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ABSTRACT 
 
Text classification is a natural application domain for semi-
supervised learning, as labeling documents is expensive, but 
on the other hand usually an abundance of unlabeled 
documents is available. We describe a novel simple two-
stage scheme based on dagging which allows for utilizing 
the test set in model selection. The dagging ensemble can 
also be used by itself instead of the original classifier. We 
evaluate the performance of a meta classifier choosing 
between various base learners and their respective dagging 
ensembles. The selection process seems to perform robustly 
especially for small percentages of available labels for 
training. 
 

1. INTRODUCTION 
 
One of the novel non-standard learning trends emerging in 
recent years is so-called semi-supervised learning, where 
algorithms in addition to a standard labeled training set also 
have access to additional unlabeled data points. Various 
sophisticated schemes have been invented trying to extract 
useful information from this additional data. Such 
approaches include co-training [2, 10], transductive learning 
[5], and various methods based on extracting cluster 
structures, either explicitly [3] or implicitly [15, 4]. This 
paper investigates a rather different and simple idea in the 
context of text mining. Text mining is an obvious 
application area for semi-supervised learning, as there is an 
abundance of text available electronically, most of which 
does not come with explicit labels. Labeling text in itself is a 
costly procedure, usually requiring a human with the 
appropriate expertise. So any automatic gain achievable 
from unlabeled text is most welcome. 
 In this paper we investigate ways of utilizing a full test-
set, for which predictions are sought, for selecting a well 
performing classifier. The next section will develop and 
explain a two-stage approach to semi-supervised 
classification. In section 3 the experimental design and 
hypothesis are described, and results of the experiments are 

presented and discussed. Finally Section 4 gives conclusions 
and directions for future work. 
 

2. TWO STAGE ESTIMATION 
 
The standard approach for model selection in Machine 
Learning uses estimated error rates for the various models 
and then chooses the best one (or alternatively the simplest 
model whose error is close enough to the error rate of the 
best model). Standard procedures for estimation are either 
splitting the labeled data into a train and a validation set, or 
cross-validation. The latter is the preferred approach for 
smaller datasets. 
 For small amounts of data (e.g. assuming only 5% of the 
given data is labeled) one might expect the cross-validation 
procedure to show a bias towards simpler models, which 
potentially might underfit the data, as more complex patterns 
may not by frequent enough to both be picked up by the 
learner in the training set and to be present in high enough 
numbers in the respective test fold simultaneously. 
Therefore in such situations cross-validation might not be 
able to robustly select good models. As an alternative we 
have devised the following two stage procedure:  
 

1. Generate classifier C1 using all the labeled data. 
Use C1 to label the unlabeled data. 

2. Generate classifier C2 using all the data labeled by 
C1 (i.e. the original test-set with estimated labels). 
Apply C2 to the original training set and return this 
error rate as the estimate for the particular learning 
algorithm. 

 
The rationale for this estimation procedure is as follows: for 
successful learning the same true patterns should be present 
in both the training and the test set, which is a fundamental 
assumption used generally in Machine Learning. So ideally 
one would expect the two classifiers C1 and C2 generated 
above to be rather similar, if not identical. And contrary to 
cross-validation all the labeled data can be used for inducing 
C1. Furthermore C2 is evaluated against the given labeled 
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data, which should lead to good estimates, as these labels 
should be more or less correct. 
 Unfortunately in preliminary tests we found that this 
procedure does not seem to work well, except for larger 
datasets and a large enough percentage of labeled data. The 
estimates seemed to have a rather high variance and as such 
could not be used to choose good models reliably. 
Additionally computational problems were encountered as 
well. C2 is induced from a considerably larger set of data 
than C1, e.g. 19 times as many instances are seen by C2 if 
only 5% of the data carries original labels. As well-
performing learning algorithms usually exhibit non-linear 
runtime complexity and potentially also non-linear space 
requirements, inducing C2 can be rather time-consuming, 
and occasionally might not be feasible at all. 
 A third and more subtle problem arises when model 
selection involves parameter tuning of single algorithms as 
well. For some parameters the optimal value varies with the 
size of the training set (e.g. the bandwidth parameter used 
with RBF-kernels), and therefore a good value for C1 might 
not perform as well for C2 and vice versa.  
 To counter all these problems we resort to a rarely used 
ensemble method called dagging [13]. Dagging was 
originally invented for scenarios where training data was 
naturally coming from different sources, e.g. resulting from 
different locations or time-spans being used for data 
collection. In such scenarios dagging has been shown to 
perform well when data was plentiful. We utilize dagging in 
the following way: instead of generating one classifier C2 
using all the test data as labeled by C1, the test data is split 
up into multiple batches of about equal size to the original 
training set. For each of this batches one classifier is trained. 
Contrary to [13] we use simple equal-weighted voting for 
prediction. The resulting ensemble is applied to the original 
training set to compute an estimate of the ensemble's 
predictive performance. This slightly more complex stage 
two classifier has the following theoretical advantages over 
the simpler approach described above: 
 

1. As the batch sizes are more or less equal to the size 
of the original training set, computational 
complexity issues disappear. If it was feasible to 
induce a classifier on the original training set, then 
it should be feasible as well to induce one classifier 
for each of the equal-sized batches. The total 
complexity for stage two is simply 
O(numberOfBatches * O(stageOne)). Given that 
numberOfBatches is usually considerably smaller 
than the total number of test examples, there should 
be no problem with either memory consumption or 
runtime. Likewise the issue of tuning parameters 
whose optimal values vary with data size should 
vanish.  

2. More importantly, as the predictions of the second 
stage are now votes across an ensemble of 
classifiers, one would expect to see reduction in 
variance. There is an additional reason why we 
should expect such a reduction: in the simple setup 
with only one stage two classifier every wrongly 
labeled test-example (i.e. all the errors that C1 
commits) can directly impact on the performance of 
the single stage two classifier C2. In the dagging 
setup each such wrongly labeled example only 
impacts on exactly one classifier. Therefore bad 
performance of one these classifiers in one area of 
prediction can possibly be compensated for by the 
votes of all the classifiers which did not have to try 
to cover the mis-labeled example. 

 
The experiments reported below seem to indicate that these 
expectations are fulfilled in practise. This is interesting from 
a dagging point of view as well, as so far dagging usually 
has only been employed with a small number of potentially 
quite diverse batches, whereas we use sometimes 
considerably larger number of batches of data, but on the 
other hand these batches are more uniform.  
 

3. EXPERIMENTAL DESIGN AND RESULTS 
 
To evaluate the dagging-based idea developed in the 
previous section we have conducted experiments using the 
well-known Reuters Corpus [1]. Only the ten largest 
categories were used and each experiment was a two-class 
problem, predicting whether a news wire article belongs to a 
respective topic or not. The textual data was preprocessed in 
a fairly standard way using the StringToWordVector filter 
supplied by WEKA [14]. The filter was used in the class-
sensitive setting choosing the 1000 most frequent words for 
each class, no stemming was performed, the default English 
stop list supplied by WEKA was used, the generated 
attributes were counts of word-occurrences processed by the 
standard TFIDF procedure, and finally all counts across a 
document were normalized to average document length. 
This type of preprocessing has been found to perform well 
across a range of text classification tasks by various authors 
[6, 8]. As we use a class-sensitive approach, only the training 
set is used to build a filter, which is then applied to both the 
training and the test set. Otherwise class-information from 
the test set could leak through into the learning process 
resulting in too optimistic estimates. 
 Contrary to the usual predefined train/test splits we split 
each set randomly into a small train and a much larger test 
set. Training set sizes of 5%, 10% and 20% were used, and 
for each setting a 100 repetitions were performed. We were 
interested into the following questions: 
 



1. How well does a 10fold cross-validation estimate 
on the training set correlate with the true error on 
the test set? 

2. How well does the error of the dagging ensemble 
on the original training set correlate with the true 
error on the test set? 

3. Can we use these estimates (10fold cross-validation 
and training set error of the dagged test ensemble) 
to reliably choose between multiple classifiers and 
also between the training set version of a classifier 
and its dagged test ensemble version? 

 
To answer these questions we have employed some standard 
text classification algorithms: a multinomial Naive Bayes 
learner optimized for sparse data (Weka's 
NaiveBayesMultinomial), and a linear support vector 
machine optimized for sparse data (WEKA's SMO 
algorithm), either with the “-M” option on or off. If this 
option is active, the raw output of the support vector 
machine is used as the sole input for a logistic regression 
which allows for proper probability estimation [11]. 
Additionally this second stage can also de facto move the 
decision threshold of the support vector machine, a property 
we have found useful in a lot of experiments involving non-
textual data.  
 For a given train/test split, the following computations 
were performed: 
 

- Compute a cross-validation estimate for each 
classifier on the training set. 

- Compute a single classifier from the full training 
set and record its error rate on the test data. 

- Use the single classifier to label the test set, induce 
the dagging ensemble from this now labeled test 
set, and record the error rate of the dagging 
ensemble on the original training set. 

- Compute the error of the dagging ensemble with 
respect to the true labeling of the test set. 

 
Using these measurements we can answer the correlation 
questions 1 and 2 formulated above, as well as Question 3, 
which is the most interesting one and also of most practical 
value. Regarding the first two questions, we usually find a 
good positive correlation. Figures 1, 2, and 3 illustrate 
example correlations. Figure 1 depicts the performance of 
all six classifiers for the “earn” topic, which is the largest 
one. On the x axis we plot the respective estimate, and on 
the y axis we plot the true error rate on the test set for each 
of the 100 random train/test splits. We can observe a very 
good correlation, and also notice that for this category “dag 
smo” seems to be the best choice on average. Figure 2 
repeats the same setup for the smallest category, which is 
“corn”. This picture is much more extreme, and clearly 
shows that for this topic a support vector machine 
outperforms multinomial naive Bayes, and also that the 
dagging variant of multinomial naive Bayes performs worst. 
All the support vector machine results are too close to each 
other in this figure, therefore we have enlarged this area in 
Figure 3: dagged SMO with logistic post-processing is 
clearly dominating all other variants. 
 To answer Question 3, we compute the following 
simple meta-classifier: assume that for all three classifiers 
(multinomial Naive Bayes, and linear support vector 
machine with or without logistic regression-based post-
processing) both a cross-validation estimate as well as the 
dagging-ensemble estimate have been computed. Then 
simply select the algorithm and setup with the smallest 
estimated error; ties are broken at random. In Tables 2,3, 
and 4 we compare the performance of this algorithm to the 
performance of the best single algorithm, and also to the 
second best. Notice that the meta classifier is a reasonable 
setup for practical prediction, but that the “best” and 
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Figure 1. Correlation of estimated to true error rates for the 
“earn” topic with 5% labeled data. 
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Figure 2. Correlation of estimated to true error rates for the 
“corn” topic with 5% labeled data. 

 



“second best” estimates are optimistic best-case estimates 

only, which would not be available in practise. Most 
differences are significant using a sign test over the 100 
iterations each. We are using a sign test for lack of better 
alternatives. Corrected t-tests like the one described in [9] 
unfortunately only apply to cross-validation and training set 
sizes between 50% and 90%. Their corrections therefore do 
not apply to the more extreme settings used here. 
 To help interpreting the results we provide a listing of 
the default accuracies for each topic in Table 1. Using 
simple accuracies is somewhat unusual in text classification, 
as quite often misclassification costs are non-uniform; for 
instance in case of spam classification false-positives are a 
lot worse than false-negatives. Ideally one would use a 
threshold-independent measure like AUC [12] for 
comparison, but this is currently not well integrated in 
Weka. Therefore we have resorted to simple error rates, 
which seem to be sufficient for this experiment. Proper AUC 
evaluation is part of our future work plan.  
 Inspecting table 2 which lists the results for the 5% 
training and 95% test split, we notice that for all topics a 
dagging ensemble over the test-set yields the theoretically 
best performance. The best base level learner is always a 
support vector machine, and except for one topic it is the 
naive version, which contradicts our experience with non-
textual data. Even though NaiveBayesMultinomial does not 
win for any of the topics, and therefore does not show up in 
Table 2, it is still the best classifier occasionally for a 
specific train/test split. The meta-classifier can usually select 
a good if not the best classifier, therefore we note that the 
meta-classifier always performs better than the second best 
single classifier, and even outperforms the best single 
classifier for five of the ten topics. If we look at the number 
of times the meta-classifier does not select the best single 
classifier for a specific train/test split, we notice that this 
number is weakly correlated with the relative size of the 
topic. The best result of only one wrong selection is 
achieved for “earn” which is the largest topic, and the worst 

 0

 0.005

 0.01

 0.015

 0.02

 0  0.005  0.01  0.015  0.02

tr
ue

 e
rr

or
 r

at
e

estimated error rate

corn 5% labelled

cv smo
cv smo-l
cv mnb

dag smo
dag smo-l
dag mnb
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“corn” topic with 5% labeled data, zoomed in into the best 
region. 

 

Table 1. The percentage of documents for each topic, which is 
also the default accuracy achievable by always predicting 
not(Topic). 

 
Topic Percent Topic Percent 

acq 18.36 interest 3.70 
corn 1.84 money-fx 5.56 
crude 4.48 ship 2.22 
earn 30.72 trade 3.77 
grain 4.51 wheat 2.19 

 

Table 2. For each of the topics and for 100 random 5% training, 95% test splits, we list how often the best classifier was missed (Wrong), 
the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the best classifier 
(1st), and the name of the best classifier. 

 
Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm 

acq 16 2.920 3.763 2.882 dag SMO 
corn 11 0.628 0.778 0.635 dag SMO-L 
crude 26 1.321 1.499 1.331 dag SMO 
earn 1 1.791 2.199 1.788 dag SMO 
grain 5 0.840 0.967 0.839 dag SMO 
interest 13 1.824 2.052 1.786 dag SMO 
money-fx 5 2.020 2.355 2.027 dag SMO 
ship 42 0.995 1.058 1.054 dag SMO 
trade 14 1.506 1.745 1.499 dag SMO 
wheat 23 0.637 0.727 0.643 dag SMO 

 



result (42 wrong selections out of 100) is achieved for 
“ship”, one of the smaller topics. But even in these mis-
selection cases the meta-classifier usually seems to at least 
choose a reasonable “runner-up” algorithm, thus still 
achieving high overall performance. 
 Tables 3 and 4 list the same results for the 10% and 
20% training size cases respectively. These results are subtly 
different to the ones shown in Table 2. Suddenly the sole 
classifier trained on the full training set (as indicated by “cv” 
in these tables) is the theoretically best one for six of the ten 
topic. Also post-processing SMO outputs by logistic 
regression (indicates as “SMO-L”) seems much more 
important here. Looking at the mis-selection rates for the 
meta-classifier we note that these are much higher now, 

reaching 87 out of 100 in the worst case. Consequently, the 
performance of the meta-classifier is also worse, for three 
topics it even cannot outperform the theoretically second 
best classifier. 
 Even more concerning is the fact that the results 
actually seem to degrade for larger percentages of known 
labels. For instance, the meta-classifier's performance on the 
“acq” topic is 2.920% for 5% training, 3.048% for 10% 
training, and 3.788% for 20% training. We have not yet 
found a satisfactory explanation for this anomaly. Our 
current hypothesis is two-fold: smaller training percentages 
lead to smaller batch sizes for the dagging ensemble, and 
therefore to more classifiers in the dagging ensemble (19 for 
5%, 9 for 10%, and only 4 for 20%). Voting might perform 

Table 3. For each of the topics and for 100 random 10% training, 90% test splits, we list how often the best classifier was missed 
(Wrong), the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the 
best classifier (1st), and the name of the best classifier. 

 
Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm 

acq 0 3.048 3.980 3.048 dag SMO 
corn 76 0.987 0.994 0.909 cv SMO-L 
crude 60 1.866 1.987 1.777 cv SMO 
earn 84 3.039 2.318 2.137 dag SMO 
grain 25 1.199 1.294 1.285 cv SMO-L 
interest 32 2.129 2.275 2.233 cv SMO 
money-fx 78 2.831 2.809 2.597 cv SMO 
ship 87 1.190 1.167 1.030 cv SMO-L 
trade 8 1.542 1.939 1.543 dag SMO-L 
wheat 11 0.640 0.732 0.640 dag SMO-L 

 

Table 4. For each of the topics and for 100 random 20% training, 80% test splits,  we list how often the best classifier was missed 
(Wrong), the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the best 
classifier (1st), and the name of the best classifier. 

 
Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm 

acq 6 3.788 4.435 3.745 dag SMO 
corn 21 1.257 1.442 1.254 dag SMO-L 
crude 38 2.226 3.111 2.331 cv SMO 
earn 82 2.988 2.948 2.649 cv SMO 
grain 63 2.679 2.985 2.044 cv SMO 
interest 71 2.575 2.698 2.524 cv SMO 
money-fx 61 3.256 3.163 3.066 cv SMO 
ship 10 1.348 2.170 1.699 cv SMO 
trade 23 1.962 2.542 2.314 dag SMO-L 
wheat 30 1.088 1.254 1.084 dag SMO-L 

 



more robustly for the larger ensembles. Additionally the 
single classifier constructed from the full training set might 
be becoming more competitive to the dagging ensemble for 
larger percentages. With estimates being closer to each other 
the selection process might commit more errors as well.  
 

4. CONCLUSIONS 
 
We have introduced a simple new scheme to exploit the test 
set for model selection in text classification. The new 
scheme is a two stage process which first trains a classifier 
on the training set, uses this classifier to label the test set, 
then induces a dagging ensemble on the labeled test set and 
evaluates this ensemble with respect to the training set. In 
the experiments conducted this estimation appears to be 
reliable enough to be able to select between different 
algorithms and also between the original classifier and the 
dagging ensemble as the final classifier to be used, at least in 
the more extreme setup where only 5% of the labels are 
available for learning. The higher percentage cases exhibited 
a few anomalies which are currently being investigated. 
 There are quite a few more directions for future work. 
First and most importantly more different and larger text 
datasets need to be explored, a particular promising source 
should be the new well-processed corpus of news wire 
articles available from Reuters [7] again. Secondly the 
hypothesis that it is actually the larger number of batches 
that are used in the 5% setup than in the 10% or 20% setups 
which causes better overall performance needs to be 
evaluated. Thirdly we want to switch to AUC [12] as a 
measure for performance evaluation, as AUC is independent 
of the setting of particular thresholds in classification, an 
important property for learning with skewed class 
distributions commonly encountered in text classification. 
 

5. ACKNOWLEDGMENTS 
 
This work has been funded by a Marsden Grant of the Royal 
Society of New Zealand. 
 
 
 

6. REFERENCES 
 
[1] Chidanand Apté, Fred Damerau, and Sholom M. Weiss, 

“Automated learning of decision rules for text 
categorization,” Information Systems, 12(3):233-251, 1994. 

[2] Avrim Blum and Tom Mitchell, “Combining labeled and 
unlabeled data with cotraining,” In COLT: Proceedings of the 
Workshop on Computational Learning Theory, Morgan 
Kaufmann Publishers, pages 92-100, 1998. 

[3] O. Chapelle, J. Weston, and B. Schölkopf, “Cluster kernels 
for semi-supervised learning,” volume 15 of NIPS, 2003. 

[4] T. Joachims, “Transductive learning via spectral graph 
partitioning,” In Proceedings of The Twentieth International 
Conference on Machine Learning, 2003. 

[5] Thorsten Joachims, “Transductive inference for text 
classification using support vector machines,” In Ivan Bratko 
and Saso Dzeroski, editors, Proceedings of ICML- 99, 16th 
International Conference on Machine Learning, pages 200-
209, Bled, SL, Morgan Kaufmann Publishers, San Francisco, 
US, 1999. 

[6] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, 
“Multinomial naive bayes for text categorization revisited,” In 
Seventeenth Australian Joint Conference on Artificial 
Intelligence, pages 488-499, 2004. 

[7] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li, 
“Rcv1: A new benchmark collection for text categorization 
research,” Journal of Machine Learning Research (JMLR), 
5:361-397, 2004. 

[8] A. McCallum and K. Nigam, “A comparison of event models 
for naive bayes text classification,” In AAAI-98 Workshop on 
Learning for Text Categorization, 1998. 

[9] Claude Nadeau and Yoshua Bengio, “Inference for the 
generalization error,” Mach. Learn., 52(3):239-281, 2003.  

[10] Kamal Nigam and Rayid Ghani, “Analyzing the effectiveness 
and applicability of co-training,” In CIKM, pages 86-93, 
2000. 

[11] J.C. Platt, “Probabilities for SV machines,” In Advances in 
Large Margin Classifiers, pages 61-74, 1999. 

[12] Foster Provost and Tom Fawcett, “Robust classification for 
imprecise environments,” Machine Learning, 42(3):203-231, 
2001. 

[13] Kai Ming Ting and Boon Toh Low, “Model combination in 
the multiple-databatches scenario,” In European Conference 
on Machine Learning, pages 250-265, 1997. 

[14] Ian H. Witten and Eibe Frank. Data Mining: Practical 
machine learning tools and techniques, Morgan Kaufmann, 
2005. 

[15] D. Zhou, O. Bousquet, T. Lal, J.Weston, and B. Schölkopf, 
“Learning with local and global consistency,” In 18th Annual 
Conf. on Neural Information Processing Systems, 2003. 

 

  


