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Abstract 

A genetic algorithm selected combinations of attributes for a 
machine learning system. The algorithm used 90 Bach 
chorale melodies to train models and randomly selected sets 
of 10 chorales for evaluation. Compression of pitch was 
used as the fitness evaluation criterion. The best models 
were used to compress a different test set of chorales and 
their performance compared to human generated models. 
G.A. models outperformed the human models, improving 
compression by 10 percent. 

Introduction 

There are many possible ways to describe the surface of a 
musical piece; any particular note could have literally 
hundreds of descriptive attributes associated with it. Apart 
from obvious static properties such as pitch and duration, 
there are many properties based on interval systems that 
could be applied. Some examples include the interval 
between a note and the previous note, the interval between a 
note and the note that started the measure, the interval 
between a note and the tonic of the chord, and the difference 
in start times of two consecutive notes. 

If we model attributes individually, it is feasible to test 
the performance of each attribute. However, it is almost 
certain that there are relationships to be exploited between 
attributes: ie. there is predictive power to be gained by 
explicitly modelling the relationship between two or more 
attributes. If we have 20 attributes and we are interested in 
testing the performance of modelling 2 attributes together, 
then there are 20! / 2! 18! combinations to try. If we are 
interested in exploring all possible combinations of 
attributes, then there are 220 combinations! 

So, how do we decide which attributes to model? One 
obvious way would be to consult an expert and exploit his 
or her a priori musical knowledge. The disadvantage here is 
that knowledge will vary from expert to expert and is in no 
way guaranteed to be optimal. Also, with this method, our 
modelling technique be comes more domain dependent; if we 
move to a new domain, we must seek new experts. Ideally 
we want an automated method for selecting attributes to 
model; one that will work regardless of the domain. It is 
worth noting however, that although we will hopefully 
arrive at a method that optimally chooses combinations of 
attributes, the initial “pool” of properties or attributes that 
we choose from must still be designed by a human. This 

paper describes the application of an automated technique for 
selecting combinations of attributes. 

Predictive models 

There are many different types of models. With respect 
to music informal models have developed in our own minds 
over many years. Other models are constructed from formal 
theories. Computational models use adaptive learning 
techniques. All have the ability to predict upcoming events 
on the basis of what has been heard so far. The system 
described in [l] is an adaptive learning system that borrows 
modeling techniques from text compression, specifically 
P.P.M [2]. Additional power is gained through the use of 
multiple models (“viewpoints”) simultaneously. Each 
model acts as an independent knowledge source viewing the 
music from its own perspective. These perspectives are 
constrained by how the music is represented and what can be 
derived from the representation. The Bach chorales that the 
system operates on are represented as discrete sequences of 
events. Each has a start time, pitch, duration and fermata 
indicator. More attributes can be derived from these “basic” 
types. Contour, for example, is derived by examining 
sequential pitch values. A given pitch is either the same as, 
higher, or lower than the preceding pitch. Other derived 
attributes include descriptors such as the interval between a 
note and the note that began the piece, the interval between a 
note and the first note in the bar, and the interval between 
notes that begin phrases. 

Viewpoints 

The concept behind viewpoints is to use background 
domain knowledge to arrive at new ways of describing events 
in a sequence. A viewpoint is defined by the attribute(s) it 
models. Each viewpoint has an underlying context model, 
where by context model we are referring to a subclass of the 
probabilistic finite-state, or Markov, class of grammars. A 
simple viewpoint models a single attribute. A linked 
viewpoint is one that models two or more attributes 
simultaneously. Sequences stored by a linked viewpoint are 
sets of tuples, eg. [(al, a2 ,..., an), (al, a:! ,..., an) ,... 1. Where 
al - an are the attributes modelled by the viewpoint. A tuple 
will be recorded by a viewpoint at event j, if and only if, all 
constituent attributes of the viewpoint are defined at that 
event. 

Entropy 
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Our goal is to automate the selection of attributes for a 
linked viewpoint such that the predictive power of the 
viewpoint is optimised. From an information theoretic 
approach we can measure the predictive power of a viewpoint 
by the amount of redundancy it removes from a sequence of 
events. An entropy profile for a sequence of events can be 
derived by examining the probabilities that the model 
assigns to events that actually occur in the sequence. 
Intuitively, the higher the probability assigned to an event, 
the less surprising it is to the model, and the lower its 
entropy. Therefore, an entropy profile is an event-by-event 
plot of entropy against time. The entropy of an event is 
usually expressed in bits; it can be calculated from the 
formula E = -1og2p [3], where p is the probability assigned 
to the event by the model. If the model as signs a 
probability of 50 percent to a event, then the entropy of that 
event with respect to the model is 1 bit. If the probability is 
25 percent, then the entropy is 2 bits. 

Entropy provides a measure of the performance of a 
viewpoint on a event-by-event basis; averaging the 
individual entropies gives a measure of the performance on 
the sequence as a whole. 

Using a genetic algorithm to select 
attributes 

As mentioned earlier, our goal is to automate the 
selection of attributes for a viewpoint. The only fail-safe 
way of locating the optimal combination of attributes is to 
try all combinations. Unfortunately this is computationally 
intractable even for a small pool of attributes. The method 
described here applies a genetic algorithm to select attributes. 
Genetic algorithms are machine learning and optimisation 
techniques based on the principles of natural selection in 
biology [4]. They use a population of competing solutions 
- evolved over time - to converge to an optimal solution. 
Effectively, the solution space is searched in parallel. 
Although they are not guaranteed to find the global optimum 
[S], the use of a population helps avoid local optima. The 
algorithm is an iterative process where each successive 
generation is produced by reproduction among the members 
of the previous generation. Selection of population 
members for reproduction is driven by fitness (determined by 
some objective measure). There are numerous variations of 
genetic algorithms; many of them are ‘tweaked’ for optimal 
performance on a specific problem. The one presented here 
is the simple one outlined by Goldberg [5]. Despite its 
simplicity, it remains a powerful algorithm. 

Genetic algorithm 

Attribute combinations are coded as a 22 bit string. If a 
bit is set (value l), then the corresponding attribute is 
modelled in the linked viewpoint; if the bit is not set (value 
0), then the attribute is not modelled by the linked 
viewpoint. Note that the algorithm also evaluates simple 
viewpoints, ie. those which model only a single attribute. 
Average entropy is used as the raw fitness of a viewpoint. 

The objective function builds a model of 90 chorales using 
the 22 bit string provided by the genetic algorithm. The 
average entropy of 10 test chorales with respect to the model 
becomes the fitness of the viewpoint. The lower the average 
entropy, the fitter the viewpoint. New generations are 
created by three genetic operators: selection, crossover, and 
mutation. Generations are non-overlapping, meaning that in 
principle each generation is made up of new individuals. In 
practice however, some members of the new generation will 
be copies of their parents. 

Selection is based on fitness by the simple biased roulette 
wheel method. Under this scheme, each population member 
is allocated a slice of the roulette wheel proportional to their 
fitness. Spinning the wheel provides a candidate for 
reproduction; those population members with high fitness 
have greater chance of being selected. 

Crossover is the operator for creating new strings from 
pairs of selected individuals. In the experiments presented 
here, crossover occurs with a probability of 60 percent. 
When crossover does not occur, both selected individuals are 
copied into the new generation without change. When 
crossover does occur, a crossover point for the two 
individuals is randomly chosen, and the two offspring are 
created by concatenating the pieces of the two parents. 

Mutation is a genetic operator designed to introduce a 
degree of random noise into the procedure by occasionally 
changing the value of a single bit, chosen at random from an 
individual. This helps avoid local optima. Mutation is 
usually applied with some low probability. In these 
experiments, mutation is used in two slightly different ways. 
Firstly, mutation is always applied to one offspring when 
parents selected for crossover are exact copies of one another. 
This insures that we introduce a new string every time 
crossover occurs. Secondly, a string is mutated if it doesn’t 
contain a pitch related attribute. Since we are interested in 
the predicting pitch, a viewpoint that does not contain at 
least one pitch related attribute will never predict anything. 
Generation 0 is initialised by randomly setting two bits in 
each population member, with the constraint that at least 
one correspond to a pitch related attribute. Generation 0 is 
also constrained to contain only unique population members. 

Results 

G.A. runs 

Figure 1 shows the population maximum, population 
minimum, and population mean entropy scores for the first 
experiment over 30 generations. From the 100 Bach 
chorales in the data base, ten were randomly selected and 
removed to from a fitness evaluation set. The remaining 90 
were used for training. Average entropy starts off at just 
over 3 bits per pitch; midway through the run the average 
hovers around 2.7 bits per pitch and by the end the average is 
at 2.02 bits per pitch. It can be seen that right from the 
start the population contained a good solution (minimum 
entropy of 2.55 bits per pitch). This was superseded by a 
periodic viewpoint that became the population best for the 
rest of the run. This viewpoint predicts only 
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Figure 1: G.A. experiment 1. Maximum, minimum, and 
mean entropy by generation. 

for the last note in each phrase (50 out of 401 notes), with 
an average of 1.92 bits per pitch. 

The spikes in the maximum entropy plot show when me 
algorithm tries a poor solution. The large spike at 
generation 22 is a special case; the algorithm has tried a 
viewpoint that models nothing. This is possible because 
some attributes are mutually exclusive. Thrph x lphrase is 
an example of this. Thrph is the interval between a note 
that starts a phrase and the note that started the previous 
phrase; it is defined for the first note in a phrase. Lphrase is 
the length of a phrase; it is defined for the last note in a 
phrase. These two attributes are never simultaneously 
defined. Therefore, this viewpoint never models any 
sequences and hence never predicts. When this situation 
occurs, the viewpoint in question is awarded an arbitrarily 
high entropy score - in this case 10 bits per pitch. However, 
this viewpoint is immediately ditched by the algorithm, and 
the maximum entropy drops to just under 3 bits in the 
following generation. The same thing occurs in generation 
30, which accounts for the upturn in the population mean 
entropy. 

Figure 2 shows population maximum, population 
minimum, and population mean entropy plots for the second 
g.a. run. This experiment used a different set of ten chorales 
to evaluate viewpoint fitness on. Population mean entropy 
starts off at 3.06 bits per pitch; midway through, the mean 
entropy is around 2.3 bits per pitch and by the end has fallen 
to 2.25 bits per pitch. The best individual in the population 
at generation 25 has an average entropy of 2.15 bits per 
pitch over the ten test chorales. In the following generation 
the population best entropy drops dramatically to 1.49 bits 
per pitch. As in experiment 1, a periodic viewpoint 
predicting phrase endings has been introduced. It is certain 
that if the experiment had been allowed to run longer than 30 
generations this viewpoint would have dominated the 
population. 
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Figure 2: G.A. experiment 2. Maximum, minimum, and 
mean entropy by generation. 

It is interesting to note that overall viewpoint 
performance is better in this experiment than in experiment 
1. It must be concluded that the ten chorales used for fitness 
evaluation in this experiment are on the whole easier to 
predict than those of experiment 1. In testing the best non- 
periodic viewpoint from this experiment on the 10 chorales 
from experiment 1, we get an average of 2.6 bits per pitch, 
which is close to the performance of the best non-periodic 
viewpoint of experiment 1. 

Chorale 17 from the test set of experiment 1 is a 
particularly difficult chorale to predict. It is in E major and 
is one of only nine chorales in the data-base that are in 314 
time. A note alongside the published score of this chorale 
states that it is sometimes published with a key signature of 
1 sharp and transposed a whole step lower. On close 
examination of this chorale in the data-base we find that its 
melody has indeed been transposed down a step; however, the 
key signature is still E major! This accounts for the 
proliferation of minor thirds that the viewpoints find very 
surprising. An examination of a further three chorales from 
the first test set that are hard to predict (though not as hard 
as chorale 17), reveals that all three are in minor keys; two 
of the three use the raised 7th and the melody of the third is 
on the whole lower than the model is expecting. 

Figure 3 shows population maximum, population 
minimum, and population mean entropy plots for the third 
g.a. run. A third set of 10 chorales was used to evaluate 
viewpoint fitness. Population mean entropy starts off at 
just over 3 bits per pitch and steadily decreases throughout 
the run to finish at 2.4 bits per pitch. The best individual in 
the population has an average entropy of 2.34 bits per pitch. 
Interestingly, a periodic viewpoint predicting phrase endings 
hasn’t taken over in this experiment. Given the results in 
the previous two experiments, we would expect the 
algorithm to discover this periodic viewpoint eventually if 
the experiment had been allowed to run longer. We can see 
from the graph that maximum, minimum, and mean entropy 
are converging as the fittest individuals dominate the 
population. 
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Figure 3: G.A. experiment 3. Maximum, minimum, and 
mean entropy by generation. 

G.A. discovered viewpoints; how well do they Figure 4: Entropy profiles for the three G.A. viewpoints, 
measure up? Chorale 6 1 

In order to get a feel for the effectiveness of the G.A. 
discovered viewpoints they were tested individually and in 
conjunction with the systems explored by Conklin (1990). 

Conklin’s original test set is comprised of 5 chorales: 31, 
61, 151, 190, and 269. He tested a number of systems 
ranging from a simple one containing olnly a ‘pitch’ 
viewpoint, up to a system containing four viewpoints. The 
best system he tested had an average of 2.06 bits per pitch 
on the test set and was made up of two viewpoints. Conklin 
did not test any viewpoints that linked more: than two 
attributes. 

Table 1 shows best non-periodic viewpoints from the 
G.A. runs tested individually and in conjuncticm with the 
best of Conklin’s systems. 

Table 1: Average entropy of pitch for G.A. systems 
, 

System I Viewpoints 1 Result - 
1 1 best from G.AI 2.1740 =I 

1-1 
7 

1 donklin’s best 1 
- 1 systems 1, 2, I 1.8746 -I 

As can be seen from the table, two of the three G.A. 
viewpoints have outperformed the best of Conklin’s systems 
on the test set. One of them (system 10) even has an 
average entropy of under 2 bits per pitch. All three G.A. 
viewpoints bring the average entropy under 2 bits when tried 

in conjunction with system 6. The three G.A. viewpoints 
tried together have the best result of all - 1.87 bits per pitch. 
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Conclusions 

This paper presents an automated method for selecting 
combinations of attributes for viewpoints to model. The 
genetic algorithm is able to search a large solution space and 
quickly converge to an optimal solution. The best 
viewpoints from the three G.A. runs outperform the systems 
tested by Conklin both individually and in conjunction with 
each other. 

It could be argued that the G.A. finds “super viewpoints” 
that are only tailored to the test set of the experiment. 
However, the best viewpoints from the G.A. runs also 
perform well on the test set used by Conklin. With the 
exception of the best viewpoint from run 1, they also 
perform well on each other’s test sets. The best viewpoint 
from run 1 does not do so well on the other test sets; this is 
possibly due to the atypical chorales used for evaluation in 
its own test set. 

The entropy profiles in figure 6 show that the three G.A. 
viewpoints are significantly different. Therefore, there is a 
lot to be gained in a multiple viewpoint system from an 
effective prediction combination or viewpoint prediction 
strategy. 
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