
An analysis of total correctness
refinement models for partial

relation semantics I

MOSHE DEUTSCH, MARTIN C. HENSON, Department of Computer
Science, University of Essex, Wivenhoe Park, Colchester, Essex CO4
3SQ, UK
E-mail: {mdeuts, hensm}@essex.ac.uk

STEVE REEVES, Department of Computer Science, University of
Waikato, Private Bag 3105, Hamilton, New Zealand
E-mail: stever@cs.waikato.ac.nz

Abstract

This is the first of a series of papers devoted to the thorough investigation of (total correctness)
refinement based on an underlying partial relational model. In this paper we restrict attention to
operation refinement. We explore four theories of refinement based on an underlying partial relation
model for specifications, and we show that they are all equivalent. This, in particular, sheds some
light on the relational completion operator (lifted-totalisation) due to Woodcock which underlies data
refinement in, for example, the specification language Z. It further leads to two simple alternative
models which are also equivalent to the others.

Keywords: operation refinement, specification language, specification logic

1 Introduction

In this paper we provide a thorough investigation of total correctness1 operation re-
finement (that is the degenerate case of data refinement in which simulations are
identity functions) where the underlying semantics of specifications is given in terms
of partial relations. A major example of such a semantics is the specification language
Z, in which a specification denotes a set of bindings which can be construed to be a
partial relation between input sub-bindings and output sub-bindings (see [18], [11],
[6] and [8] for accounts of Z logic and semantics along these lines). Woodcock, in
the book [18] (chapter 16), describes a general account of data refinement in which
a relational operator (which we will call the Woodcock-completion) plays the crucial
underlying role.2 This paper can be construed, at one level, to be providing a detailed
exposition and mathematical account of that relational completion operation by pro-
viding a systematic and comprehensive comparison with other possible approaches.
In addition, since the theme of combining formal methods is now an important re-

1Now that we have established that we are dealing with total correctness, we will drop this qualification: unless we

specify otherwise, we are interested only in total correctness refinement.

2[5] (chapter 8) also introduces a similar idea.

285L. J. of the IGPL, Vol. 11 No. 3, pp. 285–315 c©Oxford University Press 2003, all rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

286An analysis of total correctness refinement models for partial relation semantics I

search area, this paper can be seen as contributing both results and methodological
techniques which are of use when combining systems with different semantic bases.
In order that our general analysis of partial relations can be extended to Z in particular
(which will permit in due course an investigation of the schema calculus) we will base
our mathematical investigation on the logic ZC described in [11]3. This is an extension
of higher order logic with schema types and filtered bindings which can be extended
conservatively to cover the key features of Z. We will need, in fact, a theory extension
of ZC which includes additional constants and axioms in order to provide an account
of the Woodcock-completion. The base logic and the theory extension, are presented
for completeness in appendix A.
Our investigation is essentially proof-theoretic. We have found that the connections
and relationships between various theories of refinement can be most clearly demon-
strated in this mathematical style. Even where the underlying notions of refinement
are model-theoretic, we will nevertheless express them as theories: they are char-
acterised by sets of introduction and elimination rules. This permits a particularly
straightforward strategy for demonstrating that theories are equivalent, or related,
which is quite general. This strategy is explained in section 4 below.
The paper is structured in the following way. We first revise Z logic, setting some
notation and outlining this important application area for the partial relation seman-
tics. We then move on, in section 3, to provide four theories of refinement, which are
prima facie distinct, based on various alternative semantics for specifications: the first
is based on sets of implementations, the second on properties of preconditions and
postconditions, the third on a relational completion operator, and the last on weakest
preconditions. In section 4 we go on to demonstrate that all four of these theories
are equivalent. We are led to introduce further models in sections 5 and 6 which are
motivated by our earlier results. In addition to our conclusions, acknowledgements
and references, we conclude with an appendix setting out the mathematical basis for
the entire investigation.

2 Preliminaries

In this first section we will revise a little Z logic, settling some notational conventions
in the process.4

In [11] Z schemas, and operation schemas in particular, were formalised as sets of
bindings. This captures the informal account to be found in the literature (e.g. [7],
[18]). In this paper we will use the meta-variable U (with decorations) to range over
operation schema. As an example, consider the operation schema:

3Unlike our earlier papers, [11] attempts to formalise Z as it is informally understood.

4Further and additional detail, including a summary of the ideas introduced here, can be found in appendix A

and in [11]. The appendix covers, in addition to a description of the core logic ZC and the theory Z⊥C , a section

demonstrating that Z⊥C is conservative over ZC . Our objective is to make the appendix here sufficiently complete

so that it can serve to support the other papers in this series in the future. All the mathematics in the main body of

this paper takes place in the extended theory Z⊥C which is described in the appendix. In certain circumstances (e.g.

sections 3.2 and 3.4 below) some theories can be formalised in the core logic ZC ; since this is technically significant,

we will indicate the fact explicitly.

2. PRELIMINARIES 287

Ex0

x, x′ : N

x = 0
x′ < 10

Ex0 has the the type P[x : N, x′ : N], and is understood to be a set of bindings of
schema type [x : N, x′ : N]. Recall that unprimed labels (such as x) are understood
to be observations of the state before the operation, whereas primed labels (such as
x′) are observations of the state afterwards. Each operation schema U will have a
type of the form PT where T is a schema type. The type T can, additionally, always
be partitioned as the (compatible) union of its input (or before) type T in , and its
output (or after) type T out′ . That is, T = T in gT out′ . For the schema Ex0 we have
T in = [x : N] and T out′ = [x′ : N]. In this paper, since we are only dealing with
operation refinement, we can assume that all operation schemas have the type PT
where T = T in gT out′ . With this in place we can omit the type superscripts in most
places in the sequel.

Definition 2.1 (semantics for atomic schemas)

[T | P] =df {z ∈ T | z .P}

Note that this definition5 draws bindings from the natural carrier of the type T . As a
consequence, writing t(⊥) for any binding which projects an instance of the constant
⊥ (that is: t .x =⊥ for some observation x), we have:

Lemma 2.2
t(⊥) ∈ U

false

The bindings 〈| xV0, x′Vn |〉, where n < 10, are all elements of Ex0. In fact there
are no other elements in this case. We can introduce the idea of the precondition
of the schema (domain of the relation the schema denotes) to express the partiality
involved.

Definition 2.3 Let T in � V .

Pre U xV =df ∃ z ∈ U • x =Tin z

Proposition 2.4 The following introduction and elimination rules are immediately
derivable for preconditions:

t0 ∈ U t0 =Tin t1
Pre U t1

Pre U t y ∈ U , y =Tin t ` P
P

where y is fresh.

5In the technical development it is usual to write the operation schema horizontally, with a vertical line separating

the declarations from the predicate.

288An analysis of total correctness refinement models for partial relation semantics I

Clearly, the precondition of Ex0 is not (and for operation schemas in general, will not
be) the whole of [x : N] (in general, T in). In this sense operation schemas denote
partial relations.
Naturally, an immediate question will arise: what does it mean for one operation
schema to refine another? More generally, we are asking: what does it mean for one
partial relation to refine another?6

3 A basic analysis of refinement

We begin by introducing four distinct notions of refinement based on four distinct
answers to the questions above and then we go on to compare them. This serves to
illuminate them all, particularly the notion based on the Woodcock-completion which
is the de facto standard for Z.

3.1 F-refinement

To a logician, a specification resembles a theory; so a natural question is: what are
the models of the theory? A computer scientist may ask a closely related question:
when is a program an implementation of the specification? We will, in this section,
consider deterministic programs and model them as (total) functions. We do this,
via a standard expedient of introducing a special value ⊥, which might represent
unwelcome behaviour. Such behaviour might be non-termination but it need not,
and nothing we shall do with this value commits us to that interpretation. We shall
pronounce ⊥ the abortive value. In [18] the authors refer to it as undefined which is,
we feel, unfortunate in the context of partial relations; we will have much more to say
about this below in section 4.4. In order to introduce this value into the analysis, the
technical development below takes place in the extended theory Z⊥

C .
From the logical perspective, we are interested in all the models of a theory, so given
a putative model g and a theory U , we would be inclined to write:

g |= U

to represent the statement that g is a model of U . Within our application area in
computer science we might prefer to read this as a relation of implementation. To
signal this interpretation we shall in fact write this judgement as:

g A U

to be pronounced “g implements (is an implementation of) U ”.
Now an operation schema has been modelled as a partial relation, so we need to con-
sider how an implementation behaves outside the precondition of the schema (domain
of the underlying relation). There are degrees of freedom, but we shall, in this paper,
permit what we call chaotic models.7 More exactly, we understand silence in the spec-
ification to be permission for an implementation to behave in any arbitrary manner,

6If we were not interested in total correctness, we could simply take the subset relation on the partial relations

as refinement, and we would then obtain a very well-behaved theory which also makes the schema calculus fully

monotonic with respect to refinement but necessarily treats preconditions as triggers (firing conditions).

7There is an obvious alternative, based on abortive models or what in [10] is effectively the partial model; we will

say a little more in section 8 and it will be investigated in our future work.

3. A BASIC ANALYSIS OF REFINEMENT 289

including the abortive behaviour ⊥. In other respects we will expect a model (an
implementation) to produce a result which is in the relation whenever it is supplied
with an input inside the precondition. This leads to the following definition of the
modelling (implementing) relation.

Definition 3.1

g Af U =df (∀ z ∈ T in
⊥ • Pre U z ⇒ z ? (g z)′ ∈ U) ∧ g ∈ T in

⊥ → T out′
⊥

Then we can prove the following.

Proposition 3.2 The following introduction and elimination rules are derivable:

z ∈ T in
⊥ ,Pre U z ` z ? (g z)′ ∈ U g ∈ T in

⊥ → T out′
⊥

g Af U
(A+

f)

where z is a fresh variable.

g Af U Pre U t t ∈ T in
⊥

t ? (g t)′ ∈ U
(A−f

)
g Af U

g ∈ T in
⊥ → T out′

⊥
(A−f

)

This is sufficient technical development to allow us to explore refinement. We can
answer the question: when is U0 a refinement of U1? A reasonable answer is: when
any implementation of U0 is also an implementation of U1. After all, we wish to
be able to replace any specification U1 by its refinement U0, and if all potential
implementations of the latter are implementations of this former we are quite safe.
Thus we are led to:

Definition 3.3
Û =df {z | z Af U }

Then we have F-refinement (“F” for function).

Definition 3.4
U0 wf U1 =df Û0 ⊆ Û1

Obvious introduction and elimination rules for F-refinement follow from this defini-
tion.

3.2 S-refinement

In this section we introduce a purely proof theoretic characterisation of refinement,
which is closely connected to refinement as introduced by Spivey in, for example,
[16] and as discussed in [13] and [15]. In those contexts we do not so much have an
alternative notion of refinement as two sufficient conditions (essentially the premises
of the introduction rule in proposition 3.5 below). By adding the two elimination rules
we add necessary conditions, and thus formalise an independent theory. There is also
a connection with theorem 3.1.2 of [12] (page 77), although that analysis concerns

290An analysis of total correctness refinement models for partial relation semantics I

the two-predicate designs of the refinement calculus (syntactic preconditions) rather
than the single predicate specifications of a language like Z (logical preconditions).
This notion is based on two basic observations regarding the properties one expects in
a refinement: firstly, that a refinement may involve the reduction of non-determinism,
secondly that a refinement may involve the expansion of the domain of definition. Put
another way, we have a refinement providing that postconditions do not weaken (we
do not permit an increase in non-determinism in a refinement) and that preconditions
do not strengthen (we do not permit requirements in the domain of definition to
disappear in a refinement).
This notion can be captured by forcing the refinement relation to hold exactly when
these conditions apply. S-refinement, named for Mike Spivey, is written U0 ws U1 and
is given by the definition that leads directly to the following rules:

Proposition 3.5 Let z , z0, z1 be fresh variables.

Pre U1 z ` Pre U0 z Pre U1 z0, z0 ? z ′1 ∈ U0 ` z0 ? z ′1 ∈ U1

U0 ws U1
(w+

s)

U0 ws U1 Pre U1 t
Pre U0 t

(w−
s

)

U0 ws U1 Pre U1 t0 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1
(w−

s
)

This theory does not depend on, and makes no reference to, the ⊥ value. It can be
formalised in the core theory ZC .

3.3 W•-refinement

Our third notion of refinement is taken directly from the literature [18]. It is based
on a relational completion operator due to Woodcock. For notational convenience we
will write T ? for the set T in

⊥ ? T out′
⊥ .

The lifted totalisation of a set of bindings (Woodcock-completion) can be defined as
follows:

Definition 3.6
•
U =df {z0 ? z ′1 ∈ T ? | Pre U z0 ⇒ z0 ? z ′1 ∈ U }

Proposition 3.7 The following introduction and elimination rules are derivable for
lifted totalised sets:

t0 ? t ′1 ∈ T ? Pre U t0 ` t0 ? t ′1 ∈ U

t0 ? t ′1 ∈
•
U

(•+)

and:
t0 ? t ′1 ∈

•
U Pre U t0

t0 ? t ′1 ∈ U
(•−)

t0 ? t ′1 ∈
•
U

t0 ? t ′1 ∈ T ? (•−)

3. A BASIC ANALYSIS OF REFINEMENT 291

Note that it is, sometimes, useful to use the following version of (•−) rule, which is
based upon disjunction elimination, rather than implication elimination.

Proposition 3.8

t0 ? t ′1 ∈
•
U ¬ Pre U t0 ` P t0 ? t ′1 ∈ U ` P

P
(•−)

Lemma 3.9 The following are derivable:

U ⊆ •
U

(i)
⊥∈ •

U
(ii)

¬Pre U t0 t0 ∈ T in
⊥ t ′1 ∈ T out′

⊥

t0 ? t ′1 ∈
•
U

(iii)

Proof. (i) is trivial. For (ii), consider the following derivation:

⊥∈ T ?
Pre U ⊥ ()

y ∈ U
()

y =Tin⊥ ()

false
(.)

⊥∈ U
⊥∈ U

()

⊥∈ •
U

()

For (iii), consider the following derivation:

t0 ∈ T in
⊥ t ′1 ∈ T out′

⊥
t0 ? t ′1 ∈ T ?

¬Pre U t0 Pre U t0
()

false
t0 ? t ′1 ∈ U

t0 ? t ′1 ∈
•
U

()

Lemmas 3.9(i), (ii) and (iii) demonstrate that definition 3.6 is consistent with the
intentions described in [18] chapter 16: the underlying partial relation is contained in
the completion, the abortive element is present in the relation, and more generally,
each value outside the precondition maps to every value in the co-domain of the
relation. Furthermore, the following rules, which are derived from lemma 3.9(iii),
embody the non-strict lifting with respect to the abortive element and the fact that
everything outside the precondition is mapped onto the abortive value (as well as
everything else in the co-domain of the relation).

Corollary 3.10

t ′ ∈ T out′
⊥

⊥ ?t ′ ∈ •
U

(i)
¬ Pre U t t ∈ T in

⊥

t? ⊥′∈ •
U

(ii)

292An analysis of total correctness refinement models for partial relation semantics I

W•-refinement, written U0 ww• U1, and named for Jim Woodcock, is defined as fol-
lows.

Definition 3.11
U0 ww• U1 =df

•
U0 ⊆

•
U1

Obvious introduction and elimination rules follow from this.

3.4 WP-refinement

Our final theory of refinement is that based on a weakest-precondition interpreta-
tion.8 In order to formalise this we begin by introducing a notion of postcondition to
complement the precondition we introduced earlier.

Definition 3.12
Post U z0 =df {z ′1 | z0 ? z ′1 ∈ U }

Note that this introduces a set, rather than a predicate.
With this in place we can introduce the weakest precondition interpretation of an
operation schema. Again, the specified postcondition (C in the definition below) is
expressed as a set rather than as a predicate.

Definition 3.13

wp U C =df {z | Pre U z ∧ Post U z ⊆ C}
The reason why we choose to work with sets, rather than predicates, is simply that
it casts the technical material in a similar style to the models we introduced earlier
for F-refinement and W•-refinement, which also construct sets from the underlying
partial relations.

Proposition 3.14 The following introduction and elimination rules for the weakest
precondition of U are derivable:

Pre U t z ′ ∈ Post U t ` z ′ ∈ C
t ∈ wp U C

where z is a fresh variable.

t ∈ wp U C
Pre U t

t0 ∈ wp U C t ′1 ∈ Post U t0
t ′1 ∈ C

8A weakest precondition semantics for Z is provided in [3], a paper based on the semantics of Z to be found in the

(then) draft Z standard [1] (now superseded by [8]). It would be very interesting to investigate the relationship

between the two approaches, but that is beyond the scope of this paper. In passing we note that they provide an

interpretation over the syntax of Z (atomic operation schema expressions) whereas we opt for one over the partial

relational semantics (sets of bindings). Generality (an interpretation over all schema expressions) is obtained in

two significantly different ways: in ours it follows since all schema expressions denote sets of bindings through the

semantics; [3] on the other hand relies on the fact that all schema expressions may be written in the form of an

atomic schema. That, in turn, relies on the standard equational logic of schemas. We make some further remarks

about our semantic approach, and the equational logic, in section 8. These considerations will become even more

significant when, in future work, we examine monotonicity issues and what would be necessary to obtain fully

monotonic schema calculi for Z.

4. FOUR EQUIVALENT THEORIES 293

We can now define WP-refinement.

Definition 3.15

U0 wwp U1 =df ∀CPTout′ • wp U1 C ⊆ wp U0 C

Proposition 3.16 The following introduction and elimination rules for WP-refinement
are derivable:

z ∈ wp U1 C ` z ∈ wp U0 C
U0 wwp U1

(w+
wp)

where z and C are fresh variables.

U0 wwp U1 t ∈ wp U1 C

t ∈ wp U0 C
(w−

wp)

Lemma 3.17
Pre U t

t ∈ wp U (Post U t)

Proof.

Pre U t z ′ ∈ Post U t
()

t ∈ wp U (Post U t)
()

Since the reverse direction always holds, we have established that t ∈ wp U (Post U t)
and Pre U t are equivalent.

These interpretations will be reminiscent from accounts such as [14], although it is
unusual to provide a proof-theoretic presentation in terms of introduction and elimi-
nation rules. In addition, in [14], the preconditions and postconditions of specification
statements are syntactic (explicitly given), rather than logical (implicitly given) as
they are in Z. Note that our interpretation does not involve the ⊥ values, and could
therefore be formalised in ZC .

3.5 Review

What is the relationship between these four notions of refinement? In particular, can
an exploration of that question shed any light on why the Woodcock-completion has
been defined in just the way it has? What, in particular, is the role of the value ⊥?
Why is the lifting process non-strict with respect to the abortive value? We will begin
with the first of these questions.

4 Four equivalent theories

In this section we demonstrate that our four theories of refinement are all equivalent.
In doing this we will see clearly the critical role that the ⊥ value plays.
We shall be showing that all judgements of refinement in one theory are contained
among the refinements sanctioned by another. Such results will always be established
proof-theoretically. Specifically we will show that the refinement relation of a theory

294An analysis of total correctness refinement models for partial relation semantics I

T0 satisfies the elimination rule (or rules) for refinement of another theory T1. Since
the elimination rules and introduction rules of a theory enjoy the usual symmetry
property, this is sufficient to show that all T0-refinements are also T1 refinements.9

4.1 F-refinement and W•-refinement are equivalent (in Z⊥
C + AC)

4.1.1 R-refinement

We begin this analysis by defining, by way of an intermediate stage, the set of total
functions compatible with an operation schema. This forms a bridge between F-
refinement and W•-refinement.

Definition 4.1

U =df {z ∈ T in
⊥ → T out′

⊥ | z ⊆ •
U }

Then we have:

Definition 4.2

g Ar U =df g ∈ U

And then R-refinement is simply: U0 wr U1 =df U0 ⊆ U1 with the usual introduction
and elimination rules.

4.1.2 R-refinement and W•-refinement are equivalent

We begin by showing that R-refinement satisfies the W•-refinement elimination rule.

Proposition 4.3 The following rule is derivable:

U0 wr U1 t ∈
•

U0

t ∈
•

U1

Proof. The proof requires the axiom of choice (see the step labelled (AC) below).

t ∈
•

U0

∃ g ∈ T in
⊥ → T out′

⊥ • t ∈ g ∧ g ⊆
•

U0

(AC)

δ....
t ∈

•
U1

t ∈
•

U1

()

9An alternative strategy would be to show that a similar property holds for the introduction rule. In the refinement

theories we consider there is only ever a single introduction rule, and this suggests that this might be a more

efficient approach. However, there are as many premises to the introduction rule as there are distinct elimination

rules, so in the end the amount of work involved is essentially the same. Moreover, by considering the elimination

rules separately, we can in some cases (see for example sections 4.2 and 4.4 below) isolate particular properties

and reasons underlying equivalence (or non-equivalence in other circumstances) which highlight particular issues of

interest.

4. FOUR EQUIVALENT THEORIES 295

Where δ is:

U0 wr U1

y ∈ T in
⊥ → T out′

⊥
()

y ⊆
•

U0

()

y ∈ U0

y ∈ U1

y ⊆
•

U1 t ∈ y ()

t ∈
•

U1

From this we have:

Theorem 4.4
U0 wr U1

U0 ww• U1

Proof. This follows immediately, by (w+
w•), from proposition 4.3.10

We now show that W•-refinement satisfies the R-refinement elimination rule.

Proposition 4.5
U0 ww• U1 g ∈ U0

g ∈ U1

Proof.

g ∈ U0

g ∈ T in
⊥ → T out′

⊥

U0 ww• U1

g ∈ U0

g ⊆
•

U0 t ∈ g ()

t ∈
•

U0

t ∈
•

U1

g ⊆
•

U1

()

g ∈ U1

Theorem 4.6
U0 ww• U1

U0 wr U1

Theorems 4.4 and 4.6 together demonstrate that W•-refinement and R-refinement are
equivalent.

10The proofs of such theorems are always automatic by the structural symmetry between introduction and elimi-

nation rules. We shall not give them in future.

296An analysis of total correctness refinement models for partial relation semantics I

4.1.3 R-refinement and F-refinement are equivalent
In this case we show that the notions of implementation (rather than refinement) are
equivalent by the same strategy involving elimination rules. We first establish that
F-implementation implies R-implementation:

Proposition 4.7 The following rules are derivable:

g Af U

g ⊆ •
U

g Af U

g ∈ T in
⊥ → T out′

⊥

Proof.

g Af U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z0 ? z ′1 ∈ T ?

g Af U Pre U z0
()

Pre U z0
()

z0 ∈ T in
⊥

z0 ? (g z0)′ ∈ U

δ....

z0 ? z ′1 ∈ U

z0 ? z ′1 ∈
•
U

()

g ⊆ •
U

()

where δ is:
g Af U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z ′1 = (g z0)′

The second rule is immediate.

Theorem 4.8
g Af U
g Ar U

Now we show that R-implementation implies F-implementation.

Proposition 4.9

g Ar U Pre U t t ∈ T in
⊥

t ? (g t)′ ∈ U

g Ar U

g ∈ T in
⊥ → T out′

⊥

Proof.

g Ar U

g ⊆ •
U

g Ar U

g ∈ T in
⊥ → T out′

⊥ t ∈ T in
⊥

t ? (g t)′ ∈ g

t ? (g t)′ ∈ •
U Pre U t
t ? (g t)′ ∈ U

The second rule is immediate.

4. FOUR EQUIVALENT THEORIES 297

Theorem 4.10
g Ar U
g Af U

Then, from 4.8 and 4.10, we see that the two notions of implementation are equivalent.
Hence, so are the two notions of refinement.

4.2 W•-refinement and S-refinement are equivalent

We begin by showing that W•-refinement satisfies the two S-refinement elimination
rules. Firstly the rule for preconditions.

Proposition 4.11 The following rule is derivable:

U0 ww• U1 Pre U1 t
Pre U0 t

Proof. Consider the following derivation:

U0 ww• U1

¬Pre U0 t
()

Pre U1 t
t ∈ T in

⊥

t? ⊥′∈
•

U0

(.(ii))

t? ⊥′∈
•

U1 Pre U1 t
t? ⊥′∈ U1

false
(.)

Pre U0 t
()

Turning now to the second elimination rule in S-refinement.

Proposition 4.12 The following rule is derivable:

U0 ww• U1 Pre U1 t0 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

Proof.

U0 ww• U1

t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈
•

U0

(.(i))

t0 ? t ′1 ∈
•

U1 Pre U1 t0
t0 ? t ′1 ∈ U1

Theorem 4.13
U0 ww• U1

U0 ws U1

298An analysis of total correctness refinement models for partial relation semantics I

We now show that S-refinement satisfies the W•-elimination rule.

Proposition 4.14

U0 ws U1 t0 ? t ′1 ∈
•

U0

t0 ? t ′1 ∈
•

U1

Proof.

t0 ? t ′1 ∈
•

U0

t0 ? t ′1 ∈ T ?

U0 ws U1 Pre U1 t0
()

t0 ? t ′1 ∈
•

U0

U0 ws U1 Pre U1 t0
()

Pre U0 t0
t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈
•

U1

()

Theorem 4.15
U0 ws U1

U0 ww• U1

Theorems 4.13 and 4.15 together establish that the theories of S-refinement and W•-
refinement are equivalent.

4.3 WP-refinement and S-refinement are equivalent

We begin by showing that WP-refinement satisfies the two S-refinement elimination
rules. In these results we will often use the fact that t ′1 ∈ Post U t0 and t0 ? t ′1 ∈ U
are equivalent without further comment. First we have the rule for preconditions.

Proposition 4.16
U0 wwp U1 Pre U1 t

Pre U0 t

Proof. Consider the following derivation:

U0 wwp U1

Pre U1 t
t ∈ wp U1 (Post U1 t)

(.)

t ∈ wp U0 (Post U1 t)
Pre U0 t

Now the second elimination rule.

Proposition 4.17 The following rule is derivable:

U0 wwp U1 Pre U1 t0 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

4. FOUR EQUIVALENT THEORIES 299

Proof. Consider the following derivation:

U0 wwp U1

Pre U1 t0
t0 ∈ wp U1 (Post U1 t0)

(.)

t0 ∈ wp U0 (Post U1 t0) t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

Theorem 4.18
U0 wwp U1

U0 ws U1

We now show that every S-refinement is a WP-refinement.

Proposition 4.19
U0 ws U1 t ∈ wp U1 C

t ∈ wp U0 C

Proof. Consider the following derivation:

U0 ws U1

t ∈ wp U1 C
Pre U1 t

Pre U0 t
t ∈ wp U1 C

U0 ws U1

t ∈ wp U1 C
Pre U1 t t ? t ′0 ∈ U0

()

t ? t ′0 ∈ U1

t ′0 ∈ C
t ∈ wp U0 C

()

Theorem 4.20
U0 ws U1

U0 wwp U1

Theorems 4.18 and 4.20 establish that WP-refinement and S-refinement are equiva-
lent.

4.4 Review

The model of schemas introduced in W•-refinement not only totalises the schema as
a set of bindings, it also introduces the ⊥ values and extends the domains and co-
domains accordingly. The totalisation then stipulates chaotic behaviour outside the
precondition and additionally for the ⊥ values.
Why is it necessary to include the new values? What are the consequences of totali-
sation without lifting?
In [18], the authors explicitly discuss these questions.11 By way of explanation they
consider the particular schema:
11They call the ⊥ value “undefined”, which is perhaps unfortunate since this is also used with reference to values

outside the domain of definition of particular schemas. We will continue to refer to call it the “abortive” value.

300An analysis of total correctness refinement models for partial relation semantics I

κ
x, x′ : N

x′ = 0

This denotes a total constant relation in the model. They then illustrate carefully that
lifting ensures that schema composition is strict with respect to chaotic behaviour.12

On the other hand, totalisation without lifting leads to non-strict recovery from chaos.
First we introduce the chaotic specification.

Definition 4.21
Chaos =df [T | false]

Now we describe the non-lifted totalisation, by ensuring that the values are drawn
only from natural carrier set rather than the extension including the abortive value.

Definition 4.22 �
U =df {z ∈ T | Pre U z ⇒ z ∈ U }

Proposition 4.23 (Woodcock and Davies)

(i)
•

Chaos o
9

•
κ =df

•
Chaos

(ii)
�

Chaos o
9

�
κ =df κ

Proof. See [18], page 238.

It should be noted that the second of these results is contingent on the particular choice
κ: it is not true in general. But this observation notwithstanding, the interpretation
of the results requires care. Chaos is described as representing undefinedness, or
a run-time error being encountered whatever the initial value. This is odd since,
in particular, Chaos permits the input ⊥ to result in a well-defined output (lifting
is non-strict with respect to ⊥). Chaos , as is indicated by our nomenclature, is
a relation that permits a chaotic relationship between input and output. It is the
relation {z0 ? z ′1 ∈ T ? | z ′1 =⊥′} that would be closer to what they have in mind (since
they refer to ⊥ as the undefined value). We, for reasons discussed above, will call this
Abort .
Now W•-refinement is defined as the subset relation on the Woodcock-completion.
Since Chaos is the whole of T ?, every schema refines it. In particular the identity
relation refines it, and this is the identity for composition. Hence one has:13

κ = Identity o
9 κ w Chaos o

9 κ

for any κ, and this would not appear to be recovery from run-time error, but a
natural consequence of the general permissiveness inherent in Chaos , indeed, a natural
consequence of the fact that the Woodcock-completion is non-strict with respect to
the abortive value.
12Note, this is strictness with respect to chaos, not the abortive value.

13At least when κ is e.g. total, and so when composition can be guaranteed to be monotonic. We will explore this

further in our companion papers.

5. THE NON-LIFTED TOTALISATION 301

Our analysis has, on the other hand, provided a very clear mathematical explanation
for lifting: with non-lifted totalisation it is not possible to prove proposition 4.11
(which requires explicit use of ⊥ value). Indeed, we can do better: the following is an
explicit counterexample.

Definition 4.24
True =df [T | true]

Proposition 4.25
�

True =
�

Chaos

It is an immediate consequence that the more permissive notion of refinement does
not, for example, insist that preconditions do not strengthen.
We have, however, only begun to provide answers to the natural questions that arise.
For example, although lifting appears to be necessary, why does it have to be non-
strict with respect to ⊥? Proposition 4.25 also raises a question: why is there a
distinction between implicit (Chaos) and explicit (True) permission to behave? Note

that in the Woodcock-completion,
•

True 6=
•

Chaos .

5 The non-lifted totalisation

In the previous section we noted the asymmetry between implicit and explicit chaos.
Implicit chaos is more extensive, it permits abortive behaviour that explicit chaos does
not allow. This asymmetry seems inevitable in order to obtain a reasonable theory of
refinement.14 This is, as we have shown, indeed the case, unless we re-examine the
nature of preconditions.
It seemed only natural to identify the notion of the precondition of a schema with
the domain of definition of the underlying relation. There is, however, an alternative
approach. Instead of taking a value to be in the precondition when it is related to
at least one element of the co-domain of the underlying relation, we could take the
condition to be that a value is not related to at least one element of the co-domain
of the completed relation. This anticipates the idea that a value which is not in the
domain of definition of the underlying relation, will be related to all values in the
co-domain after the relation is completed: it excludes from the precondition values
in the underlying relation which are already related to all values in the co-domain.
Surprisingly, this leads to a theory which can be formalised entirely in ZC (it does not
require lifting at all) and which is equivalent to the theories of the previous section. In
this way we show that, for operation refinement at least, that lifting of relations is not
necessary if one wishes to establish a relational completion semantics for refinement.

5.1 Preconditions revisited

In this section we refer to the standard definition of preconditions as Pre0 in order to
contrast it clearly with the new one.

14One might take S-refinement to establish minimal conditions.

302An analysis of total correctness refinement models for partial relation semantics I

Definition 5.1 Let T in � V .

Pre1 U zV =df ∃ x ′0, x
′
1 ∈ T out′ • z � T in ? x ′0 6∈ U ∧ z � T in ? x ′1 ∈ U

There is a similarity (but not quite an equivalence) here with the total model described
in [10] (page 45). His interpretation of specifications as predicates in that model makes
use of a similar concept of precondition to Pre1, although this is not made explicit.

Proposition 5.2 The following introduction and elimination rules are derivable for
preconditions:

t ? t ′0 6∈ U t ? t ′1 ∈ U t ′0 ∈ T out′

Pre1 U t
(Pre+

)

Pre1 U t t � T in ? y ′0 6∈ U , t � T in ? y ′1 ∈ U , y ′0 ∈ T out′ ` P
P

(Pre−)

where y0 and y1 are fresh variables.

The new notion of preconditions implies the old one.

Lemma 5.3 The following rule is derivable:

Pre1 U t
Pre0 U t

5.2 W�-refinement

The totalisation (non-lifted) of a set of bindings can be defined as follows:

Definition 5.4
�
U =df {z0 ? z ′1 ∈ T | Pre1 U z0 ⇒ z0 ? z ′1 ∈ U }

Proposition 5.5 The following rules are derivable:

t0 ? t ′1 ∈ T Pre1 U t0 ` t0 ? t ′1 ∈ U

t0 ? t ′1 ∈
�
U

(�+)

t0 ? t ′1 ∈
�
U Pre1 U t0

t0 ? t ′1 ∈ U
(�−)

t0 ? t ′1 ∈
�
U

t0 ? t ′1 ∈ T
(�−)

Notice that the values in this completion range over the natural carrier set of the type
T.

Lemma 5.6

U ⊆ �
U

(i) �
U ⊆ •

U
(ii)

¬ Pre0 U t0 t0 ∈ T in t ′1 ∈ T out′

t0 ? t ′1 ∈
�
U

(iii)

5. THE NON-LIFTED TOTALISATION 303

Proof. For (ii), consider the following derivation:

t0 ? t ′1 ∈
�
U

t0 ? t ′1 ∈ T
t0 ? t ′1 ∈ T ?

t0 ? t ′1 6∈ U
()

t0 ? t ′1 ∈
�
U

δ....
Pre1 U t0

t0 ? t ′1 ∈ U
false

t0 ? t ′1 ∈ U
()

t0 ? t ′1 ∈
•
U

()

where δ is:

Pre0 U t0
()

t0 ? t ′1 6∈ U
()

t0 ? y ′ ∈ U
()

t0 ? t ′1 ∈
�
U

t0 ? t ′1 ∈ T

t ′1 ∈ T out′

Pre1 U t0
Pre1 U t0

()

W�-refinement is then defined as follows:

Definition 5.7

U0 ww� U1 =df

�
U0 ⊆

�
U1

Obvious introduction and elimination rules are derivable.

5.3 W�-refinement and S1-refinement are equivalent

As we have seen, the abortive value was critical in showing that W•-refinement and
S-refinement are equivalent. Naturally we should assure ourselves that W�-refinement
and a modified version of S-refinement are equivalent.
Let S1-refinement be S-refinement, in which all instances of Pre0 are replaced by Pre1.
We will content ourselves by showing that W�-refinement satisfies the S1-refinement
elimination rule concerning preconditions. The remaining elimination rule, and indeed
the other direction of the equivalence proof are not significantly different from the
proofs we provided earlier in section 4.2.

Proposition 5.8 The following rule is derivable:

U0 ww� U1 Pre1 U1 t
Pre1 U0 t

304An analysis of total correctness refinement models for partial relation semantics I

Proof. Consider the following derivation:

Pre1 U1 t

δ....
t ? y ′0 ∈ U1 t ? y ′0 6∈ U1

()

false
t ? y ′1 6∈ U1 t ? y ′1 ∈ U1

()

false
false

()

Pre1 U0 t
()

where δ is:

U0 ww� U1

¬ Pre1 U0 t
()

Pre1 U1 t
t ∈ T in y ′0 ∈ T out′

()

t ? y ′0 ∈
�

U0

(.(iii))

t ? y ′0 ∈
�

U1 Pre1 U1 t
t ? y ′0 ∈ U1

5.4 W�-refinement and W•-refinement are equivalent (in ZC)
We begin by showing that W�-refinement satisfies the W•-refinement elimination rule,
for bindings, which range over the natural carrier set.

Proposition 5.9 Let t0 ? t ′1 be a binding with the property that:

t0 ? t ′1 ∈ T

Then the following rule is derivable:

U0 ww� U1 t0 ? t ′1 ∈
•

U0

t0 ? t ′1 ∈
•

U1

Proof. Consider the following derivation:

U0 ww� U1

t0 ? t ′1 ∈ T
t0 ? t ′1 ∈

•
U0

Pre1 U0 t0
()

Pre0 U0 t0
(.)

t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈
�

U0

()

t0 ? t ′1 ∈
�

U1

t0 ? t ′1 ∈
•

U1

(.(ii))

6. THE STRICT-LIFTED TOTALISATION 305

Theorem 5.10 When W•-refinement is understood to range over the natural carriers,
then, we have:

U0 ww� U1

U0 ww• U1

Likewise, we show that W•-refinement satisfies the W�-refinement elimination rule.

Proposition 5.11 The following rule is derivable:

U0 ww• U1 t0 ? t ′1 ∈
�

U0

t0 ? t ′1 ∈
�

U1

Proof. Consider the following derivation:

t0 ? t ′1 ∈
�

U0

t0 ? t ′1 ∈ T

U0 ww• U1

t0 ? t ′1 ∈
�

U0

t0 ? t ′1 ∈
•

U0

(.(ii))

t0 ? t ′1 ∈
•

U1

Pre1 U1 t0
()

Pre0 U1 t0
(.)

t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈
�

U1

()

In this case, a term cannot satisfy the premise t0 ? t ′1 ∈
�

U0 without belonging to the
natural carrier, so in this direction no extra condition is necessary.

Theorem 5.12
U0 ww• U1

U0 ww� U1

For terms ranging over the natural carriers, then, the non-lifted and lifted models are
equivalent. Since W�-refinement can be formalised in ZC , and since the carrier sets of
ZC are the natural carriers of Z⊥

C , we may conclude that we can formalise a form of
W-refinement in ZC without moving to the extended theory and introducing lifting.
The penalty for this is the need for a novel notion of precondition.

6 The strict-lifted totalisation

A second question arising from our review was this: why is it necessary to permit re-
covery from the abortive value in completing the relation? In order to investigate this
we consider a final relational completion in which the relation is lifted and totalised,
but is strict with respect to abortive behaviour: ⊥ maps only to ⊥.

306An analysis of total correctness refinement models for partial relation semantics I

Definition 6.1

U =df {z0 ? z ′1 ∈ T ? | Pre U z0 ⇒ z0 ? z ′1 ∈ U ∧ z0 =⊥⇒ z ′1 =⊥′}

We obtain obvious introduction and elimination rules, which in this case we will not
state explicitly. In addition we have, what are by now, fairly standard properties:

Lemma 6.2

U ⊆

U
(i)

U ⊆ •
U

(ii)
⊥∈

U
(iii)

¬ Pre U t t ∈ T in
⊥

t? ⊥′∈

U
(iv)

¬Pre U t0 t0 ∈ T in t ′1 ∈ T out′
⊥

t0 ? t ′1 ∈

U
(v)

Notice that in (v) t0 ranges over the natural carrier set, rather than the extended
carrier.

We now introduce W
-refinement.

Definition 6.3

U0 ww

U1 =df

U0 ⊆

U1

Again, we will not state the obvious rules.

7 W
-refinement and W•-refinement are equivalent

In the usual manner, we show that W
-refinement satisfies the elimination rule of
W•-refinement.

Proposition 7.1 The following rule is derivable:

U0 ww

U1 t0 ? t ′1 ∈

•
U0

t0 ? t ′1 ∈
•

U1

Proof. Consider the following derivation:

t0 ? t ′1 ∈
•

U0

t0 ? t ′1 ∈ T ?

U0 ww

U1

δ0....

t0 ? t ′1 ∈

U0

t0 ? t ′1 ∈

U1 Pre U1 t0
()

t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈
•

U1

()

7. W
-REFINEMENT AND W•-REFINEMENT ARE EQUIVALENT 307

where δ0 is:

t0 ? t ′1 ∈
•

U0

U0 ww

U1

δ1....

t0? ⊥′∈

U0

t0? ⊥′∈

U1 Pre U1 t0
()

t0? ⊥′∈ U1

false
(.)

t0 ? t ′1 ∈

U0

t0 ? t ′1 ∈ U0
()

t0 ? t ′1 ∈

U0

(.(i))

t0 ? t ′1 ∈

U0

() (.)

and where δ1 is:

¬ Pre U0 t0
()

t0 ? t ′1 ∈
•

U0

t0 ? t ′1 ∈ T ?

t0 ∈ T in
⊥

t0? ⊥′∈

U0

(.(iv))

Notice the use of the second version of rlue (•−) (proposition 3.8) in δ0.

Theorem 7.2
U0 ww

U1

U0 ww• U1

Likewise, we prove that W•-refinement implies W
-refinement by proving that W•-
refinement satisfies the elimination rule of W
-refinement.

Proposition 7.3 The following rule is derivable:

U0 ww• U1 t0 ? t ′1 ∈

U0

t0 ? t ′1 ∈

U1

Proof. Consider the following derivation:

t0 ? t ′1 ∈

U0

t0 ? t ′1 ∈ T ?

δ....
t0 ? t ′1 ∈

•
U1 Pre U1 t0

()

t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈

U0 t0 =⊥ ()

t ′1 =⊥′

t0 ? t ′1 ∈

U1

()

308An analysis of total correctness refinement models for partial relation semantics I

where δ is:

U0 ww• U1

t0 ? t ′1 ∈

U0

U0 ww• U1 Pre U1 t0
()

Pre U0 t0
(.)

t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈
•

U0

(.(i))

t0 ? t ′1 ∈
•

U1

Theorem 7.4
U0 ww• U1

U0 ww

U1

This concludes the analysis.

8 Conclusions and future work

Refinement in the context of partial relational models of specifications is an impor-
tant sub-area of refinement in general, not least because the standard interpretation
of Z specifications is a partial relational interpretation. There are, as we have demon-
strated here, a number of, at least at first sight, distinct notions of refinement in this
context. For Z, the standard account is that due to Woodcock and is based on an in-
teresting notion of relational completion which lifts and totalises partial relations. We
have shown that this notion is by no means arbitrary, but that there are a number of
alternative notions which are equivalent. We have been able to begin to explain some
of the mathematical reasons why it is defined in precisely the way it is, particularly
why it is necessary to introduce the abortive value ⊥. Contrary to the argument in
[18] the critical reason concerns the behaviour of preconditions, rather than the be-
haviour of refinement under composition. On the other hand a novel notion of what it
means for a value to be in the precondition of a specification leads to a Woodcock-like
theory in which the relations need not be lifted. There is, in addition, the possibility
of insisting that the abortive value is handled in a strict fashion, also leading to an
equivalent theory.
It would have been possible to develop the technical material in this paper purely
in terms of abstract partial relations, rather than those induced by Z specifications.
Formalisation in ZC , however, makes dealing with Z no more complicated than dealing
with abstract partial relations, and it has a further advantage which will become
clear in the companion papers to follow: we may smoothly extend our analysis to
explore refinement in the context of the schema calculus. The specification language
Z has the advantage of permitting large scale specifications to be constructed in
a modular and systematic fashion using connectives reminiscent of quantificational
logic. The development of Z logic in, for example, [11] shows how this algebra of
schema expressions can be realised as a calculus by showing how to interpret the
connectives and quantifiers as operations on partial relations which have, in general,

8. CONCLUSIONS AND FUTURE WORK 309

non-equal domains. In order to understand how Z, in particular, handles refinement
in the generalised context of the schema calculus, a separate investigation is planned
as a sequel to this paper. In particular, monotonicity issues have to be fully explored.
It is well-known that the specification forming operations have poor monotonicity
properties with respect to refinement in the relational completion semantics, but a
thorough investigation, with a careful consideration of all the options, has not to date
been undertaken. What we can say already, given the results in this paper, is that
there is no likelihood for improved monotonicity properties for Z if its underlying
semantics is to remain based on the partial relation model: every refinement theory
we have constructed on this basis is equivalent. It is perhaps worth pointing out that
although we only gave an explicit semantics for atomic schemas (see definition 2.1)
the meta-variables U range over arbitrary sets of bindings of type T in g T out′ . In
other words we can plug in the entire semantics of the schema calculus (in the way
described in, for example, [11]) beneath the account of operation refinement without
affecting the analysis in any way.15 The consequence of this is, then, that all six
theories we have described must suffer from the same defects regarding monotonicity
properties. Improving upon this position will be one of the themes underlying our
further investigation and we will see how the one way forward is to abandon the
standard semantics and its equational logic, in favour of an inequational logic of
refinement.
There is a well-known alternative to the notion of refinement which we have investi-
gated in this paper. This is the behavioural approach outlined, for example, in [6]. In
this model, preconditions are understood to be firing conditions (or triggers) and may,
therefore, not be weakened. A parallel investigation to the one we have described in
this paper (with extensions to cover the schema calculus) is possible, and will also be
reported in a future paper in this series.
We made comment, in section 3.2, regarding the relationship between S-refinement
and a theorem concerning two-predicate designs appearing in [12]. The semantics
of these designs involve a termination value (it is written ok’). This suggests an
interesting generalisation of the work reported here in which two-predicate designs
are represented by total relations involving both signals for termination and non-
termination. This model will also be reported in future work.
This paper has concentrated on operation refinement, that is the degenerate case of
data refinement in which all simulations are identity functions. This was sufficient
for our purposes here, but the deeper notion is data refinement, and there are further
aspects to the questions we have raised regarding the Woodcock-completion which
do not emerge until data refinement is considered. This is why we emphasised the
word “begin” earlier in this concluding section. Operation refinement is sufficiently
interesting mathematically to motivate the range of possibilities we have explored
here, but there are divergences and surprises to uncover when non-trivial simulations
are permitted. This topic will also be covered in a companion paper, making links and
comparison between our proof-theoretic approach and the largely semantic approach
generally taken in [5].
Our analysis of weakest precondition semantics is here restricted to the atomic schema

15However, one can reasonably argue that, by insulating the schema logic (based on the partial relation interpre-

tation) from the refinement logic (based on any one of the six theories we have described) Z effectively reduces its

refinement logic to the atomic schema case. This is because the schema logic permits the derivation of an equational

logic which makes all schema expressions equal to an atomic schema.

310An analysis of total correctness refinement models for partial relation semantics I

case, and to operation refinement. Some interesting work, developing one or other of
these dimensions, has been undertaken, for example by Woodcock and Cavalcanti [2]
[4], by Groves [9], and in [5]. Formalisation and investigation within our theoretical
setting, of an extension to what we have shown in this paper and with our proof-
theoretic methodology, is both simple and revealing. It will form an additional phase
of our exploration of refinement and we plan to cover the topic in another paper in
this series.

9 Acknowledgements

We would like to thank the EPSRC (grant reference: GR/L57913), the Royal Society
of Great Britain and the New Zealand Foundation for Research, Science and Tech-
nology (grant reference: UOWX0011) for financially supporting this research. Moshe
Deutsch is supported by the British Council through an ORS award.
This work has been influenced in its development by too many people to name explic-
itly. However, special thanks for particularly important discussions and comments go
to Rob Arthan, Lindsay Groves, Greg Reeve, Ray Turner and Jim Woodcock.

References

[1] S. Brien and J. Nicholls. Z base standard version 1.0. Technical report, University of Oxford,
1992.

[2] A. Cavalcanti. A Refinement Calculus for Z. PhD thesis, University of Oxford, 1997.

[3] A. Cavalcanti and J. C. P. Woodcock. A weakest precondition semantics for Z. The Computer
Journal, 41(1):1–15, 1998.

[4] A. Cavalcanti and J. C. P. Woodcock. ZRC – a refinement calculus for Z. Formal Aspects of
Computing, 10(3):267–289, 1998.

[5] W. P. de Roever and K. Engelhardt. Data refinement: model-oriented proof methods and their
comparison. Prentice Hall International, 1998.

[6] J. Derrick and E. Boiten. Refinement in Z and Object-Z: Foundations and Advanced Applica-

tions. Formal Approaches to Computing and Information Technology – FACIT. Springer, May
2001.

[7] A. Diller. Z: An introduction to formal methods. J. Wiley and Sons, 2nd edition, 1994.

[8] I. Toyn (ed.). Z Notation: Final committee draft, CD 13568.2. Z Standards Panel, 1999.
ftp://ftp.york.ac.uk/hise reports/cadiz/ZSTAN/fcd.ps.gz.

[9] L. Groves. Evolutionary software development in the refinement calculus. PhD thesis, Victoria
University, 2000.

[10] J. Grundy. A method of program refinement. PhD thesis, University of Cambridge, 1993.

[11] M. C. Henson and S. Reeves. Investigating Z. Logic and Computation, 10(1):43–73, 2000.

[12] C.A.R Hoare and J. He. Unifying Theories of Programming. Prentice Hall International, 1998.

[13] S. King. Z and the Refinement Calculus. In D. Bjørner, C. A. R. Hoare, and H. Langmaack,
editors, VDM ’90 VDM and Z – Formal Methods in Software Development, volume 428 of
Lecture Notes in Computer Science, pages 164–188. Springer-Verlag, April 1990.

[14] C. C. Morgan. Programming from Specifications. Prentice Hall International, 2nd edition, 1994.

[15] B. Potter, J. Sinclair, and D. Till. An introduction to formal specification and Z. Prentice Hall,
2nd edition, 1996.

[16] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 2nd edition, 1992.

[17] J. C. P. Woodcock and S. Brien. W : A logic for Z . In Proceedings of ZUM ’91, 6th Conf. on

Z. Springer Verlag, 1992.

[18] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice Hall,
1996.

A. THE SPECIFICATION LOGIC ZC AND THE THEORY Z⊥
C 311

A The specification logic ZC and the theory Z⊥
C

A.1 ZC
A.1.1 The language of ZC
ZC is an extension of higher order logic with schema types. We begin with the types:

T ::= B | N | PT | T × T | [· · · zT · · ·]

We will often permit the meta-variable D to range over sequences of labels such as · · · zTi
i · · · (the

order is not important), also writing α[D], when D is · · · zTi
i · · ·, for the alphabet set (in the meta-

language) of labels {· · · zi · · ·}. No label may occur more than once in such a type.
Types of the form [D] are called schema types. The symbols �, f, g and − denote the schema
subtype relation, and the operations of schema type intersection, (compatible) schema type union
and schema type subtraction.
All categories of the language of ZC must be well-formed with respect to these types.
Next we have the category of terms: We assume the existence of a denumerable set of variables for
each type T . We use t as a meta-variable over terms of arbitrary type.
The syntax of terms is then:

tT ::= xT | t [···z
T ···].l | tT×T1 .1 | tT0×T .2

t [D] ::= tT2 � [D]

t [···z
T···] ::= 〈| · · · zVtT · · · |〉

tT0×T1 ::= (tT0 , tT1)

tPT ::= {zT | P}
tB ::= True | False

tN ::= 0 | 1 | 2 | · · ·

where [D] � T2.
For clarity of presentation we permit the meta-variable C (etc.) to range over terms of power type,
and S (etc.) to range over sets of schema type. The latter are schemas. We let U (etc.) range over
operation schemas. These are schemas involving both before and after observations. We can always
write the type of such operation schemas as P(T in g Tout′) where T in is the type of the input

sub-binding and Tout′ is the type of the output sub-binding. We also permit binding concatenation,
written t0 ? t1 when the alphabets of t0 and t1 are disjoint. This is, in fact, exclusively used for
partitioning bindings in operation schemas into before and after components, so the terms involved
are necessarily disjoint. We lift this operation to sets (of appropriate type):

C0 ? C1 =df {z0 ? z1 | z0 ∈ C0 ∧ z1 ∈ C1}

The same restriction obviously applies here: the types of the sets involved must be disjoint.
We employ the notation b.P and b.t (generalising binding selection) which is adapted from [17].
Suppose that {z0 · · · zn} is the alphabet set of t , then t .P is P [z0/t .z0] · · · [zn/t .zn].
The formulæ of ZC delineate a typed bounded predicate logic.

P ::= false | tT = tT | tT ∈ CPT | ¬P | P ∨ P | ∃ zT ∈ CPT • P

The logic of ZC is classical, so the remaining logical operations are available by definition. We also,
as usual, abbreviate ¬ (tT ∈ CPT) to tT 6∈ CPT .
A crucial observation is unicity of types: every term and set of ZC has a unique type. We can make
great use of this observation. It enables us to remove type decoration in most circumstances.

A.1.2 The logic of ZC
The judgements of the logic have the form Γ ` P where Γ is a set of formulæ.

312An analysis of total correctness refinement models for partial relation semantics I

The logic is presented as a natural deduction system in sequent form. We shall omit all data
(entailment symbol, contexts, type etc.) which remain unchanged by a rule. In the rule (∃−), the
variable y may not occur in C ,P0,P1 nor any other assumption.

P0

P0 ∨ P1
(∨+

)
P1

P0 ∨ P1
(∨+

)
P0 ∨ P1 P0 ` P2 P1 ` P2

P2
(∨−)

P ` false

¬P
(¬+)

P ¬P
false

(false+)
¬¬P
P

(¬−)
false

P
(false−)

P [z/t] t ∈ C

∃ z ∈ C • P
(∃+)

∃ z ∈ C • P0 y ∈ C ,P0[z/y] ` P1

P1
(∃−)

Γ,P ` P
(ass)

t = t
(ref)

t = t ′ P [z/t]

P [z/t ′]
(sub)

〈| · · · ziVti · · · |〉.zi = ti
(V=

) 〈| · · · ziVt .zi · · · |〉 = t [···zi∈Ti ···]
(V=

)

(t0, t1).1 = t0
(()=)

(t0, t1).2 = t1
(()=)

(t .1, t .2) = t
(()=)

P [z/t]

t ∈ {z | P} ({}+)
t ∈ {z | P}

P [z/t]
({}−)

t0 ≡ t1
t0 = t1

(ext)
tT .zi = ti [· · · zi : Ti · · ·] � T

(t � [· · · zi ∈ Ti · · ·]).zi = ti
(�=)

where
t0 ≡ t1 =df ∀ z ∈ t0 • z ∈ t1 ∧ ∀ z ∈ t1 • z ∈ t0

The transitivity of equality and numerous equality congruence rules for the various term forming
operations are all derivable in view of rule (sub). In particular, we can prove that set-equality in ZC
is extensional.
The following weakening rule is admissible and is incorporated within the system.

Γ ` P1

Γ,P0 ` P1
(wk)

The carrier sets (with the expected derived rules) are easily defined this system:

T = {zT | True}
The ambiguity presents no problem, since only types appear as superscripts and only sets appear
after the membership relation.

A.1.3 Restricted equality
In many contexts we need to compare bindings over a common restricted type.

Definition A.1 Let T � T0 and T � T1.

tT0
0 =T tT1

1 =df t0 � T = t1 � T

A restricted form of membership is very useful for establishing the schema calculus. In this case the
types are uniquely determined by the syntax and do not appear in the notation.

Definition A.2 Let T0 � T1.
tT1

.∈ CPT0 =df t � T0 ∈ C

A. THE SPECIFICATION LOGIC ZC AND THE THEORY Z⊥
C 313

A.1.4 Functions
We will need total functions over types. These are easily introduced.

Definition A.3
T0 → T1 =df {g ∈ P(T0 ? T1) | unicity(g) ∧ total(g)}

Note that functions are modelled as subsets of T0 ? T1 rather than T0 ×T1, and that for notational
convenience, we let g (etc.) range over terms of type P(T0 ? T1). In fact we only do this when such
a term is a function.
When g is known to be an element of T0 → T1 and z0 ∈ T0, we will write g z0 (as usual) for the
unique element z1 ∈ T1 such that z0 ? z1 ∈ g .

A.2 Z⊥
C

In Z⊥C we introduce new constants (to play the rôle of “undefined” values) at every type. Thus we
postulate new constants ⊥T in every type T . There are, additionally, a number of axioms which
ensure that all the new ⊥T values interact properly.

〈| z0V ⊥T0 · · · znV ⊥Tn |〉 =⊥[z0:T0···zn :Tn]

(⊥T0 ,⊥T1) =⊥T0×T1

{zT | z =⊥T} =⊥PT

For example:
⊥[z0:T0···zn :Tn] .zi =⊥Ti (0 ≤ i ≤ n)

Note that these are the only axioms concerning undefined terms, hence, the term forming construc-
tions are non-strict with respect to the ⊥T values.
In order to facilitate the proper interpretation of schemas we will need to introduce the natural
carrier sets which are those sets of elements of types which explicitly exclude the ⊥T values:

Definition A.4 The natural carriers for each type are defined by closing:

N =df {zN| z 6=⊥N}

and:
B =df {zB | z 6=⊥B}

under the operations of cartesian product, powerset and schema set.

In ZC the schema calculus is introduced by means of definitions such as:

[S | P] =df {zT | z ∈ S ∧ z .P}

for atomic schemas, and:

S
PT0
0 ∨ S

PT1
1 =df {zT0gT1 | z .∈ S0 ∨ z

.∈ S1}

for schema disjunction.
In interpreting the schema calculus in Z⊥C we systematically modify the defintions so that the values
are drawn over the natural carriers rather than the type. For example:

[S | P] =df {z ∈ T | z ∈ S ∧ z .P}

defines atomic schemas, and:

S
PT0
0 ∨ S

PT1
1 =df {z ∈ (T0 g T1) | z

.∈ S0 ∨ z
.∈ S1}

defines schema disjunction.
As a result the schema calculus is hereditarily ⊥-free, since obviously:

314An analysis of total correctness refinement models for partial relation semantics I

Proposition A.5
t ∈ UT ⇒ t ∈ T

We will also need the extended carriers. These are defined for all types as follows:

Definition A.6
T⊥ =df T ∪ {⊥T }

A.3 Conservativity

Z⊥C is conservative over ZC . The presence of projection terms (t .1, t .2, t .z) in Z⊥C makes the definition
of a simple translation of Z⊥C into ZC difficult. The appropriate approach is to show that there is

a translation of Z⊥C
−

into ZC, where Z⊥C
−

is roughly Z⊥C with the projections removed. Having

shown that Z⊥C
−

is a conservative extension of ZC we can then show that Z⊥C is a conservative (in

fact a definitional) extension of Z⊥C
−

. This then completes the task.

A.3.1 The theory Z⊥
C
−

The language of Z⊥C
−

is that of Z⊥C with the projection terms removed. The Z⊥C
−

logic is the
logic of Z⊥C with the equality rules for the projection terms removed and the following equality rules
(which are derivable in Z⊥C and ZC) added.

t0 = t2 t1 = t3

(t0, t1) = (t2, t3)

· · · ti = vi · · ·
〈| · · · ziVti · · · |〉 = 〈| · · · ziVvi · · · |〉

A.3.2 Z⊥
C
−

is conservative over ZC
Definition A.7 We define a mapping from the language of Z⊥C

−
into that of ZC . We omit the type

superscripts which can easily be inferred.

(∃ z • P)∗ = ∃ z • P∗
(P0 ∨ P1)∗ = P∗0 ∨ P∗1
(¬P)∗ = ¬P∗
false∗ = false
(t ∈ {z | P})∗ = P [z/t]∗
((t0, t1) = (t2, t3))∗ = (t0 = t2)∗ ∧ (t1 = t3)∗
(〈| · · · ziVti · · · |〉 = 〈| · · · ziVvi · · · |〉)∗ = · · · ∧ (ti = vi)∗ ∧ · · ·
({z | P0} = {z | P1})∗ = (∀ z • P0 ⇔ P1)∗
(c = c)∗ = true (c a constant)
(⊥= t)∗ = (t =⊥)∗ (t 6≡⊥)
((t0, t1)∗ =⊥)∗ = (t0 =⊥)∗ ∧ (t1 =⊥)∗
(〈| · · · ziVti · · · |〉 =⊥)∗ = · · · ∧ (ti =⊥)∗ ∧ · · ·
({z | P} =⊥)∗ = (∀ z • P ⇒ z =⊥)∗
(c =⊥)∗ = false (c a constant;c 6≡⊥)

Note that if P is in the language of ZC then P∗ = P .

Proposition A.8 If Γ `Z⊥−C P then Γ∗ `ZC P∗

Proof. By induction on the structure of derivations. Since the translation is a direct structural
recursion for the most part, the majority of the cases are immediate. We illustrate with one of the
new axioms. Consider:

(⊥T0 ,⊥T1) =⊥T0×T1

Note simply that ((⊥T0 ,⊥T1) =⊥T0×T1)∗ = (⊥T0=⊥T0)∗ ∧ (⊥T1=⊥T1)∗ = true ∧ true = true.

Corollary A.9 Z⊥C
−

is conservative over ZC .

A. THE SPECIFICATION LOGIC ZC AND THE THEORY Z⊥
C 315

A.3.3 Z⊥
C is conservative over Z⊥

C
−

In fact Z⊥C is a definitional extension of Z⊥C
−

.

Definition A.10 For all types, T0 and T1 we define:

1P((T0×T1)×T0) =df {((z0, z1), z2)(T0×T1)×T0 | z0 = z2}

Note, that 1 satisfies totality and unicity so 1 ∈ (T0 × T1) → T0

Then we can define the first projection operator of Z⊥C (and of course, of ZC).

Definition A.11
tT0×T1 .1 = 1P((T0×T1)×T0)(t)

Similar definitions can be established for the second projection and for binding projections. With
these in place one easily derives the missing Z⊥C equality rules for projections.

Proposition A.12 Z⊥C is conservative over Z⊥C
−

Received 18th January 2002, revised 10 February 2003.

