
An Integrated Alerting Service for Open Digital

Libraries: Design and Implementation

Annika Hinze, Andrea Schweer, George Buchanan

University of Waikato, New Zealand
a.hinze@cs.waikato.ac.nz

University of Dortmund, Germany
andrea.schweer@uni-dortmund.de

University College London, United Kingdom
g.buchanan@ucl.ac.uk

Abstract. Alerting services can provide a valuable support for informa-
tion seeking in Digital Libraries (DL). Several systems have been pro-
posed. Most of them have serious drawbacks, such as limited expressive-
ness, limited coverage, and poor support of federated and distributed
collections.
In this paper, we present the detailed design and implementation for
a comprehensive alerting service for digital libraries. We demonstrate
typical user interactions with the system. Our alerting service is open to
other event sources, supports a rich variety of event types, and works on
distributed as well as on federated DL collections.

1 Introduction

For several years now, there has been increasing demand for a comprehensive
alerting services for Digital Libraries [7, 9]. The alerting services supported by
proprietary digital libraries, such as Springer Link alert or the ACM digital li-
brary TOC alert, are widely known; unfortunately, they have restricted coverage
and very limited expressiveness for the subscriptions (e.g., Table-of-Contents
(TOC) of a specified journal). These proprietary digital library systems can
be contrasted against open digital library systems that provide extendible and
flexible tools – supporting varied file formats, custom services and connection
between separate libraries.

Recently, existing open digital library systems have started to incorporate
alerting functionality. Most of them offer only a restricted focus (e.g., stored
search on metadata). Alerting services in Digital Libraries (DL) could inform
users about new collections or changes in the classification scheme of a library
as well as about new or changed documents. Users express their interest in these
events through subscriptions. The service filters all events and notifies users
accordingly. An ‘open’ alerting service should be accessible to a wide variety of
digital library systems and extend the flexible principles of open digital libraries
briefly introduced above – e.g., by supporting a flexible model of which events
may occur, consistently handle distributed and federated libraries and provide

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


event feeds to differing alerting services. However, to provide a full range of
the events that may occur in a specific digital library, the system must also be
integrated with the DL – as explained in [5].

This paper introduces the first distributed alerting service that offers sophis-
ticated user subscriptions over a wide range of sources without the limitations of
its predecessors: The service supports a wide range of event types using content-
based filtering; it is open to external event sources, and notifies users via email,
web page or an RSS feed. We present a detailed requirements analysis, our alert-
ing system in use, details of the service design and results of an evaluation. A
companion paper [5] describes some of the librarianship difficulties highlighted
by the work reported in this paper, omitting the technical content presented
here.

The body of this paper commences with the results of our requirements analy-
sis. This section is followed by a demonstration of our Greenstone alerting service
in use (Section 3). We subsequently discuss in turn its architecture (Section 4)
and detailed design (Section 5). In Section 6, we outline the user-centered and
technical requirements that influenced the design of our service. Related work is
discussed in Section 7. Our paper concludes with an outlook to future research.

2 Requirements

In the course of designing the Greenstone alerting service, we conducted a num-
ber of studies to identify the requirements for the system. One of the key chal-
lenges was identifying the different types of events and notifications that a com-
prehensive service should supply. This part of the design was driven by the results
of two studies: a user survey and a claims analysis of the intended design. The
latter was based on use cases identified in collaboration with the developers of
Greenstone. From these sources, we also developed the user-centered functional
requirements for the alerting service. The technical requirements were drawn
from an analysis of existing digital libraries. Table 1 summaries the require-
ments we have identified. We now discuss the requirements in detail, ordered
according to their sources.

General considerations: A number of general requirements can be drawn from
experience with previous alerting services: Users must be able to find items
of interest (F1). They must be able to create new and edit or delete existing
subscriptions (F2). The providers must be able to publish descriptions of the
events they offer (F3), and they must be able to send event messages to the
alerting service (F4). Finally, users must be able to view their notifications (F5).

User studies: The requirements that were identified based on the results of the
user studies are: A major concern was that the service could notify users about
too many irrelevant events (false positives). It is especially remarkable because
no option in the questionnaire corresponded to this problem. The users concerns
are taken into account as the requirements that subscriptions should be as fine-
grained and as similar to conventional Greenstone usage as possible. In addition



Functional Requirements Technical Requirements

F1. find items T1. provide content-based notifications

F2. add, edit, delete subscriptions T2. provide customizable notifications

F3. publish event descriptions T3. support all Greenstone event types

F4. publish event messages T4. use familiar metaphors for user interface

F5. view notifications T5. support different kinds of event sources

T6. event sources on several abstraction levels

T7. support flexibility of Greenstone set-ups

T8. support distributed/federated collections

Table 1. Requirements for the Greenstone alerting service

to that, notifications have to be as unobtrusive as possible. Both goals can be
reached by providing customizable, content-based notifications (T1 & T2).

DL Scholarship: Based on our experiences with digital libraries, we believe that
the alerting service should have the following characteristics to be fully integrated
into a digital library: It should provide notifications about a wide selection of
events occurring in the digital library (T2 & T3). It should stay consistent with
the users conceptual model of the digital library (i.e., creating a subscription
and receiving a notification should be similar to using the other services of the
digital library) (T4). It should integrate with the infrastructure of the digital
library (i.e., seamlessly support distribution and federation of the DL) (T8).

Greenstone specific: A number of requirements were developed to address the
special features of the Greenstone digital library system: Greenstone allows for
the combination of different internal and external sources for a DL collection.
The alerting service should be similarly open and support other event sources
in addition to Greenstone DLs (T5). Greenstone is very flexible as to which
document formats can be stored and retrieved, the metadata formats that can be
used, the collection structure and the service configuration. The alerting service
should therefore place as few constraints as possible on the configuration of the
collections it can be used for (T6 & T7).

The requirement T8 creates particular challenges for the alerting service in
the Greenstone context: To support Greenstone’s distributed nature, the alerting
service itself has to be distributed to a much higher degree than present in
current alerting services in the context of digital libraries. Ideally, users should
be able to create one single profile and then transparently add subscriptions
for different Greenstone installations to it. In addition to that, it should be
possible to subscribe to events from different collections or hosts using one single
subscription (for example, notify me about all new collections).

To address requirements T2 and T3, we analyzed Greenstone 3 to identify
useful event types. In the context of DLs, events refer to state changes in all
objects in the DL software: such as collections, documents, and the software



Event Type Details

software ew release, new bug, bug resolved, new patch

host new host, host deleted

interface new interface, interface deleted

site new site, site deleted

collection new collection, collection deleted, collection rebuilt

document new document, document deleted, content of document changed,

metadata of document changed

part of document new part of document, part of document deleted, content of part

of document changed, metadata of part of document changed

service new service, service deleted, service-specific event

Table 2. Event Types Identified for Greenstone 3

itself. We identify all objects in this context and list the creation and destruction
of each kind of object (where applicable), as well as all ways these objects can
change. Table 2 lists all 24 types of events we identified for Greenstone 3.

3 The Alerting Service in Use

In this section, we demonstrate the user side in two typical interactions with
the alerting service: first, the initial creation of a subscription (i.e. registering an
interest) and, second, the receipt of notifications that match the subscription.
For clarity, we will primarily focus on the familiar events of new or changed
documents; our full range of events will be introduced in Section 5.

3.1 User Side: Creating Subscriptions

Simple subscriptions: Our user is browsing a digital library collection that fre-
quently has changes and updates made to its content (this often occurs with, e.g.,
WHO collections). The user has found a document that is of interest to them
and that may contain additional information in the future (see Figure 1, left).
In order to monitor the evolution of this document, they click on the “Watch
This” button circled on the left-hand side of the interface in the figure. This
simple gesture registers a subscription for the user that will now send them a
notification when a change is made to the document.

To find new documents, our user may turn to classifications in Greenstone:
They might find a classification that is interesting and relevant to them (see
Figure 1, right). Again, they click on the “Watch This” button, and they will be
subsequently notified when a change is made to the content of this classification,
e.g., when a new document appears in it, a new sub-classification is added or a
member document is removed.



Fig. 1. “Watch this” buttons to create subscriptions shown on an individual
document page (left) and a classifier display (right).

In both these cases, the alerting service simply uses this user’s default pref-
erence for how to notify about the updated information. Simple subscriptions
are set up in a browsing interaction style. Obviously, this kind of subscription
only works for existing classifications or documents.

Complex subscriptions: Users can also create subscriptions about documents
where no classification exists yet, or define sophisticated subscriptions. Here, we
use a technique similar to a search query. A subscription is created in four steps.
In Figure 2, we can see the first and the fourth step in the process. Firstly, users
define the event type and a query that helps identify the involved documents
(Step 1, see Figure 2, left). Next, the involved Greenstone hosts (Step 2) and
collections (Step 3) have to be defined (by selecting from a list or specifying
part of the name). Finally, the means of notification are defined as shown in
the screenshot in Figure 2, right. After defining a subscription, notifications
about the events may be received by the user; this is described in the following
subsection. Users can always edit or delete their subscriptions with immediate
effect.

3.2 User Side: Receiving Notifications

Greenstone (GS), being a full-text digital library system, works with periodic
explicit rebuilds (re-indexation) initiated by the collection administrator. Thus,
the typical pattern of updates to the library are occasional and large-scale re-
builds, rather than frequent changes to individual documents where updates are
performed immediately on the receipt of a changed document. Our Greenstone
alerting service is triggered by each rebuild; changes might have occurred in the
rebuild that subscribed users may be interested in. Any user who has at least one
subscription involving the rebuilt collection may be due to receive notifications
about changes to the library.



Fig. 2. A user’s subscription displayed for editing; Steps 1 (left) and 4 (right) of
four.

As discussed before, users can configure the delivery method for notifications
in their subscription configuration. At present, we support email and RSS feed
notification for personal delivery. An example RSS feed is shown in Figure 3,
accessed using the Liferea feed reader (http://liferea.sourceforge.net).

Alerts may also be displayed in the Greenstone library interface in a general
or personalized way. The general interface may provide a ‘new accession page’
and ‘new/changed’ highlight for particular documents. The personal page may
display a user’s recent notifications after the user has logged in to Greenstone.

4 Architecture of the Alerting Service

We now discuss the server side of the alerting service, providing an overview of
our alerting architecture and its distribution. Detailed descriptions of the compo-
nents and their design will be given in the following section. We chose the latest
generation of the Greenstone DL software as the basis for building our system.
Greenstone is a well-established software system for delivering digital library
services; the alerting service builds upon Greenstone’s modular architecture [2].

General Architecture: The general architecture for the alerting service is shown
in Figure 4. Existing DL components in Greenstone are identified in white, whilst
the new elements are highlighted in gray. The alerting sequence [8] comprises
four steps that can be seen at the bottom of the figure: (1) rebuild and trigger of
alerting service, (2) observation of event messages, (3) filtering of event messages
according to user subscriptions, and (4) notification.

Note that the Observer component in itself is distributed: It consists of a
generic observer (within the alerting service in Figure 4) and an event detection
plug-in for each event type (shown in Figure 4 as last phase in the built process).



Fig. 3. A Greenstone RSS feed shown in a feed reader

The alerting sequence is initiated when a collection in the library is (re-)built and
changes in the library’s indexes and content are identified. Each event is reported
to the Observer process, which prepares them for processing. The Filtering phase
then takes each event in turn, and matches it against the filter’s own index
of subscriptions. If a match is found between a subscription and an event, a
notification should be sent to the user who owns the subscription. A match
is sent to the Notifier, which creates a notification about the event message
and sends it to the user according to the user’s preferences. The heart of this
apparently simple sequence is the Filtering phase, which will be discussed in
detail in Section 5.

Distributed Architecture: The Greenstone alerting service can be distributed. A
distributed architecture for the alerting service is required in three cases: (a) a
number of different digital libraries use a common alerting service; (b) a library’s
content is distributed; or (c) the alerting service is on a separate computer to the
DL server. Greenstone itself is designed to be distributed if required [1]. There-
fore, Case (c) is simple since any connection in our architecture (see Figure 4)
may be between processes on separate machines. Beyond this basic separation,
we make a distinction between federated collections, Case (a), and distributed
collections, Case (b). For the forwarding of event messages to distributed or
federated Greenstone servers, we have created the Greenstone Directory Ser-
vice (GDS). The GDS provides a common message-forwarding–infrastructure
for all alerting distribution scenarios. Here, we give a brief resume of GDS – for
complete details see [4]. The GDS is constructed as an independent network of
Directory nodes that together form a tree structure. Each tree of GDS nodes
provides a separate community, which can send and receive messages to and
from any digital library registered with a node of the GDS tree. GDS messages
are transmitted in an XML formwat across TCP/IP connections. Each node re-



detection plug−in

Build

Classifier
Indexes

NotifierFiltering

HTTP
SOAPSOAP

Observer

Index
Query

Create

Filter
Query

Filter
Browse

Indexes

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

Subscription

Search

Engine
Search

Service
Browse

SOAP

HTTP

local access

Alerting Service

GS Collection Data

Identifier
Index

Subscrip−
tions

Collection
Data

Greenstone Receptionist Interface

Fig. 4. General architecture of a local Greenstone installation (left) with build
process (bottom left) and alerting service (right)

ceives messages from its children, and distributes received messages forwards to
all its other children, and upwards through the tree for propagation across the
whole GDS network of which the node is a member. Messages are transmitted
through the GDS network when a collection is rebuilt – being sent into the GDS
server with which the host digital library server is registered. Note that a GDS
transmission node does not itself match or filter events against subscriptions – it
purely acts as a transmitter in a communication network. The new build process
we implemented in Greenstone supports notification of changes made during
a collection rebuild through the GDS service, and we have also implemented
the receipt and processing of remote collection changes against locally stored
subscriptions in a discrete subscription filtering client application. Other digital
library systems can readily be extended to support the transmission of change
messages into the GDS network – it is not specific to the Greenstone software.
Support for EPrints and D-Space – both popular digital library systems which
we will meet later in this paper – is anticipated in the near future.

The case of federated collections is shown in Figure 5. Two Greenstone hosts
are shown with their Greenstone software and alerting services. The left-hand
Greenstone server hosts a collection that the two subscriptions A (left) and B
(right) are interested in. When a change occurs in the collection (by rebuild-
ing the collection – see Step △1 ), the last phase of the build process (i.e., the
detection plug-in) triggers the observer (Step △2 ), which, in turn, forwards the
event message to the local filter component and broadcasts it also on the Green-
stone Directory Service (Step △5 ). Locally, the event is filtered according to



1

2 NotifyFilterObserve

4

Observe NotifyFilter

5

763

Independent SystemIndependent System

A B

broadcast on GS Directory Service

Fig. 5. Federated collections on distributed Greenstone installations. Two inde-
pendent systems shown (simplified).

subscription A (Step △3) and the respective user is notified (Step △4 ). For the
distributed case, every alerting process on a Greenstone host connected to the
Greenstone Directory Service receives the broadcast event message. We now
follow the alerting process through the system shown the right hand side of Fig-
ure 5: The observer receives the event message and forwards it to the filter. The
event is filtered according to subscription B (Step △6 ) and its user is notified
(Step △7 ). We can see that the subscriptions are kept locally at the alerting
server that initially receives them.

The case of distributed sub-collections on a separate server is handled dif-
ferently (see Figure 6): The super-collection (right) holds a reference to its sub-
collection (left), indicated by a dashed line between the GS collection databases.
Sub-collections have no knowledge of their super-collections. Consequently, they
cannot send out messages referring to the changed collection (the sub-collection
might have a different local name); what is needed is an event message that
refers to the super-collection. The alerting system creates an auxiliary subscrip-
tion for the sub-collection (left), which refers to the super-collection, represented
by a dashed line. On rebuild of the sub-collection (Step ①), the local observer

2

1

4

3

sub aux

System with Sub−collecion System with Super−collection

Filter Notify Filter NotifyObserve Observe

unicast on GS network (SOAP) boadcast on GDS

Fig. 6. Distributed collections on distributed Greenstone installations. System
with sub-collection (left) and system with super-collection (right).



is triggered (Step ②). The matching auxiliary subscription is identified (Step ③)
and a notification is sent to the super-collection’s server (Step ④) via the SOAP-
based Greenstone network. The Greenstone network only connects servers with
sub/super-collections. The observer on the super-collection side receives the mes-
sage and identifies the respective super-collection. It then sends out an event
message for the super-collection over the GS Directory Service. The further pro-
cess is identical to the event handling in the distributed case as described before
(starting at Step △5 ). For sub/super-collections, subscriptions are forwarded, in
opposition to event forwarding in the distributed case.

5 Design Details

This section describes in detail the components of the Greenstone alerting service
introduced in the previous section. The design of our alerting service supports 30
different event types, for instance: document events, metadata events, collection
events, index events, category events, classifier events, system events, and soft-
ware events. The event types observe different actions (such as new, changed,
deleted items) supporting different ways of identifying the affected items. For
conceptual clarity of description, here we focus on new and changed documents.
For comprehensive coverage of the service’s design, refer to [10].

5.1 Design: Creating Subscriptions

The Greenstone alerting service provides a web interface to create subscriptions.
All subscriptions are conjunctions of predicates. Predicates have a type, a field
name, and a value. There are four different kinds of predicates: Equality pred-
icates, metadata predicates, substring predicates, and query predicates. Each
predicate refers to a single field name. If more than one predicate in a subscrip-
tion refers to the same field, these are evaluated as disjunctions.

Equality predicates are currently used for identification of hosts, collections,
and documents. Substring predicates are currently only used for hosts and col-
lections. Metadata predicates refer to metadata fields and vales. Metadata pred-
icates are satisfied if the document has the specified metadata field and the
specified value is equal to that of the metadata field. The field name may be
freely defined by the user. Query predicates can be defined for title and full-text
of documents; they have free-defined Greenstone queries as values.

5.2 Design: Observing Events

Each collection in Greenstone consists of the documents’ full-texts and accompa-
nying metadata. During a rebuild, this information is processed into the standard
METS format and stored in a relational database. Classification and content
indexes are also generated for the collection. Each collection and each docu-
ment has three time-stamps. For alerting, the following time-stamps are rele-
vant: accession date and last (re)build for a collection, and time-stamps for
accession, modification and (re)indexed for documents.



When a collection is rebuilt, the collection, new, and changed documents re-
ceive the same (re)built/(re)indexed time-stamp. New documents are iden-
tified by their accession time-stamp being identical to their (re)indexed time-
stamp. To detect changed documents, the modification and (re)indexed time-
stamps are compared. On each rebuild, an alerting sequence is initiated. Green-
stone 3 uses incremental rebuilds; the detection plug-in at the end of the build
process detects the events of changed or new documents. It then creates event
messages containing attribute-value–pairs. The event message holds information
about the type of event, the affected document’s ID, and the collection ID. The
message is sent via HTTP to the observer component of the alerting service.

The generic observer component provides an interface for internal and ex-
ternal event messages: messages from local builds are received through HTTP,
whilst events from builds on other hosts are received through SOAP. The event
messages are passed on to the filtering component of the alerting service.

5.3 Design: Filtering Event Messages

The filter component tests incoming event messages against the subscriptions
stored in the database. We use a hybrid implementation of the equality-preferred–
algorithm, which is in turn an extension of the counting algorithm [6]: The count-
ing algorithm tests each predicate in a set of subscriptions only once, counting the
number of successful predicate matches for each subscription. A given subscrip-
tion is matched by the incoming event message if its number of matched predi-
cates equals the total number of its predicates. The equality-preferred–algorithm
tests all equality predicates first and then proceeds to further predicates for the
subscriptions using the counting algorithm.

We use a hybrid equality-preferred–algorithm in three phases. The filtering
component holds a special index of subscriptions, clustering them according to
their equality predicates, i.e., all subscriptions with equality predicates regard-
ing the same set of field names are clustered together (see identifier index in
Figure 4). In Phase 1, the corresponding clusters for the incoming event are
identified. Corresponding clusters are those which refer to fields that are con-
tained in the event message. Then, the equality predicates in these clusters of
subscriptions are evaluated (using the clusters’ hash indexes on the values). The
result is a list of partially matched subscriptions.

In Phases 2 and 3, all other predicates are tested using the counting al-
gorithm. In Phase 2, all non-equality predicates are filtered and a counter is
maintained for each affected subscription. Non-equality predicates are metadata
predicates, substring predicates, and query predicates. For query predicates, we
use collection-inherent DL searches for the stored queries (see query index with
access to GS search engine in Figure 4, left). Similarly, for metadata predicates
we use Greenstone’s metadata retrieve service. The Greenstone alerting service
determines the appropriate query service offered by a collection by applying
heuristics for typical queries on a field, e.g., a predicate regarding the title field
uses a title search in a collection. If no appropriate service is found, the predicate
is not satisfied.



In Phase 3, the number of matching non-equality predicates are compared to
the total number of non-equality predicates in each partially matched subscrip-
tion. In addition, all subscriptions without equality predicates are considered.
Information about matching subscriptions is written to the database to be used
for notifications.

Our design constitutes a novel approach to combine filter and search func-
tionalities; this is necessary because possible search methodologies for future
collections may not be known at the time when the subscription is defined.

5.4 Design: Creating Notifications

Notifications can be delivered to the user in a general or personalized way. Gen-
eral delivery uses, e.g., a ‘new accessions’ page in the Greenstone interface, and
‘new’ highlights for collections or documents in the interface. We maintain a
Greenstone 3 alerting module for presentation of general notifications; the GS3
user interface is created from such modules dynamically at runtime [2]. Each in-
terface module (including the alerting module) communicates with the core DL
interface code through SOAP. These general notifications require that recent
notifications are recorded in Greenstone’s relational database for future use.

Alternatively, the users may receive notifications through a message (email)
or RSS feed. Implementation of these notification is straightforward, and require
no further explanation. An example has been shown in Figure 3.

6 Evaluation

In this section, we present the results of our evaluation of the alerting service.
This section consists of two principal parts: first, the discussion of the compliance
of our design with the original requirements introduced earlier in this paper;
second, an analysis of the performance of the system in use.

6.1 Evaluation: Design

The requirements for our alerting service were introduced in Section 2. We will
first discuss the functional requirements F1 to F5: The service supports the
finding of items through a simple addition to the standard DL build process [5].
We have demonstrated the editing of subscriptions (F2), publication and viewing
of events (F3–F5) in Section 3.

Research in event-based systems has indicated that users frequently have
problems defining effective subscriptions to represent their interests (reflected
in requirements F2 & T4, see Table 1). To overcome the syntactic problem of
defining even basic queries, we introduced simple interface features such as the
“Watch This” button. For sophisticated subscriptions, we provide an advanced
query subscription interface. The learning demand on the user is reduced by pro-
viding an analog of Greenstone’s interactions, mirroring browsing and querying.
Further user testing needs to be conducted to refine this approach.



The technical requirements T1 to T8 are also addressed by our design. We use
the digital library itself to determine content-based events (T1), and as seen in
Section 3 customizable notifications (T2). Our close relationship to the existing
DL system readily supports a user interface similar to the familiar DL controls
(T4) and a range of events consistent with the capacities of the underlying DL
systems (T3). The alerting service’s open format for events readily provides open
access to a variety of event sources (T5) and levels of abstraction (T6). Our
use of subscription forwarding (in the case of distributed libraries) and event
forwarding (for federated libraries) ensures consistency where such collections
exist (T8) and a variety of DL configurations (T7) – in the latter case supported
further by our open event format.

6.2 Evaluation: Performance

We wished to study the performance of the distributed alerting service in prac-
tice. There were three separate areas that we wished to evaluate in terms of
performance: event detection, filtering of incoming events against locally stored
subscriptions, and finally the distribution of events across the Greenstone Direc-
tory Service network.

Before reporting our results in detail, it is worth clarifying the rate of change
that may be expected in a digital library. The Humanity Development Library
(or HDL) is produced by the United Nations and distributed on CD-ROM. The
current public distribution contains over 160,000 separate pages, each indexed
as a separate document. Of this material, some 50% has been updated or added
since the first version seven years ago. In other words, the number of items
changed per day is somewhat under 50. This rate of change is typical for the
various United Nations collections that are supported by Greenstone, and the
HDL is of median size. These UN collections have a higher change rate for
existing documents than is typical for most digital libraries. It follows from
this sort of volume of change that the challenge for the distributed alerting
service comes less from the frequency of changes in each library collection, but
rather from the potentially vast distribution/federation, the number of libraries
involved, and the number of profiles.

Event Detection: For the first tests of the alerting service, we wished to verify
our expectations of the time costs for detecting changes in the digital library –
an area where existing data gave little indication of what order of performance
one ought to expect.

Detecting a change in a document, or in a classification requires a series of
simple database lookups that we expected to be in the order of O(p), where p

is the number of document properties (e.g., metadata such as document title –
see Table 2). Running a sample build over a collection comprised of a mixture
of large plain text, HTML and XML documents (of book size) resulted in an
underlying build time of c. 15 seconds per document (mean=15.2s) of which c.
0.2 seconds (mean=0.16s) was spent identifying which, if any, change messages
should be forwarded for this document. Clearly, event detection adds only a



small cost to the indexation of a document in the library. We believe that this
performance can be slightly improved with further optimisation of the build
code.

Local filtering: Secondly, the issue of profile matching required study – identi-
fying the process load of processing incoming events against the user profiles
stored on a local Greenstone server.

The performance of the counting and equality-preferred algorithms is well
known. However, in our implementation we extended the original algorithm,
which compared only numbers. We had to support full-text search and string
comparison to satisfy the full range of events for Greenstone and other digital
libraries. Neither of these forms of comparison have any relationship with the
number of subscriptions to be matched, so we should still anticipate overall
performance characteristics of the local filtering to be similar to the original
algoriths [6]. The primary expectation from the earlier implementation should be
for performance to be in the region of O(s) where s is the number of subscriptions
(or, more precisely, unique subscription predicates). Fabret et al’s algorithm
evaluates any predicate (e.g., “title includes Shakespeare”) only once, even if
the predicate is included in a number of different subscriptions. In our tests, we
followed their model of considering the performance of their algorithm on the
number of unique predicates, rather than (more complex) subscriptions.

We conducted a small experiment to evaluate the local filtering performance –
varying the number of predicates in the profile database from 1, 000 to 100, 000
unique predicates. Predicates were of equal portions of the different available
types, created using simulated subscription data. A digital library subscription
will typically include three or more predicates (in our simulated test data, an
average of four) – e.g., a subscription may list an event type, collection, author
name and subject field. At a worst case, 100, 000 predicates would typically repre-
sent 25, 000 subscriptions, if every predicate of every subscription were unique.
Real life data would certainly include some predicates that appeared in more
than one subscription, increasing the number of subscriptions that this would
represent.

The time taken to match all predicates against a single event varied linearly
from 0.14s (with 1000 predicates) to 0.44s (10,000 predicates). Approximately
0.10s was fixed overhead. These findings are consistent with those of Fabret et
al. However, this test does not represent the whole picture – full-text retrieval
predicates are much more costly to evaluate than simple string matching, and
we wish to undertake further study to distinguish the costs of different styles of
predicate. Unfortunately, we have little data at present to identify the relative
frequency of particular types of predicate (tests of document metadata, full-text,
etc.) under actual use.

However, the results above demonstrate that the matching of events against
user subscriptions is scaleable and consistent with known state-of-the-art algo-
rithms.



Unique predicates (subscriptions) Time Taken (in sec)

1000 (256) 0.142

2500 (640) 0.182

5000 (1280) 0.243

7500 (1920) 0.338

10000 (2560) 0.437

25000 (6400) 0.783

50000 (12800) 1.465

75000 (19200) 1.981

100000 (25600) 2.479

Table 3. Results of local filtering tests for Greenstone Alerting Service

Event Distribution: Given the tree structure of the Greenstone Directory Service,
one critical limitation could be the throughput capacity of the single node at the
root of the tree, through which every event would have to pass. Therefore, our
first point of concern was the nominal capacity in practice for a single node
within the GDS to receive and forward messages. Using event forwarding over
the GDS network (as described in Section 4), each change in a collection is
received only once by a network node, and forwarded once to each immediate
child node, and once to its parent node (excepting the case of the root node).
Note that GDS nodes do not filter events, but transmit them onwards through
the network without further processing. Thus, the primary limitation is in fact
the rate of output to other nodes.

For testing purposes, the GDS network was run on a small cluster of servers
at University College London, consisting of two Apple Mac OS-X computers,
two Linux servers and two machines running Windows XP. Three computers
ran as GDS servers only, three as Greenstone servers producing Greenstone
Alerting messages. Two GDS servers were registered with the third, which acted
as the root server. The GDS root server machine was an Apple Mac-OS X G5
computer with 1Gb of main memory. The computers were connected locally
through a 10Mbit network, with two (Linux) machines running at a remote site
at Middlesex University (UK).

As shown in [3], even such a small network topography can be used to sucess-
fully test distributed alerting services, as it has the advantage of a real-world
test over a simulation.

We expected the time cost of the distribution of events to be small, but
limited by the available network bandwidth and the overhead of establishing
connections between GDS nodes. We achieved average point-of-origin to remote
(off site) recipient transmission times of 2.3 seconds per event, but further testing
indicates that the current implementaton could be significantly improved – e.g.,
at present each message is transmitted as a new, separate connection, and this
is clearly wasteful.



7 Related Work

In this section, we review previous work for alerting in digital libraries in pro-
prietary systems, in open DL systems, and in mediator approaches.

Alerting in Proprietary DL Services: Individual alerting services are offered
by publishing houses, such as Springer Link Alert (via http://springerlink.

metapress.com),ACM Table-of-Contents Alerts (via http://portal.acm.org),
and Elsevier Contents Direct (http://www.contentsdirect.elsevier.com).
These are solitary, centralized services that neither cooperate with other services
nor openly support independent digital libraries. These services provide simple
email notifications about new volumes published by the company, rudimenta-
rily tailored to the user’s interests. Only coarse-grained selectivity is offered,
which may result in readers obtaining a high proportion of notifications of low
relevance. Advanced subscriptions, e.g., regarding library organization or classi-
fication of documents are not supported. Unlike our Greenstone alerting service,
the systems are not open to additional event sources.

Alerting in Generic DL Systems: So far, only two of the popular generic DL sys-
tems provide alerting features – D-Space and EPrints. D-Space (http://www.
dspace.org) is being developed as a reference model for document manage-
ment systems, and supports the storage and retrieval of electronic documents.
Readers using a D-Space server can place a subscription on a specific collection,
which then waits for any documents to be added to the collection. No additional
constraints can be added to a subscription – the subscriber is simply emailed
a notification each day listing all new documents added to the collection. This
can be compared to a simple ‘watch-this collection’ subscription without further
filtering in our alerting service.

EPrints (http://www.eprints.org) is a simple open source system for pro-
viding an internet-accessible document repository. EPrints supports simple sub-
scriptions that alert a reader when a matching document is inserted into the
EPrints repository; matches are made against the metadata fields of a document.
In the Greenstone alerting service, this can be compared to a basic metadata
subscription using a query that is restricted to new documents.

The engineering of the incorporation of the alerting services in EPrints and
D-Space has been reported only briefly in the available literature. In contrast to
the GS alerting service, their subscription systems are deeply embedded in the
DL implementation.

Mediating Alerting Services: Only a few systems have been developed to support
open heterogeneous document collections for publish/subscribe features. Here we
focus on the two systems that target at DLs: Hermes and Dias.

Hermes [7] is an integrative system that covers heterogeneous services and
event sources. Subscription definition focuses on typical queries regarding sci-
entific publications, such as authors, title, or keywords. The service operates
independently of any library implementation, using (active) email or (passive)



web pages for information access. Typically, such an alerting service would be
operated by a scientific library (secondary provider) as a service for its users, no-
tifying about documents provided by primary providers. Unlike our Greenstone
alerting service, Hermes only aggregates notifications from different sources and
is limited by the underlying types of alerts that it receives. It was this restriction
that motivated the work presented in this paper.

Dias [9] adopts the basic ideas of Hermes. Dias is a distributed system based
on peer-to-peer communication. The data model of Dias is based on simple free-
text documents. Dias’s subscriptions support Boolean queries with proximity
operators. We see this text-focussed approach as too limited for an open digital
library supporting collections of arbitrary document types (e.g., music, pictures,
text documents).

Tools such as Hermes and Dias suffer significantly from not being integrated
with the digital library. For example, observation of events and access to docu-
ments is problematic. In addition, identifying different versions of the same work
is particularly difficult without explicit knowledge of the underlying structure
of collections or a set of valid document identifiers. Similarly, approaches that
rely on poor sources such as the active support from publishers and DLs or on
monitoring publishers’ web-pages to extract event information cannot hope to
lead to sophisticated event notifications.

Summarizing the related work, most existing systems only support the de-
tection of new documents. EPrints additionally supports changed documents.
Advanced subscriptions, e.g., regarding indexes or classifications, are not avail-
able. Often systems are implemented in a centralized manner. Support for fed-
erated or distributed collections could not be found. Only mediating systems
support open event sources; unfortunately they receive only poor support and
are extremely limited in their access to pertinent and detailed data.

8 Conclusions

This paper proposed the design and implementation of a comprehensive alerting
service for digital libraries. We have shown that existing alerting services for
DLs have considerable shortcomings: limited types of supported events; limited
range of subscription model and notification options; no support for distributed
collections; restricted support for federated collections.

To address these limitations, we presented the detailed design of the Green-
stone alerting service, describing both stand-alone and networked implementa-
tions. The Greenstone alerting service supports a much wider range of event
types than previous systems, and supports events in federated and distributed
collections. Our alerting service is open to other event sources and providers.

Our design for a comprehensive alerting service can readily be applied to
a wide range of DL systems, as it reuses existing DL components, and requires
only protocol-level access to the DL to which it is attached. In addition, by using
existing DL system functionality, it minimizes both programming and run-time



demands of the alerting service. Using well understood principles from event-
based systems, efficiency can be achieved without building extensive specific
indexes for alerting. We demonstrated the scalability of our approach through a
series of test of both the distributed event forwarding system and the subscription
filtering component.

We plan to evaluate further performance optimization strategies of the filter
algorithm. We also plan to further analyse the scalability of the distributed
service under a high load of subscribers, particularly when matching a high
proportion of content-text subscriptions. Initial results are promising, but we
wish to scrutinise this particular issue further to ensure scalability. Another
extension involves a modification of the Greenstone protocol: We plan to develop
a structured methodology to determine the appropriate query service to be used
for evaluating a given filter predicate.

Acknowledgements This work was supported by the University of Waikato and
EPSRC grant (GR/S84798).

References

1. D. Bainbridge, G. Buchanan, J. R. McPherson, S. Jones, A. Mahoui, and I. H.
Witten. Greenstone: A platform for distributed digital library applications. In
Proceedings of the ECDL, Sept. 2001.

2. D. Bainbridge, K. J. Don, G. R. Buchanan, I. H. Witten, S. Jones, M. Jones, and
M. I. Barr. Dynamic digital library construction and configuration. In Proceedings
of the ECDL, Sept. 2004.

3. S. Bittner and A. Hinze. Classification and analysis of distributed event filtering
algorithms. In Proceedings of COOPIS, October 2004.

4. G. Buchanan and A. Hinze. A distributed directory service for Greenstone. Techni-
cal Report 1/2005, Department of Computer Science, University of Waikato, New
Zealand, Jan. 2005.

5. G. Buchanan and A. Hinze. A generic alerting service for digital libraries. In
Proceedings of the JCDL, June 2005.

6. F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching for content-
based publish/subscribe systems. Technical report, INRIA, France, 2000.

7. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes – a
notification service for digital libraries. In Proceedings of the JCDL, June 2001.

8. A. Hinze and D. Faensen. A Unified Model of Internet Scale Alerting Services. In
Proceedings of the ICSC (Internet Applications.), Dec. 1999.

9. M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Information
alert in distributed digital libraries: The models, languages, and architecture of
Dias. In Proceedings of the ECDL, Sept. 2002.

10. A. Schweer. Alerting in Greenstone 3. Master’s thesis, University of Dortmund,
Germany, May 2005.


