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1 Introduction

Exhaustive search in relational learning is generally infeasible, therefore some
form of heuristic search is usually employed, such as in FOIL[1]. On the other
hand, so-called stochastic discrimination provides a framework for combining
arbitrary numbers of weak classifiers (in this case randomly generated relational
rules) in a way where accuracy improves with additional rules, even after maxi-
mal accuracy on the training data has been reached.[2] The weak classifiers must
have a slightly higher probability of covering instances of their target class than
of other classes. As the rules are also independent and identically distributed,
the Central Limit theorem applies and as the number of weak classifiers/rules
grows, coverages for different classes resemble well-separated normal distribu-
tions. Stochastic discrimination is closely related to other ensemble methods like
Bagging, Boosting, or Random forests, all of which have been tried in relational
learning[3, 4, 5].

2 Method

The Sparrow (Stochastic Production and Aggregation of Relational Rules) algo-
rithm operates on two-class problems, and produces one set of first-order rules
for each class. Unlike bagging or boosting, it neither resamples nor reweights the
training set. Rules are generated fully randomly by adding literals to a partial
clause in a manner similar to Foil, but without the immediate coverage compu-
tation. To determine which of the randomly generated rules should be added to
a ruleset, Kleinberg’s criteria of “Enrichment” and “Uniformity” are employed.
Enrichment is a rule-level quality: a rule is enriched for a particular class, if it
covers a greater proportion of the instances of that class than it does of the
instances of the other class.

A rule is enriched if
#coveredtarget

#totaltarget

>
#coveredother

#totalother

(1)

Uniformity is a ruleset-level quality - a uniform ruleset covers the training
instances as evenly as possible. To obtain uniformity, enriched rules are generated
in small batches, then the most uniformity-preserving non-zero subset of that
batch of rules is added to the respective class’ rule-set.

Sparrow produces two sets of rules, one for each class. Because the rulesets
are constructed independently, there is no guarantee that the coverage distri-
bution of one ruleset will be mirrored in the other. This means that the raw
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Algorithm 1 Pseudocode for the Sparrow algorithm

for Each class do

while Number of rules is less than the minimum do

while Number of rules in batch is less than the minimum do

Generate a rule
if Rule is enriched then

Add rule to rule batch
end if

end while

Calculate the most uniform subset of rules in the current rule batch
Add those rules to the ruleset

end while

end for

proportions of rules in each ruleset that cover a test instance cannot be directly
compared to determine a prediction. Therefore a transformation must be applied
to produce compatible predictors for both rulesets. Two ratios which make the
proportions comparable have shown good performance – each ruleset’s average
coverage across all training instances (AC) and the per-ruleset mean of each
class’s average coverage on the training instances (MAC).

ACruleset(Instance) =
proportion of rules that cover Instance

mean coverage of training instances
(2)

MACruleset(Instance) =
proportion of rules that cover Instance

mean coverageclass A + mean coverageclass B

(3)

3 Results

An evaluation of Sparrow on several datasets has been conducted, using multiple
ten-fold cross-validations – Mutagenesis (with and without regression-unfriendly
instances), Musk1, Cancer (using only the Atom and Bond tables) and Diter-
penes. As Diterpenes is a multiclass dataset and Sparrow currently only handles
two-class problems, we set up three two-class datasets distinguishing between
the three most numerous classes. Sparrow’s results are compared to Foil 6.4 on
these datasets using the default options. Foil 6.4 fails to produce rules on Musk1,
but Ray and Craven[6] report results gained from a modified Foil version run on
that dataset, and we compare to their results (marked by *).

4 Evaluation and Future Work

The AC and MAC methods both give reasonable results. MAC is consistently
better on Mutagenesis, while the reverse is true for the three Diterpenes datasets.



Table 1. Accuracies and AUC for Sparrow and Foil

Accuracy AUC

Sparrow Sparrow Foil Sparrow Sparrow Foil

Dataset AC MAC AC MAC

MutaRF 73.2 ± 1.2 76.8 ± 1.2 75.3 ± 3.4 0.815 ± 0.015 0.816 ± 0.015 0.791 ± 0.021
MutaAll 73.7 ± 1.2 75.1 ± 1.2 71.5 ± 0.9 0.772 ± 0.011 0.773 ± 0.012 0.749 ± 0.013
Musk1 82.6 ± 2.2 80.1 ± 4.1 ∗ 0.896 ± 0.011 0.895 ± 0.011 0.719∗
Di52,54 71.5 ± 4.9 62.7 ± 1.4 45.7 ± 0.4 0.807 ± 0.044 0.688 ± 0.032 0.510 ± 0.007
Di52,3 80.0 ± 0.7 66.7 ± 1.2 61.2 ± 1.5 0.899 ± 0.004 0.805 ± 0.004 0.647 ± 0.013
Di54,3 79.8 ± 2.7 64.2 ± 3.1 51.4 ± 1.7 0.870 ± 0.030 0.732 ± 0.031 0.514 ± 0.020
Cancer 57.4 ± 0.6 55.3 ± 1.5 47.7 ± 4.5 0.642 ± 0.016 0.636 ± 0.018 0.500 ± 0.043

Foil has previously been reported to find highly specific rules and to fail to cover
many examples[7], (and in our experiments on Diterpenes, Foil indeed displayed
this behaviour). So not surprisingly Sparrow, which does not require its rules to
be perfect, performs better here.

With Sparrow, we have demonstrated that it is possible for ensembles of
randomly generated weak rules to be competitive with those produced by Foil’s
heuristic search. In the future, we plan to investigate the effects of ruleset size
and batch size on accuracy, AUC, and runtime. We also want to compare to
other relational rule learners like Progol[8], and also investigate randomization
of their respective rule generation algorithms.
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