Ultra-low-cost Logging Anemometer for Wind Power Generation Feasibility Surveys

Professor Jonathan Scott Bruce Rhodes Michael Cosgrove Department of Engineering

Contents

- Private Wind Generation
- •Anemometer
- Ulterior motives
- Interesting problems

Popular Wind Power

- Aotearoa could have been called Te Hauwhenua "the land winds" or more practically "the land of howling bloody gales"
- Wind is free, but wind power is not
- Wind costs
 - Capital depreciation
 - Installation
 - Maintenance
 - Becalm risk

Popular Wind Power

- "Single-user" wind turbines:
 - Serious 5-80 kW (grid-connected buildings)
 - Commercial 300-3000 Watt (remote equipment, boats)
 - Domestic < 500 Watt (tinkering, standby power)
- Cost 2 to 4 \$/W
- Grid type:
 - >150kW
 - ~US\$1/W

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO

Wind Requirements

Suspicion: Most units do not pay

- Site not windy enough
- Not situated high enough
- Inappropriate power/wind curve
- Energy delivery too "peaky"
- Wind power only makes sense in "no brainer" situations
 - Boat? Not if you start the diesel weekly or turbine ungalvanised

Solution

- Log wind and predict output!
- Weather stations cost as much as small generators
- Might want to try several spots
- ⇒cheap logging Anemometer

Solution

- \$2 micro, \$10 electronics
- Run 1 year on 2xAA cells
- Use reed switch or HDD motor
- Support PIC 12F683 & 16F684
- Diurnally synchronised
- Store mean, peak, secs>critical
 - Daily for a week
 - Weekly for a year
- Store mean speed³

Prototype

- PCB supports 683 (& 684 via lifted pin)
- Plumbing fixture hardware
- Vehicular cal

Data Output

• Output via simple script using exported HEX file

Ulterior Motives

- Monitor to leave with wind generators
- Model "benchmark project" for EE students
- Use uP intended for U/G labs
 - Found several fatal "features" (bugs?) you need to know...

Interesting "bug" #1

- PICkit1 has power blip after programming
- Microchip: Should refresh EERAM
- EERAM erases if write is interrupted
- Programmmer-induced glitch erased single byte
- Result:
 - Need a boot delay before doing any EE-writes

Interesting "bug" #2

- PIC offer useful bit-manipulation instructions
- Microcode uses read-modify-write within instruction cycle
- Read-phase reads port pin not latch!
- Read-phase reads whole port, not only bit to be modified!
- Result:
 - Can flash data back into program
 - Sequential bit-writes to adjacent pins glitch data if pin C-loaded
- Known (not by PIC!) bug
- Aggravated by PICkit2

http://eng.waikato.ac.nz/research/scott/BugReport-PIC12F675.html

Interesting "bug" #3

- HiTech/PIC offer free compiler for '684 (limited memory)
- There are differences in the compilers
- There are differences in "passive" configuration files
- Result:
 - Must always use the same version everywhere on one project
 - Do not swap compilers willy-nilly on a machine
 - "Commercial" code can give bad binary on "Lite" compiler
 - Beware bank switching!

Conclusion

- Wind power needs careful thought (more to come?)
- 'Embedded' programmers well-paid for good reasons
- Fully-commented code available for the asking