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Abstract. A challenging problem in data mining is the application of efficient 
techniques to automatically annotate the vast databases of biological sequence 
data. This paper describes one such application in this area, to the prediction of 
the position of signal peptide cleavage points along protein sequences. It is 
shown that the method, based on Bayesian statistics, is comparable in terms of 
accuracy to the existing state-of-the-art neural network techniques while 
providing explanatory information for its predictions. 
 

1 Introduction 
 
The amount of sequence data generated by experimental biologists and made 
available via Internet databases is growing at an increasing rate. For example, 
SWISS-PROT [2], the leading protein sequence database, consists of 170140 entries, 
with an additional 1.6 million sequences in a supplementary database [2] awaiting 
addition. One of the significant issues with data of this nature is how to annotate 
sequences with properties that can occur anywhere along the length of the sequence. 
Manual experimental annotation in a biologist’s laboratory is reliable but time 
consuming and expensive. Automatic annotation is fast and cheap. 
 The case study presented in this paper is the problem of determining signal 
peptides. Given a database of protein sequences with the signal peptides annotated, 
can a machine learning system discover the rules underlying the form and nature of a 
signal peptide? 
 Signal peptides are important because they direct proteins to their correct 
destination within the cell. Proteins need to have this “address” because they serve a 
multitude of functions, such as being reaction catalysts and transport molecules [12]. 
They are also the basic building blocks of the cell itself, and signal peptide failures 
can lead to diseases such as cystic fibrosis [3]. Knowledge of how signal peptides 
work is also useful when designing new drugs, which are often created in the form of 
proteins and therefore must have the correct signal attached to them [3]. 
 Once a protein reaches its destination, its signal peptide is no longer needed. 
By a careful process of alignment, the signal peptide is cleaved off, severing it from 
the rest of the protein. An important point is that the signal peptide is always cleaved 
at exactly the same point along the protein sequence. The question posed here is: is it 
possible to predict this unique cleavage point for a newly sequenced protein? 
 The basic process described in this paper involves firstly extracting features 
from the training sequences. The frequencies of the features are determined and 
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converted into probabilities, and then Bayes’ Theorem is applied to predict the 
posterior probability of a cleavage point given each feature. When a test sequence is 
presented, the posterior probability of a cleavage point at each position along the 
sequence can be calculated and the position with the highest posterior is taken to be 
the predicted cleavage site. 
 This relatively simple Bayesian method is comparable to state-of-the-art neural 
network methods. Furthermore, this method can provide rudimentary explanations (in 
terms of ranked features) for its predictions. Such explanations are important for 
biologists trying to understand the nature of signal peptides. 
 In the next section, the biological and machine learning background to this 
paper is reviewed. Section 3 describes my proposed Bayesian method, and Section 4 
reports on some results using a signal peptide dataset. Section 5 is the conclusion and 
mentions some issues for future research to address. 
 
2 Background 
 
2.1 Biological Background 
 
All protein molecules are made up of a linear sequence of smaller molecules called 
amino acid residues. There are twenty amino acid residues in total. Each residue by 
convention has two abbreviations: a three-letter abbreviation and a one-letter 
abbreviation. For example, the abbreviations of Alanine are Ala and A. All twenty 

residues and their standard abbreviations are 
listed in Table 1.  
 Computationally speaking, a protein 
sequence can be viewed as a string of symbols 
(the residues) drawn from an alphabet of size 
twenty. Although it is also possible to augment 
each residue with a set of its properties, in this 
paper I consider only the basic sequence itself. 
 Signal peptides have a known structure 
that can aid in predicting the cleavage point, 
but within that structure there is considerable 
variability that makes the task difficult. In this 
study’s datasets, the length of the signal peptide 
varies from five residues up to 90 residues. The 
average length is approximately 25 residues. In 
contrast, the total length of a protein can be 
thousands of residues. Signal peptides always 
occur at the beginning (the N-terminal) of the 
protein. 
 According to von Heijne [13] and 

Neilson & Krogh [7], a signal peptide consists of three main regions. Firstly, there is 
the n-region near the N-terminal, which comprises positively charged residues and is 
the greatest contributor to the variability in the length of a signal peptide [3]. This is 
followed by a so-called h-region, which is a longer stretch of eight to fifteen 
hydrophobic residues. Finally, near the cleavage point, there is typically a c-region, 

Table 1. Amino acid residue 
abbreviations. 

Residue Abbreviations 
Alanine  Ala  A 
Arginine  Arg  R 
Asparagine  Asn  N 
Aspartic acid  Asp  D 
Cysteine  Cys  C 
Glutamic acid  Glu  E 
Glutamine  Gln  Q 
Glycine Gly G 
Histidine  His  H 
Isoleucine  Ile  I 
Leucine  Leu  L 
Lysine  Lys  K 
Methionine  Met  M 
Phenylalanine  Phe  F 
Proline  Pro  P 
Serine  Ser  S 
Threonine  Thr  T 
Tryptophan  Trp  W 
Tyrosine  Tyr  Y 
Valine  Val  V  



consisting of around five mostly uncharged amino acids. This structure is depicted in 
Figure 1, using the sequence for human growth hormone as an example. 
 

MATGSRTS LLLAFGLLCLPWL QEGSA FPTIPLSRLFDN…. 
n-region h-region c-region Mature Protein… 

 
Signal Peptide  

Fig. 1. Structure of a signal peptide for human growth hormone. 
 
 The most important part of the signal peptide is the h-region: it serves the dual 
purpose of both encoding the protein’s destination, and it is also used to align the 
signal peptide for cleavage when it finally arrives [12]. 
 It should be noted that each of these regions are not necessarily a contiguous 
run of like residues. The hydrophobic h-region, for example, can be interrupted more 
than once by sequences of non-hydrophobic residues. This contributes to the 
difficulty of making predictions.  
 
2.2 Signal Peptide Prediction Background 
 
The earliest signal peptide prediction method was known as “the (-3,-1) rule” [12, 8]. 
This basically followed from the observation that positions –3 and –1 upstream (i.e. to 
the left) of the cleavage point were often “small and neutral”. Using this simple rule 
seemed sufficient when the number of known signal peptides was small, but it has 
proved inadequate as the amount of data has increased. 
 Chou [3] extended the (-3,-1) rule when he introduced the subsite coupling 
approach. Basically, he formulated an algorithm which takes into account additional 
positions such as +1, as well as the expected lengths of each of the regions. The 
algorithm outputs the position on the sequence most likely to be the actual cleavage 
point. Although Chou reports that the results are encouraging, this method was trained 
on different data than the other methods were trained on and so it is difficult to make 
comparisons. An important point is that both of these approaches operate directly on 
variable-length sequences. 
 In contrast, more recent machine learning approaches do not operate directly 
on the variable length sequences but instead preprocess the sequences into fixed 
length records and transform the problem into one of classification rather than 
sequence annotation. For example, if the fixed record size is ten positions and the 
original sequence length is, say, 34, then 24 fixed length records would be produced 
from this single original sequence. Such preprocessing fits well with existing machine 
learning tools because they demand fixed-length data, but it does have a number of 
drawbacks. 
 The main one is that since each original sequence only has a single cleavage 
point, there is going to be a high abundance of negative examples (in a single 
sequence, only one fixed length record ends in the cleavage point and is therefore 
labelled as positive; the rest are labelled negative). Many machine learning algorithms 
given this biased data may simply predict every sequence as negative in order to 



obtain a high level of testing accuracy. To eliminate this problem and balance the 
classes more evenly, a considerable number of negative examples have to be 
discarded – a situation that could result in important information being lost. 
 The currently best-known and most widely used machine learning solution is 
the SignalP suite [1, 7, 8]. SignalP version 1 was a solely neural network approach. 
The neural network had a feedforward architecture and was trained on fixed length, 
sparsely encoded records derived from a “moving window” [8]. Hidden Markov 
models were added as a second predictor in SignalP version 2 [7], which increased 
accuracy slightly but also had the added benefit of being able to discriminate with 
high accuracy between signal sequences and non-signal sequences. SignalP version 3 
[1] is a refinement of both the neural network and hidden Markov model approaches, 
with a claimed significant increase in prediction accuracy. Table 2 summarises the 
prediction accuracy results as reported by Bendtsen et al. [1]. Different neural 
network architectures have failed to provide a significant improvement over Signal P 
(see, e.g., [4, 9]). 
 
Table 2. Best recorded accuracies of the SignalP suite of predictors 

 Eukaryotyes Gram- Gram+ 
SignalP1 70.2 79.3 67.9 
SignalP2 72.4 83.4 67.4 
SignalP3 79.0 92.5 85.0 

 
 There are number of points worth mentioning about these results. Firstly, 
separate predictors were trained from data from three different sources: Eukaryotes 
(being all organisms except viruses, bacteria, and blue-green algae), and two types of 
Prokaryotes (bacteria): Gram-positive and Gram-negative. Other approaches do not 
subdivide the data at all and therefore the results are not directly comparable. 
 One significant weakness of the SignalP evaluations was that they performed 
only five-fold cross validation. In most cases, 10-fold cross validation is the minimum 
required for statistical significance [14].  
 Support Vector Machines (SVMs) have also been applied to this problem. Vert 
[11] developed a new SVM kernal for strings and applied his method to cleavage 
point prediction. His dataset was the same as that used to train SignalP1, but he did 
not subdivide the data. He reports 68% accuracy in predicting the cleavage point. 
 Some authors have attempted to incorporate residue properties into their 
systems to improve prediction accuracy. Recently, Smith [10] used a naïve Bayes-
based text mining approach and reported accuracy comparable to Vert’s SVM 
approach described above. Maetschke et al. [6] compared a number of different 
encoding of Blomaps using the WEKA machine learning workbench [14] and came to 
the conclusion that a particular encoding called BLOSUM62 combined with naïve 
Bayes produced the best results. 
 One difficulty when comparing these approaches is the lack of a standard 
benchmark dataset. It should be noted that Vert [11], Smith[10], and SignalP version 
1 [8] all use the same dataset, namely that developed for SignalP version 1. Other 
authors have generated their own datasets from the SWISS-PROT database, and 
therefore it is quite possible that differences in accuracy are largely due to differences 
in data. To date, the SignalP2 dataset is publicly available but the SignalP3 dataset is 
not available.  



3 Fast Bayesian Cleavage Point Prediction 
 
3.1 Dataset Description 
 
Before describing the method, it is necessary to briefly describe the sequence data 
used. 
 The dataset in this study is the same dataset used to train SignalP version 2. 
Each record consists of three lines: firstly, a biological description of the sequence in 
English which ties the sequence to its original record in SWISS-PROT; second, the 
residues sequence from the N-terminal all the way to position 29 downstream of the 
cleavage site; and thirdly, an annotation showing which residues are part of the signal 
peptide, which are part of the mature protein, and which is the cleavage site (defined 
as the first residue of the mature protein). Figure 2 below depicts two sample records 
taken from the dataset. 
 

51 11SB_CUCMA     21 11S GLOBULIN BETA SUBUNIT PRECURSOR. 
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVWQQHRYQSPRACRLE 
SSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
 
54 41BB_MOUSE     24 T CELL ANTIGEN 4-1BB PRECURSOR. 
MGNNCYNVVVIVLLLVGCEKVGAVQNSCDNCQPGTFCRKYNPVCKSCPPSTFSS 
SSSSSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 

Fig. 2. Two records taken from the dataset. 
 
 The method by which this dataset was derived is worth briefly mentioning. 
SWISS-PROT contains protein sequences both with experimentally verified cleavage 
points, and without them. The database is constantly being updated as new protein 
sequences are added, and errors in annotations of existing sequences are corrected. 
Only sequences with experimentally-verified cleavage points were included in the 
dataset. Furthermore, some sequences were removed if they met certain criteria, for 
example having an origin in a virus gene [7]. 
 The next step in the dataset creation was homology reduction. Many protein 
sequences occurring in nature are homologous, that is, they share long common 
subsequences which may include the signal peptide. This means that simple string 
alignment could result in a very high accuracy when predicting cleavage points on test 
sequences homologous to the training sequences. To eliminate this potential source of 
bias, for all pairs of homologous sequences in the dataset, Neilson & Krogh [7] 
discarded one of the sequences. By this method, more than 50% of the sequences in 
the dataset were discarded. 
 The final dataset contains 1666 protein sequences, of which 1137 are 
Eukaryote sequences, 697 are Gram negative Prokaryote sequences, and 280 are 
Gram positive Prokaryote sequences. 
 
3.2 Training Method and Model 
 
I will now describe the Bayesian method used for building a model based on the 
training data, and applying it to the prediction of signal peptide cleavage points. This 



approach is relatively simple, fast to train, and as shall been seen in the next section, 
has accuracy comparable to existing systems. 
 The basic idea is to define a set of features that protein sequences can have, 
extract from the training set the frequencies of those features, and convert those 
frequencies into posterior probabilities. This set of features and their posteriors will be 
referred to as the model. The model is then used to predict the final posterior 
probability of a cleavage point at each position along a test sequence given all the 
features on the test sequence.  
 What are the features? I define two types of feature: a pattern of residues that 
may occur anywhere along a sequence, and a pattern of residues at a fixed position 
relative to some other position. Table 3 gives some examples of features extracted 
from the human growth hormone sequence depicted in Figure 1. I have used an “@” 
symbol to denote patterns with a position specified. 
 
Table 3. Examples of features extracted from training dataset. 

Feature Description 
A The residue Alanine. 
C_L Cysteine, followed some other residue, followed by Leucine. 
L@-10 Leucine at position –10 relative to some position c. 
C_L@-3 Cysteine at position –3 and Leucine at position –1, both relative to some 

position c. 
 
 The following features were extracted from the training set because they 
resulted in the best accuracies during informal testing: all of the features comprising 
single residues, without any limits on the distance of the residue from the cleavage 
point (e.g. see the first and third rows of Table 3); and all the diresidue sequences 
separated by exactly one position (e.g. see second and fourth rows of Table 3). 
However, only the position-specific diresidue sequences (i.e. those with an “@” 
symbol) starting at –3 were extracted. The reasoning for this is that such an approach 
makes the standard simplifying naïve Bayes assumption (i.e. that the occurrence of a 
residue at a particular position relative to the cleave point is independent of the 
residues at other positions given the cleave point). However, this does not hold for (-
3,-1), which are considered non-independent. By having a specific feature for the 
diresidue pattern at (-3,-1), the system can therefore effectively model the (-3,-1) rule 
mentioned earlier. 
 Now, for every feature, a probability is calculated. Suppose f is a single residue 
or pattern of residues without a specific position, and f@p is the same pattern with a 
specific relative position. The probability P(f) is defined as the prior probability of 
f@p, and is determined by calculating the total fraction of occurrences of f in the 
training set, in both signal and non-signal portions of the sequences. For example, if 
f=A, then P(f) is simply the total fraction of residues in the training set that is Alanine. 
 For each feature, a conditional probability is also calculated. Let cleave(c) 
denote the proposition that position c on the sequence is the cleavage point. P(f@p | 
cleave(c)) is defined as the fraction of occurrences in the training set of the feature at 
a particular fixed position relative to the known cleavage point. 
 For example, from the dataset, the prior probability of the single-residue 
feature L, P(L), is 0.127, but P(L@-1|cleave(0)) = 0.019 and P(L@-15|cleave(0)) is 
0.285. While the priors capture the general abundance of residues in the training data, 



the conditionals capture the distribution of residues across positions relative to the 
cleavage point. I also compute conditional probabilities for the patterns occurring at 
positions (-3,-1), as mentioned above. 
 It is now time to explain how the posterior probabilities used for prediction are 
computed. Essentially, this is an application of Bayes’ Theorem. Equation (1) shows 
how the priors and conditionals are combined to compute the overall probability of a 
cleave at some position c. F is defined as the set of all features on a particular 
sequence with positions relative to some position c. The training model consists of a 
posterior probability for every feature present in the training data. 
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 We now come to the prediction algorithm. Given a test sequence with an 
unknown cleavage point, the system predicts a score for every position c on the test 
sequence. The score is the posterior probability as defined in Equation (1) above. 
When every position is scored, the posteriors are normalised and the position with the 
highest posterior probability is the predicted cleavage point. Figure 3 depicts the 
output of the system when tested on the sequence for human growth hormone 
depicted in Figure 1 after training on the entire dataset minus the human growth 
hormone sequence. The predicted probability of a cleave at the actual cleavage site is 
0.87. 
 

MATGSRTSLLLAFGLLCLPWLQEGSAFPTIPLSRLFDNAMLRAHRLHQLAFDTYQE 
SSSSSSSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
… 
W S 0.00277371  
L S 0.000196609  
Q S 0.00609159  
E S 0.00524503  
G S 0.0381914  
S S 0.0577272  
A S 0.0125238  
F C 0.874029  ************ 
P M 0.000244162  
T M 0.0015616  
… 

Fig. 3. Normalised predictions for human growth hormone. Only residues with a non-negligible probability 
of being the cleavage point are shown. 
 
4 Results 
 
I evaluated the method described in the previous section using Leaving One Out 
Cross Validation (LOOCV) on the SignalP version 2 dataset (the dataset for SignalP3 
is different and currently unavailable). LOOCV was applied to the entire dataset, as 
well as the same three subsets that SignalP was trained on, namely the Eukaryote, 
Gram positive Prokaryotes, and Gram negative Prokaryotes subsets. 
 
 
 



4.1 Accuracy 
 
Compared to computationally more expensive methods such as neural networks, this 
approach results in comparable testing accuracy. Table 4 compares the accuracies 
achieved by SignalP version 2 and this method, both of which were trained on the 
same dataset. A comparison with other versions of SignalP is not as useful because of 
the different datasets being used. 
 
Table 4. Comparison of SignalP2 and the Bayesian method described in this paper. 

 Eukaryotyes Gram- Gram+ 
SignalP2 72.4 83.4 67.4 
Bayesian 69.2 81.5 66.5 

 
 As can be observed, the Bayesian method is consistently 1-2% less accurate 
than SignalP2. However, such a slight difference is likely to be a reflection of the 
statistical variation arising from Neilson & Krogh’s [7] use of the less-rigorous five-
fold cross validation for testing. In contrast, the Bayesian method utilised the more 
reliable LOOCV method. The difference may also reflect the independence 
assumption made about all positions except (-3,-1): it is possible that including 
additional diresidue features could further increase accuracy. (Interestingly, treating 
positions (-3, -1) as non-independent contributes to a large proportion of the accuracy. 
If this feature is not extracted, and instead only two independent features for positions 
–3 and –1 are used, then the accuracy is reduced by about 25%.) 
 I also tested the predictive performance of the Bayesian approach when trained 
on the entire SignalP2 dataset without subdivision. Again, LOOCV was applied. The 
accuracy for this experiment was 71.2%, which compares favourably with Vert’s 
SVM approach [11] that achieved 68% accuracy, albeit on the (mostly similar) 
SignalP1 dataset. 
 Aside from raw accuracy, one can also consider how close erroneous 
predictions are from the actual predictions. In Figure 4, the distribution of predicted 
cleavage sites against proximity to the real cleavage site are depicted following 
LOOCV on the entire SignalP2 dataset. The diagram clearly shows that the majority 
of predictions (91.4%) lie 
within –5 and +5 of the actual 
cleavage site even though the 
raw accuracy is 71.2%. It is 
quite possible that many of 
these predictions are correct, 
but have been misclassified by 
the experimental biologist, as 
suggested by Hiller et al. [4].  
 Finally, it is necessary 
to comment on the relationship 
between the value of the 
posterior probability and the 
confidence of the prediction. 
In other words, is the posterior probability calculated a good indicator of the 
reliability of the prediction? I performed an analysis on the results of the LOOCV 
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Fig. 4. Accuracy of prediction vs. percentage frequency after 
LOOCV on entire dataset. 



experiment applied to the entire dataset, and found a positive correlation between 
posterior probability and true positive rate. The result of this analysis is depicted 
graphically in Figure 5. 
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Fig. 5. Posterior probability of predicted cleavage site vs. true positive percentage. 
 
 Clearly, predictions with a high posterior probability are to be considered more 
confident than predictions with a low posterior probability. For example, where the 
best predicted cleavage point has a probability of only 0.5 or above, the true positive 
rate was only 75%. However, for predictions with a posterior of 0.95 and above, the 
true positive rate is between 85% and 90% - quite a significant increase. 
 
4.2 Explanations 
 
The Bayesian method has one significant advantage over neural network approaches: 
namely, the ability to extract the reason for the system making a particular prediction. 
Since the overall posterior probability of a cleave is simply the product of the 
individual posteriors of a cleave given a single feature, it is possible to rank the 
features in a test sequence by how much they contribute to the final prediction. In 
Figure 6, the features contributing to the human growth hormone prediction shown in 
Figure 3 are listed in decreasing order of individual posterior. 
 
A@-1 (5.3), GA@-3,-1 (3.7), L@-12 (2.8), P@1 (2.8), L@-11 (2.6), 
L@-9 (2.6), L@-16 (2.1), L@-17 (1.6), L@-6 (1.6), P@4 (1.5),  
F@-14 (1.4), Q@-5 (1.4), T@2 (1.4), L@-18 (1.4), W@-7 (1.3),  
A@-15 (1.3), S@-2 (1.2), S@-19 (1.1), R@7 (0.9), S@6 (0.9),  
C@-10 (0.9), T@-20 (0.9), G@-3 (0.8), F@9 (0.8),I@3 (0.7), 
G@-13 (0.6), F@0 (0.6), E@-4 (0.5), L@8 (0.5), L@5 (0.4), P@-8 (0.2) 

Fig. 6. Features and their posteriors ranked from most significant to least significant, for the human growth 
hormone prediction. 
 
 It can be seen that the biggest contributor to the prediction is the presence if 
Ala at position –1. The pattern of Gly and Ala at positions (–3, –1) is the second 
largest predictor, and this is followed by the occurrence of Leu at multiple positions 
from –6 to –19, which is where the hydrophobic region is expected to be. Pro at 
positions 1 and 4 also has a high posterior. 
 



5 Conclusion 
 
To conclude, an efficient and effective method of predicting signal peptide cleavage 
points along protein sequences has been presented. I have shown that computationally 
more expensive approaches are not necessarily better in terms of accuracy than 
simpler Bayesian approaches, and the Bayesian approach described here can offer 
some degree of explanations for its predictions. Some of the issues involved in 
applying data mining techniques to biological datasets (such as dealing with variable 
length sequences) have also been explored. 
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