

A NOVEL TWO STAGE SCHEME UTILIZING THE TEST SET FOR MODEL SELECTION IN

TEXT CLASSIFICATION

Bernhard Pfahringer (CS Dept. University of Waikato, Hamilton, New Zealand;
bernhard@cs.waikato.ac.nz); Peter Reutemann (CS Dept. University of Waikato,
Hamilton, New Zealand; fracpete@cs.waikato.ac.nz); and Mike Mayo (CS Dept.

University of Waikato, Hamilton, New Zealand; mmayo@cs.waikato.ac.nz)

ABSTRACT

Text classification is a natural application domain for semi-
supervised learning, as labeling documents is expensive, but
on the other hand usually an abundance of unlabeled
documents is available. We describe a novel simple two-
stage scheme based on dagging which allows for utilizing
the test set in model selection. The dagging ensemble can
also be used by itself instead of the original classifier. We
evaluate the performance of a meta classifier choosing
between various base learners and their respective dagging
ensembles. The selection process seems to perform robustly
especially for small percentages of available labels for
training.

1. INTRODUCTION

One of the novel non-standard learning trends emerging in
recent years is so-called semi-supervised learning, where
algorithms in addition to a standard labeled training set also
have access to additional unlabeled data points. Various
sophisticated schemes have been invented trying to extract
useful information from this additional data. Such
approaches include co-training [2, 10], transductive learning
[5], and various methods based on extracting cluster
structures, either explicitly [3] or implicitly [15, 4]. This
paper investigates a rather different and simple idea in the
context of text mining. Text mining is an obvious
application area for semi-supervised learning, as there is an
abundance of text available electronically, most of which
does not come with explicit labels. Labeling text in itself is a
costly procedure, usually requiring a human with the
appropriate expertise. So any automatic gain achievable
from unlabeled text is most welcome.
 In this paper we investigate ways of utilizing a full test-
set, for which predictions are sought, for selecting a well
performing classifier. The next section will develop and
explain a two-stage approach to semi-supervised
classification. In section 3 the experimental design and
hypothesis are described, and results of the experiments are

presented and discussed. Finally Section 4 gives conclusions
and directions for future work.

2. TWO STAGE ESTIMATION

The standard approach for model selection in Machine
Learning uses estimated error rates for the various models
and then chooses the best one (or alternatively the simplest
model whose error is close enough to the error rate of the
best model). Standard procedures for estimation are either
splitting the labeled data into a train and a validation set, or
cross-validation. The latter is the preferred approach for
smaller datasets.
 For small amounts of data (e.g. assuming only 5% of the
given data is labeled) one might expect the cross-validation
procedure to show a bias towards simpler models, which
potentially might underfit the data, as more complex patterns
may not by frequent enough to both be picked up by the
learner in the training set and to be present in high enough
numbers in the respective test fold simultaneously.
Therefore in such situations cross-validation might not be
able to robustly select good models. As an alternative we
have devised the following two stage procedure:

1. Generate classifier C1 using all the labeled data.
Use C1 to label the unlabeled data.

2. Generate classifier C2 using all the data labeled by
C1 (i.e. the original test-set with estimated labels).
Apply C2 to the original training set and return this
error rate as the estimate for the particular learning
algorithm.

The rationale for this estimation procedure is as follows: for
successful learning the same true patterns should be present
in both the training and the test set, which is a fundamental
assumption used generally in Machine Learning. So ideally
one would expect the two classifiers C1 and C2 generated
above to be rather similar, if not identical. And contrary to
cross-validation all the labeled data can be used for inducing
C1. Furthermore C2 is evaluated against the given labeled

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data, which should lead to good estimates, as these labels
should be more or less correct.
 Unfortunately in preliminary tests we found that this
procedure does not seem to work well, except for larger
datasets and a large enough percentage of labeled data. The
estimates seemed to have a rather high variance and as such
could not be used to choose good models reliably.
Additionally computational problems were encountered as
well. C2 is induced from a considerably larger set of data
than C1, e.g. 19 times as many instances are seen by C2 if
only 5% of the data carries original labels. As well-
performing learning algorithms usually exhibit non-linear
runtime complexity and potentially also non-linear space
requirements, inducing C2 can be rather time-consuming,
and occasionally might not be feasible at all.
 A third and more subtle problem arises when model
selection involves parameter tuning of single algorithms as
well. For some parameters the optimal value varies with the
size of the training set (e.g. the bandwidth parameter used
with RBF-kernels), and therefore a good value for C1 might
not perform as well for C2 and vice versa.
 To counter all these problems we resort to a rarely used
ensemble method called dagging [13]. Dagging was
originally invented for scenarios where training data was
naturally coming from different sources, e.g. resulting from
different locations or time-spans being used for data
collection. In such scenarios dagging has been shown to
perform well when data was plentiful. We utilize dagging in
the following way: instead of generating one classifier C2
using all the test data as labeled by C1, the test data is split
up into multiple batches of about equal size to the original
training set. For each of this batches one classifier is trained.
Contrary to [13] we use simple equal-weighted voting for
prediction. The resulting ensemble is applied to the original
training set to compute an estimate of the ensemble's
predictive performance. This slightly more complex stage
two classifier has the following theoretical advantages over
the simpler approach described above:

1. As the batch sizes are more or less equal to the size
of the original training set, computational
complexity issues disappear. If it was feasible to
induce a classifier on the original training set, then
it should be feasible as well to induce one classifier
for each of the equal-sized batches. The total
complexity for stage two is simply
O(numberOfBatches * O(stageOne)). Given that
numberOfBatches is usually considerably smaller
than the total number of test examples, there should
be no problem with either memory consumption or
runtime. Likewise the issue of tuning parameters
whose optimal values vary with data size should
vanish.

2. More importantly, as the predictions of the second
stage are now votes across an ensemble of
classifiers, one would expect to see reduction in
variance. There is an additional reason why we
should expect such a reduction: in the simple setup
with only one stage two classifier every wrongly
labeled test-example (i.e. all the errors that C1
commits) can directly impact on the performance of
the single stage two classifier C2. In the dagging
setup each such wrongly labeled example only
impacts on exactly one classifier. Therefore bad
performance of one these classifiers in one area of
prediction can possibly be compensated for by the
votes of all the classifiers which did not have to try
to cover the mis-labeled example.

The experiments reported below seem to indicate that these
expectations are fulfilled in practise. This is interesting from
a dagging point of view as well, as so far dagging usually
has only been employed with a small number of potentially
quite diverse batches, whereas we use sometimes
considerably larger number of batches of data, but on the
other hand these batches are more uniform.

3. EXPERIMENTAL DESIGN AND RESULTS

To evaluate the dagging-based idea developed in the
previous section we have conducted experiments using the
well-known Reuters Corpus [1]. Only the ten largest
categories were used and each experiment was a two-class
problem, predicting whether a news wire article belongs to a
respective topic or not. The textual data was preprocessed in
a fairly standard way using the StringToWordVector filter
supplied by WEKA [14]. The filter was used in the class-
sensitive setting choosing the 1000 most frequent words for
each class, no stemming was performed, the default English
stop list supplied by WEKA was used, the generated
attributes were counts of word-occurrences processed by the
standard TFIDF procedure, and finally all counts across a
document were normalized to average document length.
This type of preprocessing has been found to perform well
across a range of text classification tasks by various authors
[6, 8]. As we use a class-sensitive approach, only the training
set is used to build a filter, which is then applied to both the
training and the test set. Otherwise class-information from
the test set could leak through into the learning process
resulting in too optimistic estimates.
 Contrary to the usual predefined train/test splits we split
each set randomly into a small train and a much larger test
set. Training set sizes of 5%, 10% and 20% were used, and
for each setting a 100 repetitions were performed. We were
interested into the following questions:

1. How well does a 10fold cross-validation estimate
on the training set correlate with the true error on
the test set?

2. How well does the error of the dagging ensemble
on the original training set correlate with the true
error on the test set?

3. Can we use these estimates (10fold cross-validation
and training set error of the dagged test ensemble)
to reliably choose between multiple classifiers and
also between the training set version of a classifier
and its dagged test ensemble version?

To answer these questions we have employed some standard
text classification algorithms: a multinomial Naive Bayes
learner optimized for sparse data (Weka's
NaiveBayesMultinomial), and a linear support vector
machine optimized for sparse data (WEKA's SMO
algorithm), either with the “-M” option on or off. If this
option is active, the raw output of the support vector
machine is used as the sole input for a logistic regression
which allows for proper probability estimation [11].
Additionally this second stage can also de facto move the
decision threshold of the support vector machine, a property
we have found useful in a lot of experiments involving non-
textual data.
 For a given train/test split, the following computations
were performed:

- Compute a cross-validation estimate for each
classifier on the training set.

- Compute a single classifier from the full training
set and record its error rate on the test data.

- Use the single classifier to label the test set, induce
the dagging ensemble from this now labeled test
set, and record the error rate of the dagging
ensemble on the original training set.

- Compute the error of the dagging ensemble with
respect to the true labeling of the test set.

Using these measurements we can answer the correlation
questions 1 and 2 formulated above, as well as Question 3,
which is the most interesting one and also of most practical
value. Regarding the first two questions, we usually find a
good positive correlation. Figures 1, 2, and 3 illustrate
example correlations. Figure 1 depicts the performance of
all six classifiers for the “earn” topic, which is the largest
one. On the x axis we plot the respective estimate, and on
the y axis we plot the true error rate on the test set for each
of the 100 random train/test splits. We can observe a very
good correlation, and also notice that for this category “dag
smo” seems to be the best choice on average. Figure 2
repeats the same setup for the smallest category, which is
“corn”. This picture is much more extreme, and clearly
shows that for this topic a support vector machine
outperforms multinomial naive Bayes, and also that the
dagging variant of multinomial naive Bayes performs worst.
All the support vector machine results are too close to each
other in this figure, therefore we have enlarged this area in
Figure 3: dagged SMO with logistic post-processing is
clearly dominating all other variants.
 To answer Question 3, we compute the following
simple meta-classifier: assume that for all three classifiers
(multinomial Naive Bayes, and linear support vector
machine with or without logistic regression-based post-
processing) both a cross-validation estimate as well as the
dagging-ensemble estimate have been computed. Then
simply select the algorithm and setup with the smallest
estimated error; ties are broken at random. In Tables 2,3,
and 4 we compare the performance of this algorithm to the
performance of the best single algorithm, and also to the
second best. Notice that the meta classifier is a reasonable
setup for practical prediction, but that the “best” and

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

tr
ue

 e
rr

or
 r

at
e

estimated error rate

earn 5% labelled

cv smo
cv smo-l
cv mnb

dag smo
dag smo-l
dag mnb

Figure 1. Correlation of estimated to true error rates for the
“earn” topic with 5% labeled data.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.02 0.04 0.06 0.08 0.1 0.12

tr
ue

 e
rr

or
 r

at
e

estimated error rate

corn 5% labelled

cv smo
cv smo-l
cv mnb

dag smo
dag smo-l
dag mnb

Figure 2. Correlation of estimated to true error rates for the
“corn” topic with 5% labeled data.

“second best” estimates are optimistic best-case estimates

only, which would not be available in practise. Most
differences are significant using a sign test over the 100
iterations each. We are using a sign test for lack of better
alternatives. Corrected t-tests like the one described in [9]
unfortunately only apply to cross-validation and training set
sizes between 50% and 90%. Their corrections therefore do
not apply to the more extreme settings used here.
 To help interpreting the results we provide a listing of
the default accuracies for each topic in Table 1. Using
simple accuracies is somewhat unusual in text classification,
as quite often misclassification costs are non-uniform; for
instance in case of spam classification false-positives are a
lot worse than false-negatives. Ideally one would use a
threshold-independent measure like AUC [12] for
comparison, but this is currently not well integrated in
Weka. Therefore we have resorted to simple error rates,
which seem to be sufficient for this experiment. Proper AUC
evaluation is part of our future work plan.
 Inspecting table 2 which lists the results for the 5%
training and 95% test split, we notice that for all topics a
dagging ensemble over the test-set yields the theoretically
best performance. The best base level learner is always a
support vector machine, and except for one topic it is the
naive version, which contradicts our experience with non-
textual data. Even though NaiveBayesMultinomial does not
win for any of the topics, and therefore does not show up in
Table 2, it is still the best classifier occasionally for a
specific train/test split. The meta-classifier can usually select
a good if not the best classifier, therefore we note that the
meta-classifier always performs better than the second best
single classifier, and even outperforms the best single
classifier for five of the ten topics. If we look at the number
of times the meta-classifier does not select the best single
classifier for a specific train/test split, we notice that this
number is weakly correlated with the relative size of the
topic. The best result of only one wrong selection is
achieved for “earn” which is the largest topic, and the worst

 0

 0.005

 0.01

 0.015

 0.02

 0 0.005 0.01 0.015 0.02

tr
ue

 e
rr

or
 r

at
e

estimated error rate

corn 5% labelled

cv smo
cv smo-l
cv mnb

dag smo
dag smo-l
dag mnb

Figure 3. Correlation of estimated to true error rates for the
“corn” topic with 5% labeled data, zoomed in into the best
region.

Table 1. The percentage of documents for each topic, which is
also the default accuracy achievable by always predicting
not(Topic).

Topic Percent Topic Percent

acq 18.36 interest 3.70
corn 1.84 money-fx 5.56
crude 4.48 ship 2.22
earn 30.72 trade 3.77
grain 4.51 wheat 2.19

Table 2. For each of the topics and for 100 random 5% training, 95% test splits, we list how often the best classifier was missed (Wrong),
the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the best classifier
(1st), and the name of the best classifier.

Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm

acq 16 2.920 3.763 2.882 dag SMO
corn 11 0.628 0.778 0.635 dag SMO-L
crude 26 1.321 1.499 1.331 dag SMO
earn 1 1.791 2.199 1.788 dag SMO
grain 5 0.840 0.967 0.839 dag SMO
interest 13 1.824 2.052 1.786 dag SMO
money-fx 5 2.020 2.355 2.027 dag SMO
ship 42 0.995 1.058 1.054 dag SMO
trade 14 1.506 1.745 1.499 dag SMO
wheat 23 0.637 0.727 0.643 dag SMO

result (42 wrong selections out of 100) is achieved for
“ship”, one of the smaller topics. But even in these mis-
selection cases the meta-classifier usually seems to at least
choose a reasonable “runner-up” algorithm, thus still
achieving high overall performance.
 Tables 3 and 4 list the same results for the 10% and
20% training size cases respectively. These results are subtly
different to the ones shown in Table 2. Suddenly the sole
classifier trained on the full training set (as indicated by “cv”
in these tables) is the theoretically best one for six of the ten
topic. Also post-processing SMO outputs by logistic
regression (indicates as “SMO-L”) seems much more
important here. Looking at the mis-selection rates for the
meta-classifier we note that these are much higher now,

reaching 87 out of 100 in the worst case. Consequently, the
performance of the meta-classifier is also worse, for three
topics it even cannot outperform the theoretically second
best classifier.
 Even more concerning is the fact that the results
actually seem to degrade for larger percentages of known
labels. For instance, the meta-classifier's performance on the
“acq” topic is 2.920% for 5% training, 3.048% for 10%
training, and 3.788% for 20% training. We have not yet
found a satisfactory explanation for this anomaly. Our
current hypothesis is two-fold: smaller training percentages
lead to smaller batch sizes for the dagging ensemble, and
therefore to more classifiers in the dagging ensemble (19 for
5%, 9 for 10%, and only 4 for 20%). Voting might perform

Table 3. For each of the topics and for 100 random 10% training, 90% test splits, we list how often the best classifier was missed
(Wrong), the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the
best classifier (1st), and the name of the best classifier.

Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm

acq 0 3.048 3.980 3.048 dag SMO
corn 76 0.987 0.994 0.909 cv SMO-L
crude 60 1.866 1.987 1.777 cv SMO
earn 84 3.039 2.318 2.137 dag SMO
grain 25 1.199 1.294 1.285 cv SMO-L
interest 32 2.129 2.275 2.233 cv SMO
money-fx 78 2.831 2.809 2.597 cv SMO
ship 87 1.190 1.167 1.030 cv SMO-L
trade 8 1.542 1.939 1.543 dag SMO-L
wheat 11 0.640 0.732 0.640 dag SMO-L

Table 4. For each of the topics and for 100 random 20% training, 80% test splits, we list how often the best classifier was missed
(Wrong), the actual error rate of the chosen classifier (Error), the (theoretical) error rate of the second best classifier (2nd), and of the best
classifier (1st), and the name of the best classifier.

Topic Wrong True Error 2nd Est.Error 1st Est.Error Best Algorithm

acq 6 3.788 4.435 3.745 dag SMO
corn 21 1.257 1.442 1.254 dag SMO-L
crude 38 2.226 3.111 2.331 cv SMO
earn 82 2.988 2.948 2.649 cv SMO
grain 63 2.679 2.985 2.044 cv SMO
interest 71 2.575 2.698 2.524 cv SMO
money-fx 61 3.256 3.163 3.066 cv SMO
ship 10 1.348 2.170 1.699 cv SMO
trade 23 1.962 2.542 2.314 dag SMO-L
wheat 30 1.088 1.254 1.084 dag SMO-L

more robustly for the larger ensembles. Additionally the
single classifier constructed from the full training set might
be becoming more competitive to the dagging ensemble for
larger percentages. With estimates being closer to each other
the selection process might commit more errors as well.

4. CONCLUSIONS

We have introduced a simple new scheme to exploit the test
set for model selection in text classification. The new
scheme is a two stage process which first trains a classifier
on the training set, uses this classifier to label the test set,
then induces a dagging ensemble on the labeled test set and
evaluates this ensemble with respect to the training set. In
the experiments conducted this estimation appears to be
reliable enough to be able to select between different
algorithms and also between the original classifier and the
dagging ensemble as the final classifier to be used, at least in
the more extreme setup where only 5% of the labels are
available for learning. The higher percentage cases exhibited
a few anomalies which are currently being investigated.
 There are quite a few more directions for future work.
First and most importantly more different and larger text
datasets need to be explored, a particular promising source
should be the new well-processed corpus of news wire
articles available from Reuters [7] again. Secondly the
hypothesis that it is actually the larger number of batches
that are used in the 5% setup than in the 10% or 20% setups
which causes better overall performance needs to be
evaluated. Thirdly we want to switch to AUC [12] as a
measure for performance evaluation, as AUC is independent
of the setting of particular thresholds in classification, an
important property for learning with skewed class
distributions commonly encountered in text classification.

5. ACKNOWLEDGMENTS

This work has been funded by a Marsden Grant of the Royal
Society of New Zealand.

6. REFERENCES

[1] Chidanand Apté, Fred Damerau, and Sholom M. Weiss,

“Automated learning of decision rules for text
categorization,” Information Systems, 12(3):233-251, 1994.

[2] Avrim Blum and Tom Mitchell, “Combining labeled and
unlabeled data with cotraining,” In COLT: Proceedings of the
Workshop on Computational Learning Theory, Morgan
Kaufmann Publishers, pages 92-100, 1998.

[3] O. Chapelle, J. Weston, and B. Schölkopf, “Cluster kernels
for semi-supervised learning,” volume 15 of NIPS, 2003.

[4] T. Joachims, “Transductive learning via spectral graph
partitioning,” In Proceedings of The Twentieth International
Conference on Machine Learning, 2003.

[5] Thorsten Joachims, “Transductive inference for text
classification using support vector machines,” In Ivan Bratko
and Saso Dzeroski, editors, Proceedings of ICML- 99, 16th
International Conference on Machine Learning, pages 200-
209, Bled, SL, Morgan Kaufmann Publishers, San Francisco,
US, 1999.

[6] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes,
“Multinomial naive bayes for text categorization revisited,” In
Seventeenth Australian Joint Conference on Artificial
Intelligence, pages 488-499, 2004.

[7] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li,
“Rcv1: A new benchmark collection for text categorization
research,” Journal of Machine Learning Research (JMLR),
5:361-397, 2004.

[8] A. McCallum and K. Nigam, “A comparison of event models
for naive bayes text classification,” In AAAI-98 Workshop on
Learning for Text Categorization, 1998.

[9] Claude Nadeau and Yoshua Bengio, “Inference for the
generalization error,” Mach. Learn., 52(3):239-281, 2003.

[10] Kamal Nigam and Rayid Ghani, “Analyzing the effectiveness
and applicability of co-training,” In CIKM, pages 86-93,
2000.

[11] J.C. Platt, “Probabilities for SV machines,” In Advances in
Large Margin Classifiers, pages 61-74, 1999.

[12] Foster Provost and Tom Fawcett, “Robust classification for
imprecise environments,” Machine Learning, 42(3):203-231,
2001.

[13] Kai Ming Ting and Boon Toh Low, “Model combination in
the multiple-databatches scenario,” In European Conference
on Machine Learning, pages 250-265, 1997.

[14] Ian H. Witten and Eibe Frank. Data Mining: Practical
machine learning tools and techniques, Morgan Kaufmann,
2005.

[15] D. Zhou, O. Bousquet, T. Lal, J.Weston, and B. Schölkopf,
“Learning with local and global consistency,” In 18th Annual
Conf. on Neural Information Processing Systems, 2003.

