best First search
and Beam search [Rich and Knight, 1991].

Greedy hill climbing expands the current node and moves
to the child with the highest evaluation. Nodes are expanded
by applying search space operators to them (add or delete a
single feature for forward selection and backward Elimination
respectively).

Table 1: Hill climbing search

1. Let s start state.

2. Expand s by applying search operators.

3. Evaluate each child t of s.

4. Let s ' child t with highest evaluation e t().
5. If e(s ') > e(s) then s s ' , go to step 2.

6. Return s.

Forward selection starts with an empty set of features;
Backward elimination starts with a full set of features.
Forward selection will terminate when no child node is better
than its parent, while backward elimination will continue to
delete features as long as a child is not worse than its parent.

Forward selection and backward elimination are the used
in the experiments described in section 4.

3. CFS: Correlation-based Feature
Selection
Like the majority of feature selection programs, CFS uses a
search algorithm along with a function to evaluate the merit
of feature subsets. The heuristic by which CFS measures the

usefulness of individual features for predicting the class label
along with the level of intercorrelation among them. The
hypothesis on which the heuristic is based can be stated:

Good feature subsets contain features highly correlated
(predictive of) with the class, yet uncorrelated with (not
predictive of) each other.

Equation 1 formalises the heuristic.

Gs = krci

k + k(k 1)r
ii'

(1)

k is the number of features in the subset; rci is the mean

feature correlation with the class, and r
ii' is the average

feature intercorrelation.
Equation 1 is borrowed from test theory [Ghiselli, 1964],

where it is used to measure the reliability of a test consisting
of summed items from the reliability of the individual items.

been standardised. The numerator can be thought of as giving

an indication of how predictive of the class a group of
features are; the denominator of how much redundancy there
is among them. The heuristic goodness measure should filter
out irrelevant features as they will be poor predictors of the
class. Redundant features should be ignored as they will be
highly correlated with one or more of the other features.

3.1 Feature Correlations
By and large most classification tasks in ML involve
learning to distinguish between nominal class values, but
may involve features that are ordinal or continuous. A
measure based on conditional entropy [Press et al., 1988] is
used to measure correlations between features and the class,
and between features. Continuous features are first converted
to nominal by binning. If X and Y are discrete random
variables with respective ranges Rx and Ry , Equations 2 and

3 give the entropy of Y before and after observing X.

H Y() = p y()
y Ry

log p y()() (2)

H Y X() = p x() p y x()
y Ryx Rx

log p y x()() (3)

Y on X. This measure is sometimes called the uncertainty
coefficient of Y [Press et al., 1988].

C Y X() =
H Y() H Y X()

H Y()
(4)

This measure lies between 0 and 1. A value of 0 indicates
that X and Y have no association; the value 1 indicates that
knowledge of X completely predicts Y.

4. Experimental Methodology
In order to determine whether CFS is of use to common ML
algorithms, a series of experiments was run using the
following ML algorithms (with and without feature
selection) on a number of standard data sets drawn from real
and artificial domains.

IB1: An instance based learner. Classifies a new
instance by comparing it with a data base of
instances seen during training. The class of the
most similar training instance is assigned to the
new instance.

Naive Bayes: A bayesian classifier that assumes
independence between features in order to simplify
the calculation of conditional probabilities.

C4.5: A decision tree inducer. Builds a decision tree
for the training data in a greedy fashion by always
testing features that provide the most gain in
information. Leaves in the tree correspond to
classifications.

4.1 Domains
Data sets from seven natural domains and three artificial
domains were drawn from the UCI repository of machine
learning databases. These data sets were chosen because of the
prevalence of nominal features and their predominance in the
literature. Three additional artificial domains were borrowed
from work by Langley and Sage [1994]. They each have 3

relevant features to which a further 27 irrelevant features have
been added. These boolean domains exhibit an increasing
level of feature interaction. It is expected that CFS will have
difficulty dealing with domains with high levels of feature
interaction. Under these conditions, the usefulness of
individual features is difficult to distinguish.

Table 2: Natural and artificial domains

Domain Total # Features Train / Test

Mushroom 22 1000 / 7124
Vote 16 218 / 217
Vote1 15 218 / 217
Credit 15 228 / 462
Lymphography 18 98 / 50
Primary tumor 17 226 / 113
Breast Cancer 9 191 / 95

x1x2 x3
30 (27 irrelevant) 400 / 800

x1x2 x1x3 x2 x3
30 (27 irrelevant) 400 / 800

x1x2 x3 x1 x2 x3
30 (27 irrelevant) 400 / 800

Monks1 6 (3 irrelevant) 124 / 432
Monks2 6 169 / 432
Monks3 6 (3 irrelevant) 122 / 432

4.3 Experiment 1: CFS vs No CFS
50 runs were done with and without feature selection for each
ML algorithm on each data set. For each run the following
procedure was applied:

1) A data set was randomly split into a training and
test set (sizes are given in Table 2)

2) Each ML algorithm was applied to the training set;
the resulting model was used to classify the test
set.

3) CFS was applied to the training data, reducing its
dimensionality. The test set was reduced by the
same factor. Each ML algorithm was applied to the
reduced data as in step 2.

4) Accuracies over 50 runs for each ML algorithm
were averaged.

Forward selection and backward elimination searches
were used. Results for forward selection are given as
there was (on average) little difference between the two
search methods.

In addition to accuracy, tree sizes for C4.5 were recorded.
Smaller trees are generally preferred as they are easier to
understand.

4.4 Experiment 2: CFS vs Wrapper
A second experiment was run in order to get a feel for how
well CFS performs against the popular Wrapper feature
selector. Using the same data sets as in experiment 1, feature
selection by the Wrapper (10 fold CV on the train set) was
compared with feature selection by CFS using C4.5 as the
final induction algorithm. Due to the length of time taken by
the Wrapper to perform its search, only two runs were done
on each data set: one using a forward selection search, the
other a backward elimination search.

5. Results
Tables 3 and 4 show the results for IB1 and Naive Bayes,

respectively, for experiment 1. Feature selection significantly

improves the performance of IB1 on 3 of natural domains and
3 of the artificial domains. Performance is significantly
degraded on 2 of the natural and 3 of the artificial domains.
CFS has successfully removed the 27 irrelevant attributes
from the first two boolean domains (B1 & B2). As expected,
CFS is not effective on the third of the boolean domains
(B3). Due to the high degree of feature interaction in this
domain, none of the relevant features in isolation can be
distinguished from the irrelevant ones. Similarly, on the
Monks1 and Monks2 domains there are strong feature
interactions. As can be seen from the last column of Table 1,
CFS has drastically reduced the number of features in each
data set. In the Vote domain, a major improvement can be
had using only one of the original features.

Table3: Accuracy of IB1 with (IB1-CFS) and without (IB1)

the observed difference between the two is due to sampling
(confidence is 1 minus this probability). Bolded values show
where one is significantly better than the other at the 0.95
level. The last column shows the number of features selected
(rounded to the nearest feature, minus std. deviations) versus
the number features originally present.

Domain IB1 IB1-CFS p #f/orig

Mush 99.96 0.06 98.52 0.07 0.0 1/22
Vote 92.16 1.41 95.64 0.87 0.0 1/16
Vote1 88.48 1.99 88.83 2.27 0.262 5/15
Credit 80.13 1.67 84.65 1.91 0.0 1/15
Lymph 78.56 6.27 75.32 5.52 0.005 6/18
Primary 36.66 3.54 37.58 3.22 0.028 11/17
Breast 70.68 3.90 70.17 3.66 0.376 3/9
B1 86.52 0.87 100.0 0.0 0.0 3/30
B2 72.45 1.34 100.0 0.0 0.0 3/30
B3 79.55 1.36 74.09 3.73 0.0 7/30
Monks1 86.40 1.88 74.58 1.74 0.0 1/6
Monks2 72.22 1.78 63.72 2.89 0.0 1/6
Monks3 91.67 1.46 96.85 0.89 0.0 2/6

Table 4: Accuracy of Naive Bayes with and without feature
selection.

Domain Naive Bayes Naive-CFS p #f/orig

Mush 94.75 0.68 98.49 0.13 0.0 1/22
Vote 90.24 1.53 95.56 1.03 0.0 1/16
Vote1 87.20 1.84 89.04 1.63 0.0 5/15
Credit 78.21 1.49 83.78 3.78 0.0 1/15
Lymph 81.96 4.77 79.14 5.92 0.001 6/18
Primary 46.87 3.07 45.90 3.20 0.014 11/17
Breast 71.67 3.69 71.02 3.58 0.086 3/9
B1 96.41 1.03 100 0 0.0 3/30
B2 98.50 1.14 100 0 0.0 3/30
B3 75.10 0.98 75.64 0.66 0.0 7/30
Monks1 72.74 1.89 75.0 0.0 0.0 1/6
Monks2 63.74 2.08 65.10 1.84 0.0 1/6
Monks3 97.08 0.57 97.16 0.39 0.359 2/6

The results of feature selection for Naive Bayes are even
more successful. Significant improvement is recorded on 9 of
the 13 domains and significant degradation on only 2.
Interestingly, small improvement is recorded on those
artificial domains with feature interactions. It turns out that

Naive Bayes is unable to learn these concepts and similar
accuracy can be achieved through simply predicting the most
frequent class value. Because CFS is a filter algorithm, the
feature subsets chosen for Naive Bayes are the same as those
chosen for IB1.

The results for C4.5 (not shown) are less successful.
There were 2 significant improvements and 3 degradations on
the natural domains. On the domains where accuracy was
degraded, it was by 1 or 2 percent. However, CFS was
effective in significantly reducing the size of the trees induced
by C4.5 (Table 5).

Table 5: Tree sizes induced by C4.5 before and after feature
selection

Domain Size-C4.5 Size-CFS p

Mush 25.0 5.39 10.0 0.0 0.0
Vote 7.12 2.75 3.0 0.0 0.0
Vote1 14.04 4.79 6.88 2.95 0.0
Credit 26.3 10.51 4.12 4.37 0.0
Lymph 19.18 5.49 14.38 6.26 0.0
Primary 65.18 10.88 51.02 11.13 0.0
Breast 16.3 11.6 14.74 11.05 0.38
B1 7 0 7 0 1.0
B2 11 0 11 0 1.0
B3 49.32 31.65 6.12 10.9 0.0
Monks1 20.06 8.84 5 0 0.0
Monks2 1.28 1.98 1 0 0.322
Monks3 13.76 2.8 12.16 1.38 0.0

5.2 Experiment 2
Table 6 compares CFS with the Wrapper. The best result (in
terms of the number of improvements) is given by the
Wrapper using a backward search. This was expected as the
Wrapper is tuned to the specific bias of C4.5. Moreover, it
has been shown that the Wrapper using a backward search can
identify relevant features even when they interact [Kohavi and
John, 1996]. The next best result is given by CFS using a
forward search. Table 7 shows the CPU time (in seconds)
taken by each feature selector. CFS is many times faster than
the Wrapper. As can be seen from the table, the most costly
approach is the Wrapper using a backward search.

Table 6: Accuracy of C4.5, C4.5 with CFS forward (fs) and
backward (be) search, and C4.5 with Wrapper (CV) forward
and backward search.

Domain C4.5 C4.5-
CFS-fs

C4.5-
CV-fs

C4.5-
CFS-be

C4.5-
CV-be

Mush 99.0 98.5 98.8 98.5 98.8
Vote 92.6 94.9 94.9 94.9 94.9
Vote1 92.2 91.2 89.9 91.2 89.9
Credit 83.8 85.9 85.9 81.4 85.9
Lymph 76.0 74.0 78.0 74.0 78.0
Primary 38.1 40.7 38.1 40.7 39.8
Breast 74.7 73.7 73.7 73.7 74.7
B1 100.0 100.0 87.0 100.0 100.0
B2 100.0 100.0 74.0 100.0 100.0
B3 87.6 75.8 75.4 75.8 100.0
Monk1 75.7 75.0 75.0 75.0 88.9
Monk2 65.0 67.1 67.1 67.1 65.3
Monk3 97.2 97.2 97.2 97.2 97.2

Table 7: CPU time taken by feature selectors (Sparc 1000).

Domain C4.5-
CFS-fs

C4.5-
CV-fs

C4.5-
CFS-be

C4.5-
CV-be

Mush 11 1115 11 13316
Vote 1 258 1 2611
Vote1 2 632 2 1930
Credit 2 260 2 1284
Lymph 2 708 2 1763
Primary 2 1765 2 2479
Breast 1 89 1 361
B1 6 297 6 19198
B2 6 585 6 16097
B3 9 271 8 18776
Monks1 1 83 1 183
Monks2 2 55 2 166
Monks3 1 128 2 206

6. Conclusion
This paper presents a feature selection algorithm (CFS) that
operates independently of any induction algorithm. Results
show that its evaluation heuristic chooses feature subsets that
are useful to common machine learning algorithms by
improving their accuracy and making their results easier to
understand. A comparison with the Wrapper approach to

its application to domains with many features more feasible.
Future work will attempt to better understand why CFS

works more effectively on some natural domains than others.
Comparing the learning curves produced by ML algorithms
on natural domains to those produced on carefully controlled
artificial domains may provide some insight. Extension of
CFS to deal with feature interactions will also be explored.
One approach might be to model higher order dependencies
(correlation between pairs of features and the class).

REFERENCES
[Almuallim and Deitterich, 1991] H. Allmuallim and T.G.
Deitterich, Learning with many irrelevant features, Proc. of the
Ninth Nat. Conference on AI,
[Ghiselli, 1964] E. E. Ghiselli, Theory of Psychological
Measurement, McGraw-Hill, 1964.
[Holmes and Nevill-Manning, 1995] G. Holmes and C.G. Nevill-
Manning, Feature selection via the discovery of simple
classification rules, Proc. Int. Symp. on Intelligent Data
Analysis (IDA-95) , 1995.
[Kira and rendell, 1992] K. Kira and L. Rendell, A practical
approach to feature selection, Proc. of the Ninth Int. Conference
on ML,
[Kittler, 1978] J. Kittler, Feature set search algorithms, in C.H
Chen (ed) Pattern Regognition and Signal Processing , Sijhoff
and Noordhoff, the Netherlands, 1978.
[Kohavi and John, 1996] R. Kohavi and G.H. John, Wrappers for
feature subset selection, AIJ special issue on relevance, (in
press).
[Langley and Sage, 1994] P. Langley and S. Sage, Scaling to
domains with irrelevant features, in R. Greiner (ed)
Computational Learning Theory and Natural Learning Systems,
MIT Press, 1994.
[Press et al., 1988] W.H. Press, Numerical Recipes in C,
Cambridge, 1988.
[Rich and Knight] E. Rich and K. Knight, Artificial Intelligence,
McGraw-Hill, 1991.

