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Abstract
Machine learning algorithms automatically extract knowledge from machine readable
information. Unfortunately, their success is usually dependant on the quality of the data
that they operate on. If the data is inadequate, or contains extraneous and irrelevant
information, machine learning algorithms may produce less accurate and less
understandable results, or may fail to discover anything of use at all. Feature subset
selectors are algorithms that attempt to identify and remove as much irrelevant and
redundant information as possible prior to learning. Feature subset selection can result in
enhanced performance, a reduced hypothesis search space, and, in some cases, reduced
storage requirement. This paper describes a new feature selection algorithm that uses a
correlation based heuristic to determine the “goodness” of feature subsets, and evaluates its
effectiveness with three common machine learning algorithms. Experiments using a
number of standard machine learning data sets are presented. Feature subset selection gave
significant improvement for all three algorithms.
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1. Introduction
In machine learning, computer algorithms (learners) attempt to automatically distil
knowledge from example data. This knowledge can be used to make predictions about
novel data in the future and to provide insight into the nature of the target concept(s).
The example data typically consists of a number of input patterns or examples of the
concepts to be learned. Each example is described by a vector of measurements or
features along with a label which denotes the category or class the example belongs
to. Machine learning systems typically attempt to discover regularities and
relationships between features and classes in a learning or training phase. A second
phase called classification uses the model induced during learning to place new
examples into appropriate classes.

Many factors affect the success of machine learning on a given task. The
representation and quality of the example data is first and foremost. If there is much
irrelevant and redundant information present or the data is noisy and unreliable, then
knowledge discovery during the training phase is more difficult. Feature subset
selection is the process of identifying and removing as much of the irrelevant and
redundant information as possible. This reduces the dimensionality of the data and
allows learning algorithms to operate faster and more effectively. In some cases,
accuracy on future classification can be improved; in others, the result is a more
compact, easily interpreted representation of the target concept.

This paper presents a new approach to feature selection for machine learning that uses
a correlation based heuristic to evaluate the merit of features. The effectiveness of the
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feature selector is evaluated by applying it to data as a pre-processing step for three
common machine learning algorithms.

2. Feature Subset Selection
The feature subset selection problem is well known in statistics and pattern
recognition. However, many of the techniques deal exclusively with features that are
continuous, or, make assumptions that do not hold for many practical machine
learning algorithms. For example, one common assumption (monotonicity) says that
increasing the number of features can never decrease performance.

Although assumptions such as monotonicity are often invalid for machine learning,
one approach to feature subset selection in machine learning has borrowed search and
evaluation techniques from statistics and pattern recognition. This approach, dubbed
the wrapper [Kohavi and John, 1996] estimates the accuracy of feature subsets via a
statistical re-sampling technique (such as cross validation) using the actual machine
learning algorithm. The wrapper has proved useful but is very slow to execute as the
induction algorithm is called repeatedly.

Another approach (adopted in this paper) to feature subset selection, called the filter,
operates independently of any induction algorithm—undesirable features are filtered out
of the data before induction commences. Filter methods typically make use of all the
training data when selecting a subset of features. Some look for consistency in the
data—that is, they note when every combination of values for a feature subset is
associated with a single class label [Allmuallim and Deitterich, 1991]. Another
method [Koller and Sahami, 1996] eliminates features whose information content
(concerning other features and the class) is subsumed by some number of the
remaining features. Still other methods attempt to rank features according to a
relevancy score [Kira and Rendell, 1992; Holmes and Nevill-Manning, 1995]. Filters
have proven to be much faster than wrappers and hence can be applied to large data
sets containing many features.

2.1 Searching the Feature Subset Space
The purpose of feature selection is to decide which of the initial (possibly large
number) of features to include in the final subset and which to ignore. If there are n
possible features initially, then there are n2 possible subsets. The only way to find the
best subset would be to try them all—this is clearly prohibitive for all but a small
number of initial features.

Various heuristic search strategies such as hill climbing and Best First [Rich and
Knight, 1991] are often applied to search the feature subset space in reasonable time.
Two forms of hill climbing search and a Best First search were trialed with the feature
selector described below; the Best First search was used in the final experiments as it
gave better results in some cases. The Best First search starts with an empty set of
features and generates all possible single feature expansions. The subset with the
highest evaluation is chosen and is expanded in the same manner by adding single
features. If expanding a subset results in no improvement, the search drops back to the



next best unexpanded subset and continues from there. Given enough time a Best First
search will explore the entire search space, so it is common to limit the number of
subsets expanded that result in no improvement. The best subset found is returned
when the search terminates.

3. CFS: Correlation-based Feature Selection
Like the majority of feature selection programs, CFS uses a search algorithm along
with a function to evaluate the merit of feature subsets. The heuristic by which CFS
measures the “goodness” of feature subsets takes into account the usefulness of
individual features for predicting the class label along with the level of intercorrelation
among them. The hypothesis on which the heuristic is based can be stated:

Good feature subsets contain features highly correlated with (predictive
of) the class, yet uncorrelated with (not predictive of) each other.

Equation 1 formalises the heuristic.
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k is the number of features in the subset; rci  is the mean feature correlation with the

class, and rii  is the average feature intercorrelation. Equation 1 is borrowed from test

theory [Ghiselli, 1964], where it is used to measure the reliability of a test consisting
of summed items from the reliability of the individual items. For example, a more
accurate indication of a person’s occupational success can be had from a composite of
a number of tests measuring a wide variety of traits (academic ability, leadership,
efficiency etc), rather than any one individual test which measures a restricted scope of
traits.

Equation 1 is, in fact, Pearson’s correlation, where all variables have been
standardised. The numerator can be thought of as giving an indication of how
predictive of the class a group of features are; the denominator of how much
redundancy there is among them. The heuristic goodness measure should filter out
irrelevant features as they will be poor predictors of the class. Redundant features
should be ignored as they will be highly correlated with one or more of the other
features. Figure 1 depicts the components of the CFS feature selector.
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Fig. 1.  CFS feature selector.

3.1 Feature Correlations
By and large most classification tasks in machine learning involve learning to
distinguish between nominal class values, but may involve features that are ordinal or
continuous. In order to have a common basis for computing the correlations necessary
for equation 1, continuous features are converted to nominal by binning. A number of
information based measures of association were tried for the feature-class correlations
and feature intercorrelations in equation 1, including: the uncertainty coefficient and
symmetrical uncertainty coefficient [Press et al., 1988], the gain ratio [Quinlan,
1986], and several based on the minimum description length principle [Kononenko,
1995]. Best results were achieved by using the gain ratio for feature-class correlations
and symmetrical uncertainty coefficient for feature intercorrelations.

If X  and Y  are discrete random variables, equations 2 and 3 give the entropy of Y
before and after observing X . Equation 4 gives the amount of information gained
about Y after observing X (and vice versa—the amount of information gained about X
after observing Y). Gain is biased in favour of attributes with more values, that is,
attributes with greater numbers of values will appear to gain more information than
those with fewer values even if they are actually no more informative. The gain ratio
(equation 5) is a non-symmetrical measure that tries to compensate for this bias. If Y
is the variable to be predicted, then the gain ratio normalises the gain by dividing by
the entropy of X.  The symmetrical uncertainty coefficient normalises the gain by
dividing by the sum of the entropies of X  and Y . Both the gain ratio and the



symmetrical uncertainty coefficient lie between 0 and 1. A value of 0 indicates that X
and Y have no association; the value 1 for the gain ratio indicates that knowledge of Y
completely predicts X; the value 1 for the symmetrical uncertainty coefficient indicates
that knowledge of one variable completely predicts the other. Both display a bias in
favour of attributes with fewer values.
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Initial experiments showed CFS to be quite an aggressive filter, that is, it typically
filtered out more than half of the features in a given data set—often leaving only the 2
or 3 best features. While this resulted in improvement on some data sets it was clear
on others that higher accuracy could be achieved with more features. Reducing the
effect of the intercorrelations in equation 1 improves the performance. A scaling factor
of 0.25 generally gave good results across the data sets and learning algorithms and
was used in the experiments described below.

4. Experimental Methodology
In order to determine whether CFS is of use to common machine learning algorithms,
a series of experiments was run using the following machine learning algorithms
(with and without feature selection) on 12 standard data sets drawn from the UCI
repository.

Naive Bayes
The Naive Bayes algorithm employs a simplified version of Bayes formula to classify
each novel instance. The posterior probability of each possible class is calculated
given the feature values present in the instance; the instance is assigned the class with
the highest probability. Equation 7 shows the Naive Bayesian formula which makes
the assumption that feature values are independent within each class.
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The left side of the equation is the posterior probability of class i given the feature
values observed in the instance to be classified. The denominator of the right side of
the equation is often omitted as it is a constant which is easily computed if one
requires that the posterior probabilities of the classes sum to one. Due to the
assumption that feature values are independant with the class, the Naive Bayes
classifier’s predictive performance can be adversely affected by the presence of
redundant features in the training data.

C4.5 Decision Tree Generator
C4.5 [Quinlan, 1993] is an algorithm that summarises the training data in the form of
a decision tree. Along with systems that induce logical rules, decision tree algorithms
have proved popular  in practice. This is due in part to their robustness and execution
speed, and, to the fact that explicit concept descriptions are produced, which are more
natural for people to interpret. Nodes in a decision tree correspond to features, and,
branches to their associated values. The leaves of the tree correspond to classes. To
classify a new instance, one simply examines the features tested at the nodes of the
tree and follows the branches corresponding to their observed values in the instance.
Upon reaching a leaf, the process terminates, and the class at the leaf is assigned to the
instance.

To build a decision tree from training data, C4.5 employs a greedy approach that uses
an information theoretic measure (gain ratio—cf equation 5) as its guide. Choosing an
attribute for the root of the tree divides the training instances into subsets
corresponding to the values of the attribute. If the entropy of the class labels in these
subsets is less than the entropy of the class labels in the full training set, then
information has been gained through splitting on the attribute. C4.5 chooses the
attribute that gains the most information to be at the root of the tree. The algorithm is
applied recursively to form sub-trees, terminating when a given subset contains
instances of only one class.

C4.5 can sometimes overfit training data, resulting large trees. Kohavi and John
(1996) have found in many cases that feature selection can result in C4.5 producing
smaller trees.

IB1—Similarity Based Learner
Similarity based learners represent knowledge in the form of specific cases or
experiences. They rely on efficient matching methods to retrieve these stored cases so
they can be applied in novel situations. Like the Naive Bayes algorithm, similarity
based learners are usually computationally simple, and variations are often considered
as models of human learning [Cunningham, et al., 1997].

IB1 [Aha et al., 1991] is an implementation of the simplest similarity based learner
known as nearest neighbour. IB1 simply finds the stored case closest (usually
according to some Euclidean distance metric) to the instance to be classified. The new
instance is assigned to the retrieved instance’s class. Equation 8 shows the distance
metric employed by IB1.
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Equation 8 gives the distance between two instances x and y; x j  and y j  refer to the

jth feature value of instance x and y respectively. For numeric valued attributes

f x y x yj j j j,( ) = ( )2
, for symbolic valued attributes f x y x yj j j j,( ) = ( ) .

Langley and Sage (1994) have found that fewer training cases are needed by nearest
neighbour to reach as specified accuracy if irrelevant features are removed first.

4.1 Experiment: CFS vs. No CFS
Twelve data sets were drawn from the UCI repository of machine learning databases.
These data sets were chosen because of the prevalence of nominal features and their
predominance in the literature. Table 1 summarises the characteristics of the data sets.
Three of the data sets (CR, LY, and HC) contain a few continuous features; the rest
contain only nominal features.

50 runs were done with and without feature selection for each machine learning
algorithm on each data set. For each run the following procedure was applied:

1. A data set was randomly split into a training and test set (sizes are given in table
1).

2. Each machine learning algorithm was applied to the training set; the resulting
model was used to classify the test set.

3. CFS was applied to the training data, reducing its dimensionality. The test set was
reduced by the same factor. Each machine learning algorithm was applied to the
reduced data as in step 2.

4. Accuracies over 50 runs for each machine learning algorithm were averaged.

The best first search was used with a stopping criterion of expanding 5 non-improving
nodes in a row. In addition to accuracy, tree sizes for C4.5 were recorded. Smaller trees
are generally preferred as they are easier to understand.

5. Results
Tables 2 and 3 show the results of using CFS with Naive Bayes and IB1 respectively.
Feature selection significantly improves the performance of Naive Bayes on 7 of the
12 domains. Performance is significantly degraded on 3 domains and there is no
change on 2 domains. In most cases CFS has reduced the number of features by a
factor of 2 or greater. In the Horse colic domain (HC), a significant improvements can
be had using only 2 of the original 28 features.



Table 1.  Domain characteristics. The %missing column shows what percentage of the
data sets’ entries (number of features  number of instances) have missing values. Avg # of
feat vals and Max/Min # feat vals are calculated from the nominal features present in the
data sets.

Dom # Inst # Feat %Miss Avg # feat
vals

Max/Min
# feat vals

# Class
vals

Train size/
Test size

MU 8124 23 1.3 5.27 12/1 2 1000/7124

VO 435 17 5.3 2 2/2 2 218/217

V1 435 16 5.5 2 2/2 2 218/217

CR 690 16 0.6 4.44 23/2 2 228/462

LY 148 19 0 2.93 8/2 4 98/50

PT 339 18 3.7 2.18 3/2 23 226/113

BC 286 10 0.3 4.56 11/2 2 191/95

DNA 106 56 0 4 4/4 2 69/37

AU 226 70 2.0 2.23 6/2 24 149/77

SB 683 36 9.5 2.83 7/2 19 450/233

HC 368 28 18.7 23.8 346/2 2 242/126

KR 3196 37 0 2.03 3/2 2 2110/1086

Table 2. Accuracy of Naive Bayes with (Naive-CFS) and without (Naive) feature selection.
The “p” column gives the probability that the observed difference between the two is due to
sampling (confidence is 1 minus this probability). Bolded values show where one is
significantly better than the other at the 0.95 level. The last column shows the number of
features selected versus the number of features originally present.

Domain Naive Bayes Naive-CFS p # features/original

MU 94.75 0.68 98.19 0.89 0.00 09.55 0.83/23

VO 90.25 1.53 92.08 1.61 0.00 06.80 1.21/17

V1 87.20 1.84 87.84 1.83 0.00 08.20 1.11/16

CR 78.21 1.49 85.29 2.33 0.00 01.26 0.49/16

LY 82.12 4.83 70.31 10.25 0.00 04.48 2.36/19

PT 46.87 3.07 45.86 3.38 0.02 10.60 0.64/18

BC 72.16 2.69 72.55 3.67 0.33 03.62 0.64/10

DNA 89.21 4.97 90.58 4.22 0.06 06.04 2.09/56

AU 80.24 4.01 78.59 3.35 0.02 24.80 1.94/70

SB 91.30 1.74 92.50 2.53 0.00 24.68 1.27/36

HC 83.13 3.17 85.83 4.43 0.00 02.00 1.07/28

KR 87.33 1.16 94.30 0.54 0.00 07.32 0.91/37



Table 3.  Accuracy of IB1 with (IB1-CFS) and without (IB1) feature selection.

Domain IB1 IB1-CFS p # features/original

MU 99.94 0.07 99.92 0.07 0.19 09.55 0.83/23

VO 92.18 1.34 93.92 1.68 0.00 06.80 1.21/17

V1 88.62 1.97 88.20 2.06 0.16 08.20 1.11/16

CR 79.82 1.89 85.54 1.07 0.00 01.26 0.49/16

LY 79.89 5.38 71.46 9.90 0.00 04.48 2.36/19

PT 39.63 3.44 39.88 2.61 0.53 10.60 0.64/18

BC 71.09 3.83 72.12 3.42 0.10 03.62 0.64/10

DNA 80.31 6.36 86.58 4.71 0.00 06.04 2.09/56

AU 75.28 3.21 76.69 3.44 0.02 24.80 1.94/70

SB 90.49 1.56 91.30 1.88 0.02 24.68 1.27/36

HC 02.00 1.07/28

KR 94.64 0.78 94.34 0.52 0.01 07.32 0.91/37

Table 4.  Accuracy of C4.5 with (C4.5-CFS) and without (C4.5) feature selection. The first
“p” column gives the probability that the observed differences in accuracy between the two
are due to sampling. The second “p” column gives the probability that the observed
differences in tree size between the two is due to sampling.

Dom C45 C45-CFS p Size Size CFS p

MU 99.6 0.4 99.5 0.6 0.3 25.0 5.4 21.6 5.6 0.0

VO 95.2 1.4 95.6 1.2 0.0 7.1 2.8 3.6 1.7 0.0

V1 88.7 2.0 88.3 2.2 0.1 14.0 4.8 8.3 4.3 0.0

CR 83.7 1.5 85.6 1.0 0.0 26.2 10.4 3.1 0.9 0.0

LY 75.8 5.4 69.5 9.0 0.0 19.2 5.5 8.7 3.6 0.0

PT 41.0 4.4 41.1 3.3 0.8 65.2 10.9 43.5 7.6 0.0

BC 71.8 3.3 71.4 3.3 0.5 16.3 11.8 14.1 7.3 0.2

DNA 74.6 6.5 77.0 6.4 0.0 16.1 4.1 13.9 4.6 0.0

AU 78.5 3.8 72.5 3.4 0.0 40.2 5.0 27.0 5.3 0.0

SB 89.1 1.6 89.6 2.4 0.2 85.7 7.2 79.0 6.9 0.0

HC 84.0 3.0 84.0 4.1 0.9 13.9 14.0 37.0 33.0 0.0

KR 99.2 0.3 94.4 0.5 0.0 49.9 5.0 11.0 0.0 0.0

The results of feature selection for IB1 are similar. Significant improvement is
recorded on 5 of the 12 domains and significant degradation on only 2. Unfortunately
there is no result on the Horse colic domain due to several features causing IB1 to
crash. Because CFS is a filter algorithm, the feature subsets chosen for IB1 are the
same as those chosen for Naive Bayes.

Table 4 shows the results for C4.5. CFS has been less successful here than for Naive
Bayes and IB1. There are 3 significant improvements and 3 significant degradations.



However, CFS was effective in significantly reducing the size of the trees induced by
C4.5 on all but 2 of the domains.

6. Conclusion
This paper has presented a new approach to feature selection for machine learning. The
algorithm (CFS) uses features’ performances and intercorrelations to guide its search
for a good subset of features. Experimental results are encouraging and show promise
for CFS as a practical feature selector for common machine learning algorithms. The
correlation-based evaluation heuristic employed by CFS appears to choose feature
subsets that are useful to the learning algorithms by improving their accuracy and
making their results easier to understand.

Preliminary experiments with the wrapper feature selector (same domains and search
method) with C4.5 show CFS to be competitive. CFS outperforms the wrapper by a
few percentage points on 5 domains; on two domains the wrapper does better by a
larger margin (5 and 10%). However, CFS is many times faster than the wrapper. On
the Soybean domain (SB) the wrapper takes just over 8 days of CPU time to complete
50 runs on a sparc server 1000; CFS takes 8.5 minutes of CPU time.

The evaluation heuristic (equation 1) balances the predictive ability of a group of
features with the level of intercorrelation or redundancy among them. Its success will
certainly depend on how accurate the feature-class and feature intercorrelations are. One
indication that the bias of the gain ratio and the symmetrical uncertainty coefficient
may not be totally appropriate for equation 1 is that reducing the effect of the
intercorrelations gave improved results. Both are strongly biased in favour of features
with fewer values, the gain ratio increasingly so as the number of class labels
increases. Furthermore, both measures are biased upwards as the number of training
examples decreases. These factors may account for CFS’s poor performance on the
Lymphography (LY) and Audiology (AU) domains.

Another factor affecting performance could be the presence of feature interactions
(dependencies) in the data sets. An extreme example of this is a parity concept where
no single feature in isolation appears better than any other. Domingos and Pazzani
(1996) have shown that there exist significant pair wise feature dependencies given the
class in many standard machine learning data sets.

Future work will attempt to better understand why CFS works more effectively on
some domains than others. Addressing the issues raised above (measure bias and
feature interactions) may help on the domains where CFS has not performed as well.
Future experiments will look at how closely CFS’s evaluation heuristic correlates
with actual performance by machine learning algorithms for randomly chosen subsets
of features.
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