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ABSTRACT presented and discussed. Finally Section 4 giveslasions

and directions for future work.

Text classification is a natural application dom&in semi-

supervised learning, as labeling documents is eipenbut 2. TWO STAGE ESTIMATION

on the other hand usually an abundance of unlabeled

documents is available. We describe a novel simpte  The standard approach for model selection in Machin

stage scheme based on dagging which allows faeingl Learning uses estimated error rates for the varioodels

the test set in model selection. The dagging enkedn  and then chooses the best one (or alternativelgithplest

also be used by itself instead of the original sifees. We  model whose error is close enough to the error cte

evaluate the performance of a meta classifier dhgos best model). Standard procedures for estimationedher

between various base learners and their respedéigging  splitting the labeled data into a train and a \atliwh set, or

ensembles. The selection process seems to perfdoustly  cross-validation. The latter is the preferred applo for

especially for small percentages of available labfr  smaller datasets.

training. For small amounts of data (e.g. assuming only $%e
given data is labeled) one might expect the cradisiation

1. INTRODUCTION procedure to show a bias towards simpler models¢chwh

potentially might underfit the data, as more compatterns

One of the novel non-standard learning trends eimgrigm  may not by frequent enough to both be picked uphay

recent years is so-called semi-supervised learnivitere learner in the training set and to be present gh @nough

algorithms in addition to a standard labeled tragrset also numbers in the respective test fold simultaneously.

have access to additional unlabeled data pointsio® Therefore in such situations cross-validation might be

sophisticated schemes have been invented tryirexttact able to robustly select good models. As an alteraate

useful information from this additional data. Suchhave devised the following two stage procedure:

approaches include co-training [L0], transductive learning

[5], and various methods based on extracting cluster 1. Generate classifieC; using all the labeled data.

structures, either explicitly3] or implicitly [15, 4]. This UseC,; to label the unlabeled data.

paper investigates a rather different and simpéa ith the 2. Generate classifie€, using all the data labeled by
context of text mining. Text mining is an obvious C; (i.e. the original test-set with estimated lahels)
application area for semi-supervised learning,haset is an Apply G, to the original training set and return this
abundance of text available electronically, mostwiiich error rate as the estimate for the particular iegrn
does not come with explicit labels. Labeling texitself is a algorithm.

costly procedure, usually requiring a human witte th
appropriate expertise. So any automatic gain aablev The rationale for this estimation procedure isa®ds: for
from unlabeled text is most welcome. successful learning the same true patterns shaufardsent
In this paper we investigate ways of utilizingudl fest-  in both the training and the test set, which isirdamental
set, for which predictions are sought, for selectmwell  assumption used generally in Machine Learning.dgally
performing classifier. The next section will deyeland one would expect the two classifie®s and C, generated
explain a two-stage approach to semi-supervisedbove to be rather similar, if not identical. Anghtrary to
classification. In section 3 the experimental desend  cross-validation all the labeled data can be usethtlucing
hypothesis are described, and results of the expets are C;. FurthermoreC, is evaluated against the given labeled
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data, which should lead to good estimates, as tladms
should be more or less correct.

Unfortunately in preliminary tests we found thatst
procedure does not seem to work well, except fogela
datasets and a large enough percentage of labatad The
estimates seemed to have a rather high variancasadch

could not be used to choose good models reliably.

Additionally computational problems were encountess
well. C, is induced from a considerably larger set of data
thanC,, e.g. 19 times as many instances are see@,hf
only 5% of the data carries original labels. As Ilwel
performing learning algorithms usually exhibit niomear
runtime complexity and potentially also non-linespace
requirements, inducin@, can be rather time-consuming,
and occasionally might not be feasible at all.

More importantly, as the predictions of the second
stage are now votes across an ensemble of
classifiers, one would expect to see reduction in
variance. There is an additional reason why we
should expect such a reduction: in the simple setup
with only one stage two classifier every wrongly
labeled test-example (i.e. all the errors ti@Gat
commits) can directly impact on the performance of
the single stage two classifi€l,. In the dagging
setup each such wrongly labeled example only
impacts on exactly one classifier. Therefore bad
performance of one these classifiers in one area of
prediction can possibly be compensated for by the
votes of all the classifiers which did not haverio

to cover the mis-labeled example.

A third and more subtle problem arises when model
selection involves parameter tuning of single d@thors as  The experiments reported below seem to indicatettiese
well. For some parameters the optimal value vawidls the  expectations are fulfilled in practise. This iseirgsting from
size of the training set (e.g. the bandwidth patamaesed a dagging point of view as well, as so far daggisgally
with RBF-kernels), and therefore a good value@pmight  has only been employed with a small number of piztiyn
not perform as well fo€, and vice versa. quite diverse batches, whereas we use sometimes
To counter all these problems we resort to ayareéd  considerably larger number of batches of data,douthe
ensemble method called dagging3][ Dagging was other hand these batches are more uniform.
originally invented for scenarios where trainingtadavas
naturally coming from different sources, e.g. résglfrom
different locations or time-spans being used fortada
collection. In such scenarios dagging has been shimv To evaluate the dagging-based idea developed in the
perform well when data was plentiful. We utilizegdang in  previous section we have conducted experimentg ubie
the following way: instead of generating one cl@ssiC,  well-known Reuters Corpusi]f Only the ten largest
using all the test data as labeled@y the test data is split categories were used and each experiment was alas®-
up into multiple batches of about equal size todhginal  problem, predicting whether a news wire articleobgk to a
training set. For each of this batches one classHitrained. respective topic or not. The textual data was pegssed in
Contrary to [3] we use simple equal-weighted voting for a fairly standard way using the StringToWordVeditier
prediction. The resulting ensemble is applied ®dhginal  supplied by WEKA 14]. The filter was used in the class-
training set to compute an estimate of the ensésnblesensitive setting choosing the 1000 most frequemtisvfor
predictive performance. This slightly more compleage each class, no stemming was performed, the defzagjish
two classifier has the following theoretical adwaggs over stop list supplied by WEKA was used, the generated
the simpler approach described above: attributes were counts of word-occurrences procekgehe
standard TFIDF procedure, and finally all countsoas a
1. As the batch sizes are more or less equal to #iee sidocument were normalized to average document length
of the original training set, computational This type of preprocessing has been found to perfeell
complexity issues disappear. If it was feasible toacross a range of text classification tasks byowariauthors
induce a classifier on the original training skert  [6, 8]. As we use a class-sensitive approach, onlyrtirihg
it should be feasible as well to induce one classif set is used to build a filter, which is then apglte both the
for each of the equal-sized batches. The totatraining and the test set. Otherwise class-infoionatrom
complexity for stage two is simply the test set could leak through into the learnimgcess
O(numberOfBatches * O(stageOne)). Given that resulting in too optimistic estimates.
numberOfBatches is usually considerably smaller Contrary to the usual predefined train/test splitssplit
than the total number of test examples, there shouleach set randomly into a small train and a muahelatest
be no problem with either memory consumption orset. Training set sizes of 5%, 10% and 20% werd, ueed
runtime. Likewise the issue of tuning parametersfor each setting a 100 repetitions were perfornved.were
whose optimal values vary with data size shouldinterested into the following questions:
vanish.

3. EXPERIMENTAL DESIGN AND RESULTS
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Figure 1. Correlation of estimated to true error rates foe t Figure 2. Correlation of estimated to true error rates fog t
“earn” topic with 5% labeled data. “corn” topic with 5% labeled data.

1. How well does a 10fold cross-validation estimate - Compute the error of the dagging ensemble with
on the training set correlate with the true error o respect to the true labeling of the test set.
the test set?

2. How well does the error of the dagging ensembld/sing these measurements we can answer the camelat
on the original training set correlate with theetru duestions 1 and 2 formulated above, as well as tues3,
error on the test set? which is the most interesting one and also of npoattical

3. Can we use these estimates (10fold cross-validatio¥@lue. Regarding the first two questions, we ugufiiid a
and training set error of the dagged test ensemblgj00d positive correlation. Figures 1, 2, and 3stilate
to reliably choose between multiple classifiers and®xample correlations. Figure 1 depicts the perfongaof

also between the training set version of a classifi all six classifiers for the “earn” topic, which ike largest
and its dagged test ensemble version? one. On the x axis we plot the respective estimeate, on

the y axis we plot the true error rate on the sestfor each

To answer these questions we have employed somgasth of the 100 random train/test splits. We can observwery
text classification algorithms: a multinomial NaiBayes 900d correlation, and also notice that for thieegaty “dag
learner optimized for sparse data (Weka‘ssmo" seems to be the best choice on average. Fgure
NaiveBayesMultinomial), and a linear support vector'epeats the same setup for the smallest categdrmghvis
machine optimized for sparse data (WEKA's sMo“corn”. This picture is much more extreme, and diea
algorithm), either with the “-M” option on or offf this shows that for this topic a support vector machine
option is active, the raw output of the support tgec outperforms multinomial naive Bayes, and also ttrat
machine is used as the sole input for a logistgression dagging variant of multinomial naive Bayes perfonverst.
which allows for proper probability estimation11]. All the support vector machine results are too eltzseach
Additionally this second stage can also de factoemthe other in this figure, therefore we have enlarged #nea in
decision threshold of the support vector machingraperty ~ Figure 3: dagged SMO with logistic post-processiag
we have found useful in a lot of experiments inimvnon- ~ clearly dominating all other variants.

textual data. To answer Question 3, we compute the following
For a given train/test split, the following comptions ~ Simple meta-classifier: assume that for all thressifiers
were performed: (multinomial Naive Bayes, and linear support vector

machine with or without logistic regression-baseostp
- Compute a cross-validation estimate for eactProcessing) both a cross-validation estimate a$ agethe

classifier on the training set. dagging-ensemble estimate have been computed. Then
- Compute a single classifier from the full training SIMPly select the algorithm and setup with the $esal
set and record its error rate on the test data. estimated error; ties are broken at random. In 8=i2,3,

- Use the single classifier to label the test setlyge ~ and 4 we compare the performance of this algoriibirthe

the dagging ensemble from this now labeled tesPerformance of the best single algorithm, and atsdhe
set, and record the error rate of the dagging€cond best. Notice that the meta classifier isasanable

ensemble on the original training set. setup for practical prediction, but that the “besthd
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Table 1. The percentage of documents for each topic, wisich
also the default accuracy achievable by always igtiad

not(Topic).
Topic Percent Topic Percent
acq 18.36| interest 3.70
corn 1.84| money-fx 5.56
crude 4.48 ship 2.22
earn 30.72 trade 3.77
grain 4.51| wheat 2.19

only, which would not be available in practise. Mos
differences are significant using a sign test other 100
iterations each. We are using a sign test for laicketter
alternatives. Corrected t-tests like the one dbedriin ]
unfortunately only apply to cross-validation andining set
sizes between 50% and 90%. Their corrections therefo
not apply to the more extreme settings used here.

To help interpreting the results we provide argptof
the default accuracies for each topic in Table %ingy
simple accuracies is somewhat unusual in text ifilzestson,
as quite often misclassification costs are noneumif for
instance in case of spam classification false-pesitare a
lot worse than false-negatives. Ideally one woukk wa
threshold-independent measure like AUCL2][ for
comparison, but this is currently not well integtin
Weka. Therefore we have resorted to simple errtesra
which seem to be sufficient for this experimenbgar AUC
evaluation is part of our future work plan.

Inspecting table 2 which lists the results for b
training and 95% test split, we notice that for tajbics a
dagging ensemble over the test-set yields the diealy
best performance. The best base level learnemiayal a
support vector machine, and except for one topis the
naive version, which contradicts our experiencenwion-
textual data. Even though NaiveBayesMultinomialdoet
win for any of the topics, and therefore does mavwsup in
Table 2, it is still the best classifier occasiondor a
specific train/test split. The meta-classifier canally select
a good if not the best classifier, therefore weertbiat the
meta-classifier always performs better than thesgdest
single classifier, and even outperforms the besglai
classifier for five of the ten topics. If we look the number
of times the meta-classifier does not select th&t bingle
classifier for a specific train/test split, we matithat this
number is weakly correlated with the relative sofethe
topic. The best result of only one wrong selectien
achieved for “earn” which is the largest topic, @hd worst

Table 2. For each of the topics and for 100 random 5%itngird5% test splits, we list how often the beasslfier was missed (Wrong),
the actual error rate of the chosen classifierqiirthe (theoretical) error rate of the second blessifier (2nd), and of the best classifier
(1st), and the name of the best classifier.

Topic Wrong | True Error| 2nd Est.Erro 1st Est.Error Best Algorithm
acq 16 2.920 3.768 2.882 dag SMO
corn 11 0.628 0.778 0.635 dag SMO-L
crude 26 1.321 1.499 1.331 dag SMO
earn 1 1.791 2.199 1.788 dag SMO
grain 5 0.840 0.967 0.839 dag SMO
interest 13 1.824 2.05p 1.786 dag SMO
money-fx 5 2.020 2.355 2.027 dag SMO
ship 42 0.995 1.058 1.054 dag SMO
trade 14 1.506 1.74b 1.499 dag SMO
wheat 23 0.637 0.72y 0.643 dag SMO




Table 3. For each of the topics and for 100 random 10%itngi 90% test splits, we list how often the bdassifier was missed
(Wrong), the actual error rate of the chosen di@sgiError), the (theoretical) error rate of thecend best classifier (2nd), and of the
best classifier (1st), and the name of the bessiflar.

Topic Wrong| True Error 2nd Est.Erro 1st Est.Error Best Algorithm
acq 0 3.048 3.980 3.048 dag SMO
corn 76 0.987 0.994 0.909 cv SMO-L
crude 60 1.866 1.98y 1.747 cv SMO
earn 84 3.039 2.318 2.137 dag SMO
grain 25 1.199 1.294 1.285 cv SMO-L
interest 32 2.124 2.275 2.233 c¢cv SMO
money-fx 78 2.831 2.809 2.597 cv SMO
ship 87 1.190 1.167 1.030 cv SMO-L
trade 8 1.542 1.939 1.543 dag SMO-L
wheat 11 0.640 0.73R 0.640 dag SMO-L

result (42 wrong selections out of 100) is achiefed reaching 87 out of 100 in the worst case. Consdtyyehe
“ship”, one of the smaller topics. But even in thesis- performance of the meta-classifier is also worse,tliree
selection cases the meta-classifier usually seenat least topics it even cannot outperform the theoretica®cond
choose a reasonable “runner-up” algorithm, thudl sti best classifier.
achieving high overall performance. Even more concerning is the fact that the results
Tables 3 and 4 list the same results for the 10% a actually seem to degrade for larger percentagdsnoivn
20% training size cases respectively. These reardtsubtly labels. For instance, the meta-classifier's perémce on the
different to the ones shown in Table 2. Suddenéy shle “acq” topic is 2.920% for 5% training, 3.048% fo0%
classifier trained on the full training set (asigaded by “cv”  training, and 3.788% for 20% training. We have met
in these tables) is the theoretically best onesioof the ten  found a satisfactory explanation for this anomaBur
topic. Also post-processing SMO outputs by logisticcurrent hypothesis is two-fold: smaller training qantages
regression (indicates as “SMO-L") seems much mordead to smaller batch sizes for the dagging ensenadid
important here. Looking at the mis-selection rdtasthe  therefore to more classifiers in the dagging enserfit® for
meta-classifier we note that these are much higimv, 5%, 9 for 10%, and only 4 for 20%). Voting mightrisem

Table 4. For each of the topics and for 100 random 20%nitmgi 80% test splits, we list how often the besissifier was missed

(Wrong), the actual error rate of the chosen diasgError), the (theoretical) error rate of thezend best classifier (2nd), and of the best
classifier (1st), and the name of the best classifi

Topic Wrong | True Error 2nd Est.Error 1st Est.Erro} Best Algorithm
acq 6 3.788 4.43% 3.745 dag SMO
corn 21 1.257 1.442 1.254 dag SMO-L
crude 38 2.226 3.111 2.331 cvSMO
earn 82 2.984 2.948 2.649 cvSMO
grain 63 2.679 2.98% 2.044 cv SMO
interest 71 2.574 2.698 2.524 cv SMO
money-fx 61 3.256 3.163 3.066 cv SMO
ship 10 1.348 2.170 1.699 cv SMO
trade 23 1.962 2.54p 2.314 dag SMO-L
wheat 30 1.084 1.254 1.084 dag SMO-L




more robustly for the larger ensembles. Additionate
single classifier constructed from the full traigpiset might
be becoming more competitive to the dagging enseifasl
larger percentages. With estimates being closeath other
the selection process might commit more errorsels w

4. CONCLUSIONS

We have introduced a simple new scheme to expieitdst
set for model selection in text classification. Thew
scheme is a two stage process which first trainEssifier
on the training set, uses this classifier to label test set,
then induces a dagging ensemble on the labeledeesind
evaluates this ensemble with respect to the trgiset. In
the experiments conducted this estimation appearbet
reliable enough to be able to select between diffier
algorithms and also between the original classiied the
dagging ensemble as the final classifier to be useléast in
the more extreme setup where only 5% of the labeds
available for learning. The higher percentage cagbiited
a few anomalies which are currently being investida
There are quite a few more directions for futumrky
First and most importantly more different and largext
datasets need to be explored, a particular progsiurce

should be the new well-processed corpus of newg wir

articles available from Reuters][again. Secondly the
hypothesis that it is actually the larger numberbafches
that are used in the 5% setup than in the 10% @ 2&tups
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