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ABSTRACT
The resistive dissipation of nonlinear shear wave disturbances is discussed. We consider an incom-

pressible, ““ open ÏÏ X-point geometry, in which mass and energy are free to enter and leave the reconnec-
tion region. An analytic treatment is possible which uniÐes many of the dynamic and steady-state
X-point solutions obtained previously. We show that while Ðeld disturbances in the plane of the X-point
have the potential for rapid energy release when suitably driven, perpendicular shear disturbances dissi-
pate slowly, at a rate Dg1@2, where g is the plasma resistivity. This behavior can be understood in terms
of the absence of Ñux pileup in nonplanar shear wave disturbances. We conclude that only planar shear
waves have the potential for fast magnetic energy release.
Subject headings : MHD È plasmas

1. INTRODUCTION

In a highly conducting plasma, changes in magnetic Ðeld
topology can occur only by magnetic reconnection, a
resistive process involving the cutting and rejoining of Ðeld
lines at null points in the Ðeld. Historically, the simplest
models of reconnection involve the advection of magnetic
Ñuid across two-dimensional X-point separatrices, the Ðeld
lines being reconnected at the neutral point &(Forbes
Priest Analytic models are provided by the linear1987).
theory of ““ closed,ÏÏ arbitrarily compressible X-points (Craig
& McClymont These models are1991, 1993 ; Hassam 1992).
““ fast,ÏÏ the reconnection rate being e†ectively independent
of the resistivity, but stalling can occur when the ideal-
ization of zero gas pressure is relaxed (see &McClymont
Craig 1996a).

Of course, to describe the explosive collapse of large-scale
magnetic Ðelds requires a complete nonlinear theory, which
probably involves the breakdown of the MHD approx-
imation. Aside from heuristic, semiquantitative approaches,
nonlinear work generally requires extensive computer simu-
lation at physically unrealizable levels of plasma resistivity

This requirement holds even for simpliÐed(Biskamp 1994).
planar MHD systems. Accordingly, most numerical studies
are limited either to phenomenology or to assessing the
speed of the magnetic merging on the basis of empirical
scalings with resistivity.

Quite recently, it has been shown that nonlinear two-
dimensional and three-dimensional reconnection solutions
can be constructed using incompressible theory in ““ open ÏÏ
geometries & Henton & Fabling(Craig 1995 ; Craig 1996).
These studies conÐrm that fast reconnection can occur by
the Ñux pileup of planar Ðeld disturbances at the onset of
the reconnection region. However, like the compressible
linear theory, the solutions imply that the reconnection rate
stalls if the hydromagnetic pressure outside the reconnec-
tion region is signiÐcantly less than the plasma pressure at
the neutral point.

One possibility of eluding the pressure problem is to
explore shear wave disturbances of magnetic X-points

Shasharina, & Pegararo &(Bulanov, 1990 ; Hassam

Lambert Since shear waves carry magnetic energy1996).
towards the neutral point without compressing the plasma,
they o†er an alternative path towards fast reconnection (as
discussed by & Craig This provides theMcClymont 1996b).
motivation for the present work : can shear waves in
““ open ÏÏ planar X-point geometries lead to fast magnetic
energy dissipation?

The problem is formulated in We present a uniÐed° 2.
treatment in which previous planar incompressible solu-
tions emerge as limiting cases &(Clarke 1964 ; Sonnerup
Priest et al. & Henton1975 ; Bulanov 1990 ; Craig 1995).

provides a detailed analysis of disturbances withSection 3
shear perpendicular to the plane of the X-point. An exact
eigenfunction analysis is given for the dissipation of ““ plane
wave ÏÏ solutions ; these results are then reinforced by con-
sidering the general wave solution for traveling wave
packets. discusses the propagation of shear dis-Section 4
turbances in the plane of the X-point in terms of the Klein-
Gordon equation valid in the absence of resistivity. Our
conclusions are presented in ° 5.

2. PLANAR X-POINT EQUATIONS

2.1. Introduction
We assume that the plasma is governed by the incom-

pressible resistive MHD equations. We assume an open
geometry, which allows the Ñow of mass and energy
through the bounding surface. Adopting dimensionless
variables, in which Ñuid velocities are expressed in units of
the Alfve� n speed at the boundary, the momentum and
induction equations may be written in the form

L¿
Lt

] (¿ Æ $)¿\ J Â B [ $P , (2.1)

LB
Lt

\ $ Â (¿ Â B) [ g$ Â J , (2.2)

where J \ $ Â B and g is the dimensionless plasma resis-
tivity, assumed constant and uniform. We neglect viscous
e†ects for reasons discussed in theAppendix.
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The system is conservative apart from the resistive energy
losses of the plasma. The small value of the classical resis-
tivity (g D 10~12) means, however, that the ohmic dissi-
pation rate,

Wg \
P

J2 dV 4 gSJ2T , (2.3)

is quite negligible unless the plasma contains strong local-
ized currents. The central problem of magnetic reconnec-
tion theory is to demonstrate that large current densities
can develop over small length scales to enhance the weak
coronal energy-loss rate. The aim is to develop two-
dimensional and three-dimensional models in which the
dissipation rate is ““ fast,ÏÏ for then scales independently ofWgg and there is a possibility of explaining the explosive
energy release of the solar Ñare.

2.2. Planar Evolution Equations
In what follows we assume a planar geometry in which z

is the ignorable coordinate. We choose units for which the
volume of interest is bounded by the (Gaussian) surfaces
o x o\ o y o\ 1. We regard o x o\ 1 as deÐning inÑow surfaces
on which we are free to specify boundary conditions ; the
form of the solution then determines the outÑow conditions
on o y o\ 1.

Taking the Ñux and stream function representations

B(x, y, t) \ $t Â zü ] Zzü , ¿(x, y, t) \ $/ Â zü ] W zü

(2.4)

guarantees the conservation equations $ Æ B \ $ Æ ¿\ 0.
In component form, we have Z) andB \ (t

y
, [t

x
, ¿\

W ). We refer to the z-components as the perpen-(/
y
, [/

x
,

dicular or normal components of the Ðeld.
The planar Ðeld components are a†ected only by planar

shear disturbances, which can be isolated by taking the curl
of the momentum equation

L
Lt

(+2/)] [+2/, /]\ [+2t, t] , (2.5)

Lt
Lt

] [t, /]\ g+2t ; (2.6)

the normal components are given by

LW
Lt

] [W , /]\ [Z, t] (2.7)

and

LZ
Lt

] [Z, /]\ [W , t]] g+2Z , (2.8)

where [t, /] denotes the Poisson bracket

[t, /]\ t
x
/
y
[ t

y
/
x

.

As & Henton have emphasized, it is impor-Craig (1995)
tant to develop solutions in which the Poisson brackets are
nonvanishing. Consider, for example, the bracket [t, /]
that describes the advection of the Ðeld by the Ñow. If this
bracket vanishes, Ñux transfer across the separatricesÈthat
is, topological changeÈcan be accomplished only by global
resistive di†usion, which is usually very slow. The basic idea
of reconnection is to speed up the rate of Ñux transfer by
advecting material across the separatrices ; di†usion then

occurs only in localized high current regions where the Ñow
vanishes. Thus a necessary condition for reconnection is
that [t, along the magnetic separatrices./]D 0

2.3. Nonlinear X-Point Disturbances
It is well known that potential Ðeld models o†er the sim-

plest equilibrium solutions to the planar reconnection equa-
tions. In developing steady-state reconnection solutions,

& Henton consider the superpositionCraig (1995)
/\ ap ] f (x), t\ bp ] g(x), where p(x, y) is an arbitrary
potential function. In fact, p \ xy provides the only allow-
able construction!

Motivated by these considerations, we consider time-
dependent solutions of the form

/\ axy ] f (x, t) , t\ bxy ] g(x, t) . (2.9)

The Ðeld and Ñow potentials deÐne nonlinear disturbance
Ðelds in the plane of the X-point. When f\ g \ 0, we
recover an equilibrium X-point in which all Ñows are con-
strained to the Ðeld lines. Setting a \ 0 turns o† the stagna-
tion point Ñow. Although this restriction is appropriate to
closed magnetic X-points bounded by, say, a rigid super-
conductor we must allow for the possibility of sustained
background Ñows in open X-points where mass and energy
can Ñow through the boundary surfaces o x o, o y o\ 1. In fact
our solutions will show that, in contrast to the results for
closed, arbitrarily compressible X-points (Craig & McCly-
mont & Watson fast1991, 1993 ; Craig 1992, Hassam 1992),
incompressible merging is impossible unless the reconnec-
tion is driven by sufficiently strong advective Ñows.

We model perpendicular disturbances by taking

W \ W (x, t) , Z\ Z(x, t) , (2.10)

which represents a plane wave, oriented parallel to the
separatrix x \ 0, propagating disturbances normal to the
plane of the X-point. This form describes only one class of
shear wave solutions, but does allow a uniÐed mathematical
treatment of the dissipation problem. In special cases,
however, a more general treatment is possible. We illustrate
this in where we consider wave-packet propagation° 3.5,
under the assumption /\ g \ 0.

shows typical magnetic Ðeld lines for the dis-Figure 1
turbed X-point. The planar Ðeld disturbance of Figure 1a
distorts the y \ 0 separatrix of the equilibrium Ðeld. By
contrast, the normal Ðeld disturbance of beingFigure 1b,
nonreconnective, leaves the equilibrium separatrices intact.

Substituting equations and into the induction(2.9) (2.10)
and momentum equations yields the system

df
dt

\ bxg
x
] 2af [ 2bg , (2.11)

dg
dt

\ bxf
x
] gg

xx
, (2.12)

dW
dt

\ bxZ
x

, (2.13)

dZ
dt

\ bxW
x
] gZ

xx
, (2.14)

where the Lagrangian operator is given by

d
dt

4
L
Lt

] ax
L
Lx

.
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FIG. 1a FIG. 1b

FIG. 1.È(a) Field lines for a typical planar shear disturbance. Bold lines : Separatrices t\ 0. (b) Field lines for a normal shear disturbance. This
disturbance, in contrast to the planar shear disturbance of (a), does not drive reconnection, since the separatrix lines x \ 0, y \ 0 are unchanged by the
addition of normal shear.

This system is very convenient to analyze, since the planar
and normal disturbances of the Ðeld evolve independently.
We shall take b º 0 for deÐniteness. Note that the choice
a \ 0 means that material is being washed into the
separatrix surface x \ 0 by the stagnation point Ñow, con-
sistent with regarding x \ [1 and x \ 1 as inÑow surfaces
for the Ñuid. In fact, we shall take these surfaces to be
physically equivalent and discuss only the half space x º 0.

2.4. Solutions for Special Cases
Equations already incorporates several mag-(2.11)È(2.14)

netic merging models discussed in the literature. The
steady-state reconnection solution of & HentonCraig

is recovered by setting and requiring that all(1995) g
t
4 E

other time derivatives vanish. This solution describes the
reconnection of curved Ðeld lines washed into the current
layer x D g1@2 by the background Ñow (a \ 0, W \ Z\ 0).
When b \ 0, the annihilation model of & PriestSonnerup

is obtained : f\ bg/a \ 0. These solutions are fast,(1975)
but they require prohibitive external pressures to sustain
the merging.

More speciÐcally, from we Ðnd that theequation (2.1)
pressure has the form

P(x, y, t) \ P0(t)[ 12[a2(x2] y2) ] Y 2][ byY , (2.15)

where Y (x, denotes the y-component of the dis-t) 4 [g
xturbance Ðeld. Since the steady-state solution implies that Y

scales as g~1@2 et al. see also must(Craig 1995, ° 4.2), P0increase as g~1 to avoid negative pressures. The implication
is that fast merging in the limit of small g is unsustainable
(see ° 4.3).

The pressure problem is in fact symptomatic of Ñux
pileup in the current layer. et al. show that ÑuxCraig (1995)
pileup never develops for steady-state merging of the
normal Ðeld components (W \ bZ/a). Consequently, the
ohmic di†usion rate is slow,WgD g1@2.

Turning now to time-dependent solutions, we note that
the simplest model describes the dynamic annihilation of
straight Ðeld lines (b \ 0) advected by a pure stagnation

point Ñow into the di†usion region. The solution for the
planar Ðeld Y (x, t) was Ðrst given by ThisClarke (1964).
solution is the dynamical equivalent of the Sonnerup &
Priest annihilation model and retains the pressure-scaling
problems outlined above.

Finally, we mention the time-dependent shear wave solu-
tion of et al. All background Ñows are nowBulanov (1990).
absent and all nonplanar Ðeld components vanish
(a \ W \ Z\ 0). The remarkable property of this solution
is that, contrary to the models outlined above, the Ðeld
decays rapidly without piling up Ñux at the onset of the
sheet, yet the ohmic dissipation remains weak, WgD g1@2.
This paradox is explained in below.° 3.3

3. DISSIPATION OF PERPENDICULAR SHEAR WAVES

3.1. Solutions for a \ 0
We now consider the time-dependent behavior of the

normal Ðeld components under the restriction of vanishing
background Ñow (a \ 0). This problem has not been dis-
cussed in the literature, although & LambertHassam (1996)
have provided an interesting analysis of perpendicular Ðeld
perturbations for X-points in closed geometries. Their
analysis indicatesÈbut does not proveÈthat is slow.WgUsing equations and with a \ 0 implies that(2.13) (2.14)

W
t
\ bxZ

x
(3.1)

and

Z
t
\ bxW

x
] gZ

xx
, (3.2)

and so nonlinear Ðeld disturbances evolve according to

Z
tt
\ b2x(xZ

x
)
x
] gZ

xxt
. (3.3)

This expression describes the propagation and dissipation
of perpendicular magnetic shear waves.

Consider Ðrst the wave solution in the absence of resis-
tivity,

Z\ W \ G(bt ] ln x) ] H(bt [ ln x) , g \ 0 , (3.4)
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where G and H deÐne the initial wave envelopes. As the Ðeld
G propagates inwards at constant amplitude, the Ðeld gra-
dient builds up as x~1 and increasingly strong currents are
driven close to the origin. The wave can be dissipated
resistively only when the disturbance has localized suffi-
ciently. If we compare with usingg oZ

xx
o o Z

t
o equation (3.4),

we identify

T ^
1
2b

ln
b
g

(3.5)

as the timescale required to achieve the localization x ^
(g/b)1@2, which suggests that the wave achieves the current
density J D g~1@2 before resistive dissipation sets in.

We now conÐrm this result using an exact eigenfunction
analysis.

3.2. Normal Mode Solutions
The Ðeld can be analyzed either as anequation (3.3)

initial value problem or as an eigenvalue problem. Since we
are mainly concerned with the decay rate of the Ðeld under
arbitrary initial conditions, it is convenient to adopt the
eigenfunction approach.

We let Z(x, t) ] ejtZ(x) and assume that all currents
vanish on the boundary surface x \ 1. The eigenproblem is
then

j2Z\ b2x(xZ@ )@] gjZA , Z(0)\ Z@(1)\ 0 , (3.6)

where Z(x) is a complex eigenfunction associated with dis-
crete values of the eigenvalue j \ l] iu. Note that we can
rescale the equation to eliminate the explicit dependence on
resistivity. SpeciÐcally, with Z\ Z(s), we have that

j2Z\ b2s(sZ@ )@] b2ZA , s \ bx/Jgj , (3.7)

which already shows that x ^ g1@2 can deÐne the scale of
the resistive layer only if j is e†ectively independent of the
resistivity. A further change of variable, namely

z\ sinh~1 s \ ln (s ] J1 ] s2) , (3.8)

yields and soj2Z\b2Z
zz

,

Z(s)\ sinh
Aj
b

z
B

(3.9)

is the solution which satisÐes the inner condition Z(0)\ 0.
The dispersion relation is obtained from the condition

that the Ðeld gradient vanishes on the boundary x \ 1, that
is, zB o ln [2b/(gj)1@2] o. This condition gives

j
b

ln
2b

Jgj
\
A
n ] 1

2
B
in , (3.10)

an equation that must generally be solved by iteration.
However, for g small enough we anticipate an oscillatory
eigenfunction with very little resistive decay. In this case we
have arg j ^ n/2 and so

u
b

B
(n ] 1/2)n
ln (2b/Jg)

, lb\ [ 1
2

u2
(2n ] 1)

. (3.11)

These rates are fast since they depend only logarithmically
on the resistivity. In fact, they are asymptotically identical
to the fast scalings obtained for closed compressible X-
points (Craig & McClymont The1991, 1993 ; Hassam 1992).
key di†erence here is that the current amplitude is weak,

J D g~1@2, and so resistive dissipation cannot account for
the rapid Ðeld decay.

3.3. Global Energy Balance
To understand how weak current structures can be

associated with fast decay, it is instructive to consider the
global energy of the Ñuid. We multiply forequation (3.1) W

tby W and integrate over (0, 1). By doing the same for weZ
t
,

deduce that

L
Lt

1
2

SW 2] Z2T \ bSW ZT [ gSJ2T (3.12)

describes the global energy losses of the Ñuid. We see that
the global losses are inÑuenced by a term bSW ZT unrelated
to the ohmic losses of the Ñuid. This term gives the energy
carried out of the volume by shear waves.

To obtain a quantitative result we evaluate SW ZT using
the test functions

Z\ cos (k ln x) , W \ [k sin (k ln x) , k 4
n

o ln g o
,

(3.13)

which mimic the fundamental n \ 0 eigenfunctions. A
simple evaluation, assuming that the product W Z is small
in the di†usion region x \ g1@2, shows that
SW ZT ^ [b2k2. Clearly, it is the o ln g o dependency of this
termÈrather than the g1@2 scaling of dominatesWgÈthat
the decay of the global energy.

The physical interpretation is as follows. Disturbances of
the normal Ðeld propagate along Ðeld lines towards the
current sheet x \ 0. However, most Ðeld lines bypass the
current layer : only disturbances associated with the Ðeld
lines for which can be resistively attenu-t \ t0\ (bg)1@2
ated. The rest escape via wave propagation out of the
volume through the upper and lower surfaces y \ ^1.

3.4. T he Field Decay for a D 0
We now investigate whether the resistive decay of the

normal Ðeld can be enhanced by the inclusion of sustained
stagnation point Ñows. Remembering that inÑow corre-
sponds to a \ 0, we rewrite equations and in(2.13) (2.14)
terms of the comoving frame

q\ t , m \ x exp ([at) , (3.14)

which gives

Wq \ bmZm , (3.15)

Zq \ bmWm ] ge~2aqZmm . (3.16)

The general equation for the Ðeld now reduces to

Zqq \ b2m(mZm)m ] g(e~2aqZmm)q , (3.17)

which is more complicated than equation However, in(3.3).
the absence of resistivity, Z(m, q) is governed by a cylindrical
wave equation with wave speed bm. Accordingly, in place of

we haveequation (3.4),

Z\ W \ G(bq] ln m) ] H(bq[ ln m) , g \ 0 . (3.18)

Let us clarify for the case if materialequation (3.18)
inÑow a \ 0 through the surface x \ 1. We have that
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FIG. 2a FIG. 2b

FIG. 2.È(a) Inward and outward propagating characteristics for a \ [0.5, b \ 1. Inward moving waves localize, driving relatively large currents. (b)
Inward propagating characteristics for a \ [1.5, b \ 1. Since o a o[ b, both waves localize as they propagate inwards.

m \ xe@a@t and so points on the wave proÐle propagate at the
speeds

dx
dt

\ [ (b ] o a o )x ,
dx
dt

\ ] (b [ o a o )x .

These deÐne the (real space) characteristics of the wave,
namely the lines of constant C~\ xe(b`@a@)t and
C`\ xe(@a@~b)t. shows the b \ 1 characteristics forFigure 2
the cases a \ [0.5 and a \ [1.5. It is clear that only
inward-moving waves tend to localize. A special case occurs
when o a o\ b : there is a standing wave plus a component
which propagates inwards at the speed o 2ax o. For o a o[ b
all waves propagate inward, as shown in Figure 2b.

Returning to we can use the argument ofequation (3.18),
to show that any wave produces only weak current° 3.2

densities, independent of the advective Ñow. Thus, compar-
ing the resistive term with implies that x \ (g/b)1@2oZq oagain determines the resistive length scale. It follows that,
although the localization time

T ^
1

2 o o a o^ b o
ln

b
g

(3.19)

is inÑuenced by the background Ñow, the strength of the
current layer and the ohmic dissipation rate remain unaf-
fected at J D g~1@2, WgD g1@2.

3.5. Shear Wave Packet Solutions
Suppose we relax the plane wave constraints W \

W (x, t), Z\ Z(x, t). Does our conclusion of weak resistive
dissipation still hold good?

Returning to equations and and setting /\ 0,(2.7) (2.8)
we obtain

LW
Lt

\ [Z, t] (3.20)

and

LZ
Lt

\ [W , t]] g+2Z . (3.21)

Since

[X, t]\ b(xX
x
[ yX

y
)

represents the directional derivative of X along the equi-
librium Ðeld, we adopt coordinates to simplify this expres-

sion. A suitable choice (f\ xy \ t/b, s \ x/y) leads to
[X, from which it follows thatt]] 2bsXs,

Z\ W \ ^G(t)H
A
t ^ 1

2b
ln s
B

(3.22)

is the general wave solution in the absence of resistivity.
This solution conÐrms that shear waves propagate along
each Ðeld line according to s5 \^2bs.

Let us consider the motion of some point

r \ (x, y) \ (Jfs, Jf/s) , (3.23)

on the wave proÐle. The trajectory is deÐned by taking
fP t\ const., and so

r5 \ ^b(x, [y) . (3.24)

The point follows the path and movesr \ (x0 eBbt, y0 eYbt)
at a rate determined by the magnitude of the back-r5 \ br
ground Ðeld.

Consider a wave packet concentrated around the initial
point and moving inwards, as shown inx0^ 1, y0> 1

The packet can localize whenever the rear of theFigure 3.
pulse travels faster than the head, that is, whenever x [ y. It
follows that the distance of closest approach to the neutral

FIG. 3.ÈWave packet propagation along a Ðeld line. A wave packet
moving from right to left localizes as it approaches the neutral point. The
extent of the wave is a minimum at the distance of closest approach r ^ r2.
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point (when x ^ y) corresponds to minimum speed and
maximum current of the wave.

Under what circumstances can the wave packet be
resistively damped? A necessary condition is that the di†u-
sive term o g+2Z o be comparable to at some point onoZ

t
o

the trajectory. Since the resistive term is maximum at the
distance of closest approach we obtain

r \ r
g
\
Ag
b
B1@2

(3.25)

as the condition for signiÐcant dissipation. Waves which
propagate along Ðeld lines outside the grazing radius canr

gtherefore sweep past the dissipation region and exit through
the surface y \ 1 with negligible damping ; these waves have
initial conditions given by Even wavesy0[ g/b, x0^ 1.
that are damped, satisfying achieve only a modestr \ r

g
,

current amplitude J D g~1@2.
3.6. Summary

Our solutions show that relatively weak current densities
are produced by shear wave disturbances perpendicular to
the plane of the X-point. The fact that the Ðeld can decay
rapidly is clearly an artifact of the open geometry : energy
loss is dominated by wave motions carrying energy out of
the volume rather than ohmic dissipation (see Evi-° 3.3).
dently this result holds good independent of the level of
stagnation point Ñow in the volume. We conclude therefore,
that the absence of Ñux pileup in the perpendicular shear
components condemns the ohmic dissipation rate to be
slow, WgD g1@2.

4. DISSIPATION OF PLANAR SHEAR WAVES

4.1. Field Equations
We now discuss the evolution of the planar Ðeld com-

ponents using equations and We shall concen-(2.11) (2.12).
trate mainly on the wave propagation characteristics of the
solution, since, as we have seen in wave properties° 3,
provide an excellent indicator for fast dissipation.

It is convenient to eliminate the potentials and work only
with the y-components of the disturbance Ðelds

V (x, t) \ [f
x

, Y (x, t) \ [g
x

. (4.1)

Using the comoving coordinates q\ t, m \ x exp ([at) of
we rewrite equations and in theequation (3.14), (2.11) (2.12)

form

Vq \ bmYm ] (aV [ bY ) , (4.2)

Yq \ bmVm [ (aY [ bV ) ] ge~2aqYmm . (4.3)

A detailed discussion of this system is given by &Craig
Henton and we shall present only a summary dis-(1997)
cussion here. What we wish to emphasize is that fast ohmic
dissipation is a possibility only for background Ñows
satisfying a2[ b2.

4.2. Wave Propagation for g \ 0
The wave properties of the solution can be examined by

setting g \ 0. Eliminating V (m, q) using weequation (4.2),
note that the Ðeld evolves according to the Klein-Gordon
equation

Yqq\ b2Yss ] (a2[ b2)Y , s \ ln m . (4.4)

holds for any linear combination of V and YEquation (4.4)
as a consequence of the intrinsic symmetry in the magnetic
and velocity Ðelds of ideal Ñuids (Elasser 1950).

It is interesting to compare with theequation (4.4) wave
equation describing the normal shear components.(3.17)
The characteristics are again deÐned by the local wavespeed
bm ; in particular, CB\ bq< ln m. Yet now there is a possi-
bility for growth in the Ðeld. This growth is associated with
the localization, in real space, of inward-travelling dis-
turbances (see Fig. 2b).

More speciÐcally, the solution for an isolated Fourier
mode is given by

Y
F
\ elqBiks , l(k) \ ^[a2[ b2(1] k2)]1@2 . (4.5)

In real space, t)\ elteBik(lnx~at). Either way, the condi-Y
F
(x,

tion for growth is a2[ b2(1 ] k2). Since long-wavelength
modes correspond to k ^ 1/o ln g o the localiza-(eq. [3.13]),
tion condition o a o[ b is sufficient for growth in the limit of
small g. The growth of the Ðeld is easily interpreted in the
case of material inÑow through the surface x \ 1 : the inÑow
e†ectively forces the shear wave to localize close to the
current layer x ^ 0. More surprising is the presence of
growth for a [ 0, but this behavior is unphysical, since it
requires an externally imposed current sheet on the inÑow
surface y \ 1.

More general wave solutions can be constructed using
superpositions of the form

Y (m, q) \
P
~=

=
dk A(k)eiklnmel(k)q . (4.6)

However, in view of the dispersive nature of the waves,
simple wave-packet descriptions can be derived only in
special cases.

4.3. Flux Pileup Solutions (a2[ b2)
The simplest case to discuss is b \ 0, corresponding to

the advection of straight Ðeld lines by the background stag-
nation point Ñow. In this case there are no shearing wave
motions associated with the development of the current
layer. Since the growth rate l is independent of k, we obtain
solutions which evolve according to

Y (m, q) \ eBaqY0(m) , b \ 0 . (4.7)

Legitimate positive growth implies a \ 0 and so Y (x, t) \
is the required solution. The growth of the Ðelde@a@tY0(xe@a@t)

is arrested only when resistive dissipation sets in. The local-
ization time

T ^
1

2 o a o
ln

o a o

g
(4.8)

corresponds to the di†usive length scale x ^ (g/a)1@2. The
resultant current amplitude J D a/g drives the ““ super-fast ÏÏ
rate Analytic di†usion solutions are given byWgD g~1@2.
Clarke (1964).

More generally, for b [ 0 the disturbance comprises
inward- and outward-propagating components relative to
the comoving coordinate m. In real space both components
are inward-moving, provided the condition a2[ b2 is satis-
Ðed. Although each component is highly dispersive, we can
use an approximate treatment to show that strong currents
are formed by the slower-moving wave train &(Craig
Henton In this case the current layer x D g1@2 is built1996).
up over the timescale

T ^
1

2 o k o
ln

o k o

g
, k \ a2[ b2

a
, (4.9)
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which leads to current magnitudes of order g~1 and super-
fast ohmic dissipation WgD g~1@2.

The price of fast dissipation, however, is not cheap. Since
the Ðeld at the current layer scales as Y D g~1@2, extremely
large pressures PD 1/2 Y 2D g~1 are present at the neutral
point (see This amplitude, which can be inter-eq. [2.15]).
preted as the level of the external hydromagnetic pressure
required to sustain the compressive Ñow, must eventually
saturate, stalling the reconnection. A discussion of this
problem is given by Watson & Craig in the(1997a), (1997b)
context of steady-state two- and three-dimensional recon-
nection solutions.

4.4. Weak Current Solutions (a2¹ b2)
When a2\ b2 the stagnation point Ñow is no longer

strong enough to drive Ñux pileup. In this case the growth
rate l is imaginary, so no ampliÐcation of the Ðeld dis-
turbance is possible. The limiting case b2\ a2, in which
l\ ^ibk, admits wave-packet solutions. In real space the
solution reduces to a standing component G(x), say, plus an
inward travelling wave H(xe2@a@t). The moving pulse can
localize in half the time of the b \ 0 wave packet, but the
absence of growth implies that only modest currents can be
driven, as J D g~1@2.

Finally, we mention planar Ðeld solutions when a \ 0.
This case was treated by et al. as an initialBulanov (1990)
value problem, but an eigensolution approach is also pos-
sible Either way, the conclusion mirrors the(Craig 1994).
analysis of The Ðeld decay is fast, but the rate of ohmic° 3.2.
dissipation is weak, The argument of againWg D g1@2. ° 3.3
holds good, but it is now planar rather than perpendicular
shear waves that carry energy out of the volume over the
fast timescale T D o ln g o.

5. CONCLUSIONS

We have considered the development of shear wave dis-
turbances in planar X-point equilibria. Shear waves appear
attractive as mechanisms for magnetic energy release
because they can produce small length scales in the Ðeld
without compressing the plasma. Therefore, in contrast to
the case of purely compressive ““ fast mode ÏÏ mechanisms,
there are no strong back pressures to build up and stall the
reconnection.

We have considered both perpendicular and planar shear
waves in ““ open ÏÏ X-point geometries. An exact solution for
disturbances normal to the X-point plane shows that

although small length scales x D g1@2 can develop, there is
no Ñux pileup at the onset of the current layer. Accordingly,
the current sheet is weak, so only slow rates of ohmic dissi-
pation occur, The decay of the Ðeld is indeed fast,WgD g1@2.
but this result can be attributed to the open geometryÈi.e.,
to shear waves carrying out of the volumeÈrather than to
the resistive losses in the plasma.

Essentially, the same conclusions hold for ““ undriven ÏÏ
planar shear waves. The ohmic dissipation is again weak,
because of the absence of Ñux pileup at the onset of the
sheet : x D g1@2, J D g~1@2, It follows that the fastWg D g1@2.
Ðeld decay demonstrated by et al. is theBulanov (1990)
result of wave energy escaping the volume, rather than
resistive heating of the plasma (see ° 3.3).

Can fast reconnection ever occur? The present analysis
allows only one mechanism: planar shear waves coupled to
strong advective Ñows driving material towards the neutral
point. We have seen that even the simplest stagnation point
Ñows stretch and compress the plasma and dramatically
intensify the Ðeld. The resulting Ñux pileup at the current
layer (x D g1@2) leads to much stronger sheets (J D g~1) and
the super-fast dissipation rate WgD g~1@2.

It cannot be said however, that the problem of fast recon-
nection has been solved. The inclusion of stagnation point
Ñows presupposes that large external hydromagnetic pres-
sures are available to drive them (of order g~1). In fact, we
have simply recovered, in a di†erent guise, the pressure
problem associated with fast mode merging. The problem is
most severe in the two-dimensional planar models dis-
cussed here, but three-dimensional ““ fan ÏÏ reconnection
solutions still require the scaling PD g~1@2 &(Craig
Fabling Since fast reconnection at arbitrarily small1996).
resistivities evidently requires unbounded pressures, the
merging rate must eventually saturate. The level of satura-
tion depends, in any concrete case, on the amplitude of the
planar disturbances and the value of the coronal resistivity.
Recent two-dimensional and three-dimensional steady-state
calculations & Craig suggest that the rate(Watson 1997a)
of energy dissipation at saturation can be quite large, poss-
ibly sufficient even to power modest Ñares. Clearly, further
investigation is required.

This research is supported in part by NSF grant ATM
93-11937 to the University of Hawaii. The authors are
grateful for conversations with Stefan Henton, Richard
Fabling, and Paul Watson.

APPENDIX

THE ROLE OF VISCOUS DAMPING

In common with most analytic treatments, the reconnection equations we consider do not account for the Ðnite viscosity of
the Ðeld. This may seem strange, given that resistive e†ects are generally very small and viscous dissipation is expected to be
signiÐcant if strong shearing motions develop in the Ñow. Although the solutions we discuss do require strong shearing
motions in the Ñuid, the key point to remember is that only reconnection can liberate energy bound up with the global Ðeld
topology : all nonresistive damping mechanisms are ine†ective in this regard.

Consider, for example, some nonlinear disturbance superposed on an equilibrium magnetic X-point. If the connections
between the equilibrium Ðeld lines are changed, then the disturbance can be thought to contain a ““ topological ÏÏ energy
component. This component can be isolated by simulating the evolution of a disturbed, highly viscous X-point plasma in
which the the resistivity is set to zero (e.g., & Craig No matter what form the viscous damping takes, theRickard 1993).
topological energy eventually accumulates in high current regions overlying the neutral point. Analytic calculations also
conÐrm that current sheet singularities that contain a dominant fraction of the energy in the initial Ðeld disturbance develop
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in two dimensions However, current sheets do not, in themselves, guarantee fast reconnection ; the exact nature(Craig 1994).
of the singularity is critical.

In the present study we are mainly concerned with determining whether the resistive dissipation of the topological energy is
fast. Viscous e†ects can alter the reconnection rate only through their inÑuence on the global velocity Ðeld of the plasma. The
viscous inÑuence has been investigated by & Craig within the context of the present shear Ñow solutions.Fabling (1996)
Side-by-side computations conÐrm that, although viscosity efficiently dissipates the vorticity of the Ñuid in the high-shear
regions close to the neutral point, its inÑuence on the resistive dissipation rate remains negligible, even for extreme levels of
viscous damping.
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